Advanced Studies in Pure Mathematics 33, 2002 Computational Commutative Algebra and Combinatorics pp. 185–201

Completely Parametrized A^1_* -fibrations on the Affine Plane

Masayoshi Miyanishi

§0. Introduction

Let k be an algebraically closed field of characteristic zero, which we fix as the ground field. In the present article we consider A^1_* -fibrations on the affine plane \mathbf{A}^2 , where \mathbf{A}^1_* denotes the affine line \mathbf{A}^1 with one point deleted. Let X be a smooth affine surface with Pic (X) = (0)and $\Gamma(X, \mathcal{O}_X)^* = k^*$. Let $\rho: X \to B$ be an \mathbf{A}^1_* -fibration, where B is a smooth algebraic curve. Then ρ is untwisted because Pic (X) = (0)and B is isomorphic to \mathbf{A}^1 or \mathbf{P}^1 because $\Gamma(X, \mathcal{O}_X)^* = k^*$. We call ρ a completely (resp. incompletely) parametrized \mathbf{A}_{\star}^{1} -fibration if B is isomorphic to \mathbf{P}^1 (resp. \mathbf{A}^1). See [6], [8] for the definitions and relevant results. If X is the affine plane and ρ is incompletely parametrized, then there exists an irreducible polynomial $f \in \Gamma(X, \mathcal{O}_X)$ such that the fibration ρ is given as $\{F_{\lambda}\}_{\lambda \in k}$, where F_{λ} is a curve defined by $f = \lambda$. Hence f is a generically rational polynomial with two places at infinity, and such polynomials are classified by H. Saito [10] (see [7]). On the other hand, there exist no references where the completely parametrized \mathbf{A}^1_* -fibrations on \mathbf{A}^2 are explicitly classified. The fibers of the given \mathbf{A}^1_* fibration form a pencil of affine plane curves parametrized by \mathbf{P}^1 . So, the classification is made by giving the defining equation of a general member of the pencil.

For this purpose, we make use of a description of \mathbf{A}^2 as a homology plane with \mathbf{A}^1_* -fibration over \mathbf{P}^1 as given in [6], [8]. Our results show that the pencil is given in the form

$$\Lambda = \left\{ \left(yx^{r+1} - p(x) \right)^{\mu_1} + \lambda x^{\mu_0} = 0; \lambda \in \mathbf{P}^1 \right\},\,$$

where $p(x) \in k[x], \deg p(x) \leq r$ and $p(0) \neq 0$.

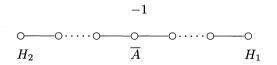
Received February 7, 2000.

 $2000~{\rm AMS}$ Subject Classification: Primary 14R25, 14D06, Secondary 14R10.

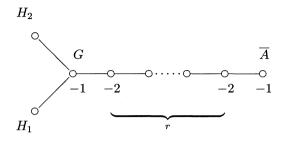
$\S1. A^1_*$ -fibrations

Let X be a **Q**-homology plane with an untwisted \mathbf{A}^1_* -fibration ρ : $X \to B$, where B is isomorphic to \mathbf{P}^1 . Then every fiber but one is isomorphic to \mathbf{A}^1_* if taken with the reduced structure and the excepted fiber is isomorphic to \mathbf{A}^1 . There exists a smooth projective surface V with a \mathbf{P}^1 -fibration $p: V \to B$ such that X is a Zariski open set of V, the boundary divisor D := V - X is a divisor with simple normal crossings and p gives rise to the \mathbf{A}^1_* -fibration if restricted onto X. Since ρ is untwisted, there exist two cross-sections H_1 and H_2 of p, which are the loci of two points of the general fibers of ρ lying at infinity. Since the boundary divisor D has a tree as the dual graph, H_1 and H_2 meet each other at most in one point. If H_1 and H_2 meet each other, we blow up the point of intersection and its infinitely near points so that the proper transforms of H_1 and H_2 get separated from each other. Furthermore, if we assume that the embedding $X \hookrightarrow V$ is minimal in the sense that D contains no (-1) curves which are the fiber components of the \mathbf{P}^1 fibration p and that any contraction of such a (-1) curve makes the images of H_1 and H_2 meet each other, then it is known (cf. [6], [8]) that $\rho: X \to B$ is obtained in the following fashion.

There exists a Hirzebruch surface F_a with a minimal section M_1 and a section M_2 with $(M_1 \cdot M_2) = 0$, and there exists a sequence of blowing-ups $\sigma : V \to F_a$ such that H_1 and H_2 are the proper transforms of M_1 and M_2 , respectively, and that $(H_1^2) = (M_1^2) = -a$. Hence the blowing-ups σ starts with the blowing-ups of the points lying on M_2 and no points of M_1 are blown-up. The fibration $p: V \to B$ is obtained from the \mathbf{P}^1 -fibration on F_a . Let μA be a fiber of ρ with $A \cong \mathbf{A}^1_*$ and possibly $\mu > 1$ and let \overline{A} be the closure of A in V. Then the fiber of pcontaining \overline{A} has a linear chain as the dual graph:



On the other hand, if μA is a fiber of ρ with $A \cong \mathbf{A}^1$, the dual graph of the fiber containing \overline{A} , H_1 and H_2 looks like



Let μA be a singular fiber of ρ , i.e., either $\mu > 1$ or $A \cong \mathbf{A}^1$. Let \overline{A} be the closure of A in V. Then μ is the multiplicity of \overline{A} in the fiber $p^{-1}(\rho(A))$. Let δ be the contribution of \overline{A} in the total transform $\sigma^*(M_2)$. It is known (cf. [6], [8]) that $0 \leq \delta < \mu$ and $\delta > 0$ if $A \cong \mathbf{A}^1_*$. We begin with recalling the following structure theorem (cf. [6], [8]).

Lemma 1.1. Let X be a **Q**-homology plane with an \mathbf{A}_{*}^{1} -fibration $\rho: X \to B$. Suppose $B \cong \mathbf{P}^{1}$ and ρ is untwisted. Let $\mu_{0}A_{0}, ..., \mu_{n}A_{n}$ be all singular fibers with respective multiplicities $\mu_{0}, ..., \mu_{n}$, where $A_{0} \cong \mathbf{A}^{1}$ and $A_{i} \cong \mathbf{A}_{*}^{1}$ for $1 \leq i \leq n$. Then we have the following assertions: (1) $\overline{\kappa}(X) = 1, 0 \text{ or } -\infty$ if and only if

$$(n-1) - \sum_{i=1}^n \frac{1}{\mu_i} > 0, = 0 \ or \ < 0, \ respectively.$$

(2) $H_1(X; \mathbf{Z})$ is a torsion group of order equal to

$$\Big| \mu_0 \cdots \mu_n a - \sum_{i=0}^n \mu_0 \cdots \widehat{\mu_i} \cdots \mu_n \delta_i \Big|.$$

(3) There are no homology planes X with $\overline{\kappa}(X) = 0$ and an untwisted \mathbf{A}^1_* -fibration $\rho: X \to B \cong \mathbf{P}^1$.

When X is isomorphic to \mathbf{A}^2 in Lemma 1.1, we can specify the data more precisely.

Lemma 1.2. With the notations of Lemma 1.1, the following assertions hold:

(1) A smooth affine surface X is isomorphic to \mathbf{A}^2 if and only if $\overline{\kappa}(X) = -\infty$, Pic (X) = (0) and $\Gamma(X, \mathcal{O}_X) = k^*$. In particular, a **Q**-homology plane X is isomorphic to \mathbf{A}^2 if and only if $\overline{\kappa}(X) = -\infty$ and $H_1(X; \mathbf{Z}) = (0)$.

(2) n = 0 or 1.

(3) If n = 0 then either $a = 1, \mu_0 = \delta_0 + 1$ or $a = 0, \delta_0 = 1$.

(4) If n = 1 then either

$$a = 1, \quad \mu_0 \mu_1 - \mu_1 \delta_0 - \mu_0 \delta_1 = \pm 1$$

or

$$a = 0, \quad \mu_0 = \delta_1 = 1, \quad \delta_0 = 0.$$

(5) If a = n = 1 and $\mu_0\mu_1 - \mu_1\delta_0 - \mu_0\delta_1 = \pm 1$, the pair (δ_0, δ_1) is uniquely determined by the pair (μ_0, μ_1) . Furthermore, if $\mu_0\mu_1 - \mu_1\delta_0 - \mu_0\delta_1 = 1$, then the pair (δ'_0, δ'_1) with $\delta'_i = \mu_i - \delta_i$ (i = 0, 1)satisfies $\mu_0\mu_1 - \mu_1\delta'_0 - \mu_0\delta'_1 = -1$, and vice versa.

Proof. (1) We refer to [6].

(2) Note that $\mu_0 \ge 1$ and $\mu_i \ge 2$ for $1 \le i \le n$. Since $\overline{\kappa}(X) = -\infty$, it follows that

$$n-1-\frac{n}{2} \le (n-1) - \sum_{i=1}^{n} \frac{1}{\mu_i} < 0.$$

Hence n = 0 or 1.

(3) Since $H_1(X; \mathbf{Z}) = 0$, we have

$$|H_1(X;\mathbf{Z})| = \left| \mu_0 \cdots \mu_n a - \sum_{i=0}^n \mu_0 \cdots \widehat{\mu_i} \cdots \mu_n \delta_i \right| = 1.$$

If n = 0 then this formula reads $\mu_0 a - \delta_0 = \pm 1$, where $\mu_0 > \delta_0$. Suppose $a \ge 2$. Then we have

$$(a-2)\mu_0 + (\mu_0 - \delta_0) + \mu_0 \neq \pm 1.$$

Hence a = 0 or 1. If a = 1 then $\mu_0 = \delta_0 + 1$. If a = 0 then $\delta_0 = 1$. (4) If n = 1 then

$$a\mu_0\mu_1 - \mu_1\delta_0 - \mu_0\delta_1 = \pm 1.$$

Suppose $a \geq 2$. Then we have

$$(a-2)\mu_0\mu_1 + \mu_1(\mu_0 - \delta_0) + \mu_0(\mu_1 - \delta_1) \neq \pm 1.$$

Hence a = 0 or 1. If a = 1 then we have

$$\mu_0 \mu_1 - \mu_1 \delta_0 - \mu_0 \delta_1 = \pm 1.$$

If a = 0 then $\mu_1 \delta_0 + \mu_0 \delta_1 = 1$. Since $\mu_1 \ge 2$, it follows that $\delta_0 = 0$. Then $\mu_0 = \delta_1 = 1$.

(5) Suppose that $\mu_0\mu_1 - \mu_1\delta_0 - \mu_0\delta_1 = 1$ and $\mu_0\mu_1 - \mu_1\gamma_0 - \mu_0\gamma_1 = 1$ for the pairs (γ_0, γ_1) and (δ_0, δ_1) with $\mu_i > \gamma_i, \mu_i > \delta_i$ (i = 0, 1). Then

$$\mu_1(\gamma_0 - \delta_0) = \mu_0(\delta_1 - \gamma_1).$$

Since $gcd(\mu_0, \mu_1) = 1$, it follows that $\gamma_0 = \delta_0 + m\mu_0$ and $\delta_1 = \gamma_1 + m\mu_0$ for some integer m. If m > 0, then $\gamma_0 \ge \mu_0$, which is a contradiction. If m < 0 we obtain a contradiction in a similar fashion. So, m = 0. The rest is straightforward. Q.E.D.

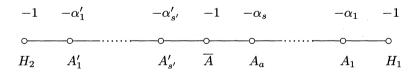
Given a pair (μ, δ) of positive integers μ, δ with $\mu > \delta$ and $gcd(\mu, \delta) = 1$, we define integers $\alpha_1, \alpha_2, \ldots, \alpha_s$ by expanding μ/δ in a form of continued fraction

$$\frac{\mu}{\delta} = \alpha_1 - \frac{1}{\alpha_1 - \frac{1}{\alpha_3 - \frac{1}{\ddots - \frac{1}{\alpha_s}}}}$$

where $\alpha_i \geq 2$ for $1 \leq i \leq s$. We denote this fractional expansion by $\mu/\delta = [\alpha_1, \ldots, \alpha_s].$

Given such a pair (μ, δ) , the geometric meaning of fractional expansion of μ/δ in the setting leading to Lemma 1.1 is given in th following Lemma 1.3 which is well-known (cf. [9] and [4, pp. 75–78]).

Lemma 1.3. Let (μ, δ) be a pair of positive integers such that $\mu > \delta$ and $gcd(\mu, \delta) = 1$. Let μA be a multiple fiber of $\rho : X \to B$ with the contribution δ of \overline{A} in $\sigma^*(M_2)$. Let $\mu/\delta = [\alpha_1, \ldots, \alpha_s]$ and $\mu/(\mu - \delta) = [\alpha'_1, \ldots, \alpha'_{s'}]$ be the fractional expansions. Then the fiber $p^*(\rho(A))$ has the following dual graph:

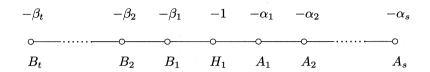


where $(H_1^2) = (H_2^2) = -1$ if n = a = 1.

The next result will clarify the geometric meaning of the condition $\mu_0\mu_1 - \mu_1\delta_0 - \mu_0\delta_1 = \pm 1.$

Lemma 1.4. Let (μ_0, δ_0) and (μ_1, δ_1) be pairs as in Lemma 1.2 satisfying the condition $\mu_0\mu_1 - \mu_1\delta_0 - \mu_0\delta_1 = \pm 1$. Suppose that $\delta_0 > 0$ and $\delta_1 > 0$. Let $\mu_1/\delta_1 = [\alpha_1, \ldots, \alpha_s]$ and $\mu_0/\delta_0 = [\beta_1, \ldots, \beta_t]$ be the

fractional expansions. Let E be a union of smooth rational curves with simple normal crossings on a smooth projective surface whose dual graph is given as below:



Then the following assertions hold.

- (1) Suppose $\mu_0\mu_1 \mu_1\delta_0 \mu_0\delta_1 = 1$. Then E is contractible to a smooth point.
- (2) Suppose $\mu_0\mu_1 \mu_1\delta_0 \mu_0\delta_1 = -1$. Then E contracts to a union of two smooth rational curves with one of the following dual graphes:

where G' denotes the proper transform of the component G in the fiber $p^*(\rho(\mu_0 A_0))$ and $({G'}^2) = \delta - 1$ (resp. $({G'}^2) = -1$) in the case (1) (resp. (2)).

Proof. First of all, we shall show that either $\alpha_1 = 2$ or $\beta_1 = 2$. Write the condition $\mu_0\mu_1 - \mu_1\delta_0 - \mu_0\delta_1 = \pm 1$ as

$$\left(\frac{\mu_0}{\delta_0} - 1\right) \left(\frac{\mu_1}{\delta_1} - 1\right) = 1 \pm \frac{1}{\delta_0 \delta_1}$$

Suppose $\alpha_1 \geq 3$ and $\beta_1 \geq 3$. Write $\mu_1 = \alpha_1 \delta_1 - \delta'_1$ and $\mu_0 = \beta_1 \delta_0 - \delta'_0$ with $0 \leq \delta'_1 < \delta_1$ and $0 \leq \delta'_0 < \delta_0$. Then we have

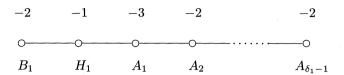
$$\begin{pmatrix} \frac{\mu_0}{\delta_0} - 1 \end{pmatrix} \begin{pmatrix} \frac{\mu_1}{\delta_1} - 1 \end{pmatrix} = \left(\beta_1 - 1 - \frac{\delta'_0}{\delta_0} \right) \left(\alpha_1 - 1 - \frac{\delta'_1}{\delta_1} \right)$$

$$\geq \left(\beta_1 - 2 + \frac{1}{\delta_0} \right) \left(\alpha_1 - 2 + \frac{1}{\delta_1} \right)$$

$$\geq \left(1 + \frac{1}{\delta_0} \right) \left(1 + \frac{1}{\delta_1} \right) > \left(1 + \frac{1}{\delta_0 \delta_1} \right)$$

which is a contradiction.

(1) We shall prove the first assertion. Suppose $\beta_1 = 2$. Write $\mu_0 = 2\delta_0 - \delta'_0$ with $0 \le \delta'_0 < \delta_0$. Suppose further that t = 1, i.e., $\mu_0 = 2, \delta_0 = 1, \delta'_0 = 0$. Then $\mu_1 = 2\delta_1 + 1$ and the dual graph becomes

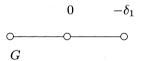


Hence it contracts to a smooth point. Suppose that $t \ge 2$. Let $\mu'_0 = \delta_0, \mu'_1 = \mu_1 - \delta_1$ and $\delta'_1 = \delta_1$. Then the pairs (μ'_0, δ'_0) and (μ'_1, δ'_1) satisfy

$$\mu_0'\mu_1' - \mu_1'\delta_0' - \mu_0'\delta_1' = 1.$$

If $\alpha_1 = 2$ we can argue in a similar fashion. Hence we are done by induction. The first assertion is verified.

(2) Next we shall verify the second assertion. Suppose $\beta_1 = 2$ and t = 1. Then $\mu_1 = 2\delta_1 - 1$ and $\mu_1/\delta_1 = [2, \delta_1]$. Hence *E* contracts to a union of smooth rational curves with the dual graph:

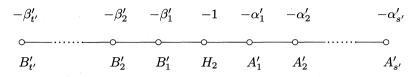


where $\delta_1 \geq 2$. Note that $\delta_1 \neq 1$. If $\alpha_1 = 2$ and s = 1, we have a similar conclusion as above with the second dual graph in the statement. Suppose that $\alpha_1 = \beta_1 = 2, s \geq 2$ and $t \geq 2$. We shall show that this case does not occur. Write $\mu_i = 2\delta_i - \delta'_i$ with $\delta'_i \geq 1$ for i = 0, 1. Then the condition $\mu_0\mu_1 - \mu_1\delta_0 - \mu_0\delta_1 = -1$ reads as $\delta_1\delta'_0 + \delta_0\delta'_1 = \delta'_0\delta'_1 + 1$. This is a contradiction since $\delta_0 > \delta'_0$ and $\delta_1 > \delta'_1$. So, $\alpha_1 \geq 3$ if $\beta_1 = 2, s \geq 2$ and $t \geq 2$. As in the proof of the assertion (1), let $\mu'_0 = \delta_0, \mu'_1 = \mu_1 - \delta_1$ and $\delta'_1 = \delta_1$. Then the pairs (μ'_0, δ'_0) and (μ'_1, δ'_1) satisfy

$$\mu_0'\mu_1' - \mu_1'\delta_0' - \mu_0'\delta_1' = -1.$$

Hence we are done by induction.

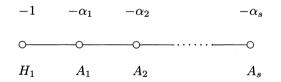
In the graph, call the component with self-intersection number 0 (resp. $-\delta$) L (resp. S). In view of Lemma 1.2, if E contracts to a union of two rational curves L+S, the linear chain E' contracts to a smooth point, where E' has the following dual graph with $\mu_0/(\mu_0 - \delta_0) = [\beta'_1, \ldots, \beta'_{t'}]$ and $\mu_1/(\mu_1 - \delta_1) = [\alpha'_1, \ldots, \alpha'_{s'}]$.



Let W be the surface obtained from V by the contractions of E and E' as described above. Then W has a \mathbf{P}^1 -fibration $p': W \to \mathbf{P}^1$ given by the pencil |L| and S is a cross-section of p'. In the first case, the count of the Picard number of W shows that G' is a cross-section of p' with $(G'^2) = \delta - 1$. In the second case, the count of the Picard number shows again that $(G'^2) = -1$ and p' has a unique singular fiber which contains G' and \overline{A} as the terminal (-1) components and the (-2) components in between (see the dual graph of the fiber $p^{-1}(\rho(\mu_0 A_0))$). Q.E.D.

Consider the case where $\mu_0 = 1$ and $\delta_0 = 0$.

Lemma 1.5. Suppose $\mu_0 = 1$ and $\delta_0 = 0$. Then $\delta_1 = 1$ if a = 0and $\mu_1 = \delta_1 + 1$ if a = 1. Let $\mu_1/\delta_1 = [\alpha_1, \ldots, \alpha_s]$ be the fractional expansion. Let E be a union of smooth rational curves on a smooth projective surface V with the dual graph:



Then either E contracts to a smooth point (case a = 1) or E is a union of two smooth rational curves with the dual graph (case a = 0):

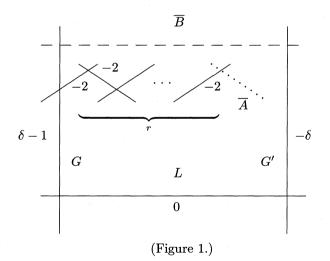
Proof. If a = 0 then $(H_1^2) = 0$, s = 1 and $(A_1^2) = -\mu_1$. If a = 1, then $[\alpha_1, \ldots, \alpha_s] = [2, \ldots, 2]$. It is clear that E contracts to a smooth point. Q.E.D.

$\S 2.$ Explicit equations

First of all, consider the case n = 1. We only consider the case a = 1 and $\delta_0 \neq 0$. The case a = 0 and $\delta_0 = 0$ can be treated in a similar fashion. Furthermore, we assume that $\mu_0\mu_1 - \mu_1\delta_0 - \mu_0\delta_1 = -1$. The **P**¹-fibration $p: V \to \mathbf{P}^1$, which extends the given \mathbf{A}^1_* -fibration $\rho: X \to \mathbf{P}^1$, has two degenerate fibers S_0 and S_1 and two sections H_1 and H_2 . We assume that $S_0 \cap X = \mu_0 A$ and $S_1 \cap X = \mu_1 B$, where $A \cong \mathbf{A}^1$ and $B \cong \mathbf{A}^1_*$. Let E (resp. E') be the connected component of

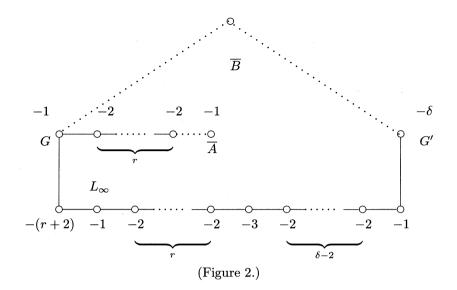
$D - G \cup \{\text{the side linear chain between } G \text{ and } \overline{A}\}$

which contains H_1 (resp. H_2) (see the notations at the beginning of the section 1). By Lemma 1.4, E (resp. E') contracts to a union of two curves of the form (1) or (2) (resp. a smooth point). Suppose first that Econtracts to a union of two curves of the form (1). By the contaction of E and E', we obtain a smooth projective surface W with the boundary divisor Δ such that $W - \Delta$ is isomorphic to X and Δ has the following configuration (Figure 1):



where \overline{A} (resp. \overline{B}) denotes, by abuse of notations, the image of \overline{A} (resp. \overline{B}) under the contraction.

We blow up the intersection point $G \cap L$ and its infinitely near points to produce a configuration with the following dual graph (Figure 2):



In the configuration, all curves but $\overline{A}, \overline{B}$ and L_{∞} are contracted to two points, say P and Q, on the image of L_{∞} (which we denote by the same symbol L_{∞}). In fact, the obtained surface is the projective plane \mathbf{P}^2 and $\mathbf{P}^2 - L_{\infty}$ is isomorphic to X. The image \widetilde{B} of \overline{B} is a curve of degree r + 2 having a cuspidal singularity at P of multiplicity r + 1 and passing through Q smoothly, and the image \widetilde{A} of \overline{A} is a line meeting \widetilde{B} at P with order of contact r + 2.

Choose a system of homogeneous coordinates (X, Y, Z) on \mathbf{P}^2 so that L_{∞} and \widetilde{A} are defined by Z = 0 and X = 0, respectively. Then \widetilde{B} is defined by an equation

$$YX^{r+1} - P(X, Z) = 0,$$

where

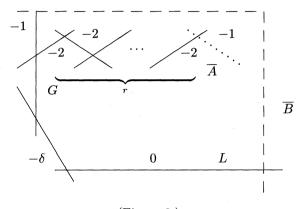
$$P(X,Z) = a_1 X^{r+1} Z + a_2 X^r Z^2 + \dots + a_{r+2} Z^{r+2}$$

with $a_{r+2} \neq 0$. We may assume $a_1 = 0$ by replacing Y by $Y - a_1 Z$. Let Λ be the pencil on \mathbf{P}^2 consisting of the closures of fibers of the given \mathbf{A}^1_* -fibration $\rho: X \to \mathbf{P}^1$. Since $\mu_1 B$ is a multiple fiber, we have $\Lambda = \{(YX^{r+1} - P(X, Z))^{\mu_1} + \lambda X^{\mu_0} Z^{\mu_1(r+1)+\mu_1-\mu_0} = 0; \lambda \in \mathbf{P}^1\} \cdots (1)$ where we consider

$$(YX^{r+1} - P(X,Z))^{\mu_1}Z^{\mu_0 - \mu_1(r+2)} + \lambda X^{\mu_0} = 0$$

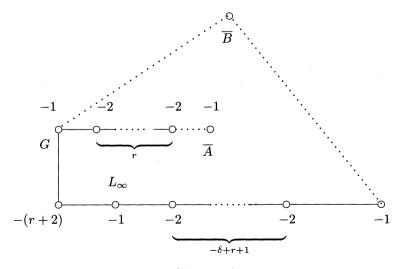
instead of the given equation if $\mu_0 > \mu_1(r+2)$.

Suppose next that E contracts to a union of two curves of the form (2). Then, with the above notation, Δ has the following configuration (Figure 3):



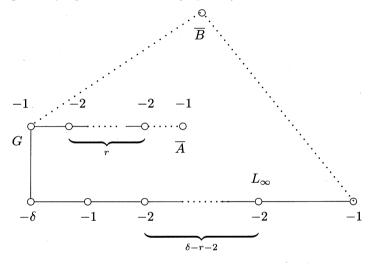
(Figure 3.)

We consider two cases according as $-\delta + r + 1 \ge 0$ or $-\delta + r + 1 < 0$. Suppose first $-\delta + r + 1 \ge 0$. Then we obtain the following dual graph after a suitable blowing-up of the above configuration (Figure 4):



(Figure 4.)

Again, all curves but $\overline{A}, \overline{B}$ and L_{∞} are contracted to two points, say Pand Q, on the image of L_{∞} . The surface obtained by this contraction is \mathbf{P}^2 and L_{∞} is the line at infinity, i.e., $\mathbf{P}^2 - L_{\infty} \cong X$. The image \widetilde{B} of \overline{B} is a curve of degree r + 2 having a cuspidal singurarity at P of multiplicity r + 1 and passing through Q, and the image \widetilde{A} of \overline{A} is a line meeting \widetilde{B} at P with order of contact r + 2. Then we reach to the expression (1) of the pencil Λ . Consider next the case $-\delta + r + 1 < 0$. Then we blow up the intersection point $L \cap \overline{B}$ and its $(\delta - r - 2)$ infinitely near points lying on the curve \overline{B} (Figure 4):



(Figure 5.)

Then all curves but $\overline{A}, \overline{B}$ and L_{∞} are contracted to two points on the image of L_{∞} , and the surface obtained by this contraction is \mathbf{P}^2 with L_{∞} as a line at infinity. The same argument as in the previous cases gives the expression (1) of the pencil Λ .

Consider the case $\mu_0 = 1$ and $\delta_0 = 0$. Turning the configuration upside down if necessary, we have only to consider the case $a = 0, \mu_0 = \delta_1 = 1$ and $\delta_0 = 0$. Then one can easily show that we have the same configuration as in Figure 1 with $\delta = \mu_1$ after a suitable contraction of the components of D. So, we have the same expression of Λ as given in (1).

Consider finally the case n = 0. The case a = 1 and $\mu_0 = \delta_0 + 1$ is obtained from the case a = 0 and $\delta = 1$ by turning the graph upside down, i.e., changing the roles of H_1 and H_2 . So, we treat only the case a = 0 and $\delta_0 = 1$. Then we have the form (2) in the case n = 1. So, the

argument is a complete repetition in the case n = 1 with the form (2). We have thus the same expression as (1) with $\mu_1 = 1$.

Hence we obtain the following result.

Theorem 2.1. Let $\rho : X \to \mathbf{P}^1$ be an \mathbf{A}^1_* -fibration parametrized by \mathbf{P}^1 . Then, with the above notations, the pencil associated to ρ is given as follows:

$$\Lambda = \left\{ \left(yx^{r+1} - p(x) \right)^{\mu_1} + \lambda x^{\mu_0} = 0; \quad \lambda \in \mathbf{P}^1 \right\},\,$$

where $p(x) \in k[x], \deg p(x) \leq r$ and $p(0) \neq 0$. Furthermore, we understand that $\mu_1 = 1$ when there is no multiple fiber whose reduced form is isomorphic to \mathbf{A}^1_* .

\S 3. Complements to the previous results

(I) Let *C* be an irreducible curve of \mathbf{A}^2 and let *X* be anew the complement $\mathbf{A}^2 - C$. In Aoki [1], it is observed whether or not *X* has an étale non-finite endomorphism which is not an automorphism. In the case where *X* has an \mathbf{A}^1_* -fibration $\rho: X \to B$ and ρ extends to an \mathbf{A}^1_* -fibration $\tilde{\rho}: \mathbf{A}^2 \to \tilde{B}$, i.e., a general fiber of ρ is closed in \mathbf{A}^2 , the case $\tilde{B} \cong \mathbf{P}^1$ is missing in the observation. We shall consider here this case by applying Theorem 2.1. Note then that *C* is a fiber of $\tilde{\rho}$ taken with the reduced structure. We consider the following three cases separately:

- (1) C is a multiple fiber $\mu_0 A_0$, where $A_0 \cong \mathbf{A}^1$.
- (2) C is a multiple fiber $\mu_1 A_1$, where $A_1 \cong \mathbf{A}_*^1$.
- (3) C is a general fiber of ρ .

In the case (1), X has logarithmic Kodaira dimension $\overline{\kappa}(X) = -\infty$ and this case is treated in [1]. In the case (2), it follows from Theorem 2.1 and the arguments leading to its proof that C is defined by an equation of the form $yx^{r+1} - p(x) = 0$, where $p(x) \in k[x]$, deg $p(x) \leq r$ and $p(0) \neq 0$. The polynomial $yx^{r+1} - p(x)$ is then a generically rational polynomial, and this case is also treated in [1]. So, consider the case (3). By the arguments in [6] to prove the first assertion of Lemma 1.1, we know that

$$\overline{\kappa}(X) = 1$$
 (resp. 0) if and only if $n - \sum_{i=1}^{n} \frac{1}{n_i} > 0$ (resp. = 0),

where n = 0, 1. If n = 1 (resp. 0) then $\overline{\kappa}(X) = 1$ (resp. 0). If n = 0 (hence $\mu_1 = 1$) then the general fiber C is defined by f = 0 with $f = yx^{r+1} - p(x) + x^{\mu_0}$, and f is a generically rational polynomial. So we may assume that n = 1. Hence $\overline{\kappa}(X) = 1$.

Let $\alpha: X_1 \to X_2$ be an étale endomorphism, where we denote the source (resp. target) X by X_1 (resp. X_2). Accordingly, we denote by $\rho_i: X_i \to B_i$ (i = 1, 2) the same \mathbf{A}^1_* -fibration $\rho: X \to B$, where $B_1 \cong B_2 \cong \mathbf{A}^1$. By [1, Lemma 3.2], there exists an endomorphism $\beta: B_1 \to B_2$ such that $\rho_2 \cdot \alpha = \beta \cdot \rho_2$.

We shall show that β is the identity automorphism. In fact, β extends to an endomorphism $\tilde{\beta}: \tilde{B}_1 \to \tilde{B}_2$, where $\tilde{B}_i \cong \mathbf{P}^1$ and $\tilde{B}_i = B_i \cup \{P\}$ for i = 1, 2 with $P := \tilde{\rho}(C)$. It is clear that $\tilde{\beta}^{-1}(P) = P$. Let $P_i := \tilde{\rho}(A_i)$ for i = 0, 1. By [3, Lemma 3.1], it follows that $\tilde{\beta}(P_i) = P_i$ for i = 0, 1 because $gcd(\mu_0, \mu_1) = 1$. Note that $\tilde{\beta}$ is unramified at P_0 and P_1 . By the same lemma, it follows that if $\tilde{\beta}(Q) = P_i$ (i = 0, 1) for $Q \neq P_i$, then the ramification index of $\tilde{\beta}$ at Q equals to μ_i . Let $d := \deg \tilde{\beta}$. Suppose that r (resp. s) points of \tilde{B}_1 other than P_1 (resp. P_0) are mapped to P_1 (resp. P_0) under $\tilde{\beta}$. By the Riemann-Hurwitz theorem, we have

$$\begin{array}{rcl} -2 & = & -2d + (d-1) + r(\mu_1 - 1) + s(\mu_0 - 1) \\ & = & d - r - s - 3 \end{array}$$

where $d = \mu_1 r + 1 = \mu_0 s + 1$. Hence we obtain

$$d = r + s + 1 = \mu_1 r + 1 = \mu_0 s + 1. \tag{1}$$

If $d \neq 1$ then r > 0 and s > 0. It is then easy to derive a contradiction from (1) because $gcd(\mu_0, \mu_1) = 1$. Hence d = 1. Since β is an automorphism of \mathbf{P}^1 fixing three points P, P_0, P_1 , it follows that β is the identity automorphism.

Since α satisfies now $\rho \cdot \alpha = \rho$, the étale endomorphism α induces an endomorphism $\alpha_K : X_{1,K} \to X_{2,K}$ of the generic fiber X_K of ρ , where K is the function field of B. Since ρ is an untwisted \mathbf{A}_*^1 -fibration, we know that $X_K = \operatorname{Spec} K[u, u^{-1}]$. Hence $\alpha_K^*(u) = au^{\pm n}$ with $a \in K^*$ and $n = \deg \alpha$. Let G be the group of the n-th roots of unity in k. Then Gacts on $X_{1,K}$ and $X_{2,K}$ is the quotient curve $X_{1,K}/G$. Hence the function field $k(X_1)$ is a Galois extension of $k(X_2)$ with Galois group G. Let \widetilde{X}_2 (resp. W) be the normalization of X_2 (resp. \mathbf{A}^2) in $k(X_1)$, where X_2 is the open set $\mathbf{A}^2 - C$ of \mathbf{A}^2 , and let $\nu : \widetilde{X}_2 \to X_2$ (resp. $\widehat{\nu} : W \to \mathbf{A}^2$) be the normalization morphism. By [5, Lemma 5], $\nu : \widetilde{X}_2 \to X_2$ is an étale Galois covering with group G with \widetilde{X}_2 containing X_1 as an open set, the composite $\rho_2 \cdot \nu : \widetilde{X}_2 \to B$ is an \mathbf{A}_*^1 -fibration such that $\rho_2 \cdot \nu|_{X_1} = \rho_1$, and $(\rho_2 \cdot \nu)^{-1}(P_0)$ with $P_0 = \rho(A_0)$ is a disjoint union of n copies of the affine lines gA_0 ($g \in G$) so that $\widetilde{X}_2 - X_1 = \coprod_{a \in G, a \neq 1} {}^gA_0$, where $A_0 \cong \mathbf{A}^1$. The surface W is a normal affine surface with a G-action, and \mathbf{A}^2 is the quotient surface W/G. Furthermore, \widetilde{X}_2 is a Zariski open set of W. Note that $\widetilde{\rho} \cdot \widehat{\nu} : W \to \widetilde{B}$ is an \mathbf{A}^1_* -fibration. Let $Z = (\widetilde{\rho} \cdot \widehat{\nu})^{-1}(P)$, where $P = \widetilde{\rho}(C)$. Then $\widehat{\nu}$ induces a finite morphism $\overline{\nu} : Z \to C$. Since the \mathbf{A}^1_* -fibration $\widetilde{\rho} \cdot \widehat{\nu} : W \to \widetilde{B}$ is extended to a \mathbf{P}^1 -fibration with two cross-sections at infinity and since every irreducible component of Z has at least two places at infinity (for otherwise it cannot dominate C which is isomorphic to \mathbf{A}^1_*), it follows that

- (1) Z is irreducible,
- (2) W has no singular points along Z,
- (3) Z is isomorphic to \mathbf{A}^1_* .

In fact, let V be a completion of W such that V is smooth along V - W, the complement V - W supports a divisor with simple normal crossings and the \mathbf{A}^1_* -fibration $\tilde{\rho} \cdot \hat{\nu}$ extends to a \mathbf{P}^1 -fibration $q : V \to \tilde{B}$. If Z is reducible, the fiber $q^{-1}(P)$ must contain a loop of the irreducible components because each irreducible component of Z has at least two places at infinity. So, Z is irreducible. We may assume that $q^{-1}(P)$ contains no (-1) curves lying in V - W. If W has singular points on Z, the proper transform \hat{Z} of Z by a minimal resolution of singularities of W is a unique (-1) curve in the fiber meeting three or more components of the fiber. This is a contradiction. So, W is smooth along W. Now it is clear that Z is isomorphic to \mathbf{A}^1_* . This implies that $\hat{\nu} : W \to \mathbf{A}^2$ is an étale finite Galois covering. Hence $\hat{\nu}$ is an isomorphism. In particular, $\alpha : X_1 \to X_2$ is an automorphism. Thus we obtain the following:

Theorem 3.1. Let C be an irreducible curve in $\mathbf{A}^2 := \operatorname{Spec} k[x, y]$ defined by

$$(yx^{r+1} - p(x))^{\mu_1} + \lambda x^{\mu_0} = 0,$$

where $\mu_0 \geq 1, \mu_1 > 1$ and $\lambda \neq 0$ and let $X := \mathbf{A}^2 - C$. Then $\overline{\kappa}(X) = 1$ and every étale endomorphism of X is an automorphism.

(II) In [2], we considered an automorphism of infinite order of \mathbf{A}^2 which stabilizes an irreducible curve C. In [2, Lemma 1.4], the case where the curve C has a defining equation

$$f := (yx^{r+1} - p(x))^{\mu_1} + \lambda x^{\mu_0} = 0,$$

is missing. We shall complete the result by treating here the missing case. If $\mu_1 = 1$, i.e., n = 0, then f is a generically rational polynomial, and this case is treated in [2]. So, we assume that $\mu_1 > 1$. As in the proof of Theorem 3.1, $\overline{\kappa}(X) = 1$ and any automorphism α of X preserves the

A¹_{*}-fibration ρ , i.e., $\rho \cdot \alpha = \rho$. Then $\alpha^{-1}(A_0) = A_0$ and $\alpha^{-1}(A_1) = A_1$. Namely, we have $\alpha(x) = cx$ and $\alpha(yx^{r+1} + p(x)) = d(yx^{r+1} + p(x))$ with $c, d \in k^*$. Here note that A_0 (resp. A_1) is defined by x = 0 (resp. $yx^{r+1} + p(x) = 0$). Since $p(0) \neq 0$, it follows that d = 1. Then we have

$$\alpha(y) = c^{-(r+1)}y + \frac{p(x) - p(cx)}{c^{r+1}x^{r+1}}.$$

Hence p(x) = p(cx), and c is an m-th root of unity for some m with 0 < m < r + 1 because deg $p(x) \le r$. So, we obtain the following:

Theorem 3.2. Let C be an irreducible curve in $\mathbf{A}^2 := \operatorname{Spec} k[x, y]$ defined by

$$(yx^{r+1} - p(x))^{\mu_1} + \lambda x^{\mu_0} = 0$$

where $\mu_0 \geq 1, \mu_1 > 1$ and $\lambda \neq 0$ and let $X := \mathbf{A}^2 - C$. Then every automorphism of \mathbf{A}^2 which stabilizes the curve C is of finite order.

References

- H. Aoki, Étale endomorphisms of smooth affine surfaces, J. Algebra, 226 (2000), 15–52.
- [2] K. Masuda and M. Miyanishi, Invariant subvarieties of low codimension in the affine spaces, Tôhoku Math. J., 52 (2000), 11–27.
- [3] K. Masuda and M. Miyanishi, Étale endomorphisms of algebraic surfaces with G_m -actions, Math. Ann., **319** (2001), 493–516.
- [4] M. Miyanishi, Non-complete algebraic surfaces, Lecture Notes in Mathematics, 857 (1981), Springer, Berlin-Heidelberg-New York.
- [5] M. Miyanishi, Étale endomorphisms of algebraic varieties, Osaka J. Math., 22 (1985), 345–364.
- [6] M. Miyanishi, Open algebraic surfaces, Amer. Math. Soc., 2000.
- [7] M. Miyanishi and T. Sugie, Generically rational polynomials, Osaka J. Math., 17 (1980), 339–362.
- [8] M. Miyanishi and T. Sugie, Homology planes with quotient singularities, J. Math. Kyoto Univ., 31 (1991), 755–788.
- [9] P. Orlik and P. Wagreich, Algebraic surfaces with k*-action, Acta Math., 138 (1977), 43–81.
- H. Saito, Fonctions entieres quis se reduisent a certains polynômes, Osaka J. Math., 9 (1972), 293–332.

Department of Mathematics Graduate School of Sciences Osaka University Toyonaka, Osaka 560-0043, Japan E-mail address: miyanisi@math.sci.osaka-u.ac.jp