Notes on the Topology of Hyperplane Arrangements and Braid Groups

Claudio Procesi

Introduction.

We will be concerned with the following problem. Let V be an n-dimensional vector space over \mathbf{R}. Denote its complexification $V_{\mathbf{C}}=$ $V+i V$.

Consider furthermore a finite family $\mathcal{H}:=\mathcal{H}_{I}:=\left\{H_{i}\right\}_{i \in I}$ of real hyperplanes in V which for simplicity we assume all passing through the origin. The set of given hyperplanes and all their intersections form a finite set of subspaces of V partially ordered by inclusion.

We shall restrict to the case in which $\cap_{i} H_{i}=0$ (such an arrangement is called essential) in fact this is not a serious restriction.

We shall denote by

$$
L(\mathcal{H}):=\left\{\cap_{i \in T} H_{i} \mid T \subset I\right\}
$$

this finite set of subspaces (closed under intersection), which will be referred to as the real arrangement.

The complexification of all these subspaces is the corresponding complex arrangement in $V_{\mathbf{C}}$. Our main concern will be the study of the topology of the complement in $V_{\mathbf{C}}$ of the union $\cup_{i \in I}\left(H_{i}\right)_{\mathbf{C}}$.

Let us denote by $\mathcal{A}:=V_{\mathbf{C}}-\cup_{i \in I}\left(H_{i}\right)_{\mathbf{C}}$ this open set.
Of particular interest is the case in which V is a Euclidean space and the H_{i} are the reflection hyperplanes of a finite reflection group [Bou].

These groups have been classified by Coxeter, the finite reflection group W acts freely on \mathcal{A} and we can form the covering

$$
\mathcal{A} \rightarrow \mathcal{A} / W .
$$

Received July 3, 2000.
Partially supported by M. U. R. S. T. 40%.

Among these reflection groups there is the type A_{n} wich is the group S_{n+1} of permutations of the coordinates of $\mathbf{R}^{\mathbf{n + 1}}$ (the reflection hyperplanes are the ones of equations $x_{i}-x_{j}=0$). In this case \mathcal{A} / S_{n+1} can be identified to the space of monic polinomials of degree n with distinct roots. The homotopy groups of $\mathcal{A}, \mathcal{A} / W$ have been determined by Brieskorn [Br] and in the case A_{n} we have the classical Artin braid group B_{n}. Moreover it has been proved by Deligne [De] that $\mathcal{A}, \mathcal{A} / W$ are both $K(\pi, 1)$ spaces.

Salvetti [S1] has described a very explicit finite CW complex homotopically equivalent to \mathcal{A} resp. \mathcal{A} / W and, with the use of this complex many cohomology computations for these groups can be performed (cf. also [B-Z]).

De Concini and Salvetti have used these methods also to compute the cohomology of finite reflection groups. In these notes we explain some of these topics.

These notes are a first draft of a project which may never see the light and I make them available in the hope that they may be useful. Nothing new is here just maybe some improvements in the notations and presentation.

A the moment, even if the Salvetti complex is very explicit there is no real simplification available in the proof of Deligne and this topic is not included. The main open problems are related to the genus of the fibration given by the action of the reflection group on the regular part and we refer to [DS2] for details.

Note added in proof. The following paper in fact is very relevant: C. C. Squier, The homological algebra of Artin groups, Math. Scand., 75 (1995), 5-43.

§1. Real arrangements

We start our analysis from real arrangements, we give some basic definitions.

With the notations of the introduction we fix a finite family $\mathcal{H}:=$ $\mathcal{H}_{I}:=\left\{H_{i}\right\}_{i \in I}$ of real hyperplanes in V and denote by $L(\mathcal{H}):=\left\{\cap_{i \in T} H_{i} \mid\right.$ $T \subset I\}$ the associated real arrangement (i.e. the set of all possible intersections of the H_{i}).

Definition. The connected components of $V-\cup_{i} H_{i}$ are called chambers of the arrangement.

Clearly the chambers are connected convex open sets of V.

Given any subspace $W \in L(\mathcal{H})$ of the arrangement the set of hyperplanes in the arrangement which do not contain W cuts on W a family $\left.\mathcal{H}\right|_{W}$ of hyperplanes and the induced arrangent in W is a subset of $L(\mathcal{H})$. The chambers of all the induced arrangements in all the subspaces in $L(\mathcal{H})$ are called faces, ${ }^{1}$ the set of all faces will be denoted by $F(\mathcal{H})$.

Lemma 1.1. The faces form a partition of V.
The proof is by easy induction.
Let us choose for each $i \in I$ an explicit linear equation $\alpha_{i}=0$ for the hyperplane H_{i}.

Given a chamber F, by connectedness each α_{i} has a definite sign (+ or -) on the points of F and conversely if on 2 points p, q in $\mathcal{A}=V-\cup_{i} H_{i}$ the funcions α_{i} have the same sign then this happens on the entire segment $t p+(1-t) q, 0 \leq t \leq 1$ which connects p, q in \mathcal{A}.

Thus a chamber determines and is determined by a sequence of signs (of course not all sequences occur).

For a face in general some of the α_{i} are also 0 and thus we see that more generally a face determines and it is determined by a sequence of signs,,+- 0 indexed by I.

This remark has an immediate implication. If we consider the arrangement $L\left(H_{J}\right)$ associated to a subset $J \subset I$ of the given set of hyperplanes we have:

Proposition 1.2. Each face of the arrangement $L\left(H_{J}\right)$ is a union of faces of the arrangement $L(H)$.

Lemma 1.3. The closure of a face F is a union of faces.
Proof. We prove this statement by induction on the dimension of the face and thus we may assume that the face is a chamber.

If $p \in \bar{F}$ is a point then $\alpha_{i}(p)$ is either 0 or it has the same sign of $\alpha_{i}(q)$ for $q \in F$.

In particular we see that the half closed segment $t p+(1-t) q, 0 \leq$ $t<1$ is entirely contained in the chamber F.

Let F_{1} be the face in which p is contained and $r \in F_{1}$ since the sequence of signs for r coincides with that of p we see that also the half closed segment $t r+(1-t) q, 0 \leq t<1$ is entirely contained in the chamber F and thus $r \in \bar{F}$.

[^0]We have thus defined a partial order on the set of faces and we shall denote by \mathcal{F} the partially ordered set of faces, the usual convention is $F_{1} \leq F_{2}$ if and only if $F_{2} \subset \bar{F}_{1}$. Thus the chambers are the minimal faces.

§2. Fans

The fundamental combinatorial object is the nerve of the poset \mathcal{F} i.e. the simplicial complex whose vertices are in 1-1 correspondence with the faces and whose simplices correspond to totally ordered subsets of faces.

Let us axiomatize this construction. Let us call a cone any subset $A \subset V$ such that $v \in A, a>0, \Longrightarrow a v \in A$.

Definition. A polyhedral $\operatorname{fan}^{2} \mathcal{F}:=\left\{F_{i}\right\}_{i \in I}$ is a finite family of convex cones, called the strata such that:

1) 0 is a stratum.
2) The closure of a stratum is a union of strata.
3) $V=\cup_{i \in I} F_{i}$ is a decomposition (i.e. disjoint union) of V.

By definition then the set of strata is a poset by setting $F_{1} \leq F_{2}$ if and only if $F_{2} \subset \bar{F}_{1}$ (F_{2} is contained in the closure \bar{F}_{1} of F_{1}.)

Thus the set of faces of a hyperplane arrangement is a polyhedral fan, we will see another important example when we treat complex arrangements. Let us fix a polyhedral fan, before proceding let us remark some simple facts.
a) If we intersect a line l with the strata of a fan, it becomes decomposed as disjoint union of convex strata, such that the closure of a stratum is a union of strata. Then these strata are open segments (possibly infinite) and their extremal points.
b) If $W \subset V$ is a subspace the family $W \cap F_{i}$ of non empty intersections is a polyhedral fan in W.
c) A polyhedral fan in the line \mathbf{R} is necessarily the decomposition $\mathbf{R}^{-}, \mathbf{0}, \mathbf{R}^{+}$.
d) A polyhedral fan in $\mathbf{R}^{\mathbf{2}}$ is given by a finite set of half lines r_{i} and the connected components of their complement. Notice that such components are convex if and only if the angle between two successive lines il $\leq \pi$.

[^1]Part d) needs a proof. Consider a stratum S which is not a half line. S is a convex cone containing two linearly independent vectors a, b. Consider the intersection of S with the line through a, b it is a convex set A in this line which by the previous codiscussion is open, then it is easy to conclude the proof.

The main construction is a geometric realization of this poset in V but in fact this is a consequence of the construction of a simplicial fan, which is a pseudobaricentric subdivision of the given fan.

For this let us select in each stratum F, different from the stratum reduced to 0 , a vector v_{F}.

There is a totally elementary but essential Lemma associated to this construction.

Lemma 2.1. Given a vector $v \in F$ in a stratum F there exists, a unique vector $w \in \partial F$ in the boundary of F, and a unique positive numeber $a>0$ such that:

$$
v=a v_{F}+w
$$

Proof. If v is a multiple $a v_{F}$ of v_{F} then $a>0$ and $w=0$. Otherwise we work in the 2-dimensional plane π spanned by v, v_{F} in which the intersection $F \cap \pi$ appears as an open convex angle limited by two half lines which are in ∂F, then in this 2 dimensional picture the statement is clear.

Theorem 2.2. 1) Given a simplex $S:=F_{1}<F_{2}<\cdots<F_{k}<0$ the vectors $v_{1}:=v_{F_{1}}, v_{2}:=v_{F_{2}}, \ldots v_{k}:=v_{F_{k}}$ are linearly independent.
2) Let $C_{S}:=\left\{\sum a_{i} v_{i}, a_{i}>0\right\}$ the corresponding open simplicial cone. Then $V-0$ is the disjoint union on the cones C_{S}.
3) Each stratum F is the union of the cones C_{S} where the first element of S is F.
proof. We claim that all these statements are immediatete consequences of the previous Lemma. In fact let us take a vector $v \in V-0$ then $v \in F_{1}$ where F_{1} is a non 0 stratum uniquely determined.

By the previous Lemma $v=a_{1} v_{F_{1}}+w_{1}$. If $w_{1}=0$ we stop otherwise $w_{1} \in F_{2} \neq 0, w_{1}=a_{2} v_{F_{2}}+w_{2}, a_{2}>0$ with $F_{1}<F_{2}$. Continuing in this way we see that each point has a unque expression of the form

$$
v=\sum a_{i} v_{F_{i}}, a_{i}>0, F_{1}<F_{2}<\cdots<F_{k}<0
$$

Let us now consider, for each combinatorial simplex $S:=F_{1}<F_{2}<$ $\cdots<F_{k}$ the geometrical simplex

$$
|S|:=v_{F_{1}} * v_{F_{2}} * \cdots * v_{F_{k}}
$$

convex envelope (or join) of the (independent ${ }^{3}$) vertices $v_{F_{i}}$ (we now allow also the stratum 0).

Corollary 2.3. The simpleces $|S|$ form a simplicial subdivision on a combinatorial ball $B_{\mathcal{F}}$ with boundary Π the union of simpleces $|S|, S:=F_{1}<F_{2}<\cdots<F_{k}<0$ not containing the vertex 0.

The map $j: \mathbf{R}^{+} \times \Pi \rightarrow \mathbf{V}-\mathbf{0}, \mathbf{j}(\mathbf{a}, \mathbf{v}):=\mathbf{a v}$ is a homeomorphism.
Proof. We have seen that the cones C_{S} decompose $V-0$ on the other hand clearly the closure \bar{C}_{S} of the cone C_{S} is the union:

$$
\bar{C}_{S}=\cup_{T \subset S} C_{T}
$$

this implies that the simplices of Π form a simplicial complex.
For the second part it is clearly enough to show that j is bijective, for this we construct the inverse. Given a point $v \in V-0$ we have that v is uniquely of the form:

$$
v=\left\{\sum a_{i} v_{i}, a_{i}>0\right\} \in C_{S}
$$

we set $a=\sum_{i} a_{i}$ and $w:=\frac{v}{a}$ then $w \in \Pi$ and $j^{-1}(v)=(a, w)$.

§3. Subspace arrangements

Let us consider again a polyhedral fan $\mathcal{F}=\left\{F_{i}\right\}_{i \in I}$ and consider a closed subset $X \subset V$ with $X=\cup_{i \in J} F_{i}$ a union of strata. Let $A:=$ $V-X=\cup_{i \notin J} F_{i}$ also a union of strata.

Denote ass before by Π the simplicial realization of the complex of non 0 strata in \mathcal{F} and let Π_{X}, Π_{X}^{\perp} be the two full subcomplexes of Π with the vertices in X and in \mathcal{A} respectively.

From the last corollary it follows that the homeomorphism j^{-1} : $V-0 \rightarrow \mathbf{R}^{+} \times \Pi$ maps $X-0, \mathcal{A}$ respectively to $\mathbf{R}^{+} \times \Pi_{\mathbf{X}}, \mathbf{R}^{+} \times\left(\Pi-\Pi_{\mathbf{x}}\right)$.

By standard facts Π_{X}^{\perp} is a deformation retract of $\Pi-\Pi_{X}$ and thus we obtain:

Theorem 3.1. The open set $\mathcal{A}=V-X$ has the same homotopy type as Π_{X}^{\perp}.

[^2]Let us see the implication of this discussion to the topology of subspace arrangements. If we consider an arrangement of subspaces $W:=\left\{W_{j}\right\}$ contained in $L(\mathcal{H})$ we have that:
(1) The union $V_{W}:=\cup W_{j}$ of the subspaces W_{j}, is a union of faces.
(2) The intersection of V_{W} with Π is the full subcomplex Π_{W} with vertices the vertices $v_{F}, F \subset V_{W}$ or $v_{F} \in V_{W}$.
(3) Under the homeomorohism j the open set $V-V_{W}$ corresponds to

$$
\mathbf{R}^{+} \times\left(\Pi-\Pi_{\mathbf{W}}\right)
$$

Thus consider the orthogonal subcomplex to Π_{W} i.e. the full subcomplex Π_{W}^{\perp} having the vertices $v_{F} \notin V_{W}$.

We obtain:

Corollary 3.2. The open set $V-V_{W}$ has the same homotopy type as Π_{W}^{\perp}.

Since we will need it in a moment let us see what happens for non essential arrangements. Assume thus that the intersection $\cap H_{i}=A$ is a linear subspace of codimension m.

Fix a linear complement B to A so that $V=A \oplus B$ then the hyperplanes H_{i} intersect B in an essential arrangement $L_{B}(\mathcal{H})$. The faces of $L(\mathcal{H})$ can be identified with $A \times G$ with G face of $L_{B}(\mathcal{H})$.

Then the open set $V-\cup_{i} H_{i}$ is homeomorphic to $A \times\left(B-\cup_{i}\left(B \cap H_{i}\right)\right.$.
Thus again $V-\cup_{i} H_{i}$ has the same homotopy type as the polyhedron Π associated to the induced arrangement on B.

Proposition 3.3. If $A=\cap_{i} H_{i}$ is a subspace of codimension m the geometric realization of the poset of faces of the arrangement is a combinatorial m-ball.

Before passing to complex arrangements it is useful to analyze a cellular structure of the polyhedrons $\Pi, \Pi_{W}, \Pi_{W}^{\perp}$.

For this we need a little more notations. Given a face F let us define by $\langle F\rangle$ the linear span of F (we know that $\langle F\rangle \in L(\mathcal{H})$ and that F is a chamber of $\langle F\rangle$).

Consider furthermore the set of indeces $J_{F}:\left\{i \in I \mid F \subset H_{i}\right\}$.

$$
\mathcal{H}_{J_{F}}:=\left\{H_{i} \mid F \subset H_{i}\right\}
$$

This is typically a non essential arrangement and $\langle F\rangle=\cap_{i \in J_{F}} H_{i}$.

We have seen that Π is a combinatorial sphere and its join with 0 , $B_{\mathcal{F}}=\Pi * 0$ a ball. More generally if F is a face consider the poset \mathcal{L}_{F} of all faces G such that $F \geq G$ i.e. such that $F \subset \bar{G}$.

We claim that:
Lemma 3.4. As a poset \mathcal{L}_{F} is isomorphic to the poset of faces of the configuration $\mathcal{H}_{J_{F}}$ of hyperplanes containing F.

Proof. Take a face $G \in \mathcal{L}_{F}$, from Proposition 1 we know that it is contained in a unique face of the subarrangement $L\left(\mathcal{H}_{J_{F}}\right)$.

Conversely take one such face G which we know (always by the same proposition) is a union of faces in $F(\mathcal{H})$.

These faces differ only for the signs of the equations α_{i} which do not vanish on F. Since $F \subset \bar{G}$ we must have that $F \subset \bar{F}^{\prime}$ where $F^{\prime} \subset G$ is a face in $F(\mathcal{H})$. This face is unique since on this face the signs of the equations α_{i} which do not vanish on F must have the same sign as on F.

From the previous proposition we get:
Corollary 3.5. The nerve of the poset \mathcal{L}_{F} is a triangulation of a combinatorial ball B_{F} of dimension the codimension of F.

This fact has an important implication:
Theorem 3.6. The boundary of B_{F} is the union of the B_{G} with $G<F$.

$$
\partial B_{F}=\cup_{G<F} B_{G}
$$

The balls B_{F} as F varies on all faces of the hyperplane arrangement give a cellular decomposition of the ball $B_{\mathcal{H}}$.

For any given subspace arrangement W (of the hyperplane arrangement) the polyhedron Π_{W}^{\perp} is a sub cell complex given by the balls B_{F} as F varies on the faces F of the arrangement which are not contained in the union of the subspaces.

We will refer to B_{F} as the cell dual to F.
Product of arrangements. Before we pass to complex arrangements let us treat briefly a simple general construction. Civen two vector spaces V_{1}, V_{2} and in each an arrangement of hyperplanes $\mathcal{H}^{1}, \mathcal{H}^{2}$ we can define the product arrangement $\mathcal{H}^{1} \times \mathcal{H}^{2}$ in $V_{1} \times V_{2}$ in the obvious way.

$$
\mathcal{H}^{1} \times \mathcal{H}^{2}:=\left\{H \times V_{2}, V_{1} \times K \mid H \in \mathcal{H}_{1}, K \in \mathcal{H}_{2}\right\}
$$

One easily sees that the faces of this arrangemens are just products:

$$
F\left(\mathcal{H}^{1} \times \mathcal{H}^{2}\right)=\left\{F_{1} \times F_{2} \mid F_{1} \in F\left(\mathcal{H}^{1}\right), F_{2} \in F\left(\mathcal{H}^{2}\right)\right\}
$$

as poset we have that $F\left(\mathcal{H}^{1} \times \mathcal{H}^{2}\right)$ is the product $F\left(\mathcal{H}^{1}\right), \times F\left(\mathcal{H}^{2}\right)$ of the two posets with the product order $(a, b) \leq(c, d)$ if and only if $a \leq c, b \leq$ d.

§4. Complex arrangements

It is now the time to look at complex arrangements, i.e. arrangements of hyperplanes given by real equations in complex space, or the complexification of a real arrangement \mathcal{H} in V.

Of course the idea is to treat such arrangements as subspace arrangements in a real space. More precisely in $V_{\mathbf{C}}=V+i V=V \times V$ the complex hyperplane of equation $\alpha_{k}(v+i w)=0$ is the real codimension 2 subspace $\tilde{H}_{k}:=H_{k}+i H_{k}$ (where $H_{k}=\left\{v \in V \mid \alpha_{k}(v)=0\right\}$).

Therefore the subspaces \tilde{H}_{k} are part of the hyperplane arrangement associated to the real hyperplanes $H_{k}+i V, V+i H_{j}$, in the notations of the previous paragraph this is in fact $\mathcal{H} \times \mathcal{H}$. One can therefore apply the previous theory to this hyperplane arrangement. There is on the other hand a much more efficient way to procede due to Salvetti and we describe this.

Given a face A of the hyperplane arrangement \mathcal{H} consider the hyperplane arrangement \mathcal{H}_{A} generated by the hyperplanes containing A we consider the set

$$
C F(\mathcal{H}):=\left\{(A, B) \mid A \in F(\mathcal{H}), B \in F\left(\mathcal{H}_{A}\right)\right\}
$$

of pairs (A, B) where A is a face in the original hyperplane arrangement \mathcal{H} while B is a face of the subarrangement \mathcal{H}_{A}.

Proposition 4.1. 1) The sets $A \times B=A+i B,(A, B) \in C F(\mathcal{H})$ decompose $V_{\mathbf{C}}=V+i V$.
2) The closure $\overline{A+i B}$ is a union of strata $A_{k}+i B_{k},\left(A_{k}, B_{k}\right) \in$ $C F(\mathcal{H})$.

Proof. 1) We have a decomposition $V+i V=\cup_{A \in F(\mathcal{H})} A+i V$ and then a decomposition $A+i V=\cup_{B \in F\left(\mathcal{H}_{A}\right)} A+i B$.
2) We have for the closure $\overline{A+i B}=\bar{A}+i \bar{B}=\bar{A} \times \bar{B}$ and $\bar{A}=\cup A_{k}$ is a union of faces in $F(\mathcal{H})$ while $\bar{B}=\cup B_{h}$ is a union of faces in $F\left(\mathcal{H}_{A}\right)$.

Thus $\bar{A} \times \bar{B}=\cup_{k, h} A_{k} \times B_{h}$ now the decomposition of V into faces for $F\left(\mathcal{H}_{A_{k}}\right)$ is a refinement of the decomposition of V into faces for $F\left(\mathcal{H}_{A}\right)$,
since A_{k} is in the closure of A and so the set of hyperplanes containing A_{k} contains the set of hyperplanes containing A.

Therefore in a natural way the set of pairs $C F(\mathcal{H})$ is also a partially ordered set and we are going (as in §1) to represent its nerve as a simplicial complex.

Remark that also the strata $A \times B,(A, B) \in C F(\mathcal{H})$ are convex cones (open in their closure). Thus

Theorem 4.2. \quad The set of strata $A \times B,(A, B) \in C F(\mathcal{H})$ is a polyhedral fan.

We have to understand now how the open set \mathcal{A} complement of the complex hyperplane arrangement, appears in this picture.

Proposition 4.3. \mathcal{A} is the union of the faces $A+i B,(A, B) \in$ $C F(\mathcal{H})$ with B open.

Proof. A vector $a+i b$ is in \mathcal{A} if and only if b is not contained in any of the hyperplanes of \mathcal{H} in which a is contained. This describes exactly the union of the strata in $C F(\mathcal{H})$ described by the proposition.

Let us thus set

$$
\mathcal{F}_{\mathbf{C}}:=\{A+i B \mid(A, B) \in C F(\mathcal{H}) \quad \text { with } \quad B \quad \text { open }\}
$$

This is a poset and, if we fix a vertex in each stratum of $\mathcal{F}_{\mathbf{C}}$ and construct the corresponding simplicial complex $\Pi_{\mathbf{C}}$ we have, by Theorem 3.1.

Theorem 4.4. The complement \mathcal{A} of the complex hyperplane arrangement has the same homotopy type as that of the simplicial complex $\Pi_{\mathbf{C}}$ geometric realization of $\mathcal{F}_{\mathbf{C}}$.

We want to describe now the natural cellular structure of the poset \mathcal{F}_{C}.

Fix a face $(A, B) \in \mathcal{F}_{\mathbf{C}}$. We want to consider the poset of all faces $(C, D) \leq(A, B)$.

By definition $(C, D) \leq(A, B)$ means $A \subset \bar{C}, B \subset \bar{D}$. Since B, D are open sets this condition is in fact equivalent to:

$$
A \subset \bar{C}, B \subset D
$$

thus D is the unique chamber of the configuration of hyperplanes through C which contains B. In other words, given $(A, B) \in \mathcal{F}_{\mathbf{C}}$, the subposet

$$
\mathcal{F}(A, B):=\left\{(C, D) \in \mathcal{F}_{\mathbf{C}} \mid(C, D) \leq(A, B)\right\}
$$

of $\mathcal{F}_{\mathbf{C}}$ formed by all faces $(C, D) \leq(A, B)$ is isomorphic to the poset L_{A} of all faces C of the hyperplane arrangement with $C \leq A$. By Corollary 3.2 the nerve of the poset $\mathcal{F}(A, B)$ is a triangulation of a combinatorial disk $\Delta(A, B)$ of dimension the codimension of A.

By construction the boundary of this ball is also a union of balls relative to pairs $(C, D)<(A, B)$ and thus:

Corollary 4.5. We have a cell complex structure on the polyhedron Π in which the cells $\Delta(A, B)$ of dimension k are indexed by elements $(A, B) \in \mathcal{F}_{\mathbf{C}}$ with A of codimension k.

The boundary of $\Delta(A, B)$ is

$$
\partial(\Delta(A, B))=\cup_{\left(A^{\prime}, B^{\prime}\right)<(A, B)} \Delta\left(A^{\prime}, B^{\prime}\right)
$$

§5. Reflection arrangements

We consider now an n-dimensional Euclidean space V and the arrangement of reflection hyperplanes of a finite Coxeter group W. By this we mean that W is a finite group generated bty reflections with respect to some hyperplanes H_{i} and the arrangement is formed by these H_{i} and also all their transforms under the group W.

We plan to describe the various polyhedra considered, for real and complex arrangements, in this case and in a W equivariant way.

We start from the real polyhedron.
We assume that the only fixed vector is 0 .
Fix for every H_{i} in the arrangement an orthogonal vector α_{i} so that $H_{i}:=\left\{v \in V \mid\left(\alpha_{i}, v\right)=0\right\}$.

The elements $\pm \alpha_{i}$ play the same role as the roots of a root system. Fixing a vector v outside all hyperplanes H_{i} determines positive roots and a fundamental chamber.

From the theory of these groups one can choose n-independent reflection hyperplanes $H_{i}, i=1, \ldots, n$ which are the walls of a chamber C which conventionally we will call the fundamental chamber.
$H_{i}:=\left\{v \in V \mid\left(\alpha_{i}, v\right)=0\right\}$ the elements α_{i} correspond for root systemes to simple roots.

Thus the chamber C is a simplicial cone

$$
C:=\left\{\sum_{i=1}^{n} a_{i} u_{i} \mid a_{i}>0\right\}
$$

$\left(\alpha_{i}, u_{j}\right)=\delta_{i}^{j}$.
The wall H_{i} is spanned by the $u_{j}, j \neq i$, the group W is generated by the reflections s_{i} relative to the walls H_{i}.

The closure $\bar{C}:=\left\{\sum_{i=1}^{n} a_{i} u_{i} \mid a_{i} \geq 0\right\}$ of C is a fundamental domain for the action of W.

The stabilizer of a face F of C acts trivially on the face and it is generated by the simple reflections s_{i} relative to the walls H_{i} with $F \subset H_{i}$.
F is determined by a subset $J \subset I:=\{1, \ldots, n\}$ we will denote it by F_{J} and we denote by W_{J} the subgroup generated by the $s_{i}, i \in J$. W_{J} is also a reflection group which may also be realized as a reflection group on the subspace $\langle F\rangle^{\perp}$ orthogonal to the span of the face F. The fixed vectors of W_{J} form the span $\langle F\rangle$ of the face F.

Consider now a vector $v_{0} \in C$ in the open chamber. By what we have said the orbit $W v_{0}$ gives rise to a point in each chambers and it is in 1-1 correspondence with W.

Denote by $v_{w}:=w v_{0}, w \in W$. Let Δ be the convex hull of the points v_{w}. Then it is also true that the v_{w} span V and hence Δ is a convex polyhedral ball of dimension n. Clearly Δ is stable under W and since its extremal points are among the points $W v_{0}$ it follows that all these points are extremal.

For any face F_{J} of C let us set

$$
v_{J}:=\frac{1}{\left|W_{J}\right|} \sum_{w \in W_{J}} w v_{0}
$$

the baricenter of the orbit of v_{0} under W_{J}.
Lemma 5.1. We have that $v_{J} \in F$ and v_{J} is the orthogonal projection of v_{0} to the span $\langle F\rangle$ of the face F.

Proof. $\quad v_{J}$ is fixed by W_{J} hence it is in $\langle F\rangle$, if we decompose $v_{0}=u+z, u \in\langle F\rangle, z \in\langle F\rangle^{\perp}$ we have that $\sum_{w \in W_{J}} w z=0$ and hence the claim $u=v_{J}$.

We still have to prove that $v_{J} \in F$. By induction it is enough to do it when F is a codimension 1 face of C. If H_{i} is the wall through F and
s_{i} the corresponding simple reflection $v_{F}=1 / 2\left(v_{0}+s_{i} v_{0}\right)$ and H_{i} is the only wall separating the two chambers $C, s_{i}(C)$ thus the signs $\left(\alpha_{j}, w\right)$ for $j \neq i$ do not change crossing this wall and we see that $\left(\alpha_{j}, v_{F}\right)>0$ for $j \neq i$ and so $v_{F} \in F$.

Every other face F^{\prime} is uniquely W equivalent to a face F_{J} and if $F^{\prime}=w F_{J}$ the element w lies in a coset $w W_{J}$ and so

$$
v_{F^{\prime}}:=w v_{J}
$$

is well defined.
We have thus defined, for all faces F of the refection arrangement a vector v_{F} characterized by the following properties:

1) If $F=w G$ then $v_{F}=w v_{G}$.
2) If $F \subset \bar{G}$ then v_{F} is the orthogonal projection of v_{G} to $\langle F\rangle$.

We can now consider the simplicial complex Π associated to the vertices v_{F} and simpleces induced from the poset structure of the faces. We have that:

Theorem 5.2. Π is a triangulation of the ball Δ convex hull of the points v_{w}.

Proof. By construction all the vertices of this polyhedron are contained in Δ and so Π triangulates some polyhedron contained in Δ but now the faces of Δ are balls of the same type for smaller reflection systems for which the coincidence is by induction and this proves the claim.

Remark 5.3. With the notations of $\S 3$ notice that, the cell dual to a face F is the convex envelope of the orbit under the reflection group generated by the hyperplanes through F of a point v_{w} in a chamber of which F is a face. Let us pass now to the complexified picture and to the open set \mathcal{A}.

From $\S 4$ we know that this is stratified by the set

$$
\mathcal{F}_{\mathbf{C}}:=\{A+i B \mid(A, B) \in C F(\mathcal{H}) \quad \text { with } \quad B \quad \text { open }\} .
$$

Here A is a face of the reflection arrangement while B by the description of $\S 4$ is a chamber of the reflection arrangement generated by the hyperplanes containg A.

Proposition 5.4. There exists a unique $J \subset I$ and a unique $w \in W$ such that

$$
w(A, B):=(w A, w B)=\left(F_{J}, w B\right), C \subset w B
$$

Proof. Since \bar{C} is a fundamental domain there exists a $J \subset I$ and a $w \in W$ such that $w(A)=F_{J}$, the set of elements $\left\{w^{\prime} \in W \mid w^{\prime}(A)=F_{J}\right\}$ is the coset $W_{J} w$.

The chamber $w B$ is one of the chambers of the reflection arrangement generated by the hyperplanes containg F_{J} and W_{J} acts simply transitively on these chambers, of which one and only one contains C the statement follows.

We have now to choose judiciously the points $v_{(A, B)},(A, B) \in$ $C F(\mathcal{H})$ so that the resulting polyhedron is W stable. Since there is a unique $w \in W$ with $w A=F_{J}, w B \supset C$ we define

$$
v_{(A, B)}:=w\left(v_{J}+i v_{0}\right)
$$

We obtain that:
Theorem 5.5. The simplicial complex $\Pi_{\mathbf{C}}$ with vertices $v_{(A, B)}:=$ $w\left(v_{J}+i v_{0}\right)$ and simplices induced by the poset structure of $C F(\mathcal{H})$ is W stable moreover the homotopy equivalence between A and $\Pi_{\mathbf{C}}$ is W equivariant.

Proof. The homeomorphism j is clearly W equivariant, but if we have a polyhedro Π a full subpolyhedron Π_{X} and its orthogonal Π_{X}^{\perp} the deformation from $\Pi-\Pi_{X}$ to Π_{X}^{\perp} is canonical along the rays joining a point in Π_{X} and in Π_{X}^{\perp} so if we have a simplicial action of a group preserving these two polyhedra also the deformation is equivariant.

We can finally use all this to analyze the homotopy type of \mathcal{A} / W. From what we have seen this is homotopically equivalent to $\Pi_{\mathbf{C}} / W$.

We have seen (last corollary of $\S 4$) that $\Pi_{\mathbf{C}}$ has a cellular structure in which the cells $\Delta(A, B)$ of dimension k are indexed by elements $(A, B) \in$ $\mathcal{F}_{\mathbf{C}}$ with A of codimension k.

Given a set $J \subset I$ with k elements we have in particular the k cell

$$
C_{J}: \Delta\left(F_{J}, B\right), C \subset B
$$

By the previous Proposition each cell is W equivalent to one and only one of the cells C_{J}. Therefore we deduce that the space $\Pi_{\mathbf{C}} / W$ is obtained in some way attaching these cells.

The simplest way to describe these attachments is the following.
Consider the n cell $\Delta(0, C)$ which is the simplicial complex with vertices $v_{F}+i v_{0}$ as F runs through the faces of the real arrangement
and is isomorphic (also as simplicial complex) to the ball Δ of the real picture by projection to the real part. The cells C_{J} are contained in $\Delta(0, C)$ and thus under projection

$$
\pi: \Delta(0, C) \rightarrow \Pi_{\mathbf{C}} / W
$$

is surjective. A face $\Delta(F, D), C \subset D$ is identifyed to a unique face C_{J} by the element $w \in W$ with $w F=F_{J}, C \subset w D$.
$D_{J}:=w D$ is the unique face of the arrangement generated by F_{J} and containg C. Since we have already that $C \subset D$ we must have also $w C \subset D_{J}$.

Lemma 5.6. The unique element $w_{0} \in W$ such that $w_{0} F=$ $F_{J}, w_{0} D=D_{J}$ where D is the unique face of the arrangement generated by F and containg C is the shortest element in the coset $W_{J} w$.

Proof. The set of elements $w \mid w F=F_{J}$ is the coset $W_{J} w_{0}$. We claim that the shortest element on the coset is characterized by the fact that $l\left(s_{i} w_{0}\right)=l\left(w_{0}\right)+1$ for all $i \in J$ and this in turn is equivalent to $w_{0}^{-1}\left(\alpha_{i}\right)>0$ for all the roots α_{i} associated to the hyprplanes $H_{i}, i \in J$. Now $C:=\left\{v \mid\left(\alpha_{i}, v\right)=\alpha_{i}(v)>0, \forall i \in I\right\}$ while $D_{J}:=\left\{v \mid \alpha_{i}(v)>\right.$ $0, \forall i \in J\}$ and thus since $w_{0} C \subset D_{J}$ we have for $i \in J$ that:

$$
v \in C,\left(w_{0}^{-1} \alpha_{i}, v\right)=\left(\alpha_{i}, w_{0} v\right)>0
$$

So we have the
Theorem 5.7. The space $\Pi_{\mathbf{C}} / W$ which is of homotopy type of \mathcal{A} / W is obtained brom the ball Δ identifying each face F with the face C_{J} in its W orbit, using the shortest element w in the coset $W_{J} w$ for which $W_{J} w F=C_{J}$.

Let us draw some interesting consequence of this.
First of all we deduce immediately Brieskorn presentation by generators and relations of the generalized braid group.

The homotopy group of $\Pi_{\mathbf{C}} / W$ is computed by just considering the 1 and 2 cells. the 1 cells give a bouquet of circles, corresponding to the 1 faces joining v_{0} to $s_{i} v_{0}$, we denote by T_{i} the corresponding loop oriented from v_{0} to $s_{i} v_{0}$. Thus the T_{i} are generators for the homotopy group. The 2 cells give the relations. Given 2 nodes i, j of the Dynkin diagram we deduce a relation between T_{i}, T_{j} and it easily seen to be:

$$
\begin{gathered}
T_{i} T_{j}=T_{j} T_{i}, T_{i} T_{j} T_{i}=T_{j} T_{i} T_{j}, T_{i} T_{j} T_{i} T_{j}=T_{j} T_{i} T_{j} T_{i} \\
T_{i} T_{j} T_{i} T_{j} T_{i} T_{j}=T_{j} T_{i} T_{j} T_{i} T_{j} T_{i}
\end{gathered}
$$

according if the two nodes are joined by $0,1,2,3$ edges.
First of all let us look at the 1-dimensional cells which are of the ones of vertices $w s_{i} v_{0}, w v_{0}$. If $l\left(w s_{i}\right)=l(w)+1$ then w^{-1} is the element of shortest length identifying the 1 -cell with $s_{i} v_{0}, v_{0}$. The generator T_{i} is by definition the loop associated to the oriented edge $v_{0}, s_{i} v_{0}$. Thus the lift of T_{i} from the point $w v_{0}$ goes to the point $w s_{i} v_{0}$ along this edge.

Next consider the universal covering space $\pi: \tilde{\Pi} \rightarrow \Pi \rightarrow \Pi / W$ of $\Pi_{\mathbf{C}} / W$ and of Π. Lifting the cellular structure of Π we have a paving of $\tilde{\Pi}$ by cells which are permuted by the group of deck transformations.

We fix a cell C of amaximal dimension mapping to $\Delta(0, C)$ and a base point p_{0} in C mapping to v_{0}. Thus we identify the group of deck transformations with the generalized braid group B using this base point.

Under the homeomorphism of C to $\Delta(0, C)$ the vertices $w v_{0}$ are in the orbit of p_{0} under the group of deck transformations

$$
w v_{0}=\pi\left(T_{w} p_{0}\right)
$$

and this defines a canonical lift T_{w} of w.
If $w=s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}$ is a reduced expression the we claim that

$$
T_{w}=T_{i_{1}} T_{i_{2}} \ldots T_{i_{k}}
$$

In fact there is a path from v_{0} to $w v_{0}$ given by the edges $\left[s_{i_{k}} v_{0}, v_{0}\right]$, $\left[s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}} v_{0}, s_{i_{2}} \ldots s_{i_{k}} v_{0}\right.$] which maps in Π / W to a path giving the element $T_{i_{1}} T_{i_{2}} \ldots T_{i_{k}}$ of the homotopy group.

Next we identify in C the copies of the C_{J} which we denote by the same symbols.

We have to fix an orientation for the cells C_{J} this can be done by ordering the vertices and then orienting the cells C_{J} so that if $K \subset$ $J,|K|=k-1$ is obtained removing the $h^{t h}$ element of J the oriented cell C_{K} appears in the boundary of C_{J} with the sign $\epsilon_{K, J}:=(-1)^{h}$.

We have thus:
Theorem 5.8. 1) The cells in $\tilde{\Pi}$ are simply transitive orbits of the cells C_{J}.
2) Denoting by $C_{k}(\tilde{\Pi})$ the group of k-dimensional cells, under the action of B this is a free $\mathbf{Z}[\mathbf{B}]$ module with basis the cells $C_{J},|J|=k$.
3) The boundary of the cell C_{J} is the sum

$$
\sum_{K \subset J,|K|=k-1} \epsilon_{K, J}\left(\sum_{w \in W_{J} / W_{K}}(-1)^{l(w)} T_{w}\right) C_{K}
$$

Where T_{w} denotes the canonical lift of the element of shortest length w in the coset.

Proof. The statements 1), 2) follow from the construction as for $0)$ and 3) we have to note that each cell F which in $\Delta(0, C)$ is in the orbit of C_{J} under W in $\tilde{\Pi}$ is exactly $F=T_{w} C_{J}$ (under the group of deck transformations) this is easily verified by considering the minimal path from $w v_{0}$ to v_{0} followed by the two segments joining $w v_{0}, v_{0}$ to the centers of the respective cells. The sign $(-1)^{l(w)}$ depends of the fact that the reflections s_{i} reverse the orientation of the fundamental cell.

§6. Reflection groups

In [DS2] the authors generalize the previous analysis as follows. Start from the real reflection representation V and consider instead of the complexification, the space V^{m} for all m. On V^{m} the reflection group W acts and it acts freely on the open subspace U^{m} obtained by removing the subspaces H^{m} for each reflection hyperplane.

One has naturally a set of inclusions $U^{m} \subset U^{m+1} \ldots$ and a space U^{∞} which by a simple dimension argument is contractible and hence $B_{W}:=U^{\infty} / W$ is a classifying space for W.

The same method used for the complexification allows to stratify in a W equivariant way the space V^{m} by products $F_{1} \times F_{2} \times \cdots \times F_{m}$ where inductively:
F_{1} is a face of the reflection arrangement and $F i+1$ is a face of the subarrangement generated by the hyperplanes which contain F_{i}. In this way one has a fan and U^{m} is a union of the strata $F_{1} \times F_{2} \times \cdots \times F_{m}$ with F_{m} open. Then a similar analysis gives a cellular structure on B_{W}. We refer to the original paper for details.

References

[A] V. I. Arnol'd, On some topological invariants of algebraic functions, Trans. Moscow Math. Soc., 21 (1970), 30-52.
[B] J. B. Birman, links and mapping class groups, Ann. Math. Studies, Princeton Univ. Press, 82 (1974).
[B-Z] A. Bjorner and G. M. Ziegler, Combinatorial stratification of complex arrangements, Jour. Amer. Math. Soc., 5 (1992), 105-149.
[Bou] N. Bourbaki, Groupes et algebres de Lie (chap. 4, 5, 6), Masson, Paris, (1981).
[Br$]$ E. Brieskorn, Sur les groupes de tresses, Sem. Bourbaki, L. N. M., vol. 317, Springer, 1973, pp.21-44.
[C] F. R. Cohen, The homology of C_{n+1}-spaces, $n \geq 0$ in The homology of iterated loop spaces, Springer L. N. M., 533, 207-353.
[DPSS] C. De Concini, C. Procesi, M. Salvetti and F. Stumbo, Arithmetic properties of the cohomology of Artin groups, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 28 (1999), no. 4, 695-717.
[DS] C. De Concini and M. Salvetti, Cohomology of Artin groups, Math. Res. Letters, 3 (1996), 293-297 .
[DS1] C. De Concini and M. Salvetti, Stability for the Cohomology of Artin Groups, Adv. Math., 145 (1999), no. 2, 291-305.
[DS2] C. De Concini and M. Salvetti, Cohomology of Coxeter Groups and Artin Groups, Math. Res. Letters, 7 (2000), 213-232.
[DPS] C. De Concini, C. Procesi and M. Salvetti, Arithmetic properties of the cohomology of braid groups to appear in Topology.
[DSS] C. De Concini, M. Salvetti and F. Stumbo, The top cohomology of Artin groups with coefficients in rank 1 local systems over Z, Topology and its Appl., 78 (1997), 5-20.
[De] P. Deligne, Les immmeubles des groupes de tresses generalizes, Inv. Math., 17 (1972).
[F] D. B. Fuchs, Cohomology of the braid group mod 2, Func. Anal. Applic., 4 (1970) .
[S1] M. Salvetti, Topology of a complement of real hyperplanes in $\mathbf{C}^{\mathbf{n}}$, Invent. Math., 88 (1987), 167-189.
[S2] M. Salvetti, The homotopy type of Artin groups, Math. Res. Letters, 1 (1994), 565-577.
[Se] G. B. Segal, Configuration-spaces and iterated loop-spaces, Inven. Math., 21 (1973), 213-221.
[Va] F. V. Vainshtein, Cohomology of the braid groups, Func. Anal. Applic., 12 (1978).
[Vs] V. A. Vassiliev, Complements of Discriminants of Smooth Maps: Topology and Applications, Transl. Math. Monographs, 98 (1992).

Dipartimento di Matematica
G. Castelnuovo Universita' di Roma La Sapienza
piazzale A. Moro 00185
Roma, Italy
E-mail address: claudio@mat.uniroma1.it

[^0]: ${ }^{1}$ In the french literature one distinguishes between faces as the codimension 1 faces and facettes for the others.

[^1]: ${ }^{2}$ the definition we use is slightly more general that the one usually introduced in the theory of torus embeddings.

[^2]: ${ }^{3}$ in the sense of affine geometry

