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Notes on the Topology of Hyperplane Arrangements 
and Braid Groups 

Claudio Procesi 

Introduction. 
We will be concerned with the following problem. Let V be an 

n-dimensional vector space over R. Denote its complexification Vc = 

V+iV. 

Consider furthermore a finite family 1{ := Hr := {Hi}iEI of real 
hyperplanes in V which for simplicity we assume all passing through the 
origin. The set of given hyperplanes and all their intersections form a 
finite set of subspaces of V partially ordered by inclusion. 

We shall restrict to the case in which niHi = 0 (such an arrangement 
is called essential) in fact this is not a serious restriction. 

We shall denote by 

this finite set of subspaces (closed under intersection), which will be 
referred to as the real arrangement. 

The complexification of all these subspaces is the corresponding 
complex arrangement in Vc. Our main concern will be the study of 
the topology of the complement in Vc of the union UiEr(Hi)c. 

Let us denote by A:= Vc - UiEr(Hi)c this open set. 

Of particular interest is the case in which V is a Euclidean space and 
the Hi are the reflection hyperplanes of a finite reflection group [Bou]. 

These groups have been classified by Coxeter, the finite reflection 
group W acts freely on A and we can form the covering 

A-+A/W. 
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Among these reflection groups there is the type An wich is the group 
Sn+l of permutations of the coordinates of Rn+l (the reflection hyper
planes are the ones of equations Xi- x1 = 0). In this case A/Sn+l can 
be identified to the space of monic polinomials of degree n with dis
tinct roots. The homotopy groups of A, A/W have been determined 
by Brieskorn [Br] and in the case An we have the classical Artin braid 
group Bn. Moreover it has been proved by Deligne [De] that A, A/W 
are both K ( 1r, 1) spaces. 

Salvetti [Sl] has described a very explicit finite CW complex homo
topically equivalent to A resp. A/W and, with the use of this complex 
many cohomology computations for these groups can be performed ( cf. 
also [B-Z]). 

De Concini and Salvetti have used these methods also to compute 
the cohomology of finite reflection groups. In these notes we explain 
some of these topics. 

These notes are a first draft of a project which may never see the 
light and I make them available in the hope that they may be useful. 
Nothing new is here just maybe some improvements in the notations 
and presentation. 

A the moment, even if the Salvetti complex is very explicit there is 
no real simplification available in the proof of Deligne and this topic is 
not included. The main open problems are related to the genus of the 
fibration given by the action of the reflection group on the regular part 
and we refer to [DS2] for details. 

Note added in proof. The following paper in fact is very relevant: 
C. C. Squier, The homological algebra of Artin groups, Math. Scand., 
75 (1995), 5-43. 

§1. Real arrangements 

We start our analysis from real arrangements, we give some basic 
definitions. 

With the notations of the introduction we fix a finite family 1{ := 

Hr := {HihEI ofreal hyperplanes in V and denote by L(H) := {niETHil 
T C I} the associated real arrangement (i.e. the set of all possible 
intersections of the Hi). 

Definition. The connected components of V - UiHi are called 
chambers of the arrangement. 

Clearly the chambers are connected convex open sets of V. 
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Given any subspace W E L(1i) of the arrangement the set of hyper
planes in the arrangement which do not contain W cuts on W a family 
1ilw of hyperplanes and the induced arrangent in W is a subset of L(1i). 
The chambers of all the induced arrangements in all the subspaces in 
L(1i) are called faces, 1 the set of all faces will be denoted by F(1i). 

Lemma 1.1. The faces form a partition of V. 

The proof is by easy induction. 

Let us choose for each i E I an explicit linear equation ai = 0 for 
the hyperplane Hi. 

Given a chamber F, by connectedness each ai has a definite sign ( + 
or -) on the points ofF and conversely if on 2 points p, q in A = V -UiHi 

the funcions ai have the same sign then this happens on the entire 
segment tp + (1- t)q, 0 ::; t ::; 1 which connects p, q in A. 

Thus a chamber determines and is determined by a sequence of signs 
(of course not all sequences occur). 

For a face in general some of the ai are also 0 and thus we see that 
more generally a face determines and it is determined by a sequence of 
signs +, -, 0 indexed by I. 

This remark has an immediate implication. If we consider the ar
rangement L(HJ) associated to a subset J C I of the given set of hy
perplanes we have: 

Proposition 1.2. Each face of the arrangement L(HJ) is a union 
of faces of the arrangement L(H). 

Lemma 1.3. The closure of a face F is a union of faces. 

Proof. We prove this statement by induction on the dimension of 
the face and thus we may assume that the face is a chamber. 

If p E F is a point then ai (p) is either 0 or it has the same sign of 
ai(q) for q E F. 

In particular we see that the half closed segment tp + (1- t)q, 0 ::; 
t < 1 is entirely contained in the chamber F. 

Let F 1 be the face in which p is contained and r E F1 since the 
sequence of signs for r coincides with that of p we see that also the half 
closed segment tr + (1 - t)q, 0 ::; t < 1 is entirely contained in the 
chamber F and thus r E F. D 

1In the french literature one distinguishes between faces as the codimen
sion 1 faces and facettes for the others. 
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We have thus defined a partial order on the set of faces and we shall 
denote by :F the partially ordered set of faces, the usual convention is 
F1 ~ F2 if and only if F2 C F 1 . Thus the chambers are the minimal 
faces. 

§2. Fans 

The fundamental combinatorial object is the nerve of the poset :F 
i.e. the simplicial complex whose vertices are in 1-1 correspondence with 
the faces and whose simplices correspond to totally ordered subsets of 
faces. 

Let us axiomatize this construction. Let us call a cone any subset 
A C V such that v E A, a > 0, ==='=* av E A. 

Definition. A polyhedral fan2 :F := {Fi}iEJ is a finite family of 
convex cones, called the strata such that: 

1) 0 is a stratum. 
2) The closure of a stratum is a union of strata. 
3) V = UiEJFi is a decomposition (i.e. disjoint union) of V. 

By definition then the set of strata is a poset by setting F 1 ~ F2 if 
and only if F2 C F 1 ( F 2 is contained in the closure F 1 of FI-) 

Thus the set of faces of a hyperplane arrangement is a polyhedral 
fan, we will see another important example when we treat complex ar
rangements. Let us fix a polyhedral fan, before proceding let us remark 
some simple facts. 

a) If we intersect a line l with the strata of a fan, it becomes de
composed as disjoint union of convex strata, such that the closure of 
a stratum is a union of strata. Then these strata are open segments 
(possibly infinite) and their extremal points. 

b) If W c V is a subspace the family W n Fi of non empty intersec
tions is a polyhedral fan in W. 

c) A polyhedral fan in the line R is necessarily the decomposition 
R-, O,R+. 

d) A polyhedral fan in R 2 is given by a finite set of half lines ri 
and the connected components of their complement. Notice that such 
components are convex if and only if the angle between two successive 
lines il ~ 1r. 

2the definition we use is slightly more general that the one usually intro
duced in the theory of torus embeddings. 
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Part d) needs a proof. Consider a stratum S which is not a half 
line. S is a convex cone containing two linearly independent vectors a, b. 
Consider the intersection of S with the line through a, b it is a convex 
set A in this line which by the previous codiscussion is open, then it is 
easy to conclude the proof. 

The main construction is a geometric realization of this poset in V 
but in fact this is a consequence of the construction of a simplicial fan, 
which is a pseudobaricentric subdivision of the given fan. 

For this let us select in each stratum F, different from the stratum 
reduced to 0, a vector Vp. 

There is a totally elementary but essential Lemma associated to this 
construction. 

Lemma 2.1. Given a vector v E F in a stratum F there exists, 
a unique vector w E 8F in the boundary ofF, and a unique positive 
numeber a > 0 such that: 

v = avp +w. 

Proof. If v is a multiple avp of VF then a > 0 and w = 0. 
Otherwise we work in the 2-dimensional plane 7r spanned by v, vp in 
which the intersection F n 1r appears as an open convex angle limited by 
two half lines which are in 8F, then in this 2 dimensional picture the 
statement is clear. D 

Theorem 2.2. 1) Given a simplex S := FI < F2 < · · · < Fk < 0 
the vectors VI := Vp1 , v2 := Vp2 , ••• Vk := Vpk are linearly independent. 

2) Let Cs := tz:=aivi, ai > 0} the corresponding open simplicial 
cone. Then V - 0 is the disjoint union on the cones C s. 

3) Each stratum F is the union of the cones Cs where the first 
element of S is F. 

proof. We claim that all these statements are immediatete conse
quences of the previous Lemma. In fact let us take a vector v E V - 0 
then v E FI where FI is a non 0 stratum uniquely determined. 

By the previous Lemma v = a I v p 1 +WI· If WI = 0 we stop otherwise 
WI E F2 -1- 0, WI = a2vp2 + w2, a2 > 0 with FI < F2. Continuing in 
this way we see that each point has a unque expression of the form 

D 
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Let us now consider, for each combinatorial simplex S := F1 < F2 < 
· · · < Fk the geometrical simplex 

convex envelope (or join) of the (independent3 ) vertices VF; (we now 
allow also the stratum 0). 

Corollary 2.3. The simpleces lSI form a simplicial subdivision 
on a combinatorial ball BF with boundary II the union of simpleces 
lSI, S := H < F2 < · · · < Fk < 0 not containing the vertex 0. 

The map j : R+ x II---+ V- 0, j(a, v) := av is a homeomorphism. 

Proof. We have seen that the cones Cs decompose V- 0 on the 
other hand clearly the closure C s of the cone C s is the union: 

Cs = UrcsCr 

this implies that the simplices of II form a simplicial complex. 

For the second part it is clearly enough to show that j is bijective, 
for this we construct the inverse. Given a point v E V - 0 we have that 
v is uniquely of the form: 

v = {2:::::: aivi, ai > 0} E Cs 

we set a= Liai and w :=~then wE II and j-1 (v) = (a,w). D 

§3. Subspace arrangements 

Let us consider again a polyhedral fan F = {Fi}iEJ and consider 
a closed subset X C V with X = UiEJFi a union of strata. Let A := 
V- X= Uif/.JFi also a union of strata. 

Denote ass before by II the simplicial realization of the complex of 
non 0 strata in F and let Ilx, II~ be the two full subcomplexes of II 
with the vertices in X and in A respectively. 

From the last corollary it follows that the homeomorphism j-1 : 

V -0---+ R+ x II maps X -0, A respectively toR+ xiix, R+ x (II-Ilx). 
By standard facts II~ is a deformation retract of II- Ilx and thus 

we obtain: 

Theorem 3.1. The open set A= V- X has the same homotopy 
type as IT~. 

3 in the sense of affine geometry 
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Let us see the implication of this discussion to the topology of 
subspace arrangements. If we consider an arrangement of subspaces 
W := {Wj} contained in L(1i) we have that: 

(1) The union Vw := UWj of the subspaces Wj, is a union of faces. 
(2) The intersection of Vw with II is the full subcomplex Ilw with 

vertices the vertices VF, F C Vw or VF E Vw. 
(3) Under the homeomorohism j the open set V- Vw corresponds 

to 
R+ x (II- Ilw). 

Thus consider the orthogonal subcomplex to ITw i.e. the full sub
complex II~ having the vertices VF (j; Vw. 

We obtain: 

Corollary 3.2. The open set V- Vw has the same homotopy type 
as IT~. 

Since we will need it in a moment let us see what happens for non 
essential arrangements. Assume thus that the intersection nHi = A is 
a linear subspace of codimension m. 

Fix a linear complement B to A so that V = A EB B then the hyper
planes Hi intersect Bin an essential arrangement LB(1i). The faces of 
L(1i) can be identified with Ax G with G face of LB(1i). 

Then the open set v- UiHi is homeomorphic to A X ( B-ui ( B nHi) 0 

Thus again V- UiHi has the same homotopy type as the polyhedron 
II associated to the induced arrangement on B. 

Proposition 3.3. If A = niHi is a subspace of codimension m 
the geometric realization of the poset of faces of the arrangement is a 
combinatorial m-ball. 

Before passing to complex arrangements it is useful to analyze a 
cellular structure of the polyhedrons II, Ilw, II~. 

For this we need a little more notations. Given a face F let us define 
by (F) the linear span ofF (we know that (F) E L(1i) and that F is a 
chamber of (F)). 

Consider furthermore the set of indeces JF: {i E IIF CHi}· 

This is typically a non essential arrangement and (F)= niEJFHi. 
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We have seen that IT is a combinatorial sphere and its join with 0, 
B:F =IT* 0 a ball. More generally ifF is a face consider the poset CF 
of all faces G such that F :2: G i.e. such that F C G. 

We claim that: 

Lemma 3.4. As a poset CF is isomorphic to the poset of faces of 
the configuration 1iJF of hyperplanes containing F. 

Proof. Take a face G E CF, from Proposition 1 we know that it is 
contained in a unique face of the subarrangement L(1iJF). 

Conversely take one such face G which we know (always by the same 
proposition) is a union of faces in F(H). 

These faces differ only for the signs of the equations ai which do 
not vanish on F. Since F C G we must have that F C F' where F' C G 
is a face in F(H). This face is unique since on this face the signs of the 
equations ai which do not vanish on F must have the same sign as on 
F. 0 

From the previous proposition we get: 

Corollary 3.5. The nerve of the poset CF is a triangulation of a 
combinatorial ball BF of dimension the codimension of F. 

This fact has an important implication: 

Theorem 3.6. The boundary of BF is the union of the Ba with 
G<F. 

The balls BF as F varies on all faces of the hyperplane arrangement 
give a cellular decomposition of the ball B'H. 

For any given subspace arrangement W (of the hyperplane arrange
ment) the polyhedron ITw is a sub cell complex given by the balls BF as 
F varies on the faces F of the arrangement which are not contained in 
the union of the subspaces. 

We will refer to BF as the cell dual to F. 

Product of arrangements. Before we pass to complex arrange
ments let us treat briefly a simple general construction. Civen two vector 
spaces V1 , V2 and in each an arrangement of hyperplanes 1i1 , 1i2 we can 
define the product arrangement Ji1 X Ji2 in V1 X V2 in the obvious way. 
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One easily sees that the faces of this arrangemens are just products: 

as poset we have that F(H 1 x H 2 ) is the product F(H1 ), xF(H2 ) of the 
two posets with the product order (a, b) :::; ( c, d) if and only if a :::; c, b :::; 
d. 

§4. Complex arrangements 

It is now the time to look at complex arrangements, i.e. arrange
ments of hyperplanes given by real equations in complex space, or the 
complexification of a real arrangement H in V. 

Of course the idea is to treat such arrangements as subspace ar
rangements in a real space. More precisely in Vc = V + iV = V x V the 
complex hyperplane of equation ak ( v + iw) = 0 is the real codimension 
2 subspace ih := Hk + iHk (where Hk = {v E Vlak(v) = 0}). 

Therefore the subspaces fik are part of the hyperplane arrangement 
associated to the real hyperplanes Hk +iV, V +iHj, in the notations of 
the previous paragraph this is in fact H x H. One can therefore apply 
the previous theory to this hyperplane arrangement. There is on the 
other hand a much more efficient way to procede due to Salvetti and we 
describe this. 

Given a face A of the hyperplane arrangement H consider the hy
perplane arrangement HA generated by the hyperplanes containing A 
we consider the set 

CF(H) :={(A, B) I A E F(H), BE F(HA)} 

of pairs (A, B) where A is a face in the original hyperplane arrangement 
H while B is a face of the subarrangement HA. 

Proposition 4.1. 1) The sets Ax B =A+ iB, (A, B) E CF(H) 
decompose Vc = V + iV. 

2) The closure A+ iB is a union of strata Ak + iBk, (Ak, Bk) E 

CF(H). 

Proof. 1) We have a decomposition V +iV = UAEF(r()A+iV and 
then a decomposition A+ iV = UBEF(HA)A + iB. 

2) We have for the closure A+ iB = A+iB =Ax Band A= UAk 
is a union of faces in F(H) while B = UBh is a union of faces in F(HA)· 

Thus Ax B = Uk,hAk x Bh now the decomposition of V into faces for 
F(HAk) is a refinement of the decomposition of V into faces for F(HA), 
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since Ak is in the closure of A and so the set of hyperplanes containing 
Ak contains the set of hyperplanes containing A. D 

Therefore in a natural way the set of pairs CF(1i) is also a par
tially ordered set and we are going (as in §1) to represent its nerve as a 
simplicial complex. 

Remark that also the strata A x B, (A, B) E CF('H) are convex 
cones (open in their closure). Thus 

Theorem 4.2. 
polyhedral fan. 

The set of strata A x B, (A, B) E CF('H) is a 

We have to understand now how the open set A complement of the 
complex hyperplane arrangement, appears in this picture. 

Proposition 4.3. A is the union of the faces A+ iB, (A, B) E 

CF(1i) with B open. 

Proof. A vector a + ib is in A if and only if b is not contained 
in any of the hyperplanes of 1{ in which a is contained. This describes 
exactly the union of the strata in CF('H) described by the proposition. 

D 

Let us thus set 

Fe:= {A+ iBI (A, B) E CF('H) with B open}. 

This is a poset and, if we fix a vertex in each stratum of Fe and 
construct the corresponding simplicial complex lie we have, by Theorem 
3.1. 

Theorem 4.4. The complement A of the complex hyperplane ar
rangement has the same homotopy type as that of the simplicial complex 
lie geometric realization of Fe. 

We want to describe now the natural cellular structure of the poset 
Fe. 

Fix a face (A, B) E Fe. We want to consider the poset of all faces 
(C,D)::; (A,B). 

By definition (C,D)::; (A,B) means A C C, BCD. Since B,D 
are open sets this condition is in fact equivalent to: 

Ace, BeD 
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thus D is the unique chamber of the configuration of hyperplanes through 
C which contains B. In other words, given (A, B) E Fe, the subposet 

F(A,B) := {(C,D) E Fci(C,D) ~(A, B)} 

of Fe formed by all faces ( C, D) ~ (A, B) is isomorphic to the poset LA 
of all faces C of the hyperplane arrangement with C ~ A. By Corollary 
3.2 the nerve of the poset F(A, B) is a triangulation of a combinatorial 
disk ~(A, B) of dimension the codimension of A. 

By construction the boundary of this ball is also a union of balls 
relative to pairs (C, D) < (A, B) and thus: 

Corollary 4.5. We have a cell complex structure on the polyhedron 
II in which the cells ~(A, B) of dimension k are indexed by elements 
(A, B) E Fe with A of codimension k. 

The boundary of ~(A, B) is 

8(~(A, B)) = u(A' ,B')<(A,B)~(A', B'). 

§5. Reflection arrangements 

We consider now an n-dimensional Euclidean space V and the ar
rangement of reflection hyperplanes of a finite Coxeter group W. By 
this we mean that W is a finite group generated bty reflections with 
respect to some hyperplanes Hi and the arrangement is formed by these 
Hi and also all their transforms under the group W. 

We plan to describe the various polyhedra considered, for real and 
complex arrangements, in this case and in a W equivariant way. 

We start from the real polyhedron. 

We assume that the only fixed vector is 0. 

Fix for every Hi in the arrangement an orthogonal vector ai so that 
Hi:= {v E V\(ai,v) = 0}. 

The elements ±ai play the same role as the roots of a root system. 
Fixing a vector v outside all hyperplanes Hi determines positive roots 
and a fundamental chamber. 

From the theory of these groups one can choose n-independent 
reflection hyperplanes Hi, i = 1, ... , n which are the walls of a chamber 
C which conventionally we will call the fundamental chamber. 

Hi := { v E V\ ( ai, v) = 0} the elements ai correspond for root 
systemes to simple roots. 
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Thus the chamber C is a simplicial cone 

n 

C := (~=aiuilai > 0} 
i=l 

(ai,uj) = 8f. 
The wall Hi is spanned by the Uj, j =f. i, the group W is generated 

by the reflections Si relative to the walls Hi. 

The closure C := {2:7=1 aiuilai ?: 0} of Cis a fundamental domain 
for the action of W. 

The stabilizer of a face F of C acts trivially on the face and it 
is generated by the simple reflections Si relative to the walls Hi with 
Fe Hi. 

F is determined by a subset J C I := {1, ... , n} we will denote it 
by FJ and we denote by WJ the subgroup generated by the si, i E J. 
W J is also a reflection group which may also be realized as a reflection 
group on the subspace (F)J. orthogonal to the span of the face F. The 
fixed vectors of WJ form the span (F) of the face F. 

Consider now a vector v0 E C in the open chamber. By what we 
have said the orbit W v0 gives rise to a point in each chambers and it is 
in 1-1 correspondence with W. 

Denote by Vw := wv0 , w E W. Let .6. be the convex hull of the 
points Vw. Then it is also true that the Vw span V and hence .6. is a 
convex polyhedral ball of dimension n. Clearly .6. is stable under W and 
since its extremal points are among the points W v0 it follows that all 
these points are extremal. 

For any face F J of C let us set 

the baricenter of the orbit of v0 under W J. 

Lemma 5.1. We have that VJ E F and VJ is the orthogonal 
projection of vo to the span (F) of the face F. 

Proof VJ is fixed by WJ hence it is in (F), if we decompose 
vo = u + z, u E (F), z E (F)l. we have that EwEWJ wz = 0 and hence 
the claim u = VJ. 

We still have to prove that VJ E F. By induction it is enough to do 
it when F is a codimension 1 face of C. If Hi is the wall through F and 
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si the corresponding simple reflection Vp = 1/2(v0 + sivo) and Hi is the 
only wall separating the two chambers C, si(C) thus the signs (aj, w) 
for j =f. i do not change crossing this wall and we see that ( ai> v F) > 0 
for j =f. i and so Vp E F. 0 

Every other face F' is uniquely W equivalent to a face F J and if 
F' = wFJ the element w lies in a coset wWJ and so 

Vpt := WVJ 

is well defined. 

We have thus defined, for all faces F of the refection arrangement a 
vector v F characterized by the following properties: 

1) IfF= wG then Vp = wva. 
2) IfF C G then vp is the orthogonal projection of va to (F). 
We can now consider the simplicial complex II associated to the 

vertices vp and simpleces induced from the poset structure of the faces. 
We have that: 

Theorem 5.2. II is a triangulation of the ball A convex hull of 
the points Vw. 

Proof. By construction all the vertices of this polyhedron are 
contained in A and so II triangulates some polyhedron contained in A 
but now the faces of A are balls of the same type for smaller reflection 
systems for which the coincidence is by induction and this proves the 
claim. 0 

Remark 5.3. With the notations of §3 notice that, the cell dual 
to a face F is the convex envelope of the orbit under the reflection group 
generated by the hyperplanes through F of a point Vw in a chamber of 
which F is a face. Let us pass now to the complexified picture and to 
the open set A. 

From §4 we know that this is stratified by the set 

Fe:= {A+iBI (A,B) E CF(1i) with B open}. 

Here A is a face of the reflection arrangement while B by the descrip
tion of §4 is a chamber of the reflection arrangement generated by the 
hyperplanes corttaing A. 

Proposition 5.4. 
w E W such that 

There exists a unique J C I and a unique 

w(A,B) := (wA,wB) = (FJ,wB), C c wB. 
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Proof. Since C is a fundamental domain there exists a J C I and a 
wE W such that w(A) = FJ, the set of elements {w' E Wlw'(A) = FJ} 
is the coset WJW. 

The chamber wE is one of the chambers of the reflection arrange
ment generated by the hyperplanes containg FJ and WJ acts simply 
transitively on these chambers, of which one and only one contains C 
the statement follows. 0 

We have now to choose judiciously the points V(A,B), (A, B) E 

CF(1t) so that the resulting polyhedron is W stable. Since there is 
a unique w E W with wA = FJ, wE ::J C we define 

V(A,B) := W(VJ + ivo). 

We obtain that: 

Theorem 5.5. The simplicial complex IIc with vertices V(A,B) := 

w(vJ + ivo) and simplices induced by the poset structure of CF(1t) is 
W stable moreover the homotopy equivalence between A and IIc is W 
equivariant. 

Proof. The homeomorphism j is clearly W equivariant, but if we 
have a polyhedra II a full subpolyhedron IIx and its orthogonal IIir 
the deformation from II- IIx to IIir is canonical along the rays joining 
a point in IIx and in IIir so if we have a simplicial action of a group 
preserving these two polyhedra also the deformation is equivariant. 0 

We can finally use all this to analyze the homotopy type of A/W. 
From what we have seen this is homotopically equivalent to IIc/W. 

We have seen (last corollary of §4) that IIc has a cellular structure in 
which the cells ~(A, B) of dimension k are indexed by elements (A, B) E 

Fe with A of codimension k. 

Given a set J C I with k elements we have in particular the k cell 

By the previous Proposition each cell is W equivalent to one and only one 
of the cells CJ. Therefore we deduce that the space IIc/W is obtained 
in some way attaching these cells. 

The simplest way to describe these attachments is the following. 

Consider the n cell ~(0, C) which is the simplicial complex with 
vertices VF + iv0 as F runs through the faces of the real arrangement 
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and is isomorphic (also as simplicial complex) to the ball ~ of the real 
picture by projection to the real part. The cells CJ are contained in 
~(0, C) and thus under projection 

1r : ~(0, C) ____, IIc/W 

is surjective. A face ~(F, D), C C D is identifyed to a unique face CJ 
by the element wE W with wF = FJ, C C wD. 

D J := wD is the unique face of the arrangement generated by FJ 
and containg C. Since we have already that C C D we must have also 
wC c DJ. 

Lemma 5.6. The unique element w0 E W such that w0 F = 
FJ, w0 D = D J where D is the unique face of the arrangement generated 
by F and containg C is the shortest element in the coset WJ w. 

Proof. The set of elements wlwF = FJ is the coset WJWo. We 
claim that the shortest element on the coset is characterized by the fact 
that l(siwo) = l(wo) + 1 for all i E J and this in turn is equivalent to 
w0 1 (ai) > 0 for all the roots ai associated to the hyprplanes Hi, i E J. 
Now C := {vl(ai, v) = ai(v) > 0, Vi E I} while DJ := {vlai(v) > 
0, ViE J} and thus since woC C DJ we have fori E J that: 

v E C, (w01ai, v) = (ai, wov) > 0. 

D 
So we have the 

Theorem 5.7. The space IIc/W which is of homotopy type of 
A/W is obtained brom the ball ~ identifying each face F with the face 
CJ in its W orbit, using the shortest element w in the coset WJ w for 
which WJ wF = CJ. 

Let us draw some interesting consequence of this. 

First of all we deduce immediately Brieskorn presentation by gener
ators and relations of the generalized braid group. 

The homotopy group of IIc/W is computed by just considering the 
1 and 2 cells. the 1 cells give a bouquet of circles, corresponding to the 1 
faces joining v0 to sivo, we denote by Ti the corresponding loop oriented 
from v0 to siv0 . Thus the Ti are generators for the homotopy group. 
The 2 cells give the relations. Given 2 nodes i, j of the Dynkin diagram 
we deduce a relation between Ti, Tj and it easily seen to be: 

TiTJ = TJT;, T;TJTi = TJTiTJ, TiTJT;TJ = TJTiTJTi, 
TiTJTiTJTiTJ = TJTiTJTiTJTi, 
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according if the two nodes are joined by 0, 1, 2, 3 edges. 

First of all let us look at the !-dimensional cells which are of the 
ones of vertices wsivo, wv0 . If l( wsi) = l( w) + 1 then w- 1 is the element 
of shortest length identifying the 1-cell with SiVa, vo. The generator Ti 
is by definition the loop associated to the oriented edge v0 , siv0 . Thus 
the lift of Ti from the point wv0 goes to the point wsivo along this edge. 

Next consider the universal covering space 1r : ii: ---+ II ---+ II/W of 
IIc/W and of II. Lifting the cellular structure of II we have a paving of 
IT by cells which are permuted by the group of deck transformations. 

We fix a cell C of amaximal dimension mapping to ~(0, C) and 
a base point p0 in C mapping to v0 . Thus we identify the group of 
deck transformations with the generalized braid group B using this base 
point. 

Under the homeomorphism of C to ~(0, C) the vertices wv0 are in 
the orbit of p0 under the group of deck transformations 

wvo = n(Twpo) 

and this defines a canonical lift Tw of w. 

If w = Si 1 Si 2 ••• Sik is a reduced expression the we claim that 

In fact there is a path from v0 to wv0 given by the edges [sik v0 , v0 ], 

[si, Si2 ••• Sik vo, Si2 ••• Sik vo] which maps in II/W to a path giving the 
element Ti, Ti2 ... Tik of the homotopy group. 

Next we identify inC the copies of the CJ which we denote by the 
same symbols. 

We have to fix an orientation for the cells C J this can be done by 
ordering the vertices and then orienting the cells C J so that if K C 

J, IKI = k- 1 is obtained removing the hth element of J the oriented 
cell CK appears in the boundary of CJ with the sign EK,J := ( -l)h. 

We have thus: 

Theorem 5.8. 1) The cells in IT are simply transitive orbits of 
the cells CJ. 

2) Denoting by Ck(IT) the group of k-dimensional cells, under the 
action of B this is a free Z[B] module with basis the cells CJ, IJI = k. 

3) The boundary of the cell CJ is the sum 

KcJ, IKI=k-1 
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Where Tw denotes the canonical lift of the element of shortest length w 
in the coset. 

Proof. The statements 1), 2) follow from the construction as for 
0) and 3) we have to note that each cell F which in ~(0, C) is in the 
orbit of CJ under W in fl: is exactly F = TwCJ (under the group of 
deck transformations) this is easily verified by considering the minimal 
path from wv0 to v0 followed by the two segments joining wv0 , v0 to 
the centers of the respective cells. The sign ( -1)1Cw) depends of the fact 
that the reflections Si reverse the orientation of the fundamental cell. D 

§6. Reflection groups 

In [DS2] the authors generalize the previous analysis as follows. 
Start from the real reflection representation V and consider instead of 
the complexification, the space vm for all m. On vm the reflection 
group w acts and it acts freely on the open subspace um obtained by 
removing the subspaces Hm for each reflection hyperplane. 

One has naturally a set of inclusions um c um+l . . . and a space 
u= which by a simple dimension argument is contractible and hence 
Bw := u= jW is a classifying space for W. 

The same method used for the complexification allows to stratify 
Ill a w equivariant way the space vm by products Fl X F2 X •.• X Fm 
where inductively: 

F 1 is a face of the reflection arrangement and Fi + 1 is a face of the 
subarrangement generated by the hyperplanes which contain Fi. In this 
way one has a fan and um is a union of the strata Fl X F2 X •.• X Fm 
with F m open. Then a similar analysis gives a cellular structure on Bw. 
We refer to the original paper for details. 
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