Completely Parametrized \mathbf{A}_{*}^{1}-fibrations on the Affine Plane

Masayoshi Miyanishi

§0. Introduction

Let k be an algebraically closed field of characteristic zero, which we fix as the ground field. In the present article we consider \mathbf{A}_{*}^{1}-fibrations on the affine plane \mathbf{A}^{2}, where \mathbf{A}_{*}^{1} denotes the affine line \mathbf{A}^{1} with one point deleted. Let X be a smooth affine surface with $\operatorname{Pic}(X)=(0)$ and $\Gamma\left(X, \mathcal{O}_{X}\right)^{*}=k^{*}$. Let $\rho: X \rightarrow B$ be an \mathbf{A}_{*}^{1}-fibration, where B is a smooth algebraic curve. Then ρ is untwisted because $\operatorname{Pic}(X)=(0)$ and B is isomorphic to \mathbf{A}^{1} or \mathbf{P}^{1} because $\Gamma\left(X, \mathcal{O}_{X}\right)^{*}=k^{*}$. We call ρ a completely (resp. incompletely) parametrized \mathbf{A}_{*}^{1}-fibration if B is isomorphic to \mathbf{P}^{1} (resp. \mathbf{A}^{1}). See [6], [8] for the definitions and relevant results. If X is the affine plane and ρ is incompletely parametrized, then there exists an irreducible polynomial $f \in \Gamma\left(X, \mathcal{O}_{X}\right)$ such that the fibration ρ is given as $\left\{F_{\lambda}\right\}_{\lambda \in k}$, where F_{λ} is a curve defined by $f=\lambda$. Hence f is a generically rational polynomial with two places at infinity, and such polynomials are classified by H. Saito [10] (see [7]). On the other hand, there exist no references where the completely parametrized \mathbf{A}_{*}^{1}-fibrations on \mathbf{A}^{2} are explicitly classified. The fibers of the given $\mathbf{A}_{*^{-}}^{1}$ fibration form a pencil of affine plane curves parametrized by \mathbf{P}^{1}. So, the classification is made by giving the defining equation of a general member of the pencil.

For this purpose, we make use of a description of \mathbf{A}^{2} as a homology plane with \mathbf{A}_{*}^{1}-fibration over \mathbf{P}^{1} as given in [6], [8]. Our results show that the pencil is given in the form

$$
\Lambda=\left\{\left(y x^{r+1}-p(x)\right)^{\mu_{1}}+\lambda x^{\mu_{0}}=0 ; \lambda \in \mathbf{P}^{1}\right\}
$$

where $p(x) \in k[x], \operatorname{deg} p(x) \leq r$ and $p(0) \neq 0$.

[^0]
§1. \mathbf{A}_{*}^{1}-fibrations

Let X be a \mathbf{Q}-homology plane with an untwisted \mathbf{A}_{*}^{1}-fibration ρ : $X \rightarrow B$, where B is isomorphic to \mathbf{P}^{1}. Then every fiber but one is isomorphic to \mathbf{A}_{*}^{1} if taken with the reduced structure and the excepted fiber is isomorphic to \mathbf{A}^{1}. There exists a smooth projective surface V with a \mathbf{P}^{1}-fibration $p: V \rightarrow B$ such that X is a Zariski open set of V, the boundary divisor $D:=V-X$ is a divisor with simple normal crossings and p gives rise to the \mathbf{A}_{*}^{1}-fibration if restricted onto X. Since ρ is untwisted, there exist two cross-sections H_{1} and H_{2} of p, which are the loci of two points of the general fibers of ρ lying at infinity. Since the boundary divisor D has a tree as the dual graph, H_{1} and H_{2} meet each other at most in one point. If H_{1} and H_{2} meet each other, we blow up the point of intersection and its infinitely near points so that the proper transforms of H_{1} and H_{2} get separated from each other. Furthermore, if we assume that the embedding $X \hookrightarrow V$ is minimal in the sense that D contains no (-1) curves which are the fiber components of the \mathbf{P}^{1} fibration p and that any contraction of such a (-1) curve makes the images of H_{1} and H_{2} meet each other, then it is known (cf. [6], [8]) that $\rho: X \rightarrow B$ is obtained in the following fashion.

There exists a Hirzebruch surface F_{a} with a minimal section M_{1} and a section M_{2} with $\left(M_{1} \cdot M_{2}\right)=0$, and there exists a sequence of blowing-ups $\sigma: V \rightarrow F_{a}$ such that H_{1} and H_{2} are the proper transforms of M_{1} and M_{2}, respectively, and that $\left(H_{1}{ }^{2}\right)=\left(M_{1}{ }^{2}\right)=-a$. Hence the blowing-ups σ starts with the blowing-ups of the points lying on M_{2} and no points of M_{1} are blown-up. The fibration $p: V \rightarrow B$ is obtained from the \mathbf{P}^{1}-fibration on F_{a}. Let μA be a fiber of ρ with $A \cong \mathbf{A}_{*}^{1}$ and possibly $\mu \geq 1$ and let \bar{A} be the closure of A in V. Then the fiber of p containing \bar{A} has a linear chain as the dual graph:

On the other hand, if μA is a fiber of ρ with $A \cong \mathbf{A}^{1}$, the dual graph of the fiber containing \bar{A}, H_{1} and H_{2} looks like

Let μA be a singular fiber of ρ, i.e., either $\mu>1$ or $A \cong \mathbf{A}^{1}$. Let \bar{A} be the closure of A in V. Then μ is the multiplicity of \bar{A} in the fiber $p^{-1}(\rho(A))$. Let δ be the contribution of \bar{A} in the total transform $\sigma^{*}\left(M_{2}\right)$. It is known (cf. [6], [8]) that $0 \leq \delta<\mu$ and $\delta>0$ if $A \cong \mathbf{A}_{*}^{1}$. We begin with recalling the following structure theorem (cf. [6], [8]).

Lemma 1.1. Let X be a \mathbf{Q}-homology plane with an \mathbf{A}_{*}^{1}-fibration $\rho: X \rightarrow B$. Suppose $B \cong \mathbf{P}^{1}$ and ρ is untwisted. Let $\mu_{0} A_{0}, \ldots, \mu_{n} A_{n}$ be all singular fibers with respective multiplicities μ_{0}, \ldots, μ_{n}, where $A_{0} \cong \mathbf{A}^{1}$ and $A_{i} \cong \mathbf{A}_{*}^{1}$ for $1 \leq i \leq n$. Then we have the following assertions:
(1) $\bar{\kappa}(X)=1,0$ or $-\infty$ if and only if

$$
(n-1)-\sum_{i=1}^{n} \frac{1}{\mu_{i}}>0,=0 \text { or }<0, \text { respectively. }
$$

(2) $H_{1}(X ; \mathbf{Z})$ is a torsion group of order equal to

$$
\left|\mu_{0} \cdots \mu_{n} a-\sum_{i=0}^{n} \mu_{0} \cdots \widehat{\mu_{i}} \cdots \mu_{n} \delta_{i}\right|
$$

(3) There are no homology planes X with $\bar{\kappa}(X)=0$ and an untwisted \mathbf{A}_{*}^{1}-fibration $\rho: X \rightarrow B \cong \mathbf{P}^{1}$.

When X is isomorphic to \mathbf{A}^{2} in Lemma 1.1, we can specify the data more precisely.

Lemma 1.2. With the notations of Lemma 1.1, the following assertions hold:
(1) A smooth affine surface X is isomorphic to \mathbf{A}^{2} if and only if $\bar{\kappa}(X)=-\infty, \operatorname{Pic}(X)=(0)$ and $\Gamma\left(X, \mathcal{O}_{X}\right)=k^{*}$. In particular, a Q-homology plane X is isomorphic to \mathbf{A}^{2} if and only if $\bar{\kappa}(X)=$ $-\infty$ and $H_{1}(X ; \mathbf{Z})=(0)$.
(2) $n=0$ or 1 .
(3) If $n=0$ then either $a=1, \mu_{0}=\delta_{0}+1$ or $a=0, \delta_{0}=1$.
(4) If $n=1$ then either

$$
a=1, \quad \mu_{0} \mu_{1}-\mu_{1} \delta_{0}-\mu_{0} \delta_{1}= \pm 1
$$

or

$$
a=0, \quad \mu_{0}=\delta_{1}=1, \quad \delta_{0}=0
$$

(5) If $a=n=1$ and $\mu_{0} \mu_{1}-\mu_{1} \delta_{0}-\mu_{0} \delta_{1}= \pm 1$, the pair $\left(\delta_{0}, \delta_{1}\right)$ is uniquely determined by the pair $\left(\mu_{0}, \mu_{1}\right)$. Furthermore, if $\mu_{0} \mu_{1}-$ $\mu_{1} \delta_{0}-\mu_{0} \delta_{1}=1$, then the pair $\left(\delta_{0}^{\prime}, \delta_{1}^{\prime}\right)$ with $\delta_{i}^{\prime}=\mu_{i}-\delta_{i}(i=0,1)$ satisfies $\mu_{0} \mu_{1}-\mu_{1} \delta_{0}^{\prime}-\mu_{0} \delta_{1}^{\prime}=-1$, and vice versa.
Proof. (1) We refer to [6].
(2) Note that $\mu_{0} \geq 1$ and $\mu_{i} \geq 2$ for $1 \leq i \leq n$. Since $\bar{\kappa}(X)=-\infty$, it follows that

$$
n-1-\frac{n}{2} \leq(n-1)-\sum_{i=1}^{n} \frac{1}{\mu_{i}}<0
$$

Hence $n=0$ or 1 .
(3) Since $H_{1}(X ; \mathbf{Z})=0$, we have

$$
\left|H_{1}(X ; \mathbf{Z})\right|=\left|\mu_{0} \cdots \mu_{n} a-\sum_{i=0}^{n} \mu_{0} \cdots \widehat{\mu_{i}} \cdots \mu_{n} \delta_{i}\right|=1
$$

If $n=0$ then this formula reads $\mu_{0} a-\delta_{0}= \pm 1$, where $\mu_{0}>\delta_{0}$. Suppose $a \geq 2$. Then we have

$$
(a-2) \mu_{0}+\left(\mu_{0}-\delta_{0}\right)+\mu_{0} \neq \pm 1
$$

Hence $a=0$ or 1 . If $a=1$ then $\mu_{0}=\delta_{0}+1$. If $a=0$ then $\delta_{0}=1$.
(4) If $n=1$ then

$$
a \mu_{0} \mu_{1}-\mu_{1} \delta_{0}-\mu_{0} \delta_{1}= \pm 1
$$

Suppose $a \geq 2$. Then we have

$$
(a-2) \mu_{0} \mu_{1}+\mu_{1}\left(\mu_{0}-\delta_{0}\right)+\mu_{0}\left(\mu_{1}-\delta_{1}\right) \neq \pm 1
$$

Hence $a=0$ or 1 . If $a=1$ then we have

$$
\mu_{0} \mu_{1}-\mu_{1} \delta_{0}-\mu_{0} \delta_{1}= \pm 1
$$

If $a=0$ then $\mu_{1} \delta_{0}+\mu_{0} \delta_{1}=1$. Since $\mu_{1} \geq 2$, it follows that $\delta_{0}=0$. Then $\mu_{0}=\delta_{1}=1$.
(5) Suppose that $\mu_{0} \mu_{1}-\mu_{1} \delta_{0}-\mu_{0} \delta_{1}=1$ and $\mu_{0} \mu_{1}-\mu_{1} \gamma_{0}-\mu_{0} \gamma_{1}=1$ for the pairs $\left(\gamma_{0}, \gamma_{1}\right)$ and $\left(\delta_{0}, \delta_{1}\right)$ with $\mu_{i}>\gamma_{i}, \mu_{i}>\delta_{i}(i=0,1)$. Then

$$
\mu_{1}\left(\gamma_{0}-\delta_{0}\right)=\mu_{0}\left(\delta_{1}-\gamma_{1}\right)
$$

Since $\operatorname{gcd}\left(\mu_{0}, \mu_{1}\right)=1$, it follows that $\gamma_{0}=\delta_{0}+m \mu_{0}$ and $\delta_{1}=\gamma_{1}+m \mu_{0}$ for some integer m. If $m>0$, then $\gamma_{0} \geq \mu_{0}$, which is a contradiction. If $m<0$ we obtain a contradiction in a similar fashion. So, $m=0$. The rest is straightforward.
Q.E.D.

Given a pair (μ, δ) of positive integers μ, δ with $\mu>\delta$ and $\operatorname{gcd}(\mu, \delta)=$ 1 , we define integers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$ by expanding μ / δ in a form of continued fraction

$$
\frac{\mu}{\delta}=\alpha_{1}-\frac{1}{\alpha_{1}-\frac{1}{\alpha_{3}-\frac{1}{\ddots \ddots-\frac{1}{\alpha_{s}}}}}
$$

where $\alpha_{i} \geq 2$ for $1 \leq i \leq s$. We denote this fractional expansion by $\mu / \delta=\left[\alpha_{1}, \ldots, \alpha_{s}\right]$.

Given such a pair (μ, δ), the geometric meaning of fractional expansion of μ / δ in the setting leading to Lemma 1.1 is given in th following Lemma 1.3 which is well-known (cf. [9] and [4, pp. 75-78]).

Lemma 1.3. Let (μ, δ) be a pair of positive integers such that $\mu>\delta$ and $\operatorname{gcd}(\mu, \delta)=1$. Let μA be a multiple fiber of $\rho: X \rightarrow B$ with the contribution δ of \bar{A} in $\sigma^{*}\left(M_{2}\right)$. Let $\mu / \delta=\left[\alpha_{1}, \ldots, \alpha_{s}\right]$ and $\mu /(\mu-\delta)=\left[\alpha_{1}^{\prime}, \ldots, \alpha_{s^{\prime}}^{\prime}\right]$ be the fractional expansions. Then the fiber $p^{*}(\rho(A))$ has the following dual graph:

where $\left(H_{1}{ }^{2}\right)=\left({H_{2}}^{2}\right)=-1$ if $n=a=1$.
The next result will clarify the geometric meaning of the condition $\mu_{0} \mu_{1}-\mu_{1} \delta_{0}-\mu_{0} \delta_{1}= \pm 1$.

Lemma 1.4. Let $\left(\mu_{0}, \delta_{0}\right)$ and $\left(\mu_{1}, \delta_{1}\right)$ be pairs as in Lemma 1.2 satisfying the condition $\mu_{0} \mu_{1}-\mu_{1} \delta_{0}-\mu_{0} \delta_{1}= \pm 1$. Suppose that $\delta_{0}>0$ and $\delta_{1}>0$. Let $\mu_{1} / \delta_{1}=\left[\alpha_{1}, \ldots, \alpha_{s}\right]$ and $\mu_{0} / \delta_{0}=\left[\beta_{1}, \ldots, \beta_{t}\right]$ be the
fractional expansions. Let E be a union of smooth rational curves with simple normal crossings on a smooth projective surface whose dual graph is given as below:

Then the following assertions hold.
(1) Suppose $\mu_{0} \mu_{1}-\mu_{1} \delta_{0}-\mu_{0} \delta_{1}=1$. Then E is contractible to a smooth point.
(2) Suppose $\mu_{0} \mu_{1}-\mu_{1} \delta_{0}-\mu_{0} \delta_{1}=-1$. Then E contracts to a union of two smooth rational curves with one of the following dual graphes:

where G^{\prime} denotes the proper transform of the component G in the fiber $p^{*}\left(\rho\left(\mu_{0} A_{0}\right)\right)$ and $\left(G^{\prime 2}\right)=\delta-1\left(\right.$ resp. $\left.\left(G^{2}\right)=-1\right)$ in the case (1) (resp. (2)).

Proof. First of all, we shall show that either $\alpha_{1}=2$ or $\beta_{1}=2$. Write the condition $\mu_{0} \mu_{1}-\mu_{1} \delta_{0}-\mu_{0} \delta_{1}= \pm 1$ as

$$
\left(\frac{\mu_{0}}{\delta_{0}}-1\right)\left(\frac{\mu_{1}}{\delta_{1}}-1\right)=1 \pm \frac{1}{\delta_{0} \delta_{1}}
$$

Suppose $\alpha_{1} \geq 3$ and $\beta_{1} \geq 3$. Write $\mu_{1}=\alpha_{1} \delta_{1}-\delta_{1}^{\prime}$ and $\mu_{0}=\beta_{1} \delta_{0}-\delta_{0}^{\prime}$ with $0 \leq \delta_{1}^{\prime}<\delta_{1}$ and $0 \leq \delta_{0}^{\prime}<\delta_{0}$. Then we have

$$
\begin{aligned}
\left(\frac{\mu_{0}}{\delta_{0}}-1\right)\left(\frac{\mu_{1}}{\delta_{1}}-1\right) & =\left(\beta_{1}-1-\frac{\delta_{0}^{\prime}}{\delta_{0}}\right)\left(\alpha_{1}-1-\frac{\delta_{1}^{\prime}}{\delta_{1}}\right) \\
& \geq\left(\beta_{1}-2+\frac{1}{\delta_{0}}\right)\left(\alpha_{1}-2+\frac{1}{\delta_{1}}\right) \\
& \geq\left(1+\frac{1}{\delta_{0}}\right)\left(1+\frac{1}{\delta_{1}}\right)>\left(1+\frac{1}{\delta_{0} \delta_{1}}\right)
\end{aligned}
$$

which is a contradiction.
(1) We shall prove the first assertion. Suppose $\beta_{1}=2$. Write $\mu_{0}=2 \delta_{0}-\delta_{0}^{\prime}$ with $0 \leq \delta_{0}^{\prime}<\delta_{0}$. Suppose further that $t=1$, i.e., $\mu_{0}=2, \delta_{0}=1, \delta_{0}^{\prime}=0$. Then $\mu_{1}=2 \delta_{1}+1$ and the dual graph becomes

Hence it contracts to a smooth point. Suppose that $t \geq 2$. Let $\mu_{0}^{\prime}=$ $\delta_{0}, \mu_{1}^{\prime}=\mu_{1}-\delta_{1}$ and $\delta_{1}^{\prime}=\delta_{1}$. Then the pairs $\left(\mu_{0}^{\prime}, \delta_{0}^{\prime}\right)$ and $\left(\mu_{1}^{\prime}, \delta_{1}^{\prime}\right)$ satisfy

$$
\mu_{0}^{\prime} \mu_{1}^{\prime}-\mu_{1}^{\prime} \delta_{0}^{\prime}-\mu_{0}^{\prime} \delta_{1}^{\prime}=1
$$

If $\alpha_{1}=2$ we can argue in a similar fashion. Hence we are done by induction. The first assertion is verified.
(2) Next we shall verify the second assertion. Suppose $\beta_{1}=2$ and $t=1$. Then $\mu_{1}=2 \delta_{1}-1$ and $\mu_{1} / \delta_{1}=\left[2, \delta_{1}\right]$. Hence E contracts to a union of smooth rational curves with the dual graph:

where $\delta_{1} \geq 2$. Note that $\delta_{1} \neq 1$. If $\alpha_{1}=2$ and $s=1$, we have a similar conclusion as above with the second dual graph in the statement. Suppose that $\alpha_{1}=\beta_{1}=2, s \geq 2$ and $t \geq 2$. We shall show that this case does not occur. Write $\mu_{i}=2 \delta_{i}-\delta_{i}^{\prime}$ with $\delta_{i}^{\prime} \geq 1$ for $i=0,1$. Then the condition $\mu_{0} \mu_{1}-\mu_{1} \delta_{0}-\mu_{0} \delta_{1}=-1$ reads as $\delta_{1} \delta_{0}^{\prime}+\delta_{0} \delta_{1}^{\prime}=\delta_{0}^{\prime} \delta_{1}^{\prime}+1$. This is a contradiction since $\delta_{0}>\delta_{0}^{\prime}$ and $\delta_{1}>\delta_{1}^{\prime}$. So, $\alpha_{1} \geq 3$ if $\beta_{1}=2, s \geq 2$ and $t \geq 2$. As in the proof of the assertion (1), let $\mu_{0}^{\prime}=\delta_{0}, \mu_{1}^{\prime}=\mu_{1}-\delta_{1}$ and $\delta_{1}^{\prime}=\delta_{1}$. Then the pairs $\left(\mu_{0}^{\prime}, \delta_{0}^{\prime}\right)$ and $\left(\mu_{1}^{\prime}, \delta_{1}^{\prime}\right)$ satisfy

$$
\mu_{0}^{\prime} \mu_{1}^{\prime}-\mu_{1}^{\prime} \delta_{0}^{\prime}-\mu_{0}^{\prime} \delta_{1}^{\prime}=-1
$$

Hence we are done by induction.
In the graph, call the component with self-intersection number 0 (resp. $-\delta$) L (resp. S). In view of Lemma 1.2, if E contracts to a union of two rational curves $L+S$, the linear chain E^{\prime} contracts to a smooth point, where E^{\prime} has the following dual graph with $\mu_{0} /\left(\mu_{0}-\delta_{0}\right)=\left[\beta_{1}^{\prime}, \ldots, \beta_{t^{\prime}}^{\prime}\right]$ and $\mu_{1} /\left(\mu_{1}-\delta_{1}\right)=\left[\alpha_{1}^{\prime}, \ldots, \alpha_{s^{\prime}}^{\prime}\right]$.

Let W be the surface obtained from V by the contractions of E and E^{\prime} as described above. Then W has a \mathbf{P}^{1}-fibration $p^{\prime}: W \rightarrow \mathbf{P}^{1}$ given by the pencil $|L|$ and S is a cross-section of p^{\prime}. In the first case, the count of the Picard number of W shows that G^{\prime} is a cross-section of p^{\prime} with $\left(G^{2}\right)=\delta-1$. In the second case, the count of the Picard number shows again that $\left(G^{\prime 2}\right)=-1$ and p^{\prime} has a unique singular fiber which contains G^{\prime} and \bar{A} as the terminal (-1) components and the (-2) components in between (see the dual graph of the fiber $p^{-1}\left(\rho\left(\mu_{0} A_{0}\right)\right)$).
Q.E.D.

Consider the case where $\mu_{0}=1$ and $\delta_{0}=0$.
Lemma 1.5. Suppose $\mu_{0}=1$ and $\delta_{0}=0$. Then $\delta_{1}=1$ if $a=0$ and $\mu_{1}=\delta_{1}+1$ if $a=1$. Let $\mu_{1} / \delta_{1}=\left[\alpha_{1}, \ldots, \alpha_{s}\right]$ be the fractional expansion. Let E be a union of smooth rational curves on a smooth projective surface V with the dual graph:

Then either E contracts to a smooth point (case $a=1$) or E is a union of two smooth rational curves with the dual graph (case $a=0$) :

Proof. If $a=0$ then $\left(H_{1}{ }^{2}\right)=0, s=1$ and $\left(A_{1}{ }^{2}\right)=-\mu_{1}$. If $a=1$, then $\left[\alpha_{1}, \ldots, \alpha_{s}\right]=[2, \ldots, 2]$. It is clear that E contracts to a smooth point.
Q.E.D.

§2. Explicit equations

First of all, consider the case $n=1$. We only consider the case $a=1$ and $\delta_{0} \neq 0$. The case $a=0$ and $\delta_{0}=0$ can be treated in a similar fashion. Furthermore, we assume that $\mu_{0} \mu_{1}-\mu_{1} \delta_{0}-\mu_{0} \delta_{1}=-1$. The \mathbf{P}^{1}-fibration $p: V \rightarrow \mathbf{P}^{1}$, which extends the given \mathbf{A}_{*}^{1}-fibration $\rho: X \rightarrow \mathbf{P}^{1}$, has two degenerate fibers S_{0} and S_{1} and two sections H_{1} and H_{2}. We assume that $S_{0} \cap X=\mu_{0} A$ and $S_{1} \cap X=\mu_{1} B$, where $A \cong \mathbf{A}^{1}$ and $B \cong \mathbf{A}_{*}^{1}$. Let E (resp. E^{\prime}) be the connected component of

$$
D-G \cup\{\text { the side linear chain between } G \text { and } \bar{A}\}
$$

which contains H_{1} (resp. H_{2}) (see the notations at the beginning of the section 1). By Lemma $1.4, E$ (resp. E^{\prime}) contracts to a union of two curves of the form (1) or (2) (resp. a smooth point). Suppose first that E contracts to a union of two curves of the form (1). By the contaction of E and E^{\prime}, we obtain a smooth projective surface W with the boundary divisor Δ such that $W-\Delta$ is isomorphic to X and Δ has the following configuration (Figure 1):

(Figure 1.)
where \bar{A} (resp. \bar{B}) denotes, by abuse of notations, the image of \bar{A} (resp. $\bar{B})$ under the contraction.

We blow up the intersection point $G \cap L$ and its infinitely near points to produce a configuration with the following dual graph (Figure 2):

(Figure 2.)
In the configuration, all curves but \bar{A}, \bar{B} and L_{∞} are contracted to two points, say P and Q, on the image of L_{∞} (which we denote by the same symbol L_{∞}). In fact, the obtained surface is the projective plane \mathbf{P}^{2} and $\mathbf{P}^{2}-L_{\infty}$ is isomorphic to X. The image \widetilde{B} of \bar{B} is a curve of degree $r+2$ having a cuspidal singularity at P of multiplicity $r+1$ and passing through Q smoothly, and the image \widetilde{A} of \bar{A} is a line meeting \widetilde{B} at P with order of contact $r+2$.

Choose a system of homogeneous coordinates (X, Y, Z) on \mathbf{P}^{2} so that L_{∞} and \widetilde{A} are defined by $Z=0$ and $X=0$, respectively. Then \widetilde{B} is defined by an equation

$$
Y X^{r+1}-P(X, Z)=0
$$

where

$$
P(X, Z)=a_{1} X^{r+1} Z+a_{2} X^{r} Z^{2}+\cdots+a_{r+2} Z^{r+2}
$$

with $a_{r+2} \neq 0$. We may assume $a_{1}=0$ by replacing Y by $Y-a_{1} Z$. Let Λ be the pencil on \mathbf{P}^{2} consisting of the closures of fibers of the given \mathbf{A}_{*}^{1}-fibration $\rho: X \rightarrow \mathbf{P}^{1}$. Since $\mu_{1} B$ is a multiple fiber, we have $\Lambda=\left\{\left(Y X^{r+1}-P(X, Z)\right)^{\mu_{1}}+\lambda X^{\mu_{0}} Z^{\mu_{1}(r+1)+\mu_{1}-\mu_{0}}=0 ; \lambda \in \mathbf{P}^{1}\right\} \cdots$
where we consider

$$
\left(Y X^{r+1}-P(X, Z)\right)^{\mu_{1}} Z^{\mu_{0}-\mu_{1}(r+2)}+\lambda X^{\mu_{0}}=0
$$

instead of the given equation if $\mu_{0}>\mu_{1}(r+2)$.
Suppose next that E contracts to a union of two curves of the form (2). Then, with the above notation, Δ has the following configuration (Figure 3):

(Figure 3.)

We consider two cases according as $-\delta+r+1 \geq 0$ or $-\delta+r+1<0$. Suppose first $-\delta+r+1 \geq 0$. Then we obtain the following dual graph after a suitable blowing-up of the above configuration (Figure 4):

(Figure 4.)

Again, all curves but \bar{A}, \bar{B} and L_{∞} are contracted to two points, say P and Q, on the image of L_{∞}. The surface obtained by this contraction is \mathbf{P}^{2} and L_{∞} is the line at infinity, i.e., $\mathbf{P}^{2}-L_{\infty} \cong X$. The image \widetilde{B} of \bar{B} is a curve of degree $r+2$ having a cuspidal singurarity at P of multiplicity $r+1$ and passing through Q, and the image \widetilde{A} of \bar{A} is a line meeting \widetilde{B} at P with order of contact $r+2$. Then we reach to the expression (1) of the pencil Λ. Consider next the case $-\delta+r+1<0$. Then we blow up the intersection point $L \cap \bar{B}$ and its ($\delta-r-2$) infinitely near points lying on the curve \bar{B} (Figure 4):

(Figure 5.)
Then all curves but \bar{A}, \bar{B} and L_{∞} are contracted to two points on the image of L_{∞}, and the surface obtained by this contraction is \mathbf{P}^{2} with L_{∞} as a line at infinity. The same argument as in the previous cases gives the expression (1) of the pencil Λ.

Consider the case $\mu_{0}=1$ and $\delta_{0}=0$. Turning the configuration upside down if necessary, we have only to consider the case $a=0, \mu_{0}=$ $\delta_{1}=1$ and $\delta_{0}=0$. Then one can easily show that we have the same configuration as in Figure 1 with $\delta=\mu_{1}$ after a suitable contraction of the components of D. So, we have the same expression of Λ as given in (1).

Consider finally the case $n=0$. The case $a=1$ and $\mu_{0}=\delta_{0}+1$ is obtained from the case $a=0$ and $\delta=1$ by turning the graph upside down, i.e., changing the roles of H_{1} and H_{2}. So, we treat only the case $a=0$ and $\delta_{0}=1$. Then we have the form (2) in the case $n=1$. So, the
argument is a complete repetition in the case $n=1$ with the form (2). We have thus the same expression as (1) with $\mu_{1}=1$.

Hence we obtain the following result.
Theorem 2.1. Let $\rho: X \rightarrow \mathbf{P}^{1}$ be an \mathbf{A}_{*}^{1}-fibration parametrized by \mathbf{P}^{1}. Then, with the above notations, the pencil associated to ρ is given as follows:

$$
\Lambda=\left\{\left(y x^{r+1}-p(x)\right)^{\mu_{1}}+\lambda x^{\mu_{0}}=0 ; \quad \lambda \in \mathbf{P}^{1}\right\}
$$

where $p(x) \in k[x], \operatorname{deg} p(x) \leq r$ and $p(0) \neq 0$. Furthermore, we understand that $\mu_{1}=1$ when there is no multiple fiber whose reduced form is isomorphic to \mathbf{A}_{*}^{1}.

§3. Complements to the previous results

(I) Let C be an irreducible curve of \mathbf{A}^{2} and let X be anew the complement $\mathbf{A}^{2}-C$. In Aoki [1], it is observed whether or not X has an étale non-finite endomorphism which is not an automorphism. In the case where X has an \mathbf{A}_{*}^{1}-fibration $\rho: X \rightarrow B$ and ρ extends to an \mathbf{A}_{*}^{1-} fibration $\widetilde{\rho}: \mathbf{A}^{2} \rightarrow \widetilde{B}$, i.e., a general fiber of ρ is closed in \mathbf{A}^{2}, the case $\widetilde{B} \cong \mathbf{P}^{1}$ is missing in the observation. We shall consider here this case by applying Theorem 2.1. Note then that C is a fiber of $\widetilde{\rho}$ taken with the reduced structure. We consider the following three cases separately:
(1) C is a multiple fiber $\mu_{0} A_{0}$, where $A_{0} \cong \mathbf{A}^{1}$.
(2) C is a multiple fiber $\mu_{1} A_{1}$, where $A_{1} \cong \mathbf{A}_{*}^{1}$.
(3) C is a general fiber of ρ.

In the case (1), X has logarithmic Kodaira dimension $\bar{\kappa}(X)=-\infty$ and this case is treated in [1]. In the case (2), it follows from Theorem 2.1 and the arguments leading to its proof that C is defined by an equation of the form $y x^{r+1}-p(x)=0$, where $p(x) \in k[x], \operatorname{deg} p(x) \leq r$ and $p(0) \neq 0$. The polynomial $y x^{r+1}-p(x)$ is then a generically rational polynomial, and this case is also treated in [1]. So, consider the case (3). By the arguments in [6] to prove the first assertion of Lemma 1.1, we know that

$$
\bar{\kappa}(X)=1 \quad \text { (resp. } 0) \text { if and only if } \quad n-\sum_{i=1}^{n} \frac{1}{n_{i}}>0 \quad(\text { resp. }=0)
$$

where $n=0,1$. If $n=1$ (resp. 0) then $\bar{\kappa}(X)=1$ (resp. 0$)$. If $n=0$ (hence $\mu_{1}=1$) then the general fiber C is defined by $f=0$ with $f=y x^{r+1}-p(x)+x^{\mu_{0}}$, and f is a generically rational polynomial. So we may assume that $n=1$. Hence $\bar{\kappa}(X)=1$.

Let $\alpha: X_{1} \rightarrow X_{2}$ be an étale endomorphism, where we denote the source (resp. target) X by X_{1} (resp. X_{2}). Accordingly, we denote by $\rho_{i}: X_{i} \rightarrow B_{i}(i=1,2)$ the same \mathbf{A}_{*}^{1}-fibration $\rho: X \rightarrow B$, where $B_{1} \cong B_{2} \cong \mathbf{A}^{1}$. By [1, Lemma 3.2], there exists an endomorphism $\beta: B_{1} \rightarrow B_{2}$ such that $\rho_{2} \cdot \alpha=\beta \cdot \rho_{2}$.

We shall show that β is the identity automorphism. In fact, β extends to an endomorphism $\widetilde{\beta}: \widetilde{B}_{1} \rightarrow \widetilde{B}_{2}$, where $\widetilde{B}_{i} \cong \mathbf{P}^{1}$ and $\widetilde{B}_{i}=$ $B_{i} \cup\{P\}$ for $i=1,2$ with $P:=\widetilde{\rho}(C)$. It is clear that $\widetilde{\beta}^{-1}(P)=P$. Let $P_{i}:=\widetilde{\rho}\left(A_{i}\right)$ for $i=0,1$. By [3, Lemma 3.1], it follows that $\widetilde{\beta}\left(P_{i}\right)=P_{i}$ for $i=0,1$ because $\operatorname{gcd}\left(\mu_{0}, \mu_{1}\right)=1$. Note that $\widetilde{\beta}$ is unramified at P_{0} and P_{1}. By the same lemma, it follows that if $\widetilde{\beta}(Q)=P_{i}(i=0,1)$ for $Q \neq P_{i}$, then the ramification index of $\widetilde{\beta}$ at Q equals to μ_{i}. Let $d:=\operatorname{deg} \widetilde{\beta}$. Suppose that r (resp. s) points of \widetilde{B}_{1} other than P_{1} (resp. P_{0}) are mapped to P_{1} (resp. P_{0}) under $\widetilde{\beta}$. By the Riemann-Hurwitz theorem, we have

$$
\begin{aligned}
-2 & =-2 d+(d-1)+r\left(\mu_{1}-1\right)+s\left(\mu_{0}-1\right) \\
& =d-r-s-3
\end{aligned}
$$

where $d=\mu_{1} r+1=\mu_{0} s+1$. Hence we obtain

$$
\begin{equation*}
d=r+s+1=\mu_{1} r+1=\mu_{0} s+1 \tag{1}
\end{equation*}
$$

If $d \neq 1$ then $r>0$ and $s>0$. It is then easy to derive a contradiction from (1) because $\operatorname{gcd}\left(\mu_{0}, \mu_{1}\right)=1$. Hence $d=1$. Since β is an automorphism of \mathbf{P}^{1} fixing three points P, P_{0}, P_{1}, it follows that β is the identity automorphism.

Since α satisfies now $\rho \cdot \alpha=\rho$, the étale endomorphism α induces an endomorphism $\alpha_{K}: X_{1, K} \rightarrow X_{2, K}$ of the generic fiber X_{K} of ρ, where K is the function field of B. Since ρ is an untwisted \mathbf{A}_{*}^{1}-fibration, we know that $X_{K}=\operatorname{Spec} K\left[u, u^{-1}\right]$. Hence $\alpha_{K}^{*}(u)=a u^{ \pm n}$ with $a \in K^{*}$ and $n=\operatorname{deg} \alpha$. Let G be the group of the n-th roots of unity in k. Then G acts on $X_{1, K}$ and $X_{2, K}$ is the quotient curve $X_{1, K} / G$. Hence the function field $k\left(X_{1}\right)$ is a Galois extension of $k\left(X_{2}\right)$ with Galois group G. Let \widetilde{X}_{2} (resp. W) be the normalization of X_{2} (resp. \mathbf{A}^{2}) in $k\left(X_{1}\right)$, where X_{2} is the open set $\mathbf{A}^{2}-C$ of \mathbf{A}^{2}, and let $\nu: \widetilde{X}_{2} \rightarrow X_{2}$ (resp. $\widehat{\nu}: W \rightarrow \mathbf{A}^{2}$) be the normalization morphism. By [5, Lemma 5], $\nu: \widetilde{X}_{2} \rightarrow X_{2}$ is an étale Galois covering with group G with \widetilde{X}_{2} containing X_{1} as an open set, the composite $\rho_{2} \cdot \nu: \widetilde{X}_{2} \rightarrow B$ is an \mathbf{A}_{*}^{1}-fibration such that $\left.\rho_{2} \cdot \nu\right|_{X_{1}}=\rho_{1}$, and $\left(\rho_{2} \cdot \nu\right)^{-1}\left(P_{0}\right)$ with $P_{0}=\rho\left(A_{0}\right)$ is a disjoint union of n copies of the affine lines ${ }^{g} A_{0}(g \in G)$ so that $\widetilde{X}_{2}-X_{1}=\coprod_{g \in G, g \neq 1}{ }^{g} A_{0}$, where
$A_{0} \cong \mathbf{A}^{1}$. The surface W is a normal affine surface with a G-action, and \mathbf{A}^{2} is the quotient surface W / G. Furthermore, \widetilde{X}_{2} is a Zariski open set of W. Note that $\widetilde{\rho} \cdot \widehat{\nu}: W \rightarrow \widetilde{B}$ is an \mathbf{A}_{*}^{1}-fibration. Let $Z=(\widetilde{\rho} \cdot \widehat{\nu})^{-1}(P)$, where $P=\widetilde{\rho}(C)$. Then $\widehat{\nu}$ induces a finite morphism $\bar{\nu}: Z \rightarrow C$. Since the \mathbf{A}_{*}^{1}-fibration $\widetilde{\rho} \cdot \widehat{\nu}: W \rightarrow \widetilde{B}$ is extended to a \mathbf{P}^{1}-fibration with two cross-sections at infinity and since every irreducible component of Z has at least two places at infinity (for otherwise it cannot dominate C which is isomorphic to \mathbf{A}_{*}^{1}), it follows that
(1) Z is irreducible,
(2) W has no singular points along Z,
(3) Z is isomorphic to \mathbf{A}_{*}^{1}.

In fact, let V be a completion of W such that V is smooth along $V-W$, the complement $V-W$ supports a divisor with simple normal crossings and the \mathbf{A}_{*}^{1}-fibration $\widetilde{\rho} \cdot \widehat{\nu}$ extends to a \mathbf{P}^{1}-fibration $q: V \rightarrow \widetilde{B}$. If Z is reducible, the fiber $q^{-1}(P)$ must contain a loop of the irreducible components because each irreducible component of Z has at least two places at infinity. So, Z is irreducible. We may assume that $q^{-1}(P)$ contains no (-1) curves lying in $V-W$. If W has singular points on Z, the proper transform \widehat{Z} of Z by a minimal resolution of singularities of W is a unique (-1) curve in the fiber meeting three or more components of the fiber. This is a contradiction. So, W is smooth along W. Now it is clear that Z is isomorphic to \mathbf{A}_{*}^{1}. This implies that $\widehat{\nu}: W \rightarrow \mathbf{A}^{2}$ is an étale finite Galois covering. Hence $\widehat{\nu}$ is an isomorphism. In particular, $\alpha: X_{1} \rightarrow X_{2}$ is an automorphism. Thus we obtain the following:

Theorem 3.1. Let C be an irreducible curve in $\mathbf{A}^{2}:=\operatorname{Spec} k[x, y]$ defined by

$$
\left(y x^{r+1}-p(x)\right)^{\mu_{1}}+\lambda x^{\mu_{0}}=0
$$

where $\mu_{0} \geq 1, \mu_{1}>1$ and $\lambda \neq 0$ and let $X:=\mathbf{A}^{2}-C$. Then $\bar{\kappa}(X)=1$ and every étale endomorphism of X is an automorphism.
(II) In [2], we considered an automorphism of infinite order of \mathbf{A}^{2} which stabilizes an irreducible curve C. In [2, Lemma 1.4], the case where the curve C has a defining equation

$$
f:=\left(y x^{r+1}-p(x)\right)^{\mu_{1}}+\lambda x^{\mu_{0}}=0
$$

is missing. We shall complete the result by treating here the missing case. If $\mu_{1}=1$, i.e., $n=0$, then f is a generically rational polynomial, and this case is treated in [2]. So, we assume that $\mu_{1}>1$. As in the proof of Theorem 3.1, $\bar{\kappa}(X)=1$ and any automorphism α of X preserves the
\mathbf{A}_{*}^{1}-fibration ρ, i.e., $\rho \cdot \alpha=\rho$. Then $\alpha^{-1}\left(A_{0}\right)=A_{0}$ and $\alpha^{-1}\left(A_{1}\right)=A_{1}$. Namely, we have $\alpha(x)=c x$ and $\alpha\left(y x^{r+1}+p(x)\right)=d\left(y x^{r+1}+p(x)\right)$ with $c, d \in k^{*}$. Here note that A_{0} (resp. A_{1}) is defined by $x=0$ (resp. $\left.y x^{r+1}+p(x)=0\right)$. Since $p(0) \neq 0$, it follows that $d=1$. Then we have

$$
\alpha(y)=c^{-(r+1)} y+\frac{p(x)-p(c x)}{c^{r+1} x^{r+1}}
$$

Hence $p(x)=p(c x)$, and c is an m-th root of unity for some m with $0<m<r+1$ because $\operatorname{deg} p(x) \leq r$. So, we obtain the following:

Theorem 3.2. Let C be an irreducible curve in $\mathbf{A}^{2}:=\operatorname{Spec} k[x, y]$ defined by

$$
\left(y x^{r+1}-p(x)\right)^{\mu_{1}}+\lambda x^{\mu_{0}}=0
$$

where $\mu_{0} \geq 1, \mu_{1}>1$ and $\lambda \neq 0$ and let $X:=\mathbf{A}^{2}-C$. Then every automorphism of \mathbf{A}^{2} which stabilizes the curve C is of finite order.

References

[1] H. Aoki, Étale endomorphisms of smooth affine surfaces, J. Algebra, 226 (2000), 15-52.
[2] K. Masuda and M. Miyanishi, Invariant subvarieties of low codimension in the affine spaces, Tôhoku Math. J., 52 (2000), 11-27.
[3] K. Masuda and M. Miyanishi, Étale endomorphisms of algebraic surfaces with G_{m}-actions, Math. Ann., 319 (2001), 493-516.
[4] M. Miyanishi, Non-complete algebraic surfaces, Lecture Notes in Mathematics, 857 (1981), Springer, Berlin-Heidelberg-New York.
[5] M. Miyanishi, Étale endomorphisms of algebraic varieties, Osaka J. Math., 22 (1985), 345-364.
[6] M. Miyanishi, Open algebraic surfaces, Amer. Math. Soc., 2000.
[7] M. Miyanishi and T. Sugie, Generically rational polynomials, Osaka J. Math., 17 (1980), 339-362.
[8] M. Miyanishi and T. Sugie, Homology planes with quotient singularities, J. Math. Kyoto Univ., 31 (1991), 755-788.
[9] P. Orlik and P. Wagreich, Algebraic surfaces with k^{*}-action, Acta Math., 138 (1977), 43-81.
[10] H. Saito, Fonctions entieres quis se reduisent a certains polynômes, Osaka J. Math., 9 (1972), 293-332.

Department of Mathematics Graduate School of Sciences Osaka University
Toyonaka, Osaka 560-0043, Japan
E-mail address: miyanisi@math.sci.osaka-u.ac.jp

[^0]: Received February 7, 2000.
 2000 AMS Subject Classification: Primary 14R25, 14D06, Secondary 14R10.

