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§1. Introduction 

For a finite group G, its Frobenius number h~c is the number of 
solutions of the equation xn = 1 in G and a Sylow number s~c is the 
number of cyclic subgroups of G of order n. These numbers are named 
after Frobenius theorem and Sylow's theorem ([Yo 96]). The classical 
Frobenius theorem states that h~c is divisible by the greatest common 
divisor of nand IGI. The following transition formula holds: 

(1) h~c = L cp(r)s~yc, (n 2: 1), 
rln 

where cp denotes the Euler function. 
Now define the zeta functions of Sylow and Frobenius types by 

S~'t(z) 
oo cp(n)s~c 

= L lgl-z, .- L nz 
n=l gEG 

oo hcyc 
H'/r(z) .- 2: :z · 

n=l 

Then the transition formula can be presented by the transition identity 
between these functions as follows: 

(2) 

where the transition function ((z) is Riemann's zeta function. Another 
expression of the transition formula (1) is given by the following cyclo
tomic identity: 

(3) 
oo ( 1 ) HgEGiigl=n}/n ( oo hcyc ) II -- = exp ""' _n_ tn . 

1-tn ~ n 
n=l n=l 
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Here we note that the number h'Jc equals the number of group 
homomorphisms from a cyclic group Cn of order n to the group G: 

The purpose of this paper is to generalize the above formulas (1), (2) to 
more general classes of groups 

The most of notation and terminology in this paper are standard 
(cf. [Su 82]). The symbol n1 (A) for a group A denotes the subgroup 
generated by elements of prime order; en denotes a cyclic group of order 
n; cpr denotes an elementary abelian p-group of order pr. 

§2. Frobenius numbers and Sylow numbers. 

For any finite groups A and B, put 

h(A, B) 

q(A,B) 

s(A,B) 

·- IHom(A, B) I, 
·- U{Al:::! A I A/Al ~ B}, 
·- U{Al s;;; B I Al ~A}. 

We call h(A, B) (resp. s(A, B)) a Frobenius (resp. Sylow) number. The 
following lemma easily follows from the homomorphism theorem: 

Lemma 2.1 (Transition formula). For any finite groups A and G, 

h(A, G) = L 1 U{A1:::! A I A/A1 ~ B} ·IAutBI · s(B, G) 
B 

L IAut(A/Al)l· s(A/A1, G). 
A, :"'::A 

where B runs over all isomorphism classes of finite groups. 

Now, let t-t (resp. t-t'AJ be the Mobius function of the lattice of 
subgroups (resp. normal subgroups) of a finite group A. 

Lemma 2.2. Assume that A is a finite nilpotent group with B ::; C ::; A. 
A(v)' B(v)' C(v) denote the Sylow p-subgroups of A, B, C, respectively. 

(i) t-t'A_(B,C) = t-tA.;B(l,CjB). 

(ii) t-t(B,c) = ITt-t(B<v>,c<v>), t-tA.(l,B) = ITt-tA.(p)(l,B<v>)· 
p p 

(iii) If t-tA.(l,B)-=/= 0, then B is a subgroup ofn1(Z(A)). 
(iv) When C is a p-group, 

{
(-ltp(;) 

t-t(B,C) = 
0 

if B:::! C and CjB ~ Cvr 

else. 
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(v) When A is a p-group, 

p;A_(1,B) = { ~(1,B) = (-1tp(;) 

PROOF. Refer to (St 97, Section 3.9, 10]. 

if cPr ~ B::::; 01(Z(A)) 
if B ~ 01(Z(A)). 
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Proposition 2.3 (Inversion formula). For any finite group A and G, 

(4) s(A,G) = IAu:(A)I L p;A_(1,B)h(AjB,G). 
B~A 

Proof. Submitting the identity (Lemma 2.1) 

h(A/B,G) = 2:' q(A/B,C)IAut(C)Is(C,G) 
c 

to the right hand side of ( 4), we have 

RHS = IAu:(A)I L p;A_(1,B)L 1 q(AjB,C)IAut(C)Is(C,G) 
B~A C 

= IAu:(A)I 2:' (2: p;A_(1,B)q(A/B,C)) IAut(C)Is(C,G). 
C B~A 

The inner summation is equal to 

L p;A_(1,B). U{Bl/B:::! A/B I A/Bl ~ C} 

L L p;A_(1,B) 
B1~A B~A 

:A/ B1~C :B~B1 

L 6(1,Bl) = { 1 
B <lA O l_ 

:A/B1~C 

if A~ C 

else. 

Hence the right hand side of ( 4) is equal to s(A, G). Q.E.D. 

Corollary 2.4 (Inversion formula for nilpotent groups). For any finite 
nilpotent group A and for any finite group G, 

(5) 
1 

s(A,G) = lA (A)I L J.L(1,B)h(A/B,G). 
ut B~fh(Z(A)) 
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§3. Zeta functions of Sylow type. 

Let A be a family of finite groups closed under isomorphisms and 
quotient groups. Furthermore, let w : N ----+ R be a mapping to a 
commutative complete topological ring R containing the rational number 
field Q. Then the zeta function of Sylow type of the finite group G with 
respect to A and w is defined by 

S(A,w,G) := L 1 s(A,G)w(IAI) = L 1 w(IAI). 
AEA/"" A<G 

:AEA 

Note that A can be replaced by the finite (up to isomorphism) family 
consisting of those members of A which are involved in the group G. 

Theorem 3.1 (Transition formula). Assume that the family A consists 
of some nilpotent groups. Then the following holds: 

(6) S(A G)= Ll JL(1,B)w(IBI·ICI)IExt(C,B;A)I h(C G) 
,w, 08 IAut(B)I·IAut(C)I·IHom(C,B)I ' ' 

' 

where C ( resp. B) runs over a complete set of representatives of A/~ 
(resp. abelian groups such that B = 0 1 (B)). Furthermore, Ext(C, B; A) 
denotes the set of equivalence classes of central extensions: 

Ext(C,B;A) = {1----+ B----+ A(E A)----+ C----+ 1(c.e.)}/~. 

Proof. First, by the inversion formula, 

S(A, w, G) = L 1 s(A, G)w(IAI) 
AEA 

'"""'1 '"""' w(IAI) 
= L..J L..J JL(1, B)h(A/ B, G) IAut(A) I 

AEAB::;Z(A) 

'"'
1
'"'

1 
'"""' w(IAI) = L..J L..J L..J JL(1,B)h(AjB,G)IAut(A)I 

AEA CEA B::;Z(A) 
:A/B""C 

= '"'1'"'1 '"'I '"""' JL(1,B)h(C,G)w(IAI) 
L..J L..J L..J L..J IAut(A) IIAut(B) IIAut(C) I ' 
AEA CEA B:abel B>-+A...,.C(c.e.) 

where the most inner ~ummation is taken over all central extensions: 

1 ----+ B ----+A( E A) ----+ C----+ 1. 
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The equivalence of two such central extensions is defined by 

(1 ~ B ~A ..:t c ~ 1) ,._; (1 ~ B LA£ c ~ 1) 
{==::? 3a E Aut(A) s.t. aocp = cp',,P = ,P' oa. 

By extension theory of groups, the number of such central extensions 
equivalent to a given B >---> A _,. C is equal to 

IAut(A)I 
I Hom( C, B) I" 

Thus 

S(A,w,G) 

= '"""'''"""'' '"""'' '"""' JL(1, B)h( C, G)w(IAI) 
~ ~ ~ ~ IHom(C B)IIAut(B)IIAut(C)I 
AEA CEA B:abel [B>-->A...,.C(c.e.)J ' 

= 2:'2:' 2:' L JL(1,B)h(C,G)w(IBI·ICI) 
AEA CEA B:abel [B>-->A...,.C(c.e.)] IHom(C, B)IIAut(B)IIAut(C)I 

= '"""'' JL(1,B)w(IBI·ICI)IExt(C,B;A)I h(C G). 
~ IAut(B)IIAut(C)IIHom(C, B) I ' 
C,B 

Remark. For the class of finite nilpotent groups, (6) does not converge. 

Applying Theorem 3.1 to the family C of cyclic groups, we have the 
formula (1) in Introduction. In this case, 

IExt(Cn, Cm;C)I = cp(m)cp(n)gcd(m, n)jcp(mn). 

Next, applying Theorem 3.1 to the family .Ap of abelian p-groups, 
we have the transition formula as follows: 

(7) 

where 

f I:' h(A,G) n 
.- n=O IAI=P" IAut(A)I X ' 

.- L 2:' s(A,G)xn. 
n;:>:O IAI=p" 
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This funny identity with G = 1, x = 1 implies P.Hall's strange formula: 

(8) 
~I 1 ~/ 1 
L:_ IAut(A)I = L:_ TAf' 

where A runs dver all classes of abelian p-groups([Yo 92]). 

§4. Partition identities. 

Let £p be the family of all elementary abelian p-groups. As is well
known, the following hold: 

1Ext(C/,Cpr;£p)l = 1, 

HB ~ cpn IIBI = pr} = [; ]p .- --:-:--=:[p:,..:..,]n,.--
[p]r[p]n-r' 

[p]n = (p- 1)(p2 - 1) · · · (pn - 1), 

IAut(Cpn)l = IGL(n,p)l =p(;)[p]n, 

p,(1,cpr) = (-1rpm. 

Thus Lemma 2.1 and Proposition 2.3 have the following forms: 

(9) h(Cpn,G) ~ [; L ·IGL(r,p)ls(Cpr,G), 

(10) s(Cp n, G) = IGL(~,p)l ~( -1tp(;) [ ; L h(Cp n-r, G). 

We take the weight function w of the form w(pn) = f(n)xn, so that by 
Theorem 3.1, we have 

n:=::o 

(11) 
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Case f(n) = 1. In this case, (11) gives 

s~~l (x) = L s(Cp n, G) xn 

f: (f _1 (-p-nxr) h(Cvn,G) xn 
n=O r=O (p]r IGL(n,p)l 
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(12) rroo ( -r ) ~ (rrn ( -r )-l) h(Cvn, G) n 
r=l 1- P X • ~ r=l 1- p X IGL(n,p)l X • 

Here we used the q-binomial theorem: 

00 1 00 L -(-p-nxr =IT (1- p-n-rx). 
r=O (p]r r=l 

(13) 

Even if the group G is trivial, (12) gives a non-trivial formula called 
Cauchy's identity (1893) and then Euler's one: 

00 

(14) 
r=l 

00 

(15) 

Case f(n) = p(;). In this case, (11) gives 

s~:/x) := L s(Cpn, G)p(;)xn 

(16) 

Here we used the q-binomial theorem. Hence, we conclude that 

(17) 
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where 
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H Ep ( ) ·-~ h(Cpn,G) n 
G,J X .- L.J [p]n X • 

n=O 
(lxl < p). 

Remark. As rational functions over the complete p-adic number field, 
we have 

(18) 

A special value of S~~1 (x) is related with the Euler characteristic 
x(Sp(G)) of the poset of non-trivial p-subgroups: 

(19) x(Sv(G)) := L JL(A, B)=- L JL(1, B), 
A,B#l 

where A, B run over all nontrivial p-subgroups and JL is the Mobius 
function of the subgroup lattice of G. Thus Lemma 2.2(iv) implies the 
following: 

Lemma 4.1. Under the above notation, the following holds: 

(20) 

For n :2: 0, we define the numbers x~ 's by 

n 

X~:= L(-1tpms(Cvr,G). 
r=O 

Then 1 - x~ is equal to the Euler characteristic of the poset of p
subgroups of G of order at most pn. By the inversion formula (10), 
we have 

(21) [p]nX~ = :f)-1)n-rp(rtl) [ ~] hn-r· 
r=O P 

Consider the following generating series associated to the series {x~}n::=:o: 

00 

Xa(t) := L x~( -t)n. 
n=O 
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Then we have 

oo n 

Xc(t) L L( -1tp(;)s(Cpr, G)(-t)n 
n=Or=O 

00 

(1 + t)- 1 LP(;)s(Cpr,cw 
r=O 

Thus the transition identity (16) gives 

00 

(22) Xc(t) = II (1 + p-nt)- 1 · H~~1 (t). 
n=O 

Similarly, if we view Xc(t) and H~~1 (t) as p-adic power series (18), we 
have 

00 

(23) Xc(t) = II (1 + pnt) · H~~1 (t). 
n=1 

These formula gives a transition formula between {hn} and {x~}: 

(24) 

By (21) and (24), if pn divides IGI, then 

(25) X~= 0 (mod pn) {===} hn = 0 (mod pn). 

The right hand side of this statement is valid by [Yo 93]. Thus we again 
have Brown's cohomological Sylow theorem ([Yo 96]): 

(26) 
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