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80. Introduction

Let k be an algebraically closed field of characteristic zero, which we
fix as the ground field. In the present article we consider Al-fibrations
on the affine plane A2, where Al denotes the affine line A! with one
point deleted. Let X be a smooth affine surface with Pic (X) = (0)
and I'(X,0x)* = k*. Let p: X — B be an Al-fibration, where B is
a smooth algebraic curve. Then p is untwisted because Pic (X) = (0)
and B is isomorphic to A! or P! because I'(X,0Ox)* = k*. We call
p a completely (resp. incompletely) parametrized Al-fibration if B is
isomorphic to P! (resp. A!). See [6], [8] for the definitions and relevant
results. If X is the affine plane and p is incompletely parametrized,
then there exists an irreducible polynomial f € T'(X, Ox) such that the
fibration p is given as {F\}xex, where Fy is a curve defined by f = A
Hence f is a generically rational polynomial with two places at infinity,
and such polynomials are classified by H. Saito [10] (see [7]). On the
other hand, there exist no references where the completely parametrized
Al-fibrations on A? are explicitly classified. The fibers of the given Al-
fibration form a pencil of affine plane curves parametrized by P1. So,
the classification is made by giving the defining equation of a general
member of the pencil.

For this purpose, we make use of a description of A% as a homology
plane with Al-fibration over P! as given in [6], [8]. Our results show
that the pencil is given in the form

A= {(ya:”’l — p(x))”1 + Xzt =0; ) € Pl} ,

where p(z) € k[z],degp(z) < r and p(0) # 0.
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§1. Al-fibrations

Let X be a Q-homology plane with an untwisted Al-fibration p :
X — B, where B is isomorphic to P!. Then every fiber but one is
isomorphic to Al if taken with the reduced structure and the excepted
fiber is isomorphic to A'. There exists a smooth projective surface V
with a Pl-fibration p : V — B such that X is a Zariski open set of
V', the boundary divisor D := V — X is a divisor with simple normal
crossings and p gives rise to the Al-fibration if restricted onto X. Since
p is untwisted, there exist two cross-sections Hy and Hs of p, which are
the loci of two points of the general fibers of p lying at infinity. Since the
boundary divisor D has a tree as the dual graph, H; and H; meet each
other at most in one point. If H; and Hy meet each other, we blow up
the point of intersection and its infinitely near points so that the proper
transforms of H; and H; get separated from each other. Furthermore,
if we assume that the embedding X < V is minimal in the sense that
D contains no (—1) curves which are the fiber components of the P!-
fibration p and that any contraction of such a (—1) curve makes the
images of H; and Hy meet each other, then it is known (cf. [6], [8]) that
p: X — B is obtained in the following fashion.

There exists a Hirzebruch surface F, with a minimal section M;
and a section My with (M; - M3) = 0, and there exists a sequence of
blowing-ups o : V — F, such that Hy; and H> are the proper transforms
of M; and My, respectively, and that (H;%) = (M;?) = —a. Hence the
blowing-ups o starts with the blowing-ups of the points lying on M>
and no points of M; are blown-up. The fibration p : V — B is obtained
from the P!-fibration on F,. Let uA be a fiber of p with A = Al and
possibly 4 > 1 and let A be the closure of A in V. Then the fiber of p
containing A has a linear chain as the dual graph:

On the other hand, if pA is a fiber of p with A = A, the dual graph of
the fiber containing A, H; and Hs looks like
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Let A be a singular fiber of p, i.e., either 4 > 1 or A = Al. Let
A be the closure of A in V. Then p is the multiplicity of A in the fiber
p~1(p(A)). Let 6 be the contribution of A in the total transform o* (Ms).
It is known (cf. [6], [8]) that 0 <6 < p and § > 0 if A = Al. We begin
with recalling the following structure theorem (cf. [6], [8]).

Lemma 1.1. Let X be a Q-homology plane with an Al-fibration
p: X — B. Suppose B = P! and p is untwisted. Let pgAo, ..., in Ay be
all singular fibers with respective multiplicities g, ..., lin, where Ag = Al
and A; =2 Al for 1 <i < n. Then we have the following assertions:
(1) ®(X) =1,0 or —oo if and only if
(n—1)— Z — > 0,=0 or <0, respectively.

i1 Mo

(2) Hi(X;Z) is a torsion group of order equal to

n
NO"'ILna_ZHO"‘.&'\i“'Un& .
e

(3) There are no homology planes X with ®(X) = 0 and an untwisted
Al-fibration p: X — B = PL.

When X is isomorphic to A? in Lemma, 1.1, we can specify the data
more precisely.

Lemma 1.2. With the notations of Lemma 1.1, the following as-
sertions hold:

(1) A smooth affine surface X is isomorphic to A? if and only if
R(X) = —o00,Pic (X) = (0) and I'(X,O0x) = k*. In particular, a
Q-homology plane X is isomorphic to A? if and only if K(X) =
—oo and H1(X;Z) = (0).

(2) n=0 orl.
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(3) If n=0 then eithera =1, =80+ 1 ora=0,8 = 1.
(4) If n =1 then either

a=1, pops — p16o — pody = %1
or
CLZO, /.1,0:61:1, 60‘-:0

(5) Ifa =n =1 and pop1 — p16o — Hod1 = *1, the pair (6o, 61) is
uniquely determined by the pair (uo, t1). Furthermore, if pop1 —
w160 — by = 1, then the pair (8),61) with 6, = p;, —6; (i =0,1)
satisfies popy — p16y — by = —1, and vice versa.

Proof. (1) We refer to [6].
(2) Note that pp > 1 and p; > 2 for 1 < i < n. Since B(X) = —o0,
it follows that

n

n 1
n—l—ES(n—l)—Zf<0.

i=1 """

Hence n =0or 1.
(3) Since Hy(X;Z) =0, we have

T
=0

If n = 0 then this formula reads pga — 69 = £1, where yg > 6y. Suppose
a > 2. Then we have

(@ —=2)po + (o — bo) + po # £1.

Hence a =0or 1. If a =1 then puo =8 + 1. If a = 0 then 6o = 1.
(4) If n=1 then

apopy — p1do — pody = £1.
Suppose @ > 2. Then we have
(a—2)pop1 + pa(po — o) + po(pr — 61) # £1.
Hence a =0 or 1. If a = 1 then we have
Hoft1 — p16p — poby = £1.

If a = 0 then p16g + pod1 = 1. Since y; > 2, it follows that & = 0.
Then Ho = 61 =1.
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(5) Suppose that popy —p160 —pody = 1 and popy —payo —poy1 = 1
for the pairs (yo,71) and (8o, 61) with p; > i, s > 6 (i = 0,1). Then

p1(vo — o) = po(b1 — 1)

Since ged(po, p1) = 1, it follows that g = 8o + muo and §; = v1 + mpug
for some integer m. If m > 0, then v9 > pg, which is a contradiction. If
m < 0 we obtain a contradiction in a similar fashion. So, m = 0. The
rest is straightforward. Q.E.D.

Given a pair (u, §) of positive integers u, § with u > & and ged(p, 8) =
1, we define integers o, g, ... ,a, by expanding 11/6 in a form of con-
tinued fraction

n 1
2 —
5 1

Os

where a; > 2 for 1 < i < s. We denote this fractional expansion by
p/é=lai,... o

Given such a pair (g, §), the geometric meaning of fractional expan-
sion of /6 in the setting leading to Lemma 1.1 is given in th following
Lemma 1.3 which is well-known (cf. [9] and [4, pp. 75-78]).

Lemma 1.3. Let (p,6) be a pair of positive integers such that
@ > 6 and ged(u,8) = 1. Let pA be a multiple fiber of p : X — B
with the contribution & of A in o*(Ms). Let u/é = [au,...,as] and
u/(p— 6) = [al,...,al] be the fractional expansions. Then the fiber
p*(p(A)) has the following dual graph:

-1 —af -, -1 —a - -1
[ S W O OOt e e e O o)
H, Al A, A A, Ay H;

where (H;%) = (Ho?) = -1 ifn=a=1.

The next result will clarify the geometric meaning of the condition
popr — 160 — pody = £1.

Lemma 1.4. Let (po,8) and (u1,8:1) be pairs as in Lemma 1.2

satisfying the condition popr — p1bo — pwody = £1. Suppose that &g > 0
and 61 > 0. Let u1/61 = [011,... ,015] and /1,0/60 = [,81,... ,ﬁt] be the
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fractional expansions. Let E be a union of smooth rational curves with
simple normal crossings on a smooth projective surface whose dual graph
s given as below:

—B B2 =B -1 —a - —Q,
o—eiitren g >— O O O o)
B; By B, H; Ay Ay A,

Then the following assertions hold.

(1) Suppose pop1 — p1bo — oy = 1. Then E is contractible to a
smooth point.

(2) Suppose popr —p16o—pobs = —1. Then E contracts to a union of
two smooth rational curves with one of the following dual graphes:

0 = -6 0

o o o - (1), or o o o (2
el ' G’

where G’ denotes the proper transform of the component G in the
fiber p*(p(poAo)) and (G'?) = 6 — 1 (resp. (G'*) = —1) in the
case (1) (resp. (2)).

Proof.  First of all, we shall show that either a1y = 2 or §; = 2.
Write the condition pop; — (160 — pedy = £1 as

Ho H1 . 1
(60 1) (51 1>—li6061.

Suppose a1 > 3 and By > 3. Write p1 = @161 — 6] and po = B1o — 6,
with 0 < 6] < 6; and 0 < §) < 6. Then we have

Ho H1 _ 8% 1
(G- (-1 = (p-1-8) (@-1-5)

v Vv
TN TN
- )
o
Sl
/:g,lh‘
+ N———
S”]'—‘ o)
N— L
Voo
T
+ =
g,! N—"
S”H

)

which is a contradiction.
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(1) We shall prove the first assertion. Suppose 31 = 2. Write
o = 260 — 6y with 0 < ) < 6o. Suppose further that t = 1, i.e.,
po = 2,60 = 1,8y, = 0. Then p; = 26; + 1 and the dual graph becomes

-2 -1 -3 -2 -2
O O O O————— e eees e}
B1 Hl A1 A2 A51-1

Hence it contracts to a smooth point. Suppose that ¢ > 2. Let uj =
80, k1 = p1 — 61 and 87 = ;. Then the pairs (ug, 8y) and (u}, §;) satisfy

oKy — 118y — pody = 1.

If @y = 2 we can argue in a similar fashion. Hence we are done by
induction. The first assertion is verified.

(2) Next we shall verify the second assertion. Suppose §; = 2 and
t =1. Then 3 = 261 — 1 and p1/61 = [2,61]. Hence E contracts to a
union of smooth rational curves with the dual graph:

0 -1

o O O
G

where 6; > 2. Note that 6 # 1. If @y = 2 and s = 1, we have a
similar conclusion as above with the second dual graph in the statement.
Suppose that a; = §; = 2,5 > 2 and t > 2. We shall show that this case
does not occur. Write p; = 26; — 6, with 8, > 1 for 4 = 0,1. Then the
condition pop1 — p16o — pods = —1 reads as 618( + 6067 = 8367 + 1. This
is a contradiction since 8o > 6} and 6; > 87. So, a3 > 3if B =2,5 > 2
and ¢t > 2. As in the proof of the assertion (1), let u§ = o, u} = p1 — 61
and 6] = 6. Then the pairs (ug, 8y) and (], 67) satisfy

Homy — H18g — Hoby = —1.

Hence we are done by induction.

In the graph, call the component with self-intersection number 0
(resp. —6) L (resp. S). In view of Lemma 1.2, if E contracts to a union of
two rational curves L+, the linear chain E’ contracts to a smooth point,
where E' has the following dual graph with po /(o — 60) = [81,- .- , By/]
and p1/(p1 — 61) = [of, ... ,dl].
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/ A ! ! / !
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Let W be the surface obtained from V' by the contractions of E and
E’ as described above. Then W has a P!-fibration p’ : W — P! given
by the pencil |L] and S is a cross-section of p’. In the first case, the count
of the Picard number of W shows that G’ is a cross-section of p’ with
(G'*) = §—1. In the second case, the count of the Picard number shows
again that (G’ ) = —1 and p’ has a unique singular fiber which contains

G’ and A as the terminal (—1) components and the (—2) components in
between (see the dual graph of the fiber p~1(p(po4o)))- Q.E.D.

Consider the case where pg =1 and § = 0.

Lemma 1.5. Suppose o =1 and 66 = 0. Then 61 =1 ifa =0
and p1 = 6+ 1 4fa =1. Let puy /61 = [ea,... ,as] be the fractional
ezpansion. Let E be a union of smooth rational curves on a smooth
projective surface V' with the dual graph:

-1 - —Qn —Qy
O (O Vg VI O
H, A A, A,

Then either E contracts to a smooth point (case a = 1) or E s a union
of two smooth rational curves with the dual graph (case a = 0) :

Proof. Ifa =0 then (H %) =0,s=1and (4:;%) = —py. fa=1,
then [a1,...,as] = [2,...,2]. It is clear that E contracts to a smooth
point. Q.E.D.
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§2. Explicit equations

First of all, consider the case n = 1. We only consider the case
a =1and 6o # 0. The case a = 0 and &y = 0 can be treated in a
similar fashion. Furthermore, we assume that pop; — 160 — pody = —1.
The Pl-fibration p : V — P!, which extends the given Al-fibration
p: X — P, has two degenerate fibers S, and S; and two sections H;
and H,;. We assume that S N X = pgA and S; N X = w1 B, where
A= A! and B> Al. Let E (resp. E’) be the connected component of

D — G U {the side linear chain between G and A}

which contains H; (resp. Hs) (see the notations at the beginning of
the section 1). By Lemma 1.4, E (resp. E’) contracts to a union of two
curves of the form (1) or (2) (resp. a smooth point). Suppose first that E
contracts to a union of two curves of the form (1). By the contaction of
E and E’, we obtain a smooth projective surface W with the boundary
divisor A such that W — A is isomorphic to X and A has the following
configuration (Figure 1):

(Figure 1.)

where A (resp. B) denotes, by abuse of notations, the image of A (resp.
B) under the contraction.

We blow up the intersection point GN L and its infinitely near points
to produce a configuration with the following dual graph (Figure 2):
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. .Q .

B
-1 —2 —2 -1 -6
..... O "
) G

—O—O—O— - —O—
-2 -3 =2 -2 -1
S———r —
T 6-2
(Figure 2.)

In the configuration, all curves but A, B and L, are contracted to
two points, say P and @, on the image of L., (which we denote by the
same symbol L.,). In fact, the obtained surface is the projective plane
P2 and P? — L, is isomorphic to X. The image B of B is a curve of
degree r 4+ 2 having a cuspidal singularity at P of multiplicity » + 1 and
passing through @ smoothly, and the image A of 4 is a line meeting B
at P with order of contact r + 2.

Choose a system of homogeneous coordinates (X,Y,Z) on P2 so

that Lo and A are defined by Z =0 and X = 0, respectively. Then B
is defined by an equation

YX™ —P(X,Z)=0
where
P(X,Z)=ar X" Z 4+ a3 X" Z% + - + a,422"

with a,42 # 0. We may assume a; = 0 by replacing Y by Y — a,Z.
Let A be the pencil on P? consisting of the closures of fibers of the
given Al-fibration p : X — P!. Since y; B is a multiple fiber, we have

A= {(YXr+1 ——P(X, Z))Hl +)\Xuozu1(r+1)+m—uo =0; A€ Pl} .. (1)

where we consider

(YX™H — P(X, Z))r zHo#(m+2) L A XHo = 0



Completely Parametrized Al-fibrations on the Affine Plane 195

instead of the given equation if pg > py1(r + 2).

Suppose next that E contracts to a union of two curves of the form
(2). Then, with the above notation, A has the following configuration
(Figure 3):

e e |
-1 -2 o -1
- / |
A
G he |
| B
|
-6 0 L {
|
(Figure 3.)

We consider two cases according as —6+r+1>0or —6+7r+1<0.
Suppose first —6 + 7 + 1 > 0. Then we obtain the following dual graph
after a suitable blowing-up of the above configuration (Figure 4):

'.O..
B
-1 -2 -2 -1
..... — 0.0
G N ——rt Y
M A
L .
Ve SN O o)
—(r+2) -1 -2 —2 ~1
—+r+1

(Figure 4.)
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Again, all curves but A, B and L, are contracted to two points, say P
and @, on the image of Lo. The surface obtained by this contraction
is P2 and Lo is the line at infinity, i.e., P? — Lo, & X. The image B
of B is a curve of degree r + 2 having a cuspidal singurarity at P of
multiplicity 7 + 1 and passing through @, and the image A of A is a
line meeting B at P with order of contact 7 + 2. Then we reach to the
expression (1) of the pencil A. Consider next the case —6 +r+ 1 < 0.
Then we blow up the intersection point LNB and its (§ —r—2) infinitely
near points lying on the curve B (Figure 4):

=y
5
-1 "2 —2 -1
O——vvne O o
G SN— -
M A
Lo
O O eeees O ®
-6 -1 -2 —2 -1
5—1—2
(Figure 5.)

Then all curves but A, B and L, are contracted to two points on the
image of Lo, and the surface obtained by this contraction is P? with
Lo as a line at infinity. The same argument as in the previous cases
gives the expression (1) of the pencil A.

Consider the case pug = 1 and &y = 0. Turning the configuration
upside down if necessary, we have only to consider the case a = 0, g =
61 = 1 and 6o = 0. Then one can easily show that we have the same
configuration as in Figure 1 with § = p; after a suitable contraction of
the components of D. So, we have the same expression of A as given in
(1). '

Consider finally the case n = 0. The case a = 1 and po = 6o + 1
is obtained from the case a = 0 and § = 1 by turning the graph upside
down, i.e., changing the roles of H; and Hs. So, we treat only the case
a =0 and 6y = 1. Then we have the form (2) in the case n = 1. So, the
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argument is a complete repetition in the case n = 1 with the form (2).
We have thus the same expression as (1) with u; = 1.
Hence we obtain the following result.

Theorem 2.1. Let p: X — P! be an Al-fibration parametrized
by P!. Then, with the above notations, the pencil associated to p is given
as follows:

A= {(ya:“rl —p(x))" + Az =0; Xe Pl} ,

where p(z) € k[z],degp(z) < r and p(0) # 0. Furthermore, we under-
stand that puy = 1 when there is no multiple fiber whose reduced form is
isomorphic to AL.

§83. Complements to the previous results

(I) Let C be an irreducible curve of A% and let X be anew the com-
plement A2 — C. In Aoki [1], it is observed whether or not X has an
étale non-finite endomorphism which is not an automorphism. In the
case where X has an Al-fibration p: X — B and p extends to an Al-
fibration p : A% — E, i.e., a general fiber of p is closed in A2, the case
B~ Plis missing in the observation. We shall consider here this case
by applying Theorem 2.1. Note then that C is a fiber of p taken with
the reduced structure. We consider the following three cases separately:

(1) C is a multiple fiber pgAo, where Ag =2 A

(2) C is a multiple fiber p;A;, where A; = Al

(3) C is a general fiber of p.
In the case (1), X has logarithmic Kodaira dimension K(X) = —oo and
this case is treated in [1]. In the case (2), it follows from Theorem 2.1 and
the arguments leading to its proof that C is defined by an equation of
the form yz"+! —p(z) = 0, where p(z) € k[z], deg p(z) < r and p(0) # 0.
The polynomial yz"+! — p(z) is then a generically rational polynomial,
and this case is also treated in [1]. So, consider the case (3). By the
arguments in [6] to prove the first assertion of Lemma 1.1, we know that

1
/(X) = . 0) ifand only if n—3S — =0
K(X)=1 (resp. 0) if and only if n ;ni >0 (resp )
where n = 0,1. If n = 1 (resp. 0) then ®(X) = 1 (vesp. 0). If
n = 0 (hence pu; = 1) then the general fiber C is defined by f = 0 with
f=yz"t! —p(z) + z#°, and f is a generically rational polynomial. So
we may assume that n = 1. Hence K(X) = 1.
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Let @ : X; — X, be an étale endomorphism, where we denote the
source (resp. target) X by X; (resp. X2). Accordingly, we denote
by p; : X; — B; (i = 1,2) the same Al-fibration p : X — B, where
B & By & Al. By [1, Lemma 3.2], there exists an endomorphism
B : By — By such that ps - a = 3 - ps.

We shall show that § is the identity automorphism. In fact, 8
extends to an endomorphism E : §1 — Ez, where Ei ~ P! and Ez =
B; U {P} for i = 1,2 with P := 5(C). It is clear that 3~1(P) = P. Let
P; := p(A;) for i = 0,1. By [3, Lemma 3.1], it follows that 3(P;) = P,
for i = 0,1 because ged(uo, 1) = 1. Note that 3 is unramified at P,
and P;. By the same lemma, it follows that if 3(Q) = P, (i = 0,1)
for Q # P;, then the ramification index of ,8 at @ equals to ;. Let
d := deg 3. Suppose that (resp. s) points of B, other than P (resp.
Py) are mapped to P; (resp. FPp) under 3. By the Riemann-Hurwitz
theorem, we have

-2 = 2d+(d—-1)+r(u1—1)+s(puo —1)
= d—-r—s—3

where d = p3r + 1 = pos + 1. Hence we obtain
d=r+s+1=pur+1=pgs+1 (1)

If d # 1 then » > 0 and s > 0. It is then easy to derive a contradiction
from (1) because ged(uo, p1) = 1. Hence d = 1. Since 3 is an automor-
phism of P! fixing three points P, Py, P;, it follows that 3 is the identity
automorphism.

Since « satisfies now p-a = p, the étale endomorphism « induces an
endomorphism ag : X7 x — X k of the generic fiber Xx of p, where
K is the function field of B. Since p is an untwisted Al-fibration, we
know that Xx = SpecK [u,u™?]. Hence aj(u) = au*™ with a € K* and
n = deg a. Let G be the group of the n-th roots of unity in k. Then G
acts on X; x and X g is the quotient curve X; g /G. Hence the function
field k(X1) is a Galois extension of k(X3) with Galois group G. Let X
(resp. W) be the normalization of X, (resp. A?) in k(X;), where X is
the open set A2 — C of A2, and let v : X2 — Xo (resp. v: W — A?) be
the normalization morphism. By [5, Lemma 5], v : )?2 — X5 is an étale
Galois covering with group G with X 2 containing X3 as an open set, the
composite ps - v : X — B is an Al-fibration such that ps - v|x, = p1,
and (pg - v)~!(Py) with Py = p(Ap) is a disjoint union of n copies of
the affine lines 94y (g € G) so that X, — X1 = ngc,g;ﬂ 9 Ao, where
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Ag = Al. The surface W is a normal affine surface with a G-action, and
A? is the quotient surface W/G. Furthermore, )?2 is a Zariski open set
of W. Note that 5-0: W — B is an Al-fibration. Let Z = (5-7)~1(P),
where P = p(C). Then ¥ induces a finite morphism 7 : Z — C. Since
the Al-fibration 5- 7 : W — B is extended to a Pl-fibration with two
cross-sections at infinity and since every irreducible component of Z has
at least two places at infinity (for otherwise it cannot dominate C' which
is isomorphic to Al), it follows that

(1) Z is irreducible,

(2) W has no singular points along Z,

(3) Z is isomorphic to Al.
In fact, let V be a completion of W such that V is smooth along V — W,
the complement V — W supports a divisor with simple normal crossings
and the Al-fibration p - ¥ extends to a P!-fibration q : V — B. If
Z is reducible, the fiber ¢~ (P) must contain a loop of the irreducible
components because each irreducible component of Z has at least two
places at infinity. So, Z is irreducible. We may assume that ¢~ (P)
contains no (—1) curves lying in V — W. If W has singular points on Z,
the proper transform Zof Z by a minimal resolution of singularities of
W is a unique (—1) curve in the fiber meeting three or more components
of the fiber. This is a contradiction. So, W is smooth along W. Now it
is clear that Z is isomorphic to Al. This implies that 7 : W — A2 is an
étale finite Galois covering. Hence U is an isomorphism. In particular,
a: X7 — X, is an automorphism. Thus we obtain the following:

Theorem 3.1. Let C be an irreducible curve in A? := Speck|[z, y|
defined by

(yz™+* = p(z))™ + Azt =0,

where o > 1,1 > 1 and A # 0 and let X := A2 — C. Then ®(X) =1
and every étale endomorphism of X is an automorphism.

(IT) In [2], we considered an automorphism of infinite order of A? which
stabilizes an irreducible curve C. In [2, Lemma 1.4], the case where the
curve C has a defining equation

f=(y="" = p(z))" + A" =0,

is missing. We shall complete the result by treating here the missing
case. If u; =1, i.e., n = 0, then f is a generically rational polynomial,
and this case is treated in [2]. So, we assume that y; > 1. Asin the proof
of Theorem 3.1, K(X) = 1 and any automorphism « of X preserves the
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Al-fibration p, i.e., p-a = p. Then o~ 1(A4p) = Ag and a~!(4;) = 4;.
Namely, we have a(z) = cz and a(yz™! + p(z)) = d (y2"*! + p(z))
with ¢, d € k*. Here note that Ag (resp. A;) is defined by = = 0 (resp.
yz" 1 + p(z) = 0). Since p(0) # 0, it follows that d = 1. Then we have

p(z) — p(cx)

a(y) = C_(T+1)y + ertlpr+l

Hence p(z) = p(ecx), and ¢ is an m-th root of unity for some m with
0 <m <r+1 because degp(z) < r. So, we obtain the following:

Theorem 3.2. Let C be an irreducible curve in A% := Speck|z, y|
defined by

(ya:Hrl - p(x))“1 + Azt =0,

where g > 1,1 > 1 and A # 0 and let X := A% — C. Then every
automorphism of A% which stabilizes the curve C is of finite order.
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