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§0. Introduction 

Let k be an algebraically closed field of characteristic zero, which we 
fix as the ground field. In the present article we consider A!-fibrations 
on the affine plane A 2 , where A! denotes the affine line A 1 with one 
point deleted. Let X be a smooth affine surface with Pic (X) = (0) 
and r(X, Ox)* = k*. Let p: X --> B be an A!-fibration, where B is 
a smooth algebraic curve. Then p is untwisted because Pic (X) = (0) 
and B is isomorphic to A 1 or P 1 because r(X, Ox)* = k*. We call 
p a completely (resp. incompletely) parametrized A!-fibration if B is 
isomorphic to P 1 (resp. A 1 ). See [6], [8] for the definitions and relevant 
results. If X is the affine plane and p is incompletely parametrized, 
then there exists an irreducible polynomial f E r(X, Ox) such that the 
fibration pis given as {F.>.hEk, where F.>. is a curve defined by f = A. 
Hence f is a generically rational polynomial with two places at infinity, 
and such polynomials are classified by H. Saito [10] (see [7]). On the 
other hand, there exist no references where the completely parametrized 
A!-fibrations on A 2 are explicitly classified. The fibers of the given A!
fibration form a pencil of affine plane curves parametrized by P 1 . So, 
the classification is made by giving the defining equation of a general 
member of the pencil. 

For this purpose, we make use of a description of A 2 as a homology 
plane with A!-fibration over P 1 as given in [6], [8]. Our results show 
that the pencil is given in the form 

A= { (yxr+l- p(x)t1 + Ax~-'0 = 0; A E P 1 }, 

where p(x) E k[x],degp(x):::;; rand p(O) =/= 0. 
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§1. A!-fibrations 

Let X be a Q-homology plane with an untwisted A!-fibration p : 
X ----+ B, where B is isomorphic to P 1 . Then every fiber but one is 
isomorphic to A! if taken with the reduced structure and the excepted 
fiber is isomorphic to A 1 . There exists a smooth projective surface V 
with a P 1-fibration p : V ----+ B such that X is a Zariski open set of 
V, the boundary divisor D := V- X is a divisor with simple normal 
crossings and p gives rise to the A!-fibration if restricted onto X. Since 
pis untwisted, there exist two cross-sections H 1 and H2 of p, which are 
the loci of two points of the general fibers of p lying at infinity. Since the 
boundary divisor D has a tree as the dual graph, H 1 and H 2 meet each 
other at most in one point. If H 1 and H 2 meet each other, we blow up 
the point of intersection and its infinitely near points so that the proper 
transforms of H1 and H2 get separated from each other. Furthermore, 
if we assume that the embedding X <---+ V is minimal in the sense that 
D contains no ( -1) curves which are the fiber components of the P 1-

fibration p and that any contraction of such a ( -1) curve makes the 
images of H 1 and H 2 meet each other, then it is known (cf. [6], [8]) that 
p : X ----+ B is obtained in the following fashion. 

There exists a Hirzebruch surface Fa with a minimal section M 1 

and a section M 2 with (M1 · M 2 ) = 0, and there exists a sequence of 
blowing-ups u: V----+ Fa such that H1 and H2 are the proper transforms 
of M1 and M2, respectively, and that (H12) = (M12) = -a. Hence the 
blowing-ups u starts with the blowing-ups of the points lying on M 2 

and no points of M 1 are blown-up. The fibration p: V----+ B is obtained 
from the P 1-fibration on Fa. Let JLA be a fiber of p with A S=' A! and 
possibly JL > 1 and let A be the closure of A in V. Then the fiber of p 
containing A has a linear chain as the dual graph: 

-1 

o--o· · · · · o--o--o · · · · · o--o 
H2 A H1 

On the other hand, if JLA is a fiber of p with AS=' A 1 , the dual graph of 
the fiber containing A, H 1 and H 2 looks like 
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H2 

0 

~G, A 
o---o------o ..... o---o------o /-1 -2 -2 -1 

0 
r 

Let JLA be a singular fiber of p, i.e., either JL > 1 or A ~ A 1 . Let 
A be the closure of A in V. Then JL is the multiplicity of A in the fiber 
p- 1 (p(A)). Let 8 be the contribution of A in the total transform CJ*(M2 ). 

It is known (cf. [6], [8]) that 0:::; 8 < JL and 8 > 0 if A~ A!. We begin 
with recalling the following structure theorem ( cf. [6], [8]). 

Lemma 1.1. Let X be a Q-homology plane with an A!-fibration 
p: X ___. B. Suppose B ~ P 1 and p is untwisted. Let JLoAo, ... , JLnAn be 
all singular fibers with respective multiplicities JLo, ... , f.Ln, where A 0 ~A 1 

and Ai ~ A! for 1 :::; i :::; n. Then we have the following assertions: 

(1) R(X) = 1, 0 or -oo if and only if 

n 1 
(n- 1)- L- > 0, = 0 or < 0, respectively. 

i=l f.Li 

(2) H1(X; Z) is a torsion group of order equal to 

I f.Lo · · · f.Lna - t f.Lo · · · (i;, · .. f.Ln8i I· 
•=0 

(3) There are no homology planes X with R(X) = 0 and an untwisted 
A! -fibration p : X ___. B ~ P 1 . 

When X is isomorphic to A 2 in Lemma 1.1, we can specify the data 
more precisely. 

Lemma 1.2. With the notations of Lemma 1.1, the following as
sertions hold: 

( 1) A smooth affine surface X is isomorphic to A 2 if and only if 
R(X) = -oo, Pic (X) = (0) and f(X, Ox) = k*. In particular, a 
Q-homology plane X is isomorphic to A 2 if and only if R(X) = 
-oo and H1(X; Z) = (0). 

(2) n = 0 or 1. 
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(3) If n = 0 then either a= 1, p.0 = 8o + 1 or a= 0, 8o = 1. 
( 4) If n = 1 then either 

a= 1, P.ol-"1- P,18o- P,o81 = ±1 

or 

a = 0, P.o = 81 = 1, 8o = 0. 

(5) If a = n = 1 and 1-"o!-"1 - P,18o- P,o81 = ±1, the pair (8o, 81) is 
uniquely determined by the pair (p.o, l-"1). Furthermore, if P,ol-"1 -
P,18o- P,o81 = 1, then the pair (8b, 8i) with 8~ = 1-"i- 8i (i = 0, 1) 
satisfies P.ol-"1- P,18b- p.o8~ = -1, and vice versa. 

Proof. (1) We refer to (6]. 
(2) Note that p.0 ~ 1 and 1-"i ~ 2 for 1 :::; i :::; n. Since "K(X) = -oo, 

it follows that 

n 1 
n- 1- i :::; (n- 1)- L---:- < 0. 

i=1 ,.,. 

Hence n = 0 or 1. 
(3) Since H1 (X; Z) = 0, we have 

IH1(X;Z)I = IP,o···P,na- tp.o···fii···P,n8il = 1. 
•=0 

If n = 0 then this formula reads p.oa- 80 = ±1, where p.0 > 80 . Suppose 
a~ 2. Then we have 

(a- 2)p.o + (P.o- 8o) + P.o -:/= ±1. 

Hence a = 0 or 1. If a = 1 then P,o = 8o + 1. If a = 0 then 8o = 1. 
( 4) If n = 1 then 

Suppose a ~ 2. Then we have 

Hence a = 0 or 1. If a = 1 then we have 

P.ol-"1- P,18o- p.o81 = ±1. 

If a = 0 then P,18o + p.o81 = 1. Since l-"1 ~ 2, it follows that 80 = 0. 
Then ~-to = 81 = 1. 
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(5) Suppose that f.Loi-L1- f.L18o- f.Lo81 = 1 and f.Lof.L1- f.Ll'Yo- f.Lo/1 = 1 
for the pairs (ro, 11) and (8o, 81) with f.Li > /i, f.Li > 8i (i = 0, 1). Then 

f.L1(/o- 8o) = f.Lo(81- 11). 

Since gcd(f.Lo, f.L1) = 1, it follows that /o = 80 + mf.Lo and 81 = 11 + mf.Lo 
for some integer m. If m > 0, then /O ;::=:: f.Lo, which is a contradiction. If 
m < 0 we obtain a contradiction in a similar fashion. So, m = 0. The 
rest is straightforward. Q.E.D. 

Given a pair (f.L, 8) of positive integers f.L, 8 with f.L > 8 and gcd(f.L, 8) = 
1, we define integers all a2, . . . , as by expanding f.L /8 in a form of con
tinued fraction 

f.L 1 - = a1- ~-------
8 1 

a1-------
1 

a3----
1 

where ai ;::=:: 2 for 1 :::; i :::; s. We denote this fractional expansion by 
f.L/8 =[all ... , as]· 

Given such a pair (f.L, 8), the geometric meaning of fractional expan
sion of f.L/ 8 in the setting leading to Lemma 1.1 is given in th following 
Lemma 1.3 which is well-known (cf. [9] and [4, pp. 75-78]). 

Lemma 1.3. Let (f.L, 8) be a pair of positive integers such that 

f.L > 8 and gcd(f.L, 8) = 1. Let f.LA be a multiple fiber of p : X ----+ B 
with the contribution 8 of A in a*(M2). Let f.L/8 = [all ... , as] and 

f.L/ (f.L - 8) = [ai, ... , a~,] be the fractional expansions. Then the fiber 
p*(p(A)) has the following dual graph: 

-1 -1 -1 

o-----o---· ..... ---o--o---o--· ..... ---o---o 

A' 1 

where (H12 ) = (Hl) = -1 ifn =a= 1. 

The next result will clarify the geometric meaning of the condition 
f.Lof.L1 - f.L18o - f.Lo81 = ±1. 

·Lemma 1.4. Let (f.Lo, 80 ) and (f.Lll 81) be pairs as in Lemma 1.2 
satisfying the condition f.Lof.L1 - f.L18o - f.Lo81 = ±1. Suppose that 8o > 0 
and 81 > 0. Let f.LI/81 = [all ... , as] and f.Lo/8o = [fi1, ... , ,Bt] be the 
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fractional expansions. Let E be a union of smooth rational curves with 
simple normal crossings on a smooth projective surface whose dual graph 
is given as below: 

-f3t -1 

o---- ...... _ ____,)------()------()----{)----{)---· ..... ---o 

As 

Then the following assertions hold. 

(1) Suppose J.to~-t 1 - ~-t 1 80 - ~-t081 = 1. Then E is contractible to a 
smooth point. 

(2) Suppose J.to~-t1 - ~-t1 80 - ~-t081 = -1. Then E contracts to a union of 
two smooth rational curves with one of the following dual graphes: 

0 -8 -8 0 

o-----o----0 ... (1)' or Of----<Or---~0 . . . (2) 

G' G' 

where G' denotes the proper transform of the component G in the 
. 2 2 

fiber p*(p(J.toAo)) and (G' ) = 8- 1 (resp. (G' ) = -1) in the 
case (1) (resp. (2)). 

Proof. First of all, we shall show that either a 1 = 2 or /31 = 2. 
Write the condition J.toJ.t1 - J.t18o - J.to81 = ±1 as 

( /-to - 1) (/L1 - 1) = 1 ± _1 . 
8o 81 8o81 

Suppose a1 ;::: 3 and {31 ;::: 3. Write /L1 = a181 - 8~ and J.to = {3180 - 8b 
with 0::::; 8i < 81 and 0::::; 8b < 80. Then we have 

( ~~ -1) ( ~: -1) = ({31 - 1 - ~~) ( a1 - 1 - ~J 
;::: (!31 - 2 + :0 ) ( 0!1 - 2 + ;J 
> ( 1 + ;o) ( 1 + ;J > ( 1 + 80~J 

which is a contradiction. 
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(1) We shall prove the first assertion. Suppose (31 = 2. Write 
f.Lo = 2Do - Db with 0 ~ Db < D0 . Suppose further that t = 1, i.e., 
JLo = 2, Do= 1, Db = 0. Then JL1 = 2D1 + 1 and the dual graph becomes 

-2 -1 -3 -2 -2 

Hence it contracts to a smooth point. Suppose that t 2: 2. Let JLb 
Do, f.L~ = JL1- D1 and Di = D1. Then the pairs (JLb, Db) and (JLi, Di) satisfy 

If a 1 = 2 we can argue in a similar fashion. Hence we are done by 
induction. The first assertion is verified. 

(2) Next we shall verify the second assertion. Suppose (31 = 2 and 
t = 1. Then f.L1 = 2D1 - 1 and JL1/D1 = [2, D1]. Hence E contracts to a 
union of smooth rational curves with the dual graph: 

G 

where D1 2: 2. Note that D1 -1- 1. If a 1 = 2 and s = 1, we have a 
similar conclusion as above with the second dual graph in the statement. 
Suppose that a 1 = (31 = 2, s 2: 2 and t 2: 2. We shall show that this case 
does not occur. Write f.Li = 2Di - D~ with D~ 2: 1 for i = 0, 1. Then the 
condition f.LO/L1 - JL1Do - JLoD1 = -1 reads as D1Db +DoD~ = DbDi + 1. This 
is a contradiction since Do > Db and D1 > Di. So, a1 2: 3 if (31 = 2, s 2: 2 
and t 2: 2. As in the proof of the assertion (1), let JLb =Do, f.L~ = f.L1- D1 
and Di = D1. Then the pairs (JLb, Db) and (JL~, DD satisfy 

Hence we are done by induction. 
In the graph, call the component with self-intersection number 0 

(resp. -D) L (resp. S). In view of Lemma 1.2, if E contracts to a union of 
two rational curves L+S, the linear chainE' contracts to a smooth point, 
where E' has the following dual graph with JLo / (JLo - Do) = [f3i, ... , (3f,] 
and JL1/(JL1 - D1) =[a~, ... , a~,]. 
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(31 
- 1 -1 

o---- ...... ----<o---o----o----o----o---· ..... ---o 

B~ B' 1 A' 1 A' 2 

Let W be the surface obtained from V by the contractions of E and 
E' as described above. Then W has a P 1-fibration p' : W ---+ P 1 given 
by the pencil I L I and S is a cross-section of p'. In the first case, the count 
of the Picard number of W shows that G' is a cross-section of p' with 
( G'2 ) = 8- 1. In the second case, the count of the Picard number shows 
again that ( G'2 ) = -1 and p' has a unique singular fiber which contains 
G' and A as the terminal ( -1) components and the ( -2) components in 
between (see the dual graph of the fiber p-1(p(p,0A0))). Q.E.D. 

Consider the case where p,0 = 1 and 80 = 0. 

Lemma 1.5. Suppose tto = 1 and 8o = 0. Then 81 = 1 if a= 0 
and ttl = 81 + 1 if a = 1. Let p,I/81 = [all ... , as] be the fractional 
expansion. Let E be a union of smooth rational curves on a smooth 
projective surface V with the dual graph: 

-1 

o------o------- ...... --Q 

Then either E contracts to a smooth point (case a = 1) or E is a union 
of two smooth rational curves with the dual graph (case a= 0) : 

0 0 

Proof. If a= 0 then (H1 2) = 0, s = 1 and (A1 2) = -p,1. If a= 1, 
then [a1, ... , as] = [2, ... , 2]. It is clear that E contracts to a smooth 
point. Q.E.D. 
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§2. Explicit equations 

First of all, consider the case n = 1. We only consider the case 
a = 1 and 80 i= 0. The case a = 0 and 8o = 0 can be treated in a 
similar fashion. Furthermore, we assume that Jlo/11- J110o- JloOl = -1. 
The P 1-fibration p : V ----t P 1 , which extends the given A!-fibration 
p: X ----t Pl, has two degenerate fibers S0 and S1 and two sections H 1 

and H2. We assume that S0 n X = !loA and S1 n X = 111 B, where 
A~ A 1 and B ~A!. Let E (resp. E') be the connected component of 

D - G U {the side linear chain between G and A} 

which contains H 1 (resp. H 2 ) (see the notations at the beginning of 
the section 1). By Lemma 1.4, E (resp. E') contracts to a union of two 
curves of the form (1) or (2) (resp. a smooth point). Suppose first that E 
contracts to a union of two curves of the form ( 1). By the con taction of 
E and E', we obtain a smooth projective surface W with the boundary 
divisor ~ such that W - ~ is isomorphic to X and ~ has the following 
configuration (Figure 1): 

... /·· ... 
A . 

8-1 
r 

-0 

G G' 
L 

0 

(Figure 1.) 

where A (resp. B) denotes, by abuse of notations, the image of A (resp. 
B) under the contraction. 

We blow up the intersection point GnL and its infinitely near points 
to produce a configuration with the following dual graph (Figure 2): 
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-2 -1 

--0·····0 

~A 
r 

.Q 

o----o--o-- . . . . . --o------o----- ..... 
-(r+2) -1 -2 -2 -3 -2 -2 

r 

(Figure 2.) 

~ 
6-2 

-b 

G' 

-1 

In the configuration, all curves but A, B and L 00 are contracted to 
two points, say P and Q, on the image of L 00 (which we denote by the 
same symbol L 00 ). In fact, the obtained surface is the projective plane 
P 2 and P 2 - Loo is isomorphic to X. The image B of B is a curve of 
degree r + 2 having a cuspidal singularity at P of multiplicity r + 1 and 
passing through Q smoothly, and the image A of A is a line meeting B 
at P with order of contact r + 2. 

Choose a system of homogeneous coordinates (X, Y, Z) on P 2 so 
that L00 and A are defined by Z = 0 and X = 0, respectively. Then B 
is defined by an equation 

Y xr+I - P(X, Z) = 0, 

where 

with ar+2 =1- 0. We may assume a1 = 0 by replacing Y by Y- a1Z. 

Let A be the pencil on P 2 consisting of the closures of fibers of the 
given A!-fibration p : X ~ P 1 . Since /LIB is a multiple fiber, we have 

A= {(Y xr+l- P(X, Z))~' 1 + .XX~'0 Z~' 1 (r+l)+p1 -~'0 = 0; .X E P 1 } · · · (1) 

where we consider 

(Y xr+l - P(X, Z) )~'1 zPo-1'1 (r+2) + .XX~'0 = 0 
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instead of the given equation if J.Lo > J.Ll ( r + 2). 
Suppose next that E contracts to a union of two curves of the form 

(2). Then, with the above notation, ~ has the following configuration 
(Figure 3): 

-6 

--------1 

/ -1 I 

···/-~ ~·· .. I 

r 

0 

(Figure 3.) 

A I 

L 

I 
I 

I 
I 

We consider two cases according as -6 + r + 1 2: 0 or -6 + r + 1 < 0. 
Suppose first -6 + r + 1 2: 0. Then we obtain the following dual graph 
after a suitable blowing-up of the above configuration (Figure 4): 

-1 

G 

-(r + 2) 

-2 -1 

--0·····0 

.0. 

B 

______.... 
A r 

-1 -2 

-6+r+l 

(Figure 4.) 

-2 -1 
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Again, all curves but A, B and L00 are contracted to two points, say P 
and Q, on the image of L 00 • The surface obtained by this contraction 
is P 2 and L00 is the line at infinity, i.e., P 2 - L00 ~X. The image B 
of B is a curve of degree r + 2 having a cuspidal singurarity at P of 
multiplicity r + 1 and passing through Q, and the image A of A is a 
line meeting B at P with order of contact r + 2. Then we reach to the 
expression (1) of the pencil A. Consider next the case -D + r + 1 < 0. 
Then we blow up the intersection point LnB and its (D-r-2) infinitely 
near points lying on the curve B (Figure 4): 

-1 ••• __:_2 -2 

G 

-1 

.0. 

B 

Loo 

cr---~J----()---- ...... ----o----------
-D -1 -2 -2 -1 

li-r-2 

(Figure 5.) 

Then all curves but A, B and L 00 are contracted to two points on the 
image of L 00 , and the surface obtained by this contraction is P 2 with 
L00 as a line at infinity. The same argument as in the previous cases 
gives the expression (1) of the pencil A. 

Consider the case f-Lo = 1 and Do = 0. Turning the configuration 
upside down if necessary, we have only to consider the case a = 0, f-Lo = 
D1 = 1 and Do = 0. Then one can easily show that we have the same 
configuration as in Figure 1 with D = f..Ll after a suitable contraction of 
the components of D. So, we have the same expression of A as given in 
(1). 

Consider finally the case n = 0. The case a = 1 and J.Lo = Do + 1 
is obtained from the case a = 0 and D = 1 by turning the graph upside 
down, i.e., changing the roles of H 1 and H 2 . So, we treat only the case 
a= 0 and Do= 1. Then we have the form (2) in the case n = 1. So, the 
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argument is a complete repetition in the case n = 1 with the form (2). 
We have thus the same expression as (1) with p,1 = 1. 

Hence we obtain the following result. 

Theorem 2.1. Let p : X ___. P 1 be an A!-fibration parametrized 
by P 1 . Then, with the above notations, the pencil associated to p is given 
as follows: 

A= { (yxr+l- p(x)t' + ,\x!Lo = 0; A E P 1 }, 

where p(x) E k[x], degp(x) ::::; r and p(O) # 0. Furthermore, we under
stand that f.Ll = 1 when there is no multiple fiber whose reduced form is 
isomorphic to A!. 

§3. Complements to the previous results 

(I) Let C be an irreducible curve of A 2 and let X be anew the com
plement A 2 -C. In Aoki [1], it is observed whether or not X has an 
etale non-finite endomorphism which is not an automorphism. In the 
case where X has an A!-fibration p: X___. B and p extends to an A!
fibration p: A 2 ___. B, i.e., a general fiber of pis closed in A 2 , the case 
B f:::! P 1 is missing in the observation. We shall consider here this case 
by applying Theorem 2.1. Note then that C is a fiber of p taken with 
the reduced structure. We consider the following three cases separately: 

(1) Cis a multiple fiber p,oAo, where Ao f:::! A 1 . 

(2) C is a multiple fiber P,1A1, where A1 f:::! A!. 
(3) C is a general fiber of p. 

In the case (1), X has logarithmic Kodaira dimension R(X) = -oo and 
this case is treated in [1]. In the case (2), it follows from Theorem 2.1 and 
the arguments leading to its proof that C is defined by an equation of 
the form yxr+l_p(x) = 0, where p(x) E k[x], degp(x) ::::; rand p(O) # 0. 
The polynomial yxr+l - p(x) is then a generically rational polynomial, 
and this case is also treated in [1]. So, consider the case (3). By the 
arguments in [6] to prove the first assertion of Lemma 1.1, we know that 

R(X) = 1 
n 1 

(resp. 0) if and only if n- 2::=- > 0 (resp. = 0), 
i=l ni 

where n = 0, 1. If n = 1 (resp. 0) then R(X) = 1 (resp. 0). If 
n = 0 (hence p,1 = 1) then the general fiber C is defined by f = 0 with 
f = yxr+l - p(x) + x!Lo, and f is a generically rational polynomial. So 
we may assume that n = 1. Hence R(X) = 1. 
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Let a: X 1 --+ X 2 be an etale endomorphism, where we denote the 
source (resp. target) X by X 1 (resp. X 2 ). Accordingly, we denote 
by Pi : Xi --+ Bi (i = 1, 2) the same A!-fibration p : X --+ B, where 
B1 ~ B2 ~ A 1 . By [1, Lemma 3.2], there exists an endomorphism 
f3 : B1 --+ B2 such that P2 · a = f3 · P2· 

We shall show that f3 is the identity automorphism. In fact, f3 
extends to an endomorphism 7J: B1 --+ B2 , where Bi ~ P 1 and Bi = 
Bi U {P} fori= 1, 2 with P := p(C). It is clear that jj-1 (P) = P. Let 
Pi := p(Ai) for i = 0, 1. By [3, Lemma 3.1], it fogows that {J(Pi) = Pi 
for i = 0, 1 because gcd(tto, tt1 ) = 1. Note that f3 is unramified at Po 
and P 1 . By the same lemma, it follows that if {J(Q) = Pi (i = 0, 1) 
for Q =f. Pi, then the ramification index of 7J at Q equals to tti· Let 
d := deg{J. Suppose that r (resp. s) points of B1 other than P 1 (resp. 
Po) are mapped to P 1 (resp. P0 ) under (J. By the Riemann-Hurwitz 
theorem, we have 

-2 -2d + (d- 1) + r(ttl- 1) + s(tto- 1) 

= d-r-s-3 

where d = ttl r + 1 = ttos + 1. Hence we obtain 

d = r + s + 1 = tt1r + 1 = ttos + 1. (1) 

If d =f. 1 then r > 0 and s > 0. It is then easy to derive a contradiction 
from (1) because gcd(Jto, tt1 ) = 1. Hence d = 1. Since f3 is an automor
phism of P 1 fixing three points P, P0 , P1. it follows that f3 is the identity 
automorphism. 

Since a satisfies now p ·a = p, the etale endomorphism a induces an 
endomorphism aK : X 1,K --+ X 2,K of the generic fiber XK of p, where 
K is the function field of B. Since p is an untwisted A!-fibration, we 
know that XK = SpecK[u, u-1]. Hence a'K(u) = au±n with a E K* and 
n = deg a. Let G be the group of the n-th roots of unity in k. Then G 
acts on X 1,K and X 2,K is the quotient curve X 1,K jG. Hence the function 
field k(X1) is a Galois extension of k(X2) with Galois group G. Let X2 
(resp. W) be the normalization of X 2 (resp. A 2) in k(X1), where X 2 is 
the open set A 2 - C of A 2, and let v: X 2 --+ X2 (resp. v: W--+ A 2) be 
the normalization morphism. By [5, Lemma 5], v : X2 --+ X 2 is an etale 
Galois covering with group G with X2 containing X 1 as an open set, the 
composite P2 · v : X2 --+ B is an A!-fibration such that P2 · vlx1 = Pb 
and (P2 · v)- 1(P0 ) with Po = p(Ao) is a disjoint union of n copies of 

the affine lines 9 Ao (g E G) so that X2 - X1 = llgEG,g# 9 Ao, where 
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A0 2" A 1 . The surface W is a normal affine surface with a G-action, and 
A 2 is the quotient surface WjG. Furthermore, X2 is a Zariski open set 
of W. Note that p· v: W ___, B is an A!-fibration. Let Z = (p· D)-1 (P), 
where P = p(C). Then v induces a finite morphism v: Z ___, C. Since 
the A!-fibration p · v : W ___, B is extended to a P 1-fibration with two 
cross-sections at infinity and since every irreducible component of Z has 
at least two places at infinity (for otherwise it cannot dominate C which 
is isomorphic to A!), it follows that 

(1) Z is irreducible, 
(2) W has no singular points along Z, 
(3) Z is isomorphic to A!. 

In fact, let V be a completion of W such that Vis smooth along V- W, 
the complement V - W supports a divisor with simple normal crossings 
and the A!-fibration p · v extends to a P 1-fibration q : V ---> B. If 
Z is reducible, the fiber q-1(P) must contain a loop of the irreducible 
components because each irreducible component of Z has at least two 
places at infinity. So, Z is irreducible. We may assume that q-1 (P) 
contains no ( -1) curves lying in V - W. If W has singular points on Z, 
the proper transform Z of Z by a minimal resolution of singularities of 
W is a unique ( -1) curve in the fiber meeting three or more components 
of the fiber. This is a contradiction. So, W is smooth along W. Now it 
is clear that Z is isomorphic to A!. This implies that v : W ---> A 2 is an 
etale finite Galois covering. Hence vis an isomorphism. In particular, 
a: X 1 ___, X 2 is an automorphism. Thus we obtain the following: 

Theorem 3.1. Let C be an irreducible curve in A 2 := Speck[x, y] 
defined by 

(yxr+l- p(x))'"l + >.x~"o = 0, 

where J.Lo?: 1,J.L1 > 1 and>.=/= 0 and let X:= A 2 - C. Then ~(X)= 1 
and every etale endomorphism of X is an automorphism. 

(II) In [2], we considered an automorphism of infinite order of A 2 which 
stabilizes an irreducible curve C. In [2, Lemma 1.4], the case where the 
curve C has a defining equation 

J := (yxr+l- p(x))'"l + >.x~"o = 0, 

is m1ssmg. We shall complete the result by treating here the missing 
case. If J.ll = 1, i.e., n = 0, then f is a generically rational polynomial, 
and this case is treated in [2]. So, we assume that J.Ll > 1. As in the proof 
of Theorem 3.1, ~(X)= 1 and any automorphism a of X preserves the 
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A!-fibration p, i.e., p ·a= p. Then a-1(A0 ) = A0 and a-1(AI) = A1. 
Namely, we have a(x) = ex and a(yxr+l + p(x)) = d (yxr+l + p(x)) 
with c,d E k*. Here note that A 0 (resp. A1 ) is defined by x = 0 (resp. 
yxr+l + p(x) = 0). Since p(O) =f. 0, it follows that d = 1. Then we have 

a(y) = c-(r+l)y + p(x)- p(cx). 
cr+lxr+l 

Hence p(x) = p(cx), and c is an m-th root of unity for some m with 
0 < m < r + 1 because degp(x):::; r. So, we obtain the following: 

Theorem 3.2. Let C be an irreducible curve in A 2 := Speck[x, y] 
defined by 

(yxr+l- p(x)r'l + >..x~-'o = 0, 

where J.Lo 2: 1,J.L1 > 1 and>.. =f. 0 and let X := A 2 - C. Then every 
automorphism of A 2 which stabilizes the curve C is of finite order. 
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