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Volume Minimizing Hypersurfaces in Manifolds of 
Nonnegative Scalar Curvature 

Mingliang Cai 

Abstract. 

We prove that if a manifold of nonnegative scalar curvature con
tains a two-sided hypersurface which is locally of least area and ad
mits no metric of positive scalar curvature, then it splits isometrically 
in a neighborhood of the hypersurface. 

We report here on joint work with G. Galloway concerning the study 
of rigidity of manifolds with nonnegative scalar curvature. Let us first 
recall the following theorem of Schoen and Yau. 

Theorem 1. Let ( M, g) be a smooth n-manifold with positive 
scalar curvature, S > 0. If ~ is a compact immersed two-sided stable 
minimal hypersurface in M, then ~ admits a metric of positive scalar 
curvature. 

The above theorem follows from the proof of Theorem 1 in [SY]. 
If M is merely assumed to have nonnegative scalar curvature, the con
clusion of the above theorem may not hold. Consider, for example, 
Tn-l X 5 1 , where Tn-l is an n- 1 torus. It is known that Tn-l does 
not admit a metric of positive scalar curvature ([GL], [SY]). However, 
in this direction one has the following theorem (cf. [SY], [FCS]). 

Theorem 2. Let (M, g) be a smooth n-manifold with nonnega
tive scalar curvature, S ~ 0. Let ~ be a compact manifold which does 
not admit a metric of positive scalar curvature. If ~ is immersed as a 
two-sided stable minimal hypersurface in M, then ~ is totally geodesic. 
Furthermore, the ambient scalar curvature S, the intrinsic scalar cur
vature S and the Ricci curvature in the normal direction Ricnn along ~ 
all vanish. 

We outline here the proof of Theorem 2 for n > 3 (for n = 3, see 
[FCS]). Denote by II the second fundamental form. The minimality and 

2000 Mathematics Subject Classification. Primary 53C20; Secondary 
53C21. 



2 M. Cai 

stability conditions of ~ imply that, for all smooth functions ¢ on ~' 

(1) 

Using the Gauss curvature equation and relating the ambient and intrin
sic scalar curvatures along ~' one gets the following "rearrangement" 

(2) - • 2 
S = S + 2Ricnn +IIII . 

Substituting (2) into (1), we have 

(3) r IV¢1 2 + ~ r (s- s -IIII2) ¢2 > o. 
}r, 2 }r, 

Since S ~ 0, we conclude that 

(4) -~ r Sl¢1 2 :::; r IV¢1 2 
2 }r, }r, 

for any smooth function¢ on~. 
Now, consider the operator 

n- 3 -
L = 6.- ( )S. 4n-2 

We claim that all the eigenvalues of L are nonnegative. Suppose the 
contrary and let ¢ be a nonzero solution of 

L¢ = ->.¢ 

for some A < 0. Multiplying the above equation by ¢ and integrating, 
we obtain 

(5) 2(n- 2) r IV¢12 = -~ r S¢2 + 2>-.(n- 2) r ¢2 < r IV¢12 
n - 3 }r, 2 }r, n - 3 }r, }r, 

where the inequality follows from (4). But this is not possible as 2(n-
2)/(n- 3) > 1. 

Now we show that the first eigenvalue, >.0 , is zero. We argue again 
by contradiction. Suppose the first eigenvalue )..0 > 0 and let u be a first 
eigenfunction. It is well-known that the first eigenfunctions for operators 
of the form of L do not change sign, hence we may assume that u > 0. 
If we multiply the metric of~ by u4 /(n- 3 ), the scalar curvature of~ is 
transformed to 
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This contradicts our assumption that ~ does not admit a metric of 
positive scalar curvature. 

Inequality ( 4) together with the equation in (5) implies that the 
eigenfunctions corresponding to the eigenvalue 0 must be constants and 
that S = 0. Substituting S = 0 and¢= 1 into (3), we see that both 8 
and II vanish. Theorem 2 is thus proved. 

Theorem 2 may be loosely paraphrased as: if ~ does not admit a 
metric of positive scalar curvature and if~ C M is infinitesimally of least 
area, then M infinitesimally splits along ~- The aim of this paper is to 
establish a noninfinitesimal version of this result. Our main theorem is 
the following 

Theorem 3. Let ( M, g) be a smooth n-manifold with nonnegative 
scalar curvature, 8 2: 0. Let ~ be a compact manifold which does not 
admit a metric of positive scalar curvature. If~ is immersed as a two
sided hypersurface in M which is locally of least area, then ~ has zero 
scalar curvature and a neighborhood of ~ in M splits isometrically as a 
product. 

By definition, a compact two-sided hypersurface ~ in a manifold 
M is locally of least area provided in some normal neighborhood V of 
~, A(~) ::::; A(~') for all ~' isotopic to ~ in V, where A is the area 
functional. If the inequality is strict for ~' =I= ~, we say that ~ is locally 
strictly of least area. Note that "locally of least area" in the theorem 
cannot be replaced by "stable minimal". Take, for example, 8 2 x 8 1 , 

where 8 2 is a modified sphere with an infinitesimally flattened equator 
E. Then E X 8 1 is a torus which does not admit a metric of positive 
curvature and which is stable minimal in 8 2 x 8 1 . 

Theorem 3 was proved in [CG] for n = 3. We thank an anony
mous referee for pointing out to us that ideas there also apply to higher 
dimensions. 

The idea of the proof of Theorem 3 is as follows. We first show 
that ~ cannot be locally strictly of least area. If it were, then under a 
sufficiently small perturbation of the metric to a metric of (strictly) pos
itive scalar curvature, ~would be perturbed to a minimal hypersurface 
which would admit a metric of positive scalar curvature. But this would 
contradict our assumption. We then show that on each side of ~ there 
is a hypersurface which has the same volume as ~- This implies that a 
neighborhood of ~ is foliated by localminimizers, which in turn implies 
that the neighborhood is a product. 

The folowing lemma is proved in [CG] which shows that locally any 
metric of nonnegative scalar curvature can be perturbed to a nearby 
metric of positive scalar curvature. 
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Lemma 1. Suppose ~ is a compact two-sided hypersurface in an 
n-manifold (M, g) with nonnegative scalar curvature, S(g) ~ 0. Then 
there exists a neighborhood U of~ and a sequence of metrics {gn} on U 
such that gn --+ g in c= topology on u' and each gn has strictly positive 
scalar curvature, S(gn) > 0. 

The next lemma is proved in [CG] for n = 3. The arguments there 
probably do not extend beyond dimension 7. We adopt here an alterna
tive approach suggested by the anonymous referee. 

Lemma 2. Let ~ be as in Theorem 3. ~ cannot be locally strictly 
of least area. 

Proof. Denote by X the set of c= sections of the normal bundle 
of~ with sufficiently small C 1 norm. For u EX, let H(u) be the mean 
curvature of graphE u in normal coordinates. H is a Fredholm operator 
and has the linerization 

H'(o) = -.6.- (IIW + Ricnn)· 

Since both II and Ricnn vanish by Theorem 2, H'(O) = -.6. and hence 
the cokernel, as well as the kernel, of H'(O) consists of constant func
tions on ~. Denote by p the projection from c=(~) to Y, where 
Y = { u I JE u = 0}. The composition poH is then a submersion from X 
to Y (some shrinkage of the domain may be necessary) and (p o H) - 1 ( 0) 
is a one-dimensional submanifold of X whose graphs constitute a family 
of constant mean curvature hypersurfaces. The area functional A9 re
stricted to this submanifold has a strict minimum at the zero. Let g be 
a small pertubation of g with positive scalar curvature, S > 0, and let 
fi be the corresponding mean curvature operator. The existence of g is 
guaranteed by Lemma 1. When the perturbation is sufficiently small, 
(p o fi)-1 (0) will be a one-dimensional submanifold whose graphs will 
be a family of constant mean curvature hypersurfaces in the metric g, 
and the area function Ag has a local minimum in it close to 0. We first 
show that this local minimum is a minimal hypersurface. 

To this end, let u(t) be a parametrization of (p o H)-1 (0) with 
u(O) = 0. Since u'(O) is in the kernel of p o H'(O), u'(O) is a (non
zero) constant function. Without loss of generality, we assume u'(O) is 
a positive constant. We then parametrize (p o fi)- 1 (0) by u(t) in such 
a way that u(t) is close to u(t), u(O) is the local minimum of A9 o u and 
u'(O) is a positive function. 

For simplicity, denote A9 o u by A, u'(O) by 1> and the graph corre
sponding to u(O) by t. 
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Since 0 is an extremum of A, A'(O) = 0. On the other hand, the 
first variational formula shows that 

A'(O) = k H(O)¢' 

where H(O) is the mean curvature of E. Since H(O) is constant and 
¢ is positive, the above shows that H(O) = 0, i.e., E is an minimal 
hypersurface. Now we show that E admits a metric of positive scalar 
curvature, contradicting our assumption on ~ as E is diffeomorphic to 
~. 

Since (p o if o u)'(O) = 0, we have 

(6) 
- -2 .-

-/j.¢- (II + RICnn)¢ = c, 

where c is in the kernel of p and hence is a constant. We claim that 
c ~ 0. In fact, since A"(O) ~ 0 and 

A" (0) = k ( -6.¢- (IT2 + Ri~nn)</J )¢, 

it follows that ft c¢ ~ 0. This together with ¢ > 0 implies that c ~ 0. 
Applying the "rearrangement" to (6), we get 

- 1 ::: - 2 
-jj.¢+"2(8-S-II )¢=c~O, 

where S is the intrinsic scalar curvature of E. 
Similar to the proof of Theorem 2, we now multiply the metric on 

E by ¢2/(n-2), the scalar curvature of the new conformed metric is then 
equal to 

Since c ~ 0, ¢ > 0 and S > 0, the above is po~itive. This is a contradic
tion and Lemma 2 is thus proved. D 

Remark 1. It is clear from the proof that Lemma 2 holds for 
manifolds with C 2 ,a. metrics, a fact which will be used later. 

Remark 2. Since u(O) = 0 and u'(O) is a positive constant, we know 
that u(t) and t have the same sign when tis sufficiently small. This shows 
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that when a constant mean curvature hypersurface is sufficiently close 
to I:, it lies to one side of I: and does not intersect with I: unless it 
coincides with :E. 

We are now in a position to prove Theorem 3. 
For simplicity, we assume that I: is embedded. The general case can 

be reduced to this one by working in the normal bundle of :E. 
We denote by F the collection of minimal hypersurfaces which are 

C 1 close to I: and have the same volume as :E. Lemma 2 implies that 
each element in F is an accumulation point in F. In fact, we can show 
that each element is a two-sided accumulation point. To see this, let us 
look at one of the two components of M\:E, say U. Taking two copies of 
U and gluing them along aU = I:, we get a new manifold, N. Since I: 
is totally geodesic, the induced metric on N is of class C 2 ' 1 . Moreover, 
I: is locally of least area in the new metric. Applying Lemma 2 (see also 
Remark 1) to N, we obtain a sequence of mutually distinct hypersurfaces 
:En inN such that :En has the same volume as I: and :En --+ :E. It follows 
from Remark 2 that when n is sufficiently large, :En lies to one side of I: 
and does not intersect with :E. This shows that U contains a sequence 
of hypersurfaces in F that is convergent to :E. Since the choice of U is 
arbitrary, we conclude that I: is a two-sided accumulation point in F. 
The argument certainly applies to every element in F. 

We now show that when ltl is sufficiently small, graph~ u(t) is an 
element in F, where u(t) is as in the proof of Lemma 2. To do this, let 
us fix a point xo in I: and consider r(t) = expxo u(t)N, where N is the 
normal vector to :E. Since every element in F is a two-sided accumulation 
point, a continuity argument shows that for each t there is an element 
:Et in F passing through r(t). Note that (p o H)-1 (0) consists of all 
constant mean curvature hypersurfaces that are close to I: and that :Et 
is a minimal hypersurface, hence, there is t' such that :Et=graph~ u(t'). 
Clearly, t' is uniquely determined, and thus we get a map t f--+ t'. It is 
easy to see that this map is continuous arid 0 f--+ 0. This implies that 
at least when ltl is sufficiently small, graph~ u(t) is a minimizer for the 
area functional. It then follows from the proof of Lemma 2 that u(t) is 
a constant section for each t. We thus have obtained a smooth foliation 
of a neighborhood of I: by totally geodesic hypersurfaces which are level 
surfaces of the distance function to :E. A standard argument shows that 
the neighborhood is a product of I: with an interval. This completes the 
proof of Theorem 3. 

Remark 3. It would be interesting to extend Theorem 3 to non
compact hypersurfaces. In dimension 3, Fischer-Colbrie and Schoen 
([FCS]) proved that a complete stable minimal surface in an orientable 
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3-manifold with nonnegative scalar curvature must be conformal to the 
complex plane or the cylinder A. In the latter case one can show that 
A is fiat and totally geodesic (See [FCS] and [CM]). It seems reasonable 
to conjecture that if the cylinder A is actually area minimizing (in a 
suitable sense), then M is a product. (cf. Remark 4 in [CG]). 

We would like to express our gratitude to a referee for valuable 
suggestions. We would also like to thank Bill Minicozzi for some helpful 
discussions. 
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