A characterization of ${ }^{\mathbf{2}} \mathrm{E}_{6}(\mathbf{2})$

Michael Aschbacher

§1. Introduction

This paper is part of a program to provide a uniform, self-contained treatment of part of the foundations of the theory of the sporadic finite simple groups. More precisely our eventual aim is to provide complete proofs of the existence and uniqueness of the twenty-six sporadic groups and to derive the basic structure of each sporadic. The two books [SG] and [3T] make a beginning on that program.

In this paper we provide a uniqueness proof for the group ${ }^{2} E_{6}(2)$. Of course ${ }^{2} E_{6}(2)$ is a group of Lie type, not a sporadic group, but in order to treat the Monster and the Baby Monster, one first needs to treat ${ }^{2} E_{6}(2)$. Thus this paper begins that part of the program dealing with the large sporadics.

Suzuki was one of the pioneers in identifying finite groups from information on subgroup structure. His characterization of $L_{3}\left(2^{n}\right)$ in [S] identifies those groups by producing a BN-pair. That approach is not so different from the one adopted in our program. Indeed in the work of S. Smith and the author on quasithin groups, the groups $L_{3}\left(2^{n}\right), n$ even, can not quite be handled using our standard methods, so we appropriate a clever counting argument of Suzuki's from [S] to fill the gap. Hopefully Suzuki would regard this paper as continuing a tradition which he pioneered.

Define a finite group G to be of type ${ }^{2} E_{6}(2)$ if G possesses an involution z such that $F^{*}\left(C_{G}(z)\right)=O_{2}\left(C_{G}(z)\right)$ is extraspecial of width 10 , $C_{G}(z) / O_{2}\left(C_{G}(z)\right) \cong U_{6}(2)$, and z not weakly closed in $O_{2}\left(C_{G}(z)\right)$ with respect to G.

Define G to be of type $\mathbf{Z}_{2} /{ }^{2} E_{6}(2)$ if G possesses an involution z such that $F^{*}\left(C_{G}(z)\right)=O_{2}\left(C_{G}(z)\right)$ is extraspecial of width 10 and $C_{G}(z)$ has a subgroup H of index 2 such that $H / O_{2}\left(C_{G}(z)\right) \cong U_{6}(2)$, and z is not weakly closed in $O_{2}\left(C_{G}(z)\right)$ with respect to G.

Our main theorems are:
Theorem 1. Each group of type ${ }^{2} E_{6}(2)$ is isomorphic to ${ }^{2} E_{6}(2)$.
Theorem 2. If G is of type $\mathbf{Z}_{2} /{ }^{2} E_{6}(2)$ then $F^{*}(G)$ is of index 2 in G and $F^{*}(G) \cong{ }^{2} E_{6}(2)$.

Theorems 1 and 2 are proved in sections 8 and 9 , respectively, where they appear as Theorems 8.7 and 9.1. Many lemmas are included in the paper which are not used in the proof of the main theorems. They will be used later in the program and appear here because it is convenient to provide an exposition of related results in one place. Similarly the proof of the following two lemmas will appear in later papers in this series for the same reason, as will the proof of the third part of lemma 5.8.
(1.1) Let Γ be a building of type F_{4} and Δ the collinearity graph of Γ. Then Δ is simply connected.
(1.2) Let G be a group and V a faithful finite dimensional $\mathbf{F}_{2} G$ module. Assume $u \in V^{\#}$ such that the full group T of transvections on V with center u is contained in G. Let $U=\left\langle u^{G}\right\rangle$ and $L=\left\langle T^{G}\right\rangle$. Then $A u t_{L}(U)=G L(U)$.

§2. Presentations for modules

In this section Ω is a graph with vertex set Ω and $\Omega(x)$ denotes the set of vertices adjacent to a vertex x of Ω. Assume G is a group of automorphism of Ω transitive on the vertices of the graph and let V be the permutation module for G on Ω over \mathbf{F}_{2}. Thus Ω is a basis for the \mathbf{F}_{2}-space V and $G \leq G L(V)$ is transitive on the basis Ω.

Define a bilinear form β on V by

$$
\beta(x, y)=0 \text { if and only if } y \in \Omega(x) \cup\{x\} \text { for } x, y \in \Omega
$$

As the relation defining the graph Ω is symmetric, the bilinear form β is symmetric.

Let $R=\operatorname{Rad}(\beta)$ be the radical of the bilinear form β; that is

$$
R=\{v \in V: \beta(u, v)=0 \text { for all } u \in V\}
$$

Finally let $\bar{V}=V / R$ and write $\bar{\beta}$ for the bilinear form induced by β on \bar{V}. That is

$$
\bar{\beta}(\bar{v}, \bar{u})=\beta(u, v)
$$

which is well defined as R is the radical of β. Further as R is the radical of β, the induced form $\bar{\beta}$ is nondegenerate, so $\bar{\beta}$ is a symplectic form on \bar{V}. As G is a group of automorphisms of the graph Ω, G preserves the form β, and hence also the induced form $\bar{\beta}$. We summarize all this as:
(2.1) $(\bar{V}, \bar{\beta})$ is a symplectic space over \mathbf{F}_{2} and $G \leq S p(\bar{V})$ is a group of isometries of this symplectic space transitive on the generating set $\bar{\Omega}$ of \bar{V}.
(2.2) Assume U is an $\mathbf{F}_{2} G$-module and $\rho: \Omega \rightarrow U$ is a map such that $U=\langle\rho(\Omega)\rangle$ and $\rho: \Omega \rightarrow \rho(\Omega)$ is an equivalence of G-sets. Assume further that γ is a symplectic form on \dot{U} with

$$
\beta(x, y)=\gamma(\rho(x), \rho(y)) \text { for all } x, y \in \Omega \text {. }
$$

Then ρ extends to an $\mathbf{F}_{2} G$-isometry $\bar{\rho}:(\bar{V}, \bar{\beta}) \rightarrow(U, \gamma)$.
Proof. As $U=\langle\rho(\Omega)\rangle$, the map ρ extends to a surjective $\mathbf{F}_{2} G$ homomorphism $\rho: V \rightarrow U$. Let $v \in V$; then $v=\sum_{y \in S(v)} y$, where $S(v)$ is the support of v with respect to the basis Ω. Further for $x \in \Omega$, $\beta(v, x)=|\Gamma(x) \cap S(v)| \bmod 2$, where $\Gamma(x)=\Omega-x^{\perp}$. Now $\rho(v)=$ $\sum_{y \in S(v)} \rho(y)$ and

$$
\gamma(\rho(v), \rho(x))=\sum_{y \in S(v)} \gamma(\rho(y), \rho(x))=|\Gamma(x) \cap S(v)| \quad \bmod 2=\beta(v, x)
$$

as $\beta(x, y)=\gamma(\rho(x), \rho(y))$ for all $x, y \in \Omega$. Therefore $v \in R$ if and only if $\beta(v, x)=0$ for all $x \in \Omega$ if and only if $\gamma(\rho(v), \rho(x))=0$ for all $x \in \Omega$ if and only if $\rho(v) \in U^{\perp}=0$, since $U=\langle\rho(\Omega)\rangle$. Therefore $R=\operatorname{ker}(\rho)$, so ρ induces the isometry $\bar{\rho}:(\bar{V}, \bar{\beta}) \rightarrow(U, \gamma)$.
Q.E.D.
(2.3) Assume (U, q) and (W, Q) are orthogonal spaces over \mathbf{F}_{2} with G irreducible on $U, G \leq O(U, q)$, and $G \leq O(W, Q)$. Let γ and α be the bilinear forms of q and Q, respectively, and assume $\rho:(U, \gamma) \rightarrow(W, \alpha)$ is an $\mathbf{F}_{2} G$-isometry. Then $\rho:(U, q) \rightarrow(W, Q)$ is also a $\mathbf{F}_{2} G$-isometry.

Proof. As G is irreducible on U, there is at most one quadratic form on U preserved by G with bilinear form γ. (cf. 4.9 in [A]; the argument is easy.) Therefore q is that unique form. Similarly as $\rho: U \rightarrow W$ is an equivalence of $\mathbf{F}_{2} G$-representations, G is irreducible on W, so Q is the unique quadratic form on W preserved by G with bilinear form α, so that ρ is also an isometry of the corresponding orthogonal spaces.
Q.E.D.
(2.4) Assume (U, q) and (W, Q) are orthogonal spaces over \mathbf{F}_{2} with G irreducible on $U, G \leq O(U, q)$, and $G \leq O(W, Q)$. Assume further that $u \in U, w \in W$, with $G_{u}=G_{w}, U=\langle u G\rangle, W=\langle w G\rangle$, and $\gamma(u, u g)=\alpha(w, w g)$ for all $g \in G$, where γ and α are the bilinear forms of q and Q, respectively. Then there exists an $\mathbf{F}_{2} G$-isometry $\rho:(U, q) \rightarrow$ (W, Q) with $\rho(u)=w$.

Proof. As $G_{u}=G_{w}$, the map $\rho: u G \rightarrow w G$ defined by $\rho(u g)=w g$ is a well defined equivalence of permutation representations. Now take Ω_{U} to be the graph on $u G$ with $\Omega_{U}(u)=\Omega_{U} \cap u^{\perp}$. As $\gamma(u, u g)=$ $\alpha(w, w g), \rho$ defines a G-equivariant isomorphism of Ω_{U} with the corresponding graph Ω_{W} on $w G$. Now apply 2.2 to get $\mathbf{F}_{2} G$-sometries $\rho_{U}:(U, q) \rightarrow\left(\bar{V}_{U}, \bar{q}\right)$ and $\rho_{W}:(W, Q) \rightarrow\left(\bar{V}_{W}, \bar{Q}\right)$, where \bar{V}_{U} and \bar{V}_{W} are modules of the graphs Ω_{U} and Ω_{W}, respectively, and \bar{q} and \bar{Q} are the transfer of the forms q and Q via ρ_{U} and ρ_{W}. As $\rho: \Omega_{U} \rightarrow \Omega_{W}$ is a G-isomorphism, ρ induces an $\mathbf{F}_{2} G$-isometry $\bar{\rho}:\left(\bar{V}_{U}, \bar{\beta}_{U}\right) \rightarrow\left(\bar{V}_{W}, \bar{\beta}_{W}\right)$, and hence also an $\mathbf{F}_{2} G$-isometry $\bar{\rho}:\left(\bar{V}_{U}, \bar{q}\right) \rightarrow\left(\bar{V}_{W}, \bar{Q}\right)$ by 2.3. Then the composition $\rho_{W}^{-1} \circ \bar{\rho} \circ \rho_{U}$ agrees with ρ on $u G$ and is the required extension.
Q.E.D.

§3. Some central extensions

We adopt the notation of section 33 of [FGT] and section 23 of [3T] in discussing central extensions. In particular if G is a perfect finite group then $\operatorname{Cov}(G)$ is the universal covering group of G and $\operatorname{Schur}(G)$ is the Schur multiplier of G. In particular $\operatorname{Schur}(G) \leq Z(\operatorname{Cov}(G))$ with $\operatorname{Cov}(G) / \operatorname{Schur}(G) \cong G$. In addition if p is a prime define

$$
\operatorname{Cov}_{p}(G)=\operatorname{Cov}(G) / O^{p}(\operatorname{Schur}(G)) \Phi\left(O_{p}(\operatorname{Schur}(G))\right)
$$

and

$$
\operatorname{Schur}_{p}(G)=\operatorname{Schur}(G) / O^{p}(\operatorname{Schur}(G)) \Phi\left(O_{p}(\operatorname{Schur}(G))\right)
$$

That is $\operatorname{Cov}_{p}(G)$ is the largest perfect central extension of an elementary abelian p-subgroup by G.

Let \mathcal{H} be the class of finite groups H such that $F^{*}(H)$ is an extraspecial 2-group and $H / O_{2}(H)$) is irreducible on $F^{*}(H) / Z\left(F^{*}(H)\right)$. Our notational convention will be to write $Q=F^{*}(H), \tilde{H}=H / Z(Q)$, and $H^{*}=H / Q$. We recall from section 8 of [SG] that the commutator map and power map define a nondegenerate bilinear form and quadratic form on \tilde{Q} preserved by H^{*}. By Exercise 8.5 in $[F G T]$, $\operatorname{Out}(Q)=O(\tilde{Q})$ is the isometry group of this quadratic form.
(3.1) Let $H_{i} \in \mathcal{H}, i=1,2$, with $Q_{1} \cong Q_{2}$ and assume \tilde{Q}_{i} is absolutely irreducible as an $\mathbf{F}_{2} H_{i}^{*}$-module. Then $\tilde{H}_{1} \cong \tilde{H}_{2}$ if and only if the induced representations of H_{i}^{*} on \tilde{Q}_{i} are quasiequivalent for $i=1,2$.

Proof. Identifying Q_{1} and Q_{2} via our isomorphism, we may take $Q_{1}=Q_{2}=Q$. Then identifying \tilde{H}_{i} with $\operatorname{Aut}_{H_{i}}(Q)$, we have $\tilde{H}_{i} \leq$ $\operatorname{Aut}(Q)=A$ and $H_{i}^{*} \leq A / \tilde{Q}=O u t(Q) \cong O(\tilde{Q})$.

The representations of H_{1}^{*} and H_{2}^{*} on \tilde{Q} are quasiequivalent if and only if H_{1}^{*} and H_{2}^{*} are conjugate in $G L(\tilde{Q})$. Further as \tilde{Q} is an absolutely irreducible $\mathbf{F}_{2} H_{i}^{*}$-module, the quadratic form on \tilde{Q} is the unique one preserved by \tilde{H}_{i}, (cf. 4.9 in [A]), so H_{1}^{*} is conjugate to H_{2}^{*} in $G L(\tilde{Q})$ if and only if the groups are conjugate in $O(\tilde{Q})$. Thus the representations are quasiequivalent if and only if \tilde{H}_{1} is conjugate to \tilde{H}_{2} in A, establishing the lemma.
Q.E.D.
(3.2) Let $H \in \mathcal{H}$ be perfect and let $\hat{H}=\operatorname{Cov}_{2}(H), \hat{Q}=O_{2}(\hat{H})$, and $P=[\hat{Q}, \hat{H}]$. Then
(1) $\hat{H} / P \cong \operatorname{Cov}_{2}\left(H^{*}\right)$ and $\hat{Q} / P \cong \operatorname{Schur}_{2}\left(H^{*}\right)$.
(2) $P \cong Q \times H^{1}\left(H^{*}, \tilde{Q}\right)$.
(3) If H_{1} is a perfect central extension of \tilde{H} then the representation of $\operatorname{Aut}\left(H_{1}\right)$ on H_{1} by conjugation factors through $\operatorname{Aut}(\hat{H})$.
(4) $D=C_{\operatorname{Aut}(\hat{H})}(P / Z(P))$ is elementary abelian and centralizes $P / \Phi(P)$, and $D / \operatorname{Aut}_{P}(\hat{H})$ acts faithfully as the full group of transvections on $Z(P)$ with center $\Phi(P)$.
(5) $D / \operatorname{Aut}_{P}(\hat{H})$ is regular on the complements to $\Phi(P)$ in $Z(P)$, so if U is such a complement then $\operatorname{Aut}(\hat{H})=D N_{\operatorname{Aut}(\hat{H})}(U)$ with $\operatorname{Aut}_{P}(\hat{H})=$ $N_{D}(U)$.
(6) If $H_{0} \in \mathcal{H}$ with $F^{*}\left(H_{0}\right) \cong F^{*}(H)$ then $H_{0} / Z\left(H_{0}\right) \cong H / Z(H)$ if and only if $H_{0} \cong \hat{H} / V$ for some complement V to $\Phi(P)$ in $Z(\hat{H})$ containing U.

Proof. This is an extension of 8.17 in [SG], where the result is essentially proved under the extra hypotheses that $H^{1}\left(H^{*}, \tilde{Q}\right)=0$ and H^{*} is absolutely irreducible on \tilde{Q}. Much of the same proof works. In particular if $\rho: \hat{H} \rightarrow H$ is the universal covering of H and $\hat{Z}=\operatorname{ker}(\rho)$ then $\hat{Q}=\rho^{-1}(Q)$ is of class 2 with center $Z=\rho^{-1}(Z(Q)), Z=Z(\hat{H})$, and $|Z: \hat{Z}|=2$. As $\hat{Z}=\operatorname{Shur}_{2}(H), \hat{Z}$ is elementary abelian. Arguing as in the proof of 8.17 of [SG], $\Phi(P)$ is elementary abelian, so as $Z=$ $\Phi(P) \hat{Z}, Z$ is elementary abelian. Similarly the proof of 8.17 in [SG]
shows that (1) holds. Part (3) follows from the universal property of ρ; cf. 33.7 and 33.8 in [FGT].

Let $x \in \hat{Q}$ with $x \rho$ of order 4 in Q. Then $x^{2} \in Z=Z(\hat{H})$, so $\left(x^{g}\right)^{2}=x^{2}$ for all $g \in \hat{H}$. But as H^{*} is irreducible on $\tilde{Q}, \tilde{Q}=\left\langle\tilde{x}^{H^{*}}\right\rangle$, so $\hat{Q}=\left\langle x^{\hat{H}}, \hat{Z}\right\rangle$ and then as $\Phi(Q)=\left\langle x^{2} \rho\right\rangle, \Phi(\hat{Q})=\left\langle x^{2}\right\rangle$ is of order 2. Therefore $\hat{Q} \cong Q \times E_{2^{m}}$ as Z is elementary abelian. Then as $\hat{Q}=P \hat{Z}$, $\Phi(\hat{Q})=\Phi(P)$ and $P \cong Q \times E_{2^{n}}$.

As $H^{*} \leq O(\tilde{Q}), \tilde{Q}$ is self dual as an H^{*}-module. Therefore as $P=[P, \hat{H}]$ and $H^{*} \cong \hat{H} / \hat{Q}=\hat{H} / C_{\hat{H}}(P / \Phi(P))$ with $P / Z(P) \cong \tilde{Q}$ self dual as an H^{*}-module, $n \leq \operatorname{dim}_{\mathbf{F}_{2}}\left(H^{1}\left(H^{*}, \tilde{Q}\right)\right)=k$. (cf. 17.12 in [FGT].) So (2) will be established once we show $n \geq k$.

Let $A=\operatorname{Aut}(\hat{H})$ and $D=C_{A}(P / Z(P))$. Then $[\hat{H}, D] \leq C_{\hat{H}}(P / Z(P$ $))=\hat{Q}$, so as \hat{Q} / Z is of exponent 2 , so is D. Suppose $d \in D-\hat{Q} / Z$ and let $\tilde{P}=\hat{P} / \Phi(P)$, and form the product $E=\tilde{P}\langle d\rangle$. As d centralizes \hat{H} / \hat{Q} and \hat{H} / P is perfect, d centralizes \hat{H} / P, so \hat{H} acts on E. Claim E is abelian. If not, as \tilde{P} is abelian, $C_{\tilde{P}}(d)=Z(E)$ is \hat{H} invariant, so as H^{*} is irreducible on $\tilde{Q}=\tilde{P} / \tilde{Z}(P)$ and $\tilde{P}=[\tilde{P}, \hat{H}]$, either $Z(E) \leq$ $\tilde{Z}(P)$ or $\tilde{P}=Z(E)$, with the latter impossible as E is nonabelian. So $C_{\tilde{P}}(d) \leq \tilde{Z}(P)$. Let $x \in P-Z(P), U=\langle[x, d]\rangle$, and $\bar{E}=E / \tilde{U}$. Then $\bar{x} \in C_{\bar{P}}(d)-\bar{Z}(P)$, so the argument above shows \bar{E} is abelian, and hence $\tilde{U}=[\tilde{P}, d]$. Therefore $\left|\tilde{P}: C_{\tilde{P}}(d)\right|=|\tilde{U}|=2$, so as $C_{\tilde{P}}(d) \leq \tilde{Z}(P), \tilde{Q}$ is of order 2, a contradiction.

We have shown that E is abelian and hence that D centralizes $P / \Phi(P)$. On the other hand $\left[C_{A}(P), \hat{H}\right] \leq C_{\hat{H}}(P)=Z$, so as \hat{H} is perfect, $C_{A}(P)=1$. Thus D is faithful on P. But $P=P_{0} Z(P)$ with $P_{0} \cong Q$ and as D centralizes $P / \Phi(P), D$ centralizes $P_{0} / \Phi\left(P_{0}\right)$. Hence as $\operatorname{Inn}\left(P_{0}\right)=C_{\operatorname{Aut}\left(P_{0}\right)}\left(P_{0} / \Phi\left(P_{0}\right)\right), D / \operatorname{Inn}(P)$ is faithful on $Z(P)$. That is $D / \operatorname{Inn}(P)$ acts faithfully as a group of transvections on $Z(P)$ with center $\Phi(P)$. So to complete the proof of (2) and (4), it remains to show $m(D / \operatorname{Inn}(P)) \geq k$.

Let W be the largest $\mathbf{F}_{2} H^{*}$-module with $C_{W}\left(H^{*}\right)=0$ and $V=$ $\left[W, H^{*}\right] \cong \tilde{Q}$.(cf. section 17 in [FGT].) Let $x \mapsto \dot{x}$ be an H^{*}-isomorphism of \tilde{Q} with V. The representation of H^{*} on W induces a representation $\pi: \tilde{H} \rightarrow G L(W)$ of \tilde{H} on W. Form the semidirect product $G=\tilde{H} W$ of W by \tilde{H} with respect to the representation π and let $V_{0}=\{x \dot{x}: x \in$ $\tilde{Q}\} \leq G$. As \tilde{Q} centralizes W, V_{0} is a normal subgroup of G and in G / V_{0}, $x \in \tilde{Q}$ is identified with \dot{x}, so G / V_{0} has normal subgroups $\tilde{H} V_{0} / V_{0} \cong \tilde{H}$ and $W V_{0} / V_{0} \cong W$ with $\left(\tilde{H} V_{0} / V_{0}\right) \cap\left(W V_{0} / V_{0}\right)=\tilde{Q} V_{0} / V_{0} \cong \tilde{Q}$. Hence
W induces a faithful group of automorphism on \tilde{H} centralizing \tilde{Q} and by part (3), W factors through D, so $m(D / \operatorname{Inn}(P)) \geq m(W / V)=k$, completing the proof of (2) and (4).

Notice that (4) implies (5). Finally (5) and the argument in the penultimate paragraph of the proof of 8.17 in [SG] establishes (6).
Q.E.D.
(3.3) Let $H \in \mathcal{H}$ be perfect with $\operatorname{Schur}_{2}\left(H^{*}\right)=1$. Then each $H_{0} \in \mathcal{H}$ with $F^{*}\left(H_{0}\right) \cong F^{*}(H)$ and $H_{0} / Z\left(F^{*}\left(H_{0}\right)\right) \cong H / Z\left(F^{*}(H)\right)$ is isomorphic to H.

Proof. Adopt the notation of 3.2. As $\operatorname{Schur}_{2}\left(H^{*}\right)=1, P=\hat{Q}$ by 3.2.1. Then by $3.2 .6, H \cong \hat{H} / U \cong H_{0}$ for some fixed complement U to $\Phi(P)$ in $Z(P)$.
Q.E.D.

§4. Large extraspecial 2-subgroups

In this section we assume the following hypotheses:

Hypothesis 4.1. G is a finite group, z is an involution in $G, H=C_{G}(z)$, and $Q=F^{*}(H)$ is an extraspecial 2-group.

In addition we adopt the following notational conventions: Let $\tilde{H}=$ $H /\langle z\rangle$ and $H^{*}=H / Q$. From section 8 in [SG], \tilde{Q} has the structure of an orthogonal space over \mathbf{F}_{2} when we identify \mathbf{F}_{2} with $\{1, z\}$ and take $q(\tilde{u})=u^{2}$ and $(\tilde{u}, \tilde{v})=[u, v]$ for $u, v \in Q$. Of course H^{*} is embedded into $O(\tilde{Q})$ via its action by conjugation.

The width of an extraspecial 2-group Q is the integer w such that $|Q|=2^{2 w+1}$.

Example 4.2. Let w be a positive integer and L a finite group. A pair (G, z) satisfies Hypothesis $\mathcal{H}(w, L)$ if (G, z) satisfies Hypothesis 4.1 with Q of width $w, H^{*} \cong L$, and z not weakly closed in Q with respect to G. In [SG] the Monster and Baby Monster are constructed as groups satisfying Hypotheses $\mathcal{H}\left(12, C o_{1}\right)$ and $\mathcal{H}\left(11, C o_{2}\right)$, respectively.
(4.3) Assume no element of H induces a transvection on \tilde{Q}, and let x be an involution in Q with $x \notin z^{G}$ and $T \in \operatorname{Syl}_{2}\left(C_{H}(x)\right)$. Then
(1) $\langle x, z\rangle=Z(T)=C_{G}\left(C_{Q}(x)\right)$, z is weakly closed in $Z(T)$ with respect to G, and $T \in \operatorname{Syl}_{2}\left(C_{G}(x)\right)$.
(2) $x^{G} \cap Q=x^{H}$.

Proof. Let $X=\langle z, x\rangle$. Then $Z(T)^{*} \leq C_{H}\left(C_{Q}(x)\right)^{*}=Y^{*}$, and Y^{*} centralizes the hyperplane $\widetilde{\left.C_{Q}(x)\right)}$ of \tilde{Q}, so as no element of H induces a transvection on $\tilde{Q}, Y \leq Q$. Then as $X=Z\left(C_{Q}(x)\right), X=Y=Z(T)$. As $x z \in x^{Q}, z$ is weakly closed in X with respect to G. Hence $T \in$ $S y l_{2}\left(C_{G}(x)\right)$, establishing (1).

Let $x^{g} \in Q$ and $S \in \operatorname{Syl}_{2}\left(C_{H}\left(x^{g}\right)\right)$. Then by (1), $T, S^{g^{-1}}$ are Sylow in $C_{G}(x)$, so there is $c \in C_{G}(x)$ with $T^{c}=S^{g^{-1}}$. Then $z^{c g}=z$ as z is weakly closed in $Z(S)$, so $h=c g \in H$ with $Z(T)^{h}=Z(S)$, and hence replacing h by $k h$ with $k \in Q-C_{Q}(x)$ if necessary, $x^{h}=x^{g}$, establishing (2).
Q.E.D.

In the remainder of this section we assume the following hypothesis:
Hypothesis 4.4. Hypothesis 4.1 holds with z not weakly closed in Q with respect to G. In addition $T \in \operatorname{Syl}_{2}(H)$ and $J\left(T^{*}\right) \cong E_{2^{w-1}}$, where $w>2$ is the width of Q.

We adopt the following notational conventions: Let $g \in G-H$ with $s=z^{g} \in Q, E=Q \cap Q^{g}$, and $R=\left(Q^{g} \cap H\right)\left(Q \cap H^{g}\right) \leq T$.

Remark. Note that by Hypothesis 4.1, hypotheses (L1)-(L3) of section 8 of [SG] are satisfied by Q. Further as $w \geq 2$ and z is not weakly closed in Q with respect to G, the hypotheses of 8.7 .3 in [SG] are satisfied, so by that result, Q is a large extraspecial subgroup of G, as defined in section 8 of [SG]. In particular we can appeal to the lemmas in that section.
(4.5) (1) $E \cong E_{2^{w+1}}$.
(2) $C_{H^{*}}(\tilde{s})=N_{H^{*}}\left(R^{*}\right)$.
(3) $R^{*}=J\left(T^{*}\right)$.
(4) Let $X_{2}=\left\langle Q, Q^{g}\right\rangle$ and $V=\langle z, s\rangle$. Then $P_{2}=N_{G}(V)=$ $X_{2} C_{H}(V)$ with $R=C_{X_{2}}(V), P_{2} / R=X_{2} / R \times C_{G}(V) / R, X_{2} / R \cong S_{3}$, and $C_{G}(V) / R \cong N_{H^{*}}\left(R^{*}\right) / R^{*}$.
(5) $E / V \leq Z_{2}(R)$ is centralized by X_{2} and is isomorphic to the dual of R^{*} as a module for $C_{G}(V) / R$.
(6) $R / E \cong E_{2^{2 w-2}}$ is the tensor product of the natural module for X_{2} / R and the module R^{*} for $C_{G}(V) / R$. In particular $C_{Q}(s) / E$ is isomorphic to R^{*} as a $C_{H}(V)$-module.
(7) R^{*} induces the full group of transvections with center \tilde{s} on \tilde{E} and the full group of transvections with axis $C_{Q}(s) / E$ on Q / E.
(8) If $N_{H^{*}}\left(R^{*}\right)$ is irreducible on R^{*} then $N_{H^{*}}(E)=C_{H^{*}}(\tilde{s})$ and H^{*} is absolutely irreducible on \tilde{Q}.

Proof. By 8.15 in [SG], $m_{2}(E)=m+1$ with $m \leq w$ and R^{*} is elementary abelian of rank $2 w-m-1$. Let $R \leq T \in \operatorname{Syl}_{2}(H)$. By Hypothesis $4.4, J\left(T^{*}\right) \cong E_{2^{w-1}}$, so $2 w-m-1=m\left(R^{*}\right) \leq m\left(T^{*}\right)=$ $w-1$, and hence $w \leq m$. We conclude $m=w$ and $R^{*}=J\left(T^{*}\right)$. In particular (1) and (3) hold.

Next by (1) and 8.15 in [SG], (4) and (5) hold, and R / E is the tensor product of the natural module for $X_{2} / R \cong L_{2}(2)$ with the $C_{G}(V) / R$ module isomorphic to $R^{*}, E / V$ is dual to R^{*} as a $C_{G}(V) / R$-module, and R^{*} induces the full group of transvections on \tilde{E} with center \tilde{s}. Then as Q / E is dual to \tilde{E} as a $N_{H^{*}}(E)$-module, R^{*} induces the full group of transvections with axis $C_{Q}(s) / E$ on Q / E, establishing (7).

For $e \in E,[R Q, \tilde{e}] \leq\langle\tilde{s}\rangle$ and for $q \in C_{Q}(s)-E,[R Q, \tilde{q}] \leq \tilde{E}$. Finally for $u \in Q-C_{Q}(s), C_{Q}(s) \leq[R Q, u] E$, so $q e \in[R Q, u]$ for some $e \in E$. Then $[R Q, q e] \leq[R Q, u]$ and as $R Q$ centralizes E / V, $m([R Q, \tilde{q} \tilde{e}]) \geq m([R Q, \tilde{q}])-1$, so

$$
m([R Q, \tilde{u}]) \geq w-1+m([R Q, \tilde{q}])-1>m([R Q, \tilde{q}])
$$

Therefore $m([R Q, \tilde{u}]) \geq m([R Q, \tilde{y}])$ for all $y \in R \cap Q$, so $R \cap Q \unlhd N_{H}(R Q)$. Hence $V=Z(R \cap Q) \unlhd N_{H}(R Q)$, so $N_{H}(R Q)=Q C_{H}(s)$. This completes the proof of (2).

Finally assume $N_{H^{*}}\left(R^{*}\right)$ is irreducible on R^{*}. Then by (4)-(7), $C_{H}(V) / R \cong N_{H^{*}}\left(R^{*}\right) / R^{*}$ has chief series

$$
0<\tilde{V}<\tilde{E}<C_{Q}(t) /\langle z\rangle<Q
$$

and the stabilizers in H^{*} of each of the nontrivial members of this series, other than \tilde{E}, also stabilizes V. Further as $F^{*}(H)=Q$ and $1 \neq R^{*} \unlhd N_{H^{*}}\left(R^{*}\right)=C_{H^{*}}(\tilde{V}), C_{H^{*}}(\tilde{V})$ is proper in H^{*}, so either H^{*} is irreducible on \tilde{Q} or $C_{H^{*}}(\tilde{s})<N_{H^{*}}(E)$. Indeed in the former case as \tilde{V} is of order 2 and $C_{G L(\tilde{Q})}\left(H^{*}\right)$-invariant, the representation is even absolutely irreducible.

So we may assume $C_{H^{*}}(\tilde{s})<N_{H^{*}}(E)$, and it remains to derive a contradiction. Then $N_{H^{*}}(E)$ is irreducible on \tilde{E}, so by $1.2, N_{H^{*}}(E)$ induces $G L(\tilde{E})$ on \tilde{E}. Further as R^{*} is faithful on \tilde{E} and normal in $N_{H^{*}}(V)=C_{H^{*}}(\tilde{s})$ and $R^{*}=J\left(T^{*}\right), N_{H^{*}}(E)$ is faithful on \tilde{E}. Then as $E_{2^{w-1}} \cong R^{*}=J\left(T^{*}\right)$ while $N_{H^{*}}(E) \cong G L(\tilde{E}) \cong G L_{w}(2)$, it follows that $w \leq 2$, contrary to Hypothesis 4.4. Namely $m_{2}\left(G L_{w}(2)\right)>w-1$ for $w>3$ and $J\left(T^{*}\right)=T^{*} \cong D_{8}$ when $N_{H^{*}}(E) \cong G L_{3}(2)$.
Q.E.D.
(4.6) If $C_{R^{*}}\left(N_{H^{*}}\left(R^{*}\right)=1\right.$ then
(1) $\langle\tilde{s}\rangle=C_{\tilde{Q}}\left(N_{H^{*}}\left(R^{*}\right)\right)$, and
(2) $z^{G} \cap Q=\{z\} \cup s^{H}$.

Proof. By 4.5.2 and 4.5.6, $C_{Q}(s) / E$ is isomorphic to R^{*} as a $N_{H^{*}}$ $\left(R^{*}\right)$-module, while by hypothesis, $C_{R^{*}}\left(N_{H^{*}}\left(R^{*}\right)\right)=1$, so $N_{H^{*}}\left(R^{*}\right)$ has no fixed points on $C_{Q}(s) / E$. Hence (1) follows from 4.5.2 and 4.5.7.

Let $y \in G-H$ and $t=z^{y} \in Q$. By (1), 4.5.3, and symmetry between s and $t,\langle\tilde{t}\rangle=C_{\tilde{Q}}\left(N_{H^{*}}\left(J\left(S^{*}\right)\right)\right.$) for some $S^{*} \in S y l_{2}\left(H^{*}\right)$. Then by Sylow's Theorem, $J\left(S^{*}\right)$ is H^{*}-conjugate to $J\left(T^{*}\right)$, so t is H-conjugate to s.
Q.E.D.
(4.7) Assume $R^{*}=C_{H^{*}}\left(R^{*}\right)$. Then
(1) No element of H^{*} induces a transvection on \tilde{Q}.
(2) If in addition $C_{R^{*}}\left(N_{H^{*}}\left(R^{*}\right)\right)=1$, then $x^{G} \cap Q=x^{H}$ for each involution $x \in Q$ with $x \notin\{z\} \cup s^{H}$.

Proof. Part (2) follows from (1), 4.3, and 4.6. If $h^{*} \in H^{*}$ induces a transvection on \tilde{Q} then h^{*} is an involution, to we may take $h \in T$. By 4.5.5, E / V is dual to $R^{*} \cong C_{Q}(s) / E$ as a T^{*}-module and $C_{Q}(s) / E$ is isomorphic to R^{*} by 4.5 .6 , so if $\left[R^{*}, h^{*}\right] \neq 1$ then $m\left(\left[\tilde{Q}, h^{*}\right]\right) \geq$ $2 m\left(\left[R^{*}, h^{*}\right]\right)>1$, a contradiction. Hence $h^{*} \in C_{H^{*}}\left(R^{*}\right)=R^{*}$. Then by 4.5.7, $m\left(\left[\tilde{Q}, h^{*}\right]\right)>1$.
Q.E.D.
(4.8) Assume H^{*} is irreducible on \tilde{Q}. Then
(1) The regular orbits of R^{*} on $\tilde{Q} /\langle\tilde{s}\rangle$ are those in $\tilde{Q} /\langle\tilde{s}\rangle-\widetilde{C_{Q}(s)} /\langle\tilde{s}\rangle$.
(2) If $\left(G_{1}, z_{1}\right)$ satisfies Hypothesis $\mathcal{H}\left(w, H^{*}\right)$ and $C_{R^{*}}\left(N_{H^{*}}\left(R^{*}\right)\right)=1$ then $\tilde{H}_{1} \cong \tilde{H}$.

Proof. Let $V=\langle s, z\rangle$ and $\bar{Q}=Q / V$. By 4.5.7, R^{*} induces the group of transvections with axis $C_{Q}(s) / E$ on Q / E, so all orbits of R^{*} on $\bar{Q}-\overline{C_{Q}(s)}$ are regular. Hence to prove (1) it suffices to show $C_{R^{*}}(\bar{u}) \neq 1$ for each $u \in C_{Q}(s)$. If $u \in E$ this follows from 4.5.7, so assume $u \in$ $C_{Q}(s)-E$ with $C_{R^{*}}(\bar{u})=1$. Then $m\left(\left[R^{*}, \bar{u}\right]\right)=m\left(R^{*}\right)=w-1=m(\bar{E})$, while by 4.5.7, $[R, u] \leq E$, so $\left[R^{*}, \bar{u}\right]=\bar{E}$. By symmetry between z and s, we may assume there is $v \in Q^{g} \cap H-E$ with $\left[v, Q \cap H^{g}\right] V=E$. But as v^{*} induces an involutory automorphism on $\tilde{Q},\left[\tilde{Q}, v^{*}\right] \leq C_{\tilde{Q}}\left(v^{*}\right)$, so v^{*} centralizes \tilde{E}, contrary to 4.5.7. This completes the proof of (1).

Let $K^{*}=N_{H^{*}}\left(R^{*}\right)$ and Ω the graph on H^{*} / K^{*} with K^{*} adjacent to $K^{*} h^{*}$ if $K^{*} h^{*} R^{*}$ is not a regular orbit for R^{*}. Let β be the bilinear form on \tilde{Q}. By (1), $\beta\left(\tilde{s}, \tilde{s}^{h}\right)=0$ if and only if $K^{*} h^{*} \in \Omega\left(K^{*}\right)$.

Assume the hypotheses of (2) and let γ be the bilinear form on \tilde{Q}_{1}. Then there is an isomorphism $H^{*} \cong H_{1}^{*}$ which induces a representation of H^{*} on \tilde{Q}_{1}. By 4.5.2, $K^{*}=C_{H^{*}}\left(\tilde{s}_{1}\right)$ for some $s_{1}=z_{1}^{g_{1}} \in Q_{1}$ and by (1) applied to $G_{1}, \gamma\left(\tilde{s}_{1}, \tilde{s}_{1}^{h}\right)=0$ if and only if $K^{*} h^{*} \in \Omega\left(K^{*}\right)$. Therefore by 2.4 , the representations of H^{*} on \tilde{Q} and \tilde{Q}_{1} are equivalent and \tilde{Q} is isometric to \tilde{Q}_{1}. As \tilde{Q} and \tilde{Q}_{1} are isometric, $Q \cong Q_{1}$. As H^{*} is irreducible on \tilde{Q} and $C_{\tilde{Q}}\left(K^{*}\right)=\langle\tilde{s}\rangle$ is 1-dimensional by $4.6 .1, \tilde{Q}$ is an absolutely irreducible $\mathbf{F}_{2} H^{*}$-module. Hence by 3.1, $\tilde{H} \cong \tilde{H}_{1}$. Q.E.D.
(4.9) Assume $N_{H^{*}}\left(R^{*}\right)$ is irreducible on R^{*} and $\left(G_{1}, z_{1}\right)$ satisfies Hypothesis $\mathcal{H}\left(w, H^{*}\right)$. Then $\tilde{H}_{1} \cong \tilde{H}$.

Proof. As $N_{H^{*}}\left(R^{*}\right)$ is irreducible on R^{*}, H^{*} is irreducible on \tilde{Q} by 4.5.8, and $C_{R^{*}}\left(N_{H^{*}}\left(R^{*}\right)\right)=1$. Hence the lemma follows from 4.8.2.
Q.E.D.
§5. $\quad S p_{6}(2)$ and $U_{6}(2)$
(5.1) Let V be a $2 m$-dimensional symplectic space over a perfect field F of characteristic 2 and $G=S p(V)$. The the conjugacy classes of involutions of G are a_{k}, b_{k}, and $c_{k}, 1 \leq k \leq m$, where for $d=a, b, c$ and $t \in d_{k}, m([V, t])=k, k$ is odd if and only if $d=b$, and $V(t)=\{v \in$ $\left.V:\left(v, v^{t}\right)=0\right\}=V$ if $d=a$, while $V(t)$ is a hyperplane of V if $d=b$ or c.

Proof. This is contained in section 7 of [ASe], but we repeat the proof here for completeness. Let t be an involution in G. For $u, v \in V$, $\left(v, u^{t}\right)=\left(u, v^{t}\right)$, so the map $v \mapsto\left(v, v^{t}\right)$ is a linear map from V into F with kernel $V(t)$. In particular $\operatorname{dim}(V / V(t)) \leq 1$.

Suppose $V=V(t)$. Pick $y_{1} \in V-C_{V}(t), x_{1} \in\left(y_{1}^{t}\right)^{\perp}-y_{1}^{\perp}$, and let $V_{1}=\left\langle y_{1}, y_{1}^{t}, x_{1}, x_{1}^{t}\right\rangle$. Multiplying x_{1} by a suitable scalar, we may take $\left(y_{1}, x_{1}\right)=1$. Then $\left\{y_{1}, x_{1}, y_{1}^{t}, x_{1}^{t}\right\}$ is a hyperbolic basis for V_{1}. (cf. section 19 in [FGT]) In particular V_{1} is nondegenerate so $V=V_{1} \oplus V_{1}^{\perp}$, and proceeding by induction on m,

$$
V=V_{1} \perp \cdots V_{r} \perp W
$$

where $W \leq C_{V}(t)$ and V_{i} has a hyperbolic basis $\left\{y_{i}, x_{i}, y_{i}^{t}, x_{i}^{t}\right\}$. Notice [$V, t]$ has basis $\left\{y_{i}+y_{i}^{t}, x_{i}+x_{i}^{t}: 1 \leq i \leq r\right\}$, so $\operatorname{dim}([V, t])=2 r$ and G is transitive on the set $a_{2 r}$ of involutions t with $V=V(t)$ and $\operatorname{dim}([V, t])=$ $2 r$ by Witt's Lemma.

So assume $V \neq V(t)$. Then $V(t)$ is a hyperplane of V, so $V(t)=V_{0}^{\perp}$ for the point $V_{0}=V(t)^{\perp}$. Pick $u \in V-V(t), a \in F$ with $a^{2}=\left(u, u^{t}\right)^{-1}$,
and let $x_{1}=a u$. Then $\left\{x_{1}, x_{1}^{t}\right\}$ is a hyperbolic basis for $V_{1}=\left\langle x_{1}, x_{1}^{t}\right\rangle$ and $V=V_{1} \oplus V_{1}^{\perp}$. Continuing in this fashion we write

$$
V=V_{1} \perp \cdots \perp V_{s} \perp W
$$

where V_{i} has hyperbolic basis $\left\{x_{i}, x_{i}^{t}\right\}$ and $W \leq V(t)$. Then $V_{0}=\left\langle v_{0}\right\rangle$, where $v_{0}=\sum_{i=1}^{s} x_{i}+x_{i}^{t}$. If s is odd let $x=\sum_{i=1}^{s} x_{i}$ and observe $\left\{x, x^{t}\right\}$ is a hyperbolic basis for $U=\left\langle x, x^{t}\right\rangle$ with $U^{\perp}=V(t) \cap x^{\perp} \leq V(t)$, so by the $a_{2 r}$ case, the restriction of t to U^{\perp} is of type $a_{2 r}$ and G is transitive on the set $b_{2 r+1}$ of involutions t with $m([V, t])=2 r+1$.

Finally if s is even let $x=x_{s}$ and $y=\sum_{i<s} x_{i}$. Then $\left\{x, x^{t}, y, y^{t}\right\}$ is a hyperbolic basis for $U=\left\langle x, x^{t}, y, y^{t}\right\rangle$ with $V_{0} \leq U$, so again $U^{\perp} \leq V(t)$ and by the $a_{2 r}$ case, G is transitive on the set $c_{2 r}$ of involutions with $V \neq V(t)$ and $m([V, t])=2 r$.
Q.E.D.

As an immediate corollary to 5.1 we have:
(5.2) $S p_{6}(2)$ has four classes b_{1}, a_{2}, c_{2}, and b_{3} of involutions.
(5.3) Let $G=S p_{6}(2)$. Then $\operatorname{Schur}_{2}(G) \cong \mathbf{Z}_{2}$ and involutions of type b_{1} and c_{2} in G lift to elements of order 4 in $\operatorname{Cov}_{2}(G)$.

Proof. The centralizer of an involution in Co_{3} is a covering of $S p_{6}(2)$ over \mathbf{Z}_{2}, so it remains to show $\left|\operatorname{Schur}_{2}(G)\right| \leq 2$ and to establish the statement about lifts of involutions. Let b be a transvection in $G, H=C_{G}(b)$, and $A=O_{2}(H)$. Then b is of type b_{1} and A is the core of the permutation module for the Levi factor $L \cong S_{6}$ for H, with each coset of $\langle b\rangle$ in A containing one involution of type a_{2} and one of type c_{2}.

Let \hat{G} be a covering of G over a center $Z=\langle z\rangle$ of order 2 and for $B \leq G$ write \hat{B} for the preimage of B in \hat{G}. From the representation of L on A, either $\Phi(\hat{A})=1$ or $\hat{A} \cong \mathbf{Z}_{4} * 2^{1+4}$. Assume the former. Then as $H^{1}(L, A /\langle b\rangle) \cong \mathbf{Z}_{2}, \hat{A}$ splits over Z. Further all involutions in L are of type b_{1}, a_{2}, or c_{2}, and hence lift to involutions as $\Phi(\hat{A})=1$. Therefore $\hat{L}=Z \times \hat{L}_{0}$ and then $\hat{H}=\hat{L}_{0}\left[\hat{A}, \hat{L}_{0}\right] \times Z$ splits over Z. But then as H contains a Sylow 2 -subgroup of G, \hat{G} splits over Z, a contradiction.

So $\hat{A}=\mathbf{Z}_{4} * 2^{1+4}$ and in particular $\langle\hat{b}\rangle=\langle\beta\rangle$ so that involutions of type b_{1} lift to element of order 4. Next G has a parabolic P with $P / O_{2}(P) \cong L_{3}(2)$ and possessing a P-submodule R of $O_{2}(P)$ which is the natural module for $P / O_{2}(P)$ with each involution in R of type a_{2}. As P is transitive on $R^{\#}, \Phi(\hat{R})=1$, so elements of type a_{2} lift to
involutions. Thus if $\sigma \in \hat{A}$ is the lift of an involution of type a_{2} then σ is an involution, so the lift $z \sigma$ of an involution of type c_{2} is of order 4.

Now let $\tilde{G}=\operatorname{Cov}_{2}(G)$. Then $\hat{G}=\tilde{G} / U$ for some hyperplane U of $V=Z(\tilde{G})$. Further if $\alpha \in \tilde{G}$ with α of type b_{1} then $\alpha^{2} \in V-U$. But if $U \neq 1$ there is a hyperplane W of V with $\alpha^{2} \in W$, so that \tilde{G} / W is a covering of G over \mathbf{Z}_{2} in which transvections lift to involutions, a contradiction.
Q.E.D.
(5.4) Up to isomorphism the spin module for $S p_{6}(2)$ is the unique 8-dimensional irreducible $\mathbf{F}_{2} S p_{6}(2)$-module .

Proof. Let $G=S p_{6}(2)$ and $0 \neq M$ an irreducible $\mathbf{F}_{2} G$-module. As \mathbf{F}_{2} is a splitting field for $G, M=M(\lambda)$ for some restricted dominant weight $\lambda \neq 0$. Next the Weyl group W for G is of type C_{3}, so the orbit λW of λ under W is of length $\left|W: W_{\lambda}\right|$ where W_{λ} is the parabolic stabilizing λ, so either $|\lambda W|>8$ or $\lambda=\lambda_{1}$ or λ_{3} and $|\lambda W|=6$ or 8 , respectively, where λ_{i} is the i th fundamental dominant weight. As $M\left(\lambda_{1}\right)$ is the natural module of dimension 6 and $M\left(\lambda_{3}\right)$ the spin module of dimension 8 , the lemma follows.
Q.E.D.
(5.5) Let $G \cong U_{6}(2)$ and V an absolutely irreducible 20-dimensional $\mathbf{F}_{2} G$-module such that $G_{v} \cong L_{3}(4) / E_{2^{9}}$ for some $v \in V$. Let $M=$ $V \otimes_{\mathbf{F}_{2}} \mathbf{F}_{4}$ regarded as a $\mathbf{F}_{4} G$-module. Then $M=\Lambda^{3}(N)$, where N is the natural module of dimension 6 for the covering $\hat{G} \cong S U_{6}(2)$ of G. In particular the $\mathbf{F}_{2} G$-module V is determined up to equivalence.

Proof. As V is an absolutely irreducible $\mathbf{F}_{2} G$-module of dimension $20, M$ is an irreducible $\mathbf{F}_{4} G$-module of dimension 20 . Next $\hat{G} \leq S \leq$ $G L(M)$ with $S \cong S L_{6}(4)$ and if σ is the graph-field automorphism of S with $C_{S}(\sigma)=\hat{G}$ then σ acts on M too. As v is fixed by the maximal parabolic G_{v} of G, v is a high weight vector for M as an $\mathbf{F}_{4} S$-module, so $\mathbf{F}_{4} v$ is stabilized by a parabolic P of S containing \hat{G}_{v} and invariant under σ. It follows that P is the parabolic of S corresponding to the middle node of the Dynkin diagram of S. Thus if λ is the high weight vector of M and W is the Weyl group of S then W_{λ} is the parabolic of W corresponding to the middle node, so $W_{\lambda} \cong S_{3} \times S_{3}$ and λW is of length $\left|W: W_{\lambda}\right|=20$. Hence as $20=\operatorname{dim}_{F_{4}}(M), \lambda$ is the unique dominant weight of M, so $\lambda=\lambda_{3}$ is the third fundamental dominant weight for S and $M=M\left(\lambda_{3}\right)$ is the corresponding high weight module. Hence $M=\Lambda^{3}(N)$.
Q.E.D.

In the next three lemmas in this section let $G \cong U_{6}(2), V, M, S$, and N be as in Lemma 5.5. We discover in section 7 that a module satisfying
the hypothesis of V admits the structure of an orthogonal space over \mathbf{F}_{2} preserved by G, so as V is determined up to equivalence, V has that structure and $G \leq O(V)$.
(5.6) Let $G_{0}=G_{1} \times G_{2}$ be the stabilizer in G of a nondegenerate 2-dimensional subspace of the natural module N for \hat{G}, with $G_{1} \cong U_{2}(2)$ and $G_{2} \cong U_{4}(2)$. Then as an orthogonal space over $\mathbf{F}_{2}, V=\left(V_{1} \oplus\right.$ $\left.V_{2}\right) \perp V_{3}$, where V_{1} and V_{2} are copies of the $O_{6}^{-}(2)$-module for $G_{2}, V_{1}=$ $[V, j]$ for some involution $j \in G_{1}$, and V_{3} is isomorphic to the $U_{4}(2)$ module for G_{2}.

Proof. Let G_{0} be the stabilizer of a nondegenerate 2-subspace N_{0} of N. Pick an orthonormal basis $\left\{x_{1}, \ldots, x_{6}\right\}$ for N with $x_{1}, x_{2} \in N_{0}$. By 5.5 we may regard M as $\Lambda^{3}(N)$. Let M_{3} be the subspace of M spanned by $m_{i}=x_{1} \wedge x_{2} \wedge x_{i}, 3 \leq i \leq 6$. Then G_{1} centralizes M_{3} and the map $m_{i} \mapsto x_{i}$ induces an isomorphism of M_{3} with N_{0}^{\perp} as an $\mathbf{F}_{4} G_{2}$-module, so M_{3} is the natural module for $G_{2} \cong U_{4}(2)$.

Next we can choose j to interchange x_{1} and x_{2}, so $[M, j]=M_{1}$ is spanned by $m_{r, s}=\left(x_{1}+x_{2}\right) \wedge x_{r} \wedge x_{s}, 3 \leq r<s \leq 6$, and the map $m_{r, s} \mapsto x_{r} \wedge x_{s}$ is an isomorphism of M_{1} with $\bigwedge^{2}\left(N_{0}^{\perp}\right)$ as an $\mathbf{F}_{4} G_{2^{-}}$ module. Therefore as $\Lambda^{2}\left(N_{0}^{\perp}\right)$ is the $O_{6}^{-}(2)$-module for G_{2} tensored up to \mathbf{F}_{4}, M_{1} is that module. Similarly $G_{1}=\langle j, i\rangle$ for i a conjugate of j and $M_{2}=[M, i]$ is isomorphic to M_{1} as an $\mathbf{F}_{4} G_{2}$-module and $M=M_{1} \oplus M_{2} \oplus M_{3}$. Recall $G=C_{S}(\sigma)$ with σ acting on M_{i}, so $M_{i}=$ $V_{i} \otimes_{\mathbf{F}_{2}} \mathbf{F}_{4}$ for some $\mathbf{F}_{2} G_{0}$-submodule V_{i} of V satisfying the conclusions of this lemma.
Q.E.D.
(5.7) Let z be a long root element of $G, L \cong U_{4}(2)$ a Levi factor of $C_{G}(z)$, and W a $\mathbf{F}_{2} G$-module with $C_{W}(G)=0$ and $[W, G]=V$. Then $W=W_{1} \oplus W_{2} \oplus W_{3}$ as a \mathbf{F}_{2} L-module, with $W_{i} \leq V$ of dimension 6 for $i=1,2, V_{3}=V \cap W$ of dimension 8 , and $C_{W}(L)=0$.

Proof. First $K=C_{G}(L) \cong S_{3}$ with $K L$ the stabilizer in G of a nondegenerate 2 -subspace N_{0} of N. Thus by the previous lemma, $V=V_{1} \oplus V_{2} \oplus V_{3}$ with $V_{1}+V_{2}=[V, K], \operatorname{dim}\left(V_{1}\right)=\operatorname{dim}\left(V_{2}\right)=6$, and $V_{3}=C_{V}(K)$ of dimension 8. Let Y be of order 3 in K. Then $V_{1}+V_{2}=[W, K]$. Let $W_{3}=C_{V}(Y)$. Then $V_{3}=V \cap W_{3}$ and it remains to show $C_{W}(L)=0$. Assume not and let U be a point in $C_{W}(L)$. Replacing W by $V+U$ we may assume V is a hyperplane of W. Now $C_{W}(L)=C_{W_{3}}(L)=C_{W}(L K)=U$.

Let $E_{27} \cong E \leq L$ and $A=E Y$. Then $A=J(T)$ for $T \in S y l_{3}(G)$ and $N_{G}(A) / A \cong S_{6}$. As V_{3} is the $U_{4}(2)$-module for $L, V_{3}=\left[V_{3}, E\right]$,
so as $V_{1}+V_{2}=[W, Y], V=[W, A]$ and $U=C_{W}(A)$. Therefore $X=$ $\left\langle N_{G}(A), L K\right\rangle$ centralizes U, so to derive a contradiction, it remains to prove $X=G$.

Now X is a group generated by the class $D=z^{X}$ of 3-transpositions. Further as $C_{G}(z)$ is a maximal parabolic of G with L irreducible on $O_{2}\left(C_{G}(z)\right) /\langle z\rangle, C_{X}(z)=\langle z\rangle \times L$. By Exercise 3.3 in $[3 T], O_{3}(X) \leq$ $Z(X) \geq O_{2}(X)$. Let $B=N_{G}(A)$; then $B=\left\langle C_{B}(z), C_{B}(d)\right\rangle$ for $d \in$ $z^{B}-K$, so $X=\langle L, B\rangle=\left\langle C_{X}(z), C_{B}(d)\right\rangle$, and hence the commuting graph on D is connected. Therefore by 9.4 .4 in [3T], X is primitive on D. Then by Theorem 9.5.4, X is rank 3 on D, and hence $C_{X}(z)$ is maximal in X, contradicting $C_{X}(z)<K L$. This completes the proof of the lemma.
Q.E.D.
(5.8) (1) $\operatorname{dim}_{\mathbf{F}_{2}} H^{1}(G, V)=2$.
(2) Let $L \cong U_{4}(2)$ and U the natural module for L regarded as an 8 -dimensional \mathbf{F}_{2}-module. Then $\operatorname{dim}_{\mathbf{F}_{2}} H^{1}(L, U)=2$.
(3) Let D be the largest $\mathbf{F}_{2} G$-module such that $D=[D, G]$ and $D / C_{D}(G)=V, G_{v}$ a $L_{3}(4) / E_{2^{9}}$ parabolic of G, and $E / C_{D}(G)$ the 10dimensional G_{v}-submodule of V. Then $C_{D}(G) \leq\left[E, G_{v}\right]$.

Proof. By 5.7, $\operatorname{dim}_{\mathbf{F}_{2}} H^{1}(G, V) \leq \operatorname{dim}_{\mathbf{F}_{2}} H^{1}(L, U)$. Further we find in a later paper in this series that $\operatorname{dim}_{\mathbf{F}_{2}} H^{1}(G, V) \geq 2$ and that (3) holds, so it remains to show $\operatorname{dim}_{\mathbf{F}_{2}} H^{1}(L, U) \leq 2$. Let W be the largest $\mathbf{F}_{2} L$-module with $[W, L]=U$ and $C_{W}(L)=0$. (cf. 17.11 of $[\mathrm{FGT}]$) As U is a $\mathbf{F}_{4} L$-module, so is W by the universal property of W, and it remains to show $\operatorname{dim}_{\mathbf{F}_{4}}(W / U) \leq 1$. Let $S \in S y l_{3}(L)$. Then $A=J(S) \cong$ E_{27} and $Z=Z(S)$ is of order 3 with $O_{3}\left(C_{L}(Z)\right)=P \cong 3^{1+2}$ and $C_{G}(Z) / P \cong S L_{2}(3)$. Now $U=[U, A]$ so $W=U \oplus C_{W}(A)$ and $N_{L}(A)$ centralizes $C_{W}(A)$. On the other hand $C_{U}(Z)$ is a point centralized by $O^{3}\left(C_{L}(Z)\right)$, so the involution t inverting P / Z acts on S and hence centralizes $C_{W}(A)$ and then also $C_{W}(Z)=C_{U}(Z)+C_{W}(A)$. Then if x is of order 4 in $C_{L}(Z)$ with $x^{2}=t, x$ induces a \mathbf{F}_{4}-transvection on $C_{W}(Z)$ with center $C_{U}(Z)$, so if $\operatorname{dim}_{\mathbf{F}_{4}}(W / U)>1$, then the hyperplanes $C_{W}(Z\langle x\rangle)$ and $C_{W}(A)$ of $C_{W}(Z)$ intersect nontrivial, so $C_{W}(X) \neq 0$, where $X=\left\langle N_{L}(A), x\right\rangle$. Finally as $N_{L}(A)$ is a maximal parabolic of $L \cong P S p_{4}(3)$ and $x \notin N_{L}(A), X=L$, contradicting $C_{W}(L)=0$. Q.E.D.
(5.9) Let V be a 6-dimensional unitary space over \mathbf{F}_{4} and Δ the graph on the totally singular 3 -subspaces of V with distinct $x, y \in \Delta$ adjacent if $x \cap y \neq 0$. Then $\operatorname{Aut}(\Delta)=P \Gamma(V) \cong \operatorname{Aut}\left(U_{6}(2)\right)$ is the group of projective semilinear unitary maps on V.

Proof. Let $G=P \Gamma(V)$ and $A=A u t(\Delta)$, so that $G \leq A$. For $x \in \Delta, G_{x}=L R$, where $R \cong E_{2^{9}}$ is the radical of G_{x} and L is a Levi factor isomorphic to $P G L_{3}(4)$ extended by a field automorphism. Further $\Delta(x)=\Delta_{1}(x) \cup \Delta_{2}(x)$ where

$$
\Delta_{i}(x)=\{y \in \Delta: \operatorname{dim}(x \cap y)=i\}
$$

with $\left|\Delta_{1}(x)\right|=336$ and $\left|\Delta_{2}(x)\right|=42$. Also $\Delta-x^{\perp}=\Gamma(x)$ is of order 512 with R regular on $\Gamma(x)$ and $L=G_{x, z}$ for suitable $z \in \Gamma(x)$.

For $y \in \Delta(x)$, let

$$
\theta(y)=\{u \in \Delta(x): x \cap y=x \cap u\}
$$

and let $\theta=\{\theta(y): y \in \Delta(x)\}$ and $\theta_{i}=\left\{\theta(y): y \in \Delta_{i}(x)\right\}$. Notice $u \in \Delta(x, z)$ if and only if $u=(u \cap x)+(u \cap z)$ with $u \cap z=(u \cap x)^{\perp} \cap z$, so $|\Delta(x, z) \cap T|=1$ for each $T \in \theta$. Thus if $m_{i}=|\Delta(y) \cap \Gamma(x)|$ for $y \in \Delta_{i}(x)$, then

$$
m_{i} \cdot\left|\Delta_{i}(x)\right|=512 \cdot 21
$$

so $m_{1}=2^{5}$ and $m_{2}=2^{8}$. Therefore A_{x} acts on $\Delta_{i}(x)$ for $i=1,2$. Also for $y \in \Delta_{2}(x), 21 \cdot|\theta(y)|=\left|\Delta_{2}(x)\right|=42$, so $\theta(y)$ is of order 2 .

As R is regular on $\Gamma(x), A_{x}=R A_{x, z}$. Now for $u \in \Delta_{1}(x, z)$ and $v \in \Delta_{2}(x, z), u \in \Delta(v)$ if and only if $u \cap x \leq v \cap x$, so $\Delta(x, z)$ has the structure of the projective plane π on x, and that structure is preserved by $A_{x, z}$. Let B be the kernel of the action of $A_{x, z}$ on $\Delta(x, z)$. As $A u t(\pi) \cong L$ and L is faithful on $\Delta(x, z), A_{x, z}=L B$. Further for $T \in \theta_{2}$, $|\Delta(x, z) \cap T|=1$ and $|T|=2$, so B fixes both points of T. Therefore B is trivial on $\Delta_{2}(x)$. However as L is irreducible on R, L is maximal in $G_{x}=L R$, so as R is regular on $\Gamma(x), G_{x}$ is primitive on $\Gamma(x)$, and hence for $z \neq w \in \Gamma(x), \Delta_{2}(x, z) \neq \Delta_{2}(x, w)$. Therefore as B is trivial on $\Delta_{2}(x), B$ is also trivial on $\Gamma(x)$. Hence B fixes $\Delta(x, w) \cap T$ for each $T \in \theta_{1}$, so B is trivial on $\Delta_{1}(x)$, and therefore $B=1$.

We have shown $A_{x, z}=L B=L$, so $A_{x}=R A_{x, z}=R L=G_{x}$. Then as G is transitive on $\Delta, A=G A_{x}=G$, completing the proof. Q.E.D.

§6. Groups of type ${ }^{2} E_{6}(2)$

Define a group G to be of type ${ }^{2} E_{6}(2)$ if G possesses an involution z such that (G, z) satisfies Hypothesis $\mathcal{H}\left(10, U_{6}(2)\right)$, in the language of Example 4.2. Throughout this short section, assume G is of type ${ }^{2} E_{6}(2)$ and let z be an involution in G such that $H=C_{G}(z)$ and $Q=$ $F^{*}(H)$ satisfy our hypotheses. Therefore Hypothesis 4.1 is satisfied, and indeed in a moment we see that Hypothesis 4.4 is also satisfied. Thus
we adopt the notation of section 4 , except that we write $t=z^{g}$ for our distinguished element of $z^{G} \cap Q-\{z\}$. In particular $H=C_{G}(z)$ satisfies $Q=F^{*}(H) \cong 2^{1+20}, H^{*}=H / Q \cong U_{6}(2)$, and z is not weakly closed in Q with respect to G. Recall also that $E=Q \cap Q^{g}$ and $R=$ $\left(Q^{g} \cap H\right)\left(Q \cap H^{g}\right)$.
(6.1) (1) $E \cong E_{2^{11}}$.
(2) $N_{H^{*}}(E)=C_{H^{*}}(\tilde{t})=N_{H^{*}}\left(R^{*}\right)$ is the parabolic of H^{*} which is the split extension of $R^{*} \cong E_{2^{9}}$ by $L_{3}(4)$ with R^{*} the Todd module for $L_{3}(4)$.
(3) $R^{*}=J\left(T^{*}\right)$ for $T \in S y l_{2}(H)$.
(4) Let $X_{2}=\left\langle Q, Q^{g}\right\rangle$ and $V=\langle z, t\rangle$. Then $P_{2}=N_{G}(V)=$ $X_{2} C_{H}(V)$ with

$$
R=O_{2}\left(P_{2}\right)=C_{X_{2}}(V)
$$

$P_{2} / R=X_{2} / R \times C_{G}(V) / R, X_{2} / R \cong S_{3}$, and $C_{G}(V) / R \cong L_{3}(4)$.
(5) $E / V=Z_{2}(R)$ is centralized by X_{2} and is the dual of the Todd module for $C_{G}(V) / R$.
(6) $R / E \cong E_{2^{18}}$ is the tensor product of the natural module for X_{2} / R and the Todd module for $C_{G}(V) / R$.
(7) H^{*} is absolutely irreducible on \tilde{Q}.

Proof. Let $R \leq T \in \operatorname{Syl}_{2}(H)$. By 23.4 in $[3 T], J\left(T^{*}\right) \cong E_{2^{9}}$, so Hypothesis 4.4 is satisfied. Indeed $N_{H^{*}}\left(J^{*}\right)$ is the parabolic of $H^{*} \cong$ $U_{6}(2)$ which is the split extension of $J\left(T^{*}\right)$ by $L_{3}(4)$ with $J\left(T^{*}\right)$ the Todd module. Therefore the lemma follows from 4.5.
Q.E.D.
(6.2) $\tilde{Q} \otimes_{\mathbf{F}_{2}} \mathbf{F}_{4}$ is isomorphic as a $\mathbf{F}_{4} H^{*}$-module to $\bigwedge^{3}(N)$, where N is the natural module of dimension 6 for the covering $\hat{H}^{*} \cong S U_{6}(2)$ of H^{*}. In particular the representation of H^{*} on \tilde{Q} is determined up to equivalence.

Proof. By 6.1.7, \tilde{Q} is an absolutely irreducible $\mathbf{F}_{2} H^{*}$-module of dimension 20 , while by $6.1 .2, H_{\tilde{t}}^{*} \cong L_{3}(4) / E_{2^{9}}$. So as $H^{*} \cong U_{6}(2)$, the lemma follows from 5.5.
Q.E.D.
§7. ${ }^{2} E_{6}(2)$
In this section $G={ }^{2} E_{6}(2)$ and z is a long root involution in G. It is well known that:
(7.1) The group G is of type ${ }^{2} E_{6}(2)$ with $z 2$-central in G.

Thus we adopt the notation of section 6. In particular $H=C_{G}(z)$, $Q=O_{2}(H)$, and $T \in S y l_{2}(H)$ with $R \leq T$. Let $\Delta=z^{G}$, and let $P_{1}=H, P_{2}, P_{3}, P_{4}$ be the four maximal parabolics of G containing T ordered so that we have the diagram

For $J \subseteq\{1,2,3,4\}$ let L_{J} be the standard Levi factor in the parabolic $P_{J}=\bigcap_{j \in J} P_{j}$ and $R_{J}=O_{2}\left(P_{J}\right)$ the unipotent radical of P_{J}. In partic$\operatorname{ular} R=R_{2}$. Let W be the Weyl group of G.
(7.2) H has the following 5 orbits on Δ :
(1) $\Delta^{0}(z)=\{z\}$.
(2) $\Delta^{1}(z)=Q \cap \Delta-\{z\}$.
(3) $\Delta_{1}^{2}(z)=\Delta \cap H-Q$.
(4) $\Delta_{2}^{2}(z)=\{d \in \Delta:[z, d] \in \Delta\}$.
(5) $\Delta^{3}(z)=\{d \in \Delta:|z d|=3\}$.

Proof. We sketch the proof in section 12 of [ASe] for completeness. The subgroup $W_{1}=W \cap P_{1}$ has 5 orbits on W / W_{1} so $H=P_{1}$ has 5 orbits on $G / H \cong \Delta$; cf. Exercise 14.6.1 in [FGT]. Now $z=U_{\alpha}(1)$, where α is the highest root in the root system Φ determining T. There is a long root $\beta \neq \alpha$ with $t=U_{\beta}(1) \in Q$; then $t \in \Delta^{1}(z)$. Similarly there is a long root γ such that $U_{\gamma}(1) \in L_{1}$, long roots $\epsilon_{i}, i=1,2$ with $U_{\epsilon_{i}}(1) \in L_{1}$, and $h \in H$ with $t^{h} \in C_{Q}(t)$, so that

$$
\left[t, t^{h}\right]=z \quad \text { and }\left|U_{\epsilon_{1}}(1) U_{\epsilon_{2}}(1)\right|=3
$$

so $U_{\gamma}(1) \in \Delta_{1}^{2}(z)$ and $\Delta_{2}^{2}(z) \neq \varnothing \neq \Delta^{3}(z)$.
Q.E.D.
(7.3) (1) $L_{1} \cong U_{6}(2)$ is a complement to Q in H.
(2) L_{1} has 3 classes of involutions with representatives j_{1}, j_{2}, j_{3}, where j_{i} is the product of i transvections in $U_{6}(2)$. In particular j_{1} is a long root involution of L_{1} and j_{2} is a short root involution.
(3) $A=J\left(T \cap L_{1}\right) \cong E_{2^{9}}$ is the unipotent radical of the parabolic $P_{2} \cap L_{1}$ of $L_{1}, P_{2} \cap L_{1}=L_{1,2} A$ with $L_{12} \cong L_{3}(4)$, and A is the 9dimensional Todd module for $L_{1,2}$.
(4) All involutions in L_{1} are fused into A and if $a \in A \cap j_{3}^{L_{1}}$ then $C_{L_{1,2}}(a) \cong U_{3}(2)$.

Proof. As L_{1} is the standard Levi factor for P_{1}, L_{1} is a complement to $R_{1}=Q$ in $P_{1}=H$. By $7.1, L_{1} \cong U_{6}(2)$. Then 23.2 in [3T] implies (2), 6.1 implies (3), and 23.3, and 22.2 in [3T] imply (4). Q.E.D.
(7.4) (1) $\operatorname{dim}\left(\left[\tilde{Q}, j_{i}\right]\right)=6,8,10$ for $i=1,2,3$, respectively.
(2) Q is transitive on the involutions in $j_{3} Q$.

Proof. Let $M=N_{L_{1}}\left(L_{1,4}\right)$. Then M is the stabilizer in L_{1} of a nondegenerate 2 -dimensional subspace of the natural module for $L_{1} \cong$ $U_{6}(2)$, so by $5.6, M=M_{1} \times M_{2}$ with $M_{2}=L_{1,4} \cong U_{4}(2)$ and $M_{1}=$ $C_{L_{1}}\left(M_{2}\right) \cong L_{2}(2)$ with $j_{1} \in M_{1}$. Further (again by 5.6) as an orthogonal space over $\mathbf{F}_{2}, \tilde{Q}=\left(\tilde{Q}_{1} \oplus \tilde{Q}_{2}\right) \perp \tilde{Q}_{3}$, where \tilde{Q}_{1} and \tilde{Q}_{2} are copies of the $O_{6}^{-}(2)$-module for $M_{2}, \tilde{Q}_{1}=\left[\tilde{Q}, j_{1}\right]$, and \tilde{Q}_{3} is isomorphic to the $U_{4}(2)$ module for M_{2}. Thus $6=\operatorname{dim}\left(\tilde{Q}_{1}\right)=\operatorname{dim}\left(\left[\tilde{Q}, j_{1}\right]\right)$. Next we can take $j_{2}=a b$, where a, b are L_{1} conjugates of j_{1} in M_{2}, so $\operatorname{dim}\left(\left[\tilde{Q}_{3}, j_{2}\right]\right)=4$ and $\operatorname{dim}\left(\left[\tilde{Q}_{i}, j_{2}\right]\right)=2$ for $i=1,2$, and hence $\operatorname{dim}\left(\left[\tilde{Q}, j_{2}\right]\right)=8$. Finally we can take $j_{3}=j_{1} j_{2}$. Then j_{3} interchanges two of the three M_{2} irreducibles on $\tilde{Q}_{1} \oplus \tilde{Q}_{2}$, so $\operatorname{dim}\left(\left[\tilde{Q}_{1} \oplus \tilde{Q}_{2}, j_{3}\right]\right)=6$ and $\operatorname{dim}\left(\left[\tilde{Q}_{3}, j_{3}\right]\right)=$ $\operatorname{dim}\left(\left[\tilde{Q}_{3}, j_{2}\right]\right)=4$. That is (1) holds.

As $\operatorname{dim}\left(\left[\tilde{Q}_{3}, j_{3}\right]\right)=10=\operatorname{dim}(\tilde{Q}) / 2, C_{\tilde{Q}}\left(j_{3}\right)=\left[\tilde{Q}, j_{3}\right]$, so \tilde{Q} is transitive on the involutions in $\tilde{j}_{3} \tilde{Q}$; cf. Exercise 2.8 .1 in [SG]. Hence all involutions in $j_{3} Q$ are conjugate to j_{3} or $j_{3} z$. Next we have a symplectic form α on \tilde{Q}_{2} defined by $\alpha(\tilde{u}, \tilde{v})=\left(\tilde{u}, \tilde{v} j_{1}\right)$ and there exists $\tilde{u} \in \tilde{Q}_{2}$ with $\alpha\left(\tilde{u}, \tilde{u} j_{2}\right) \neq 0$ as j_{2} is of type c_{2} in M_{2} and \tilde{Q}_{2} is the $O_{6}^{-}(2)$-module for M_{2}. Therefore $\left(\tilde{u}, \tilde{u} j_{3}\right)=\left(\tilde{u}, \tilde{u} j_{2} j_{1}\right)=\alpha\left(\tilde{u}, \tilde{u} j_{2}\right) \neq 0$, and hence $\tilde{u}+\tilde{u} j_{3} \in C_{\tilde{Q}}\left(j_{3}\right)$ is nonsingular, so $j_{3}^{u}=j_{3} z$, establishing (2). Q.E.D.
(7.5) (1) $j_{1} \in \Delta$ is a long root involution so $j_{1} \in z^{G}$ and $H=$ $C_{G}(z) \cong C_{G}\left(j_{1}\right)$.
(2) j_{2} is a short root involution, there is $x \in j_{2}^{G} \cap Q \cap Z\left(R_{4}\right)$, and $C_{G}(x) \leq P_{4}, C_{G}(x)=R_{4} C_{L_{4}}(x)$, where $C_{P_{4}}(x) \cong S p_{6}(2)$ is the stabilizer in $L_{4} \cong \Omega_{8}^{-}(2)$ of x regarded as a nonsingular point of the 8dimensional orthogonal space $Z\left(R_{4}\right)$ for L_{4}, with $Q \cap Z\left(R_{4}\right)$ the subspace orthogonal to z.
(3) There is $y \in j_{3}^{G} \cap Q \cap Q^{g}$ for $g \in P_{2}-H, C_{G}(y) \leq P_{2}$ with $\left|R_{2}: C_{R_{2}}(y)\right|=4$ and $C_{L_{2}}(y) \cong L_{2}(2) \times U_{3}(2)$.
(4) $z, t=z^{g}, x, y$ are representatives for the orbits of H on involutions of Q, with $C_{L_{1}}(\tilde{t}) \cong L_{3}(4) / E_{2^{9}}, C_{L_{1}}(\tilde{x}) \cong S p_{4}(2) / 2^{9}$, and $C_{L_{1}}(\tilde{y}) \cong U_{3}(2) / 2^{8}$.

Proof. First j_{1} is a long root involution of L_{1} by 7.3 .2 , so $j_{1} \in \Delta$ and (1) holds.

Similarly by $7.3 .2, j_{2}$ is a short root involution of L_{1} and hence of G. Let $Z_{4}=Z\left(R_{4}\right)$; it is well known (cf. [CKS]) that Z_{4} is the natural module for $L_{4} \cong \Omega_{8}^{-}(2)$ with long root involutions in Z_{4} the singular points
and short root involutions in Z_{4} the nonsingular points. Further $Q \cap Z_{4}$ is the subspace of Z_{4} orthogonal to z. So if $x \in Q \cap Z_{4}$ is a short root involution then $C_{L_{4}}(x) \cong S p_{6}(2)$. Now $C_{G}(x) \leq P$ for some parabolic P by Borel-Tits; cf. 47.8 .2 in [FGT]. But the only parabolics of G containing subgroups of the form $C_{L_{4}}(x) R_{4}=S p_{6}(2) / 2^{24}$ are conjugates of P_{4}, so $P=P_{4}^{h}$ for some $h \in G$. Then $O_{2}(P)=O_{2}\left(C_{P_{4}}(x)\right)=R_{4}$, so $P=P_{4}$ and (2) is established.

Let $g \in P_{2}-H, t=z^{g}$, and $E=Q \cap Q^{g}$. By 7.3, $A=J\left(T \cap L_{1}\right)=$ $R_{1,2} \cap L_{1} \cong E_{2^{9}}$ contains a conjugate of j_{3}. Further from 6.1.6, $L_{1,2}$ has three irreducibles on R_{2} / E, all fused under P_{2}, so $A E / E$ is one of those irreducibles and $\left(Q \cap R_{2}\right) / E$ is another, and A is fused to $A^{w} \leq Q \cap R_{2}$ under P_{2}. Next A^{w} and $\left[E, L_{1,2}\right]$ are dual irreducibles for $L_{1,2}$ and there is $l \in N_{L_{1}}\left(L_{1,2}\right)$ inducing a graph automorphism on $L_{1,2}$, so $A^{w l}=$ [$E, L_{1,2}$], and hence there is $y \in j_{3}^{G} \cap E$. Next $C_{P_{2}}(y)=C_{L_{2}}(y) C_{R_{2}}(y)$ with $C_{L_{2}}(y)=L_{2,3,4} \times C_{L_{1,2}}(y)$ and by 7.3 .4 and $6.1 .5, C_{L_{1,2}}(y) \cong U_{3}(2)$ with $C_{A}(y)$ a hyperplane of A and $\left|R_{2}: C_{R_{2}}(y)\right|=4$. Thus to complete the proof of (3) it remains to show $C_{G}(y) \leq P_{2}$. Again by Borel-Tits, $C_{G}(y) \leq P$ for some parabolic P of G and by $4.3, z$ is weakly closed in the center of a Sylow 2-subgroup of $C_{G}(y)$, so $P \cap H$ is a parabolic of G. Then $C_{H}(y) \leq P \cap H$.

Let $B=C_{A}(y)$. Observe first that $C_{\tilde{Q}}(B)=\langle\tilde{t}, \tilde{y}\rangle$. For $C_{L_{1,2}}(y)$ is irreducible on the hyperplane $[Q / E, B]$ of Q / E and as $L_{1,2}$ is irreducible on A, B contains a conjugate b of j_{3}. By 7.4.1, $C_{\tilde{Q}}(b) E / E=[\tilde{Q}, b] E / E \leq$ $[Q / E, B]$, so as $C_{L_{1,2}}(y)$ is irreducible on $[Q / E, B]$, so $C_{\tilde{Q}}(B) \leq E$, and then by 4.5.7 completes the proof of the observation.

Next as $\left|R_{2}: C_{R_{2}}(y)\right|=4, R_{2}$ is transitive on $\langle z, t, y\rangle-\langle z, t\rangle$, so \tilde{t} is weakly closed in $C_{\tilde{Q}}(B)=\langle\tilde{t}, \tilde{y}\rangle$, and therefore $N_{L_{1}}(S) \leq L_{1} \cap P_{2}=$ $N_{L_{1}}(A)$, for each 2-subgroup S of L_{1} containing B. Hence $P_{2} \cap P \cap L_{1}$ contains a Sylow 2-subgroup of $P \cap L_{1}$, so as $A=J\left(T \cap L_{1}\right), A \leq P \cap H$. Then as $A=O_{2}\left(A\left(C_{L_{1}}(y) \cap N_{L_{1}}(A)\right)\right)$ and $C_{L_{1}}(y)$ is irreducible on B, $B \leq O_{2}\left(P \cap L_{1}\right) \leq A$, so that $P \cap L_{1}=P_{2} \cap L_{1}$ and then $P \cap H=P_{1,2}$. Therefore $P_{2}=\left\langle P_{1,2}, P_{2,3,4}\right\rangle \leq P$, so $P=P_{2}$ and (3) holds.

Now $\left|L_{1}\right|=2^{15} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 11$ and $\left|C_{H^{*}}(\tilde{y})\right|=2^{11} \cdot 3^{2}$, so $\left|\tilde{y}^{H}\right|=$ $2^{4} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 11$. Similarly $\left|C_{H}(\tilde{t})\right|=2^{15} \cdot 3^{2} \cdot 5 \cdot 7$, so $\left|\tilde{t}^{H}\right|=3^{4} \cdot 11$. Finally

$$
C_{H}(x)=C_{P_{4}}(z) \cap C_{P_{4}}(x)=R_{4} C_{L_{4}}(\langle z, x\rangle)
$$

with $C_{L_{4}}(\langle z, x\rangle) \cong S p_{4}(2) / 2^{5}$, so $\left|C_{H}(x)\right|=2^{33} \cdot 3^{2} \cdot 5$. Then as $\left|C_{Q}(x)\right|=$ $2^{20},\left|C_{L_{1}}(\tilde{x})\right|=2^{13} \cdot 3^{2} \cdot 5$, so $\left|\tilde{x}^{H}\right|=2^{2} \cdot 3^{4} \cdot 7 \cdot 11$. Now the sum of the lengths of these three orbits is
$3^{4} \cdot 11 \cdot\left(1+2^{2} \cdot 7+2^{4} \cdot 5 \cdot 7\right)=3^{4} \cdot 11 \cdot 588=3^{4} \cdot 11 \cdot 19 \cdot 31=\left(2^{9}+1\right)\left(2^{10}-1\right)$.

But $\left(2^{9}+1\right)\left(2^{10}-1\right)$ is the number of singular points in a 20 -dimensional orthogonal space of maximal Witt index over \mathbf{F}_{2}, so (4) is established.
Q.E.D.
(7.6) Q is regular on $\Delta^{3}(z)$ and for $d \in \Delta^{3}(z), C_{G}(\langle z, d\rangle)$ is conjugate under Q to L_{1}.

Proof. By 7.2, we may take $z=U_{\alpha}(1)$ and $d=U_{-\alpha}(1)$. Then $C_{G}(\langle z, d\rangle)=H \cap H^{w_{0}}=P_{1} \cap P_{1}^{w_{0}}=L_{1}$, where w_{0} is the long word in W, as $\alpha W_{0}=-\alpha$, so $z^{w_{0}}=d$. Thus as L_{1} is a complement to Q, Q is regular on $\Delta^{3}(z)$.
Q.E.D.
(7.7) j_{1}, j_{2}, and j_{3} are representatives for the three conjugacy classes of involutions in G.

Proof. We first observe that if j is an involution in G then $z^{i} \in$ $\Delta^{3}(z)$ for some $i \in j^{G}$. This is Lemma 12.2 in [ASe], but we sketch a proof for completeness. Without loss, $j \in H$. By 7.5, each involution in Q is fused into L_{2}, so we may assume $j \notin Q$. Let $H^{*}=H / Q$. It is easy to check that $\left|k^{*} k^{* j}\right|=3$ for some root involution $k \in L_{1}$, so by $7.2, k^{j} \in \Delta^{3}(k)$, completing the proof of the observation.

So each involution in G is fused to $s \in L_{1} \cup L_{1} z$, so s is fused to j_{i} or $j_{i} z$. Finally $z j_{i}$ centralizes a conjugate of $\langle z, d\rangle$ in L_{1} unless $i=3$, so it remains to observe that $z j_{3}$ is conjugate to j_{3} by 7.4.2.

We have shown each involution in G is conjugate to j_{i} for $i=1,2$, or 3. But by 7.5.4 and 4.7.2, these involutions are not fused in G. Q.E.D.
(7.8) Let $g \in P_{2}-H, t=z^{g}$, and $E=Q \cap Q^{g}$. Then
(1) For $h \in P_{1,3,4}-P_{2}, t^{h} \in E$.
(2) $U_{3}=Q \cap Q^{g} \cap Q^{g h} \cong E_{2^{7}}$.
(3) Let $V_{3}=\left\langle z, t, t^{h}\right\rangle$. Then $C_{H}\left(V_{3}\right) / O_{2}\left(C_{H}\left(V_{3}\right)\right) \cong L_{2}(4)$ has chief series

$$
0<\tilde{V}<\tilde{V}_{3}<\tilde{U}_{3}<\tilde{E}
$$

on \tilde{E} with E / U_{3} the $\Omega_{4}^{-}(2)$-module and U_{3} / V_{3} the $L_{2}(4)$-module. Further $C_{H}\left(V_{3}\right)$ has four $L_{2}(4)$-sections and three $\Omega_{4}^{-}(2)$-sections on R_{3}.

Proof. First by 7.5.2, $Z_{4}=Z\left(R_{4}\right)$ is the orthogonal space for $L_{4} \cong \Omega_{8}^{-}(2)$ with $Q \cap Z_{4}$ the hyperplane orthogonal to z. Further the parabolic $P_{3,4}$ is the stabilizer in P_{4} of the totally singular 3-subspace $V_{3}=\left\langle z, t, t^{h}\right\rangle$. Thus $t^{h} \in E$ and indeed $V_{3}=Z\left(P_{3}\right)$ with $C_{H}\left(V_{3}\right)=$ $L_{1,2,3} R_{3}$ and $L_{1,2,3} \cong L_{2}(4)$ has chief series on \tilde{E} has described in (3), except we have not shown that $U_{3}=E_{3}$, where E_{3} is the penultimate
term in the series. But as U_{3} is $C_{H}\left(V_{3}\right)$-invariant, $U_{3}=E_{3}$ or V_{3}, and the latter is impossible as $U_{3} \cap Z_{4}$ is of dimension 5 .

Finally the chief sections can be retrieved as follows. Let $A=R_{2} \cap L_{1}$ be as in 7.3. The nontrivial chief sections of $L_{1,2,3}$ on R_{4} are those in $\left(R_{1,2,3} \cap L_{1}\right) / A, A, E / V$, and $C_{Q}(t) / E$, and by $6.1, A$ is isomorphic to $C_{Q}(t) / E$ and to the dual of E / V as an $L_{1,2,3}$-module. Finally $\left(R_{1,2,3} \cap\right.$ $\left.L_{1}\right) / A$ is the $L_{2}(4)$-module, while A has one $L_{2}(4)$ chief section and one $\Omega_{4}^{-}(2)$-chief section.
Q.E.D.
(7.9) Let Δ be the graph with vertex z^{G} and z adjacent to t if $z \neq$ $t \in Q$. Then Δ is simply connected.

Proof. This follows from 1.1, since the building for G is of type F_{4} and Δ is the collinearity graph of the building.
Q.E.D.
(7.10) (1) G has an involutory outer automorphism σ with $C_{G}(\sigma) \cong$ $F_{4}(2)$, and we may choose σ so that:
(2) $C_{L_{1}}(\sigma) \cong S p_{6}(2)$ and $C_{Q}(\sigma)=D_{1} D_{2}$ where $D_{1} \cap D_{2}=\langle z\rangle$, $\left[D_{1}, D_{2}\right]=1, \tilde{D}_{1}=[\tilde{Q}, \sigma], D_{1}$ is isomorphic to the stabilizer of a nonsingular point in an 8-dimensional orthogonal space over \mathbf{F}_{2} as a $C_{L_{1}}(\sigma)$ module, with singular points in j_{2}^{G}, and $D_{2} \cong 2^{1+8}$ with $C_{Q}(\sigma) / D_{1}$ the spin module for $C_{L_{1}}(\sigma)$.
(3) $C_{L_{2}}(\sigma) \cong S_{3} \times L_{3}(2)$ and σ centralizes $Z\left(R_{2}\right)$.
(4) For $S \in S y l_{2}\left(C_{G}(\sigma)\right), Z(S)=Z(S) \cap Q \cong E_{4}$.
(5) σ and σz are representatives for the orbits of G on involutions in σG and $C_{G}(\sigma z)=C_{H}(\sigma)$.
(6) Let Y be a diagonal group of outer automorphisms of G of order 3. Then $C_{G}(Y)$ is of even order and if all involutions in $C_{G}(Y)$ are in j_{3}^{G} then $N_{\text {Aut }(G)}(Y) / Y \cong \operatorname{Aut}\left(U_{3}(8)\right)$.

Proof. This is well known; indeed σ is a graph-field automorphism of G. See for example section 4 of [CKS] for parts (1)-(5). Part (6) can be retrieved from the Springer-Steinberg theory of semisimple elements of finite groups of Lie type.
Q.E.D.
(7.11) (1) $\left|\operatorname{Schur}_{2}(G)\right|=4$.
(2) The outer automorphism group of G is faithful on $\operatorname{Schur}_{2}(G)$.

Proof. Let $\hat{G}=\operatorname{Cov}_{2}(G)$ and $Z=Z(\hat{G})$. For $Y \leq G$, write \hat{Y} for the preimage of Y in \hat{G}.

As $T \leq H, \hat{H}$ is a covering of H, and hence an image of $\operatorname{Cov}_{2}(H)$, described in 3.2. In particular $\hat{Q} \cong Q \times Z$ by 3.2 , so $[\hat{Q}, \hat{E}]=\Phi(\hat{Q}) \cong \mathbf{Z}_{2}$. Then as $\hat{X}_{2}=\left\langle\hat{Q}, \hat{Q}^{g}\right\rangle,\left[\hat{X}_{2}, \hat{E}\right]=\Phi(\hat{Q}) \Phi(\hat{Q})^{g} \cong E_{4}$.

Next $L_{2}=L_{234} \times L_{12}$ with $L_{234}=X \cap L_{2} \cong S_{3}$ and $L_{12} \cong L_{3}(4)$. Let \hat{Y} be of order 3 in \hat{L}_{234}. Then $\hat{V}_{Y}=\left[\hat{V}_{2}, \hat{Y}\right]=\left[\hat{X}_{2}, \hat{E}\right]$ is a complement to Z in \hat{V}_{2} and $\left[\hat{R}_{2}, \hat{E}\right]=\hat{V}_{Y}$ as $R_{2}=O_{2}\left(X_{2}\right)$. Therefore \hat{R}_{2} centralizes \hat{E} / \hat{V}_{Y}, so setting $\hat{E}_{Y}=\left[\hat{E}, \hat{P}_{2}\right]$, it follows that $\hat{E}_{Y}=\left[\hat{E}, \hat{L}_{1,2}\right] \hat{V}_{Y}$.

Next $\hat{E} / \hat{V}_{2} \cong E / V$ is quasiequivalent to the Todd module for L_{12} by 6.1.5. Therefore

$$
\left|\left(\hat{V}_{2} \cap \hat{E}_{Y}\right) / \hat{V}_{Y}\right| \leq\left|H^{1}\left(L_{12}, E / V\right)\right|=4
$$

with the last equality following from 23.6 in [3T]. Hence $U=Z \cap \hat{E}_{Y}$ is of order at most 4 and as $\operatorname{Out}(G)$ induces a group of outer automorphisms on $L_{12}, \operatorname{Out}(G)$ is faithful on U if $U \neq 1$ by 23.6 in [3T]. So it remains to show $U=Z$, since we will find in a later paper in this series that $\operatorname{Schur}_{2}(G) \neq 1$.

Let $G^{*}=\hat{G} / U$; it remains to show $Z^{*}=1$. Now $R_{2}=\left[R_{2}, Y\right]$ so $\hat{R}_{2}^{*} / \hat{E}_{Y}^{*}=\left[\hat{R}_{2}^{*} / \hat{E}_{Y}^{*}, \hat{Y}^{*}\right] \times Z^{*}$. Therefore $\hat{P}_{2}^{*} /\left[\hat{R}_{2}^{*}, \hat{Y}^{*}\right] \cong \hat{L}_{234}^{*} \times \hat{L}_{12}^{*}$ with \hat{L}_{12}^{*} quasisimple with center Z^{*}. Next $Q \leq L_{234} R$ by 6.1 , so $Q \cong \hat{Q}^{*}$ and $\hat{H}^{*} / \hat{Q}^{*}$ is quasi simple with center Z^{*}. Indeed

$$
\hat{R}_{2}^{*} \hat{Q}^{*} / \hat{Q}^{*}=\left[\hat{R}_{2}^{*}, \hat{Y}^{*}\right] \hat{Q}^{*} / \hat{Q}^{*} \times Z^{*}
$$

so by 23.5 .5 in $[3 \mathrm{~T}], Z^{*}=1$, completing the proof.
Q.E.D.
(7.12) Assume $M(22) \cong M \leq G$ such that the set D of 3 transpositions of M is contained in Δ. Then $C_{D}(a) \neq \varnothing$ for each $a \in \Delta$, and indeed M has the following four orbits, $\Delta_{i}, 1 \leq i \leq 4$, on Δ :
(1) $\Delta_{1}=D$ of order 3,510 .
(2) $\Delta_{2}=\left\{a \in \Delta: C_{D}(a) \subseteq O_{2}\left(C_{G}(a)\right)\right\}$ of order 142,155 , with $C_{M}(a) \cong M_{22} / E_{2^{10}}$ and $C_{D}(a)$ of order 22 generating $O_{2}\left(C_{M}(a)\right)$.
(3) $\Delta_{3}=\left\{a \in \Delta-D:\left|D \cap O_{2}\left(C_{G}(a)\right)\right|=1\right\}$ of order $3,127,410$, with $C_{M}(a) \cong L_{3}(4) / E_{2^{10}}$ and $C_{D}(a)$ of order 22 generating $O_{2}\left(C_{M}(a)\right)$.
(4) $\Delta_{4}=\left\{a \in \Delta: D \cap O_{2}\left(C_{G}(a)\right)=\varnothing\right\}$ of order 694,980, with $C_{M}(a)=\left\langle C_{D}(a)\right\rangle \cong S p_{6}(2) / E_{64}$.

Proof. First $\Delta_{1}=D$ is an orbit of M on Δ of length 3,510 by 16.7 in $[3 T]$.

As $D \subseteq \Delta$, we may take $z \in D$. Then $K=C_{M}(d)$ is quasisimple with $K /\langle d\rangle \cong U_{6}(2)$, so $H=K Q$ with $K \cap Q=\langle z\rangle$. Claim
(5) K has the following six orbits on $\Delta \cap H$:
(i) $\{z\}$.
(ii) $D_{z}=H \cap D-\{z\}$.
(iii) $\Delta_{i}(z), i=1,2$ with $\Delta_{1}(z) \cup \Delta_{2}(z)=\Delta(z)=\Delta \cap Q-\{z\}$,

$$
\Delta_{2}(z)=\left\{z a: a \in \Delta_{1}(z)\right\}
$$

and $C_{K}(a) \cong L_{3}(4) / E_{2^{10}}$ for $a \in \Delta(z)$.
(iv) $\Delta_{3}(z)$ with $C_{K}(a) \cong A_{5} / E_{16} / E_{2^{10}}$ for $a \in \Delta_{3}(z)$.
(v) $\Delta_{4}(z)$ with $C_{K}(a) \cong S p_{4}(2) / 2^{1+8} / \mathbf{Z}_{2}$ for $a \in \Delta_{4}(z)$.

Namely by $7.2, H$ has three orbits on $\Delta \cap H:\{z\}, \Delta(z)=H \cap Q-\{z\}$, and $\Delta_{1}^{2}(z)=H \cap \Delta-Q$. As $H=K Q$ with $K \cap Q=\langle z\rangle, K$ has two orbits $\Delta_{i}(z), i=1,2$ on $\Delta(z)$, with $\Delta_{2}(z)=\left\{z a: a \in \Delta_{1}(z)\right\}$, and by 6.1.2 and 23.5 in $[3 T], C_{K}(a) \cong L_{3}(4) / E_{2^{10}}$ for $a \in \Delta(z)$.

Next let $b \in D_{z}$. Then $b \in \Delta_{1}^{2}(z)$ and each member of $\Delta_{1}^{2}(z)$ is K-conjugate to $b u$ for some $u \in[Q, b]$. Now $[\tilde{Q}, b]$ is the natural module for $C_{K}(b) / O_{2}\left(C_{K}(b)\right) \cong \Omega_{6}^{-}(2)$ with $O_{2}\left(C_{K}(b)\right) \cong 2^{1+8} / \mathbf{Z}_{2}$, (cf. 7.3 and the proof of 7.4$)$ so K has two orbits $\Delta_{3}(z)$ and $\Delta_{4}(z)$ on $\Delta_{1}^{2}(z)-D_{z}$, with representatives $b u$ and $b v$, where $u, v \in[\tilde{Q}, b]$ with \tilde{u} a singular point of the orthogonal space $[\tilde{Q}, b]$ and \tilde{v} a nonsingular point. Then $C_{K}(b u)=C_{K}(b) \cap C_{K}(u) \cong A_{5} / E_{16} / 2^{1+8} / \mathbf{Z}_{2}$ and $C_{K}(b v)=C_{K}(b) \cap$ $C_{K}(v) \cong S p_{4}(2) / 2^{1+8} / \mathbf{Z}_{2}$. Indeed $C_{K}(u)$ is the parabolic $N_{K}(T \cap D) \cong$ $L_{3}(4) / E_{2^{10}}$ with $O_{2}\left(C_{K}(u)\right)=\langle T \cap D\rangle$, so $C_{K}(b u) \cong A_{5} / E_{16} / E_{2^{10}}$, completing the proof of the claim.

Let $z^{\perp}=\{z\} \cup D_{z}$. If $a \in \Delta(z)$ or $\Delta_{3}(z)$ then $z^{\perp} \cap C_{G}(a)=T \cap D$ is of order 22 and hence is of the form $S \cap D$ for some $S \in S y l_{2}(M)$, with $A=\langle S \cap D\rangle \cong E_{2^{10}}$. Further if $a \in \Delta(z)$ then by 6.1, $C_{K}(a)$ has 3 irreducibles on $\left(Q \cap H_{a}\right)\left(Q_{a} \cap H\right) /\left(Q \cap Q_{a}\right)$, and one of them is $A\left(Q \cap Q_{a}\right) /\left(Q \cap Q_{a}\right)$, so $A\left(Q \cap Q_{a}\right)=Q_{a} \cap H$ or $Q_{a z} \cap H$. In the first case, $A \leq Q_{a}$. Therefore for each $b \in A \cap D, a \in \Delta(b)$, so $A \cap D=b^{\perp} \cap C_{G}(a)$ and $C_{M}(\langle a, b\rangle)$ acts 2-transitively as $L_{3}(4)$ on $A \cap D-\{b\}$. Therefore $N_{M}(A) \leq C_{M}(a)$ with $N_{M}(A) / A \cong M_{22}$ by 25.7 in [3T]. As $A \cap D$ is a connected component of $C_{D}(a)$, it follows (cf. 24.3 in [3T] and its proof) that $A \cap D=C_{D}(a)$, so that $N_{M}(a)=C_{M}(a)$. That is $a \in \Delta_{2}$.

In the second case, $z a \in \Delta_{2}$ and $A \cap Q_{a}=\langle z\rangle$, so for $b \in A \cap D-\{z\}$, $b \notin Q_{a}$, and hence $a \notin Q_{b}$, so $a \in \Delta_{i}(b)$ for $i=3$ or 4 . As $C_{K}(\langle a, b\rangle) \cong$ $A_{5} / E_{16} / E_{2^{10}}$, and $C_{M}(\langle a, b\rangle)$ contains no such subgroup if $a \in \Delta_{4}(b)$, we conclude $a \in \Delta_{3}(b)$. Therefore $S \cap D=b^{\perp} \cap C_{G}(a)$ for each $b \in S \cap D$, so as above, $S \cap D=C_{D}(a)$ and $\{z\}=D \cap Q_{a}$. Hence $C_{M}(a)=C_{K}(a)$ and $a \in \Delta_{3}$ in this case.

So Δ_{2} and Δ_{3} are the orbits of M on $\Delta-D$ consisting of elements
a with $D \cap Q_{a} \neq \varnothing$. This leaves

$$
\Delta_{4}^{\prime}=\left\{a \in \Delta: C_{D}(a) \neq \varnothing=D \cap Q_{a}\right\}=\bigcup_{d \in D} \Delta_{4}(d)
$$

as an orbit under M.
Pick $a \in \Delta_{4}(z)$ and let $D(a)=C_{D}(a)$. Then $D(a)$ is a set of 3-transpositions of $M_{a}=\langle D(a)\rangle$. Now $C_{K}(a) \cong S p_{4}(2) / 2^{2+8}$ and $C_{K}(a)=\left\langle z^{\perp} \cap D(a)\right\rangle$. Indeed for each $b \in D(a), a \in \Delta_{4}(b)$ as $a \notin$ $\Delta_{3} \cup \Delta_{4}$, so by 8.2.2 in [3T], M_{a} is transitive on $D(a)$. Then by a Frattini argument, $C_{M}(a)=M_{a} C_{K}(a)=M_{a}$. Also in the language of [3T], $V_{z}=$ $\{z, d\}$, where d is the unique member of $D \cap a Q$, so by 9.2 in $[3 T],\{z, d\}=$ $z^{O_{2}\left(M_{a}\right)}$, so $\left[z, O_{2}\left(M_{a}\right)\right]=\langle z d\rangle \leq Z\left(O_{2}\left(M_{a}\right)\right)$. Therefore $U=\left\langle(z d)^{M_{a}}\right\rangle$ is elementary abelian and z induces a transvection on U. Let $\bar{M}_{a}=$ M_{a} / U. As $O_{2}\left(C_{K}(a)\right) /\langle z d\rangle \cong 2^{1+8}$ and $O_{2}\left(C_{K}(a)\right) /\langle z, d\rangle$ is the sum of two 4-dimensional irreducibles for $C_{K}(a), m\left(C_{U}(z)\right)=5, m(U)=6$, and $C_{\bar{M}_{a}}(\bar{z}) \cong C_{K}(a) / C_{U}(z) \cong S p_{4}(2) / E_{32}$. As $O_{2}\left(C_{\bar{M}_{a}}(\bar{z})\right) \not \leq Z\left(C_{\bar{M}_{a}}(\bar{z})\right)$, $O_{3}\left(\bar{M}_{a}\right) \leq Z\left(\bar{M}_{a}\right)$ by Exercise 3.2 in $[3 \mathrm{~T}]$, while as $\left[z, O_{2}\left(M_{a}\right)\right] \leq U$, $O_{2}\left(\bar{M}_{a}\right) \leq Z\left(\bar{M}_{a}\right)$. Then by Theorem Q in section 14 of $[3 \mathrm{~T}], \bar{M}_{a} \cong$ $S p_{6}$ (2).

To complete the proof we calculate the order of $\mathcal{O}=\Delta_{2}, \Delta_{3}$ and Δ_{4}^{\prime} via $|\mathcal{O}|=\left|M: C_{M}(a)\right|$, for $a \in \mathcal{O}$, and determine they are as indicated in the statement of the lemma. Then we calculate that

$$
\left|\Delta_{1}\right|+\left|\Delta_{2}\right|+\left|\Delta_{3}\right|+\left|\Delta_{4}^{\prime}\right|=3,968,055=|\Delta|
$$

so $\Delta_{4}^{\prime}=\Delta_{4}$ and the proof of the lemma is complete.
Q.E.D.
(7.13) Let $\hat{H}=\operatorname{Cov}_{2}(H), \rho: \hat{H} \rightarrow H$ the universal covering, $V=$ $\operatorname{ker}(\rho), \hat{Q}=O_{2}(\hat{H})$ and $P=[\hat{Q}, \hat{H}]$. Let H_{+}be a group with $Q_{+} \cong$ $F^{*}\left(H_{+}\right) \cong Q$ and $H_{+} / Z\left(H_{+}\right) \cong \tilde{H}$. Then
(1) $\hat{H}=\hat{L} P$ with $P \cap \hat{L}=1, \hat{L} \cong \operatorname{Cov}_{2}\left(L_{1}\right)$ and $\rho(\hat{L})=L_{1}$.
(2) $P \cong E_{4} \times Q, Z(\hat{L}) \cong E_{4}, \hat{Q}=Z(\hat{L}) \times P$ and $Z(\hat{H})=Z(\hat{L}) \times$ $Z(P)$.
(3) $Z(\hat{L}) \leq V$ and $V=[\tau, Z(\hat{H})]$ is a complement to $\Phi(P)$ for some automorphism τ of order 3 inducing an outer automorphism on \hat{L}.
(4) $H_{+} \cong H$ if and only if H_{+}possesses a complement L_{+}to Q_{+} such that $E_{+} /\left\langle t_{+}\right\rangle$splits over $\left\langle z_{+}, t_{+}\right\rangle /\left\langle t_{+}\right\rangle$as a J_{+}-module, where x_{+} is the image of $x=z, t, E$ under the isomorphism $Q \cong Q_{+}$, and $J_{+}=$ $C_{L_{+}}\left(t_{+}\right)$.
(5) If $H_{+}=C_{G_{+}}\left(z_{+}\right)$for some group G_{+}of type ${ }^{2} E_{6}(2)$ and H_{+} splits over Q_{+}then $H_{+} \cong H$.

Proof. By 6.2, $\tilde{Q} \otimes_{\mathbf{F}_{2}} \mathbf{F}_{4} \cong \bigwedge^{3}(N)$ as a $\mathbf{F}_{4} L_{1}$-module. Then by $5.8, H^{1}\left(L_{1}, \tilde{Q}\right) \cong E_{4}$. By 23.7 in $[3 \mathrm{~T}], \operatorname{Schur}_{2}\left(L_{1}\right) \cong E_{4}$. Therefore (1) and (2) follow from 3.2.

Let $D=C_{A u t(\hat{H})}(P / \Phi(P))$ and $\hat{H} D$ the semidirect product of \hat{H} by D. By 3.2, V is a complement to $\Phi(P)$ in $Z(\hat{H})$ and $D / \operatorname{Inn}(P) \cong$ $H^{1}\left(L_{1}, \tilde{Q}\right) \cong E_{4}$ is regular on complements to $\Phi(P)$ in $Z(P)$. Indeed by 3.2.6, $H_{+} \cong \hat{H} / V_{+}$for some complement V_{+}to $\Phi(P)$ in $Z(\hat{H})$.

As $\tilde{Q} \otimes_{\mathbf{F}_{2}} \mathbf{F}_{4} \cong \bigwedge^{3}(N)$ and the representation of L_{1} on $\bigwedge^{3}(N)$ extends to $P G U_{6}(2)=L_{1}\langle\tau\rangle$ for some τ of order 3, the representation of L_{1} on \tilde{Q} extends to $L_{1}\langle\tau\rangle$. Thus τ is an automorphism of \hat{H} by 3.2.3, so as τ is faithful on $\operatorname{Schur}_{2}\left(L_{1}\right)$ and $H^{1}\left(L_{1}, \tilde{Q}\right), \tau$ is faithful on $Z(\hat{H}) / Z(P)$ and $Z(P) / \Phi(P)$. As some outer automorphism of G of order 3 acts on Q and L_{1} and induces an outer automorphism of L_{1}, we may take τ to act on \hat{L}, τ induces an outer automorphism on \hat{L}, and $V=[Z(\hat{H}), \tau]$ is the unique τ-invariant complement to $\Phi(P)$, so that (3) holds.

Notice that D is transitive on the complements to $\hat{Q} / Z(\hat{H})$ in $\hat{H} / Z(\hat{H})$.

Let $L_{+}=\hat{L} V_{+} / V_{+}$be the image of \hat{L} in H_{+}. We next prove
(6) Under the hypothesis of (5), we can pick L_{+}with $O_{2}\left(J_{+}\right) \leq Q_{t_{+}}=$ $O_{2}\left(C_{G_{+}}\left(t_{+}\right)\right)$.

To simplify notation we argue in G. Now J has three 9-dimensional irreducibles on $O_{2}(J) Q / E: C_{Q}(t) / E,\left(Q_{t} \cap H\right) / E$, and $\left(Q_{t z} \cap H\right) / E$, so as $O_{2}(J) E / E$ is one of these irreducibles, conjugating L_{+}by an element of $Q-C_{Q}(t)$ if necessary, we may take $O_{2}(J) E=Q_{t} \cap H$, establishing (6). We also prove
(7) Under the hypothesis of (5), there is a complement I_{+}to $O_{2}\left(J_{+}\right)$in J_{+}such that E_{+}splits over $\left\langle z_{+}, t_{+}\right\rangle$as an I_{+}module.

First if $G_{+}=G$ then $I=L_{12}$ works as L_{12} acts on the complement $C_{E}\left(L_{234}\right)$ to $\langle z, t\rangle$ in E. Moreover \tilde{Q} is a semisimple L_{12}-module and $L_{12}=N_{L_{1}}\left(\left[\tilde{E}, L_{12}\right]\right)$.

In the general case $\tilde{H}_{+} \cong \tilde{H}$ (cf. 8.1) so the preimage I_{+}in L_{+} of the image of \tilde{L}_{12} in \tilde{H}_{+}under this isomorphism acts semisimply on \tilde{Q}_{+}as L_{12} is semisimple on \tilde{Q}. In particular $C_{Q_{+}}\left(I_{+}\right) \cong D_{8}$. Similarly
as the image F of $\left[E_{+}, I_{+}\right]$in $\tilde{Q}_{t_{+}}$is a simple I_{+}-module, and as $\tilde{H}_{t_{+}}$ is isomorphic to $\tilde{H}_{t}, I_{+} Q_{t_{+}}=N_{H_{t_{+}}}(F)$ and then $\tilde{Q}_{t_{+}}$is a semisimple I_{+}-module and $C_{Q_{t_{+}}}\left(I_{+}\right) \cong D_{8}$. Therefore $\left\langle C_{Q_{+}}\left(I_{+}\right), C_{Q_{t_{+}}}\left(I_{+}\right)\right\rangle$contains an element X_{+}of order 3 such that $C_{E_{+}}\left(X_{+}\right)$is an I_{+}-invariant complement to $\left\langle z_{+}, t_{+}\right\rangle$in E_{+}, completing the proof of (7).

Observe next that
(8) L_{+}is a complement to Q_{+}in H_{+}if and only if $Z(\hat{L}) \leq V_{+}$.

We also claim
(9) If L_{+}is a complement to Q_{+}then $V_{+}=V$ if and only if the following splitting property holds: $E_{+} /\left\langle t_{+}\right\rangle$splits over $E_{+} /\left\langle z_{+}, t_{+}\right\rangle$as a J_{+}-module.

If $V_{+}=V$ this follows from (6) and (7). Namely by (6), we may choose L_{1} so that $O_{2}(J) \leq Q_{t}$, where $J=C_{L_{1}}(t)$. Therefore $O_{2}(J)$ centralizes $E /\langle t\rangle$ as $E \leq Q_{t}$. Further by (7), E splits over $\langle z, t\rangle$ as an I-module, so as $J=O_{2}(J) I$, we have the splitting property.

Notice this argument only depended upon the hypothesis of (5). Thus (9) will imply (5), since under the hypothesis of (5), as D is transitive on complements to $\hat{Q} / Z(\hat{Q})$, we may assume the complement to Q_{+} is the image of \hat{L}. Thus, as we just observed, H_{+}has the splitting property, so $H \cong H_{+}$by (9). Similarly (8) and (9) imply (4), so it remains to assume the splitting property and show $V_{+}=V$. Let $\hat{E}=\rho^{-1}(E) \cap P$ and $\hat{J}=\rho^{-1}\left(C_{L_{1}}(t)\right)$. We show $Z(P) \leq[\hat{E}, \hat{J}] \Phi(P)$, so that as H_{+}has the splitting property,

$$
V_{+} \cap Z(P)=[\hat{E}, \hat{J}]=V \cap Z(P)
$$

and then

$$
V_{+}=Z(\hat{L})+\left(V_{+} \cap Z(P)=Z(\hat{L})+(V \cap Z(P)=V\right.
$$

as desired.
Now $P / \Phi(P)$ is the largest module $M=\left[M, L_{1}\right]$ for L_{1} such that $M / C_{M}\left(L_{1}\right) \cong \tilde{Q}$. Further $J=C_{L_{1}}(\tilde{t})$ and \tilde{E} is the unique 10dimensional L_{1}-submodule of $P / Z(P)$, so $Z(P) \leq[\hat{E} / \Phi(P), J]$ by 5.8.3, completing the proof of the lemma.
Q.E.D.
(7.14) Let \check{G} be the extension of G by the graph-field automorphism σ of 7.10 and $\check{H}=C_{\check{G}}(z)$. Assume \check{H}_{1} is a group with $F^{*}\left(\check{H}_{1}\right)=Q_{1} \cong Q$ and with a subgroup H_{1} of index 2 containing Q_{1} such that $H_{1} / Z\left(H_{1}\right) \cong$ \tilde{H}. Then $\check{H} /\langle z\rangle \cong \check{H}_{1} / Z\left(H_{1}\right)$.

Proof. As $F^{*}\left(\check{H}_{1}\right)=Q_{1}$ and H_{1} is of index 2 in \check{H}_{1} with $H_{1} / Z\left(H_{1}\right)$ $\cong \tilde{H}, F^{*}\left(\check{H}_{1} / Q_{1}\right)=H_{1} / Q_{1} \cong H^{*} \cong U_{6}(2)$. Therefore as Out $\left(U_{6}(2)\right) \cong$ $S_{3}, \check{H}_{1} / Q_{1} \cong \check{H} / Q$. As $H_{1} / Z\left(H_{1}\right) \cong \tilde{H}$, the representation of H_{1} / Q_{1} on $\tilde{Q}_{1}=Q_{1} / Z\left(Q_{1}\right)$ is quasiequivalent to that of H^{*} on \tilde{Q} by 3.1. By 6.1.7, H^{*} is absolutely irreducible on \tilde{Q}, so $N_{G L(\tilde{Q}}\left(H^{*}\right) \cong \operatorname{Aut}\left(U_{6}(2)\right)$, and hence as $\check{H}_{1} / Q_{1} \cong \check{H} / Q$, the representation of \check{H}_{1} / Q_{1} on \tilde{Q}_{1} is quasiequivalent to that of \check{H} / Q on \tilde{Q}, so 3.1 completes the proof of the lemma.
Q.E.D.
(7.15) (1) For $p \neq 2$ or 11, p prime, and $P \in \operatorname{Syl}_{p}(G), C_{G}(P) \leq P$ and if $p=3$ then $N_{G}(P)$ is a $\{2,3\}$-group.
(2) If $Y \leq G$ is of order 11 then $C_{G}(Y) \cong \mathbf{Z}_{11} \times S_{3}$.
(3) If $Y \leq G$ is of order 7 then $C_{G}(Y)=Y \times E\left(C_{G}(Y)\right)$ with $E\left(C_{G}(Y)\right) \cong L_{3}(2)$ or $L_{3}(4)$.
(4) If $Y \leq G$ is of order 5 then $C_{G}(Y) \cong \mathbf{Z}_{5} \times A_{5}$.
(5) If Y is a 3-central subgroup of G of order 3 then $C_{G}(Y)$ is a $\{2,3\}$-group.
(6) If $S \in S y l_{3}(G)$ then $J(S) \cong E_{3^{5}}$ and $N_{G}(J(S)) / J(S) \cong O_{6}^{-}(2)$.

Proof. This is well known and follows from the Springer-Steinberg theory of semisimple elements of finite groups of Lie type. Q.E.D.
(7.16) If $M \leq G$ is of odd order then $|M|<10^{5}$.

Proof. Let $F=F(M)$. As M is of odd order, M is solvable, so $C_{M}(F) \leq F$. (cf 31.10 in [FGT] $)$ Let p be a prime divisor of $|F|$ and $P=O_{p}(M)$. If $p \neq 3$ or 11 and $P \in \operatorname{Syl}_{p}(G)$, then by 7.15.1, $O^{p}(F) \leq C_{G}(P) \leq P$, so $P=F$. Thus $|M| \leq n_{p}|P|$, where n_{p} is the maximal order of a subgroup X of $G L(P / \Phi(P))$ of odd order with $O_{p}(X)=1$. In each case $n_{p}|P|<10^{5}$.

Further if $p=11$ then $F \leq O^{2}\left(C_{G}(P)\right) \cong \mathbf{Z}_{33}$ by 7.15 .2 , so

$$
|M| \leq|F| \cdot\left|O\left(A u t\left(\mathbf{Z}_{11}\right)\right)\right| \leq 33 \cdot 5<10^{5}
$$

Similar arguments work if P is of order 5 or 7 , using 7.15.3 and 7.15.4.
Therefore we may assume $F=O_{3}(M)$. Now if $P \in S y l_{3}\left(F C_{G}(F)\right)$ then by a Frattini argument, $M \leq N_{G}(F)=C_{G}(F)\left(N_{G}(P) \cap N_{G}(F)\right.$, so as $C_{M}(F) \leq F, N_{G}(P) \cap N_{G}(F)$ contains a subgroup M_{0} of odd
order with $\left|M_{0}\right| \geq|M|$. Hence replacing M by M_{0} if necessary, we may assume $P=F$. In particular taking $F \leq S \in S y l_{3}(G), Z=Z(S) \leq F$. Let $U=\left\langle Z^{M}\right\rangle$, so that $Z \cong E_{3^{n}}$ for some n. Then $C_{M}(U) \leq C_{M}(Z)$, and $C_{M}(Z)$ is a 3 -group by 7.15.5. Therefore $C_{M}(U) \leq O_{3}(M)=F$. Hence $|M| \leq|F| N_{n}$, where N_{n} is the maximal order of a subgroup X of odd order in $G L_{n}(3)$ with $O_{3}(X)=1$.

By 7.15.6, $n \leq 5$, so $|M|_{3^{\prime}}$ divides $5 \cdot 11 \cdot 13$. Indeed if 11 divides $|M|$ then $n=5$, so $U=J(S)$ for $S \in S y l_{3}(G)$ by 7.15 .6 , whereas by the last remark in 7.15.6, 11 does not divide the order of $N_{G}(J(S))$. So 11 does not divide the order of M. Further by 7.15.4, G has no subgroup of order $13 \cdot 5$, so by Hall's Theorem, (cf. 18.5 in [FGT]) $|M|_{3^{\prime}}=1,5$, or 13. But $|G|_{3}=3^{9}$ and $3^{9} \cdot 5<10^{5}>3^{8} \cdot 13$, so we are left with the case $|M|=3^{9} \cdot 13$.

By 7.15.1, if Y is of order 13 in M then $C_{F}(Y)=1$ and $\left|N_{M}(Y)\right|=1$ or 3. Therefore $|F|=3^{3 k}$ for some k and hence $F \in S y l_{3}(G)$, contradicting 7.15.1.
Q.E.D.

$\S 8$. Groups of type ${ }^{2} E_{6}(2)$ are isomorphic to ${ }^{2} E_{6}(2)$

In this section we assume the hypotheses and notation of section 6. In particular G is of type ${ }^{2} E_{6}(2), z$ is a 2 -central involution in $G, H=$ $C_{G}(z)$, etc. Further let $G_{0}={ }^{2} E_{6}(2)$ and z_{0} a long root involution of G_{0}. By $7.1, G_{0}$ is of type ${ }^{2} E_{6}(2)$ with $z_{0} 2$-central in G_{0}. Let $H_{0}=C_{G_{0}}\left(z_{0}\right)$, $Q_{0}=O_{2}\left(H_{0}\right)$, etc.
(8.1) $\tilde{H} \cong H_{0} /\left\langle z_{0}\right\rangle$.

Proof. First $Q_{0} \cong Q$, so we may identify the two groups. Further by 6.2 , the representation of H_{0}^{*} on \tilde{Q}_{0} is quasiequivalent to that of H^{*} on \tilde{Q}, so $\tilde{H} \cong \tilde{H}_{0}$ by 3.1.
Q.E.D.

By 8.1, $\tilde{H}_{0} \cong \tilde{H}$, so by 7.8 there is $h \in H-C_{H}(\tilde{t})$ with $t^{h} \in E$. Let $k=g h, V_{3}=\left\langle z, t, z^{k}\right\rangle, U_{3}=Q \cap Q^{g} \cap Q^{k}, X_{3}=\left\langle Q, Q^{g}, Q^{k}\right\rangle$, $R_{3}=C_{X_{3}}\left(V_{3}\right)$,

$$
S_{3}=\left(Q \cap Q^{g}\right)\left(Q \cap Q^{k}\right)\left(Q^{g} \cap Q^{k}\right),
$$

and $P_{3}=N_{G}\left(V_{3}\right)$. By 8.16 in [SG],

$$
R_{3}=C_{Q}\left(V_{3}\right) C_{Q^{g}}\left(V_{3}\right) C_{Q^{k}}\left(V_{3}\right)=O_{2}\left(X_{3}\right)
$$

$X_{3} / R_{3}=G L\left(V_{3}\right) \cong L_{3}(2),\left[X_{3}, U_{3}\right] \leq V_{3}, \Phi\left(U_{3}\right)=1, P_{3}=X_{3} C_{H}\left(V_{3}\right)$, and $P_{3} / R_{3}=X_{3} / R_{3} \times C_{H}\left(V_{3}\right) / R_{3}$.

By $7.8, C_{H}\left(V_{3}\right) / R_{3} \cong A_{5}$, so $P_{3} / R_{3} \cong L_{3}(2) \times A_{5}$. Again by 7.8, $m\left(U_{3}\right)=6$, so by 8.16 in [SG], S_{3} / U_{3} is the sum of 4 copies of the dual V_{3}^{*} of V_{3} as an X_{3} / R_{3}-module, and R_{3} / S_{3} is the sum of 4 copies of V_{3} as an X_{3} / R_{3}-module. By 7.8, $C_{H}\left(V_{3}\right)$ has chief series $0<\tilde{V}<\tilde{V}_{3}<\tilde{U}_{3}<\tilde{E}$ on \tilde{E} with E / U_{3} the $\Omega_{4}^{-}(2)$-module and U_{3} / V_{3} the $L_{2}(4)$-module for $C_{H}\left(V_{3}\right)$. Finally by $7.8, C_{H}\left(V_{3}\right)$ has four $L_{2}(4)$-sections and three $\Omega_{4}^{-}(2)$ sections on R_{3}. We summarize all this as:
(8.2) (1) $P_{3} / R_{3}=X_{3} / R_{3} \times C_{H}\left(V_{3}\right) / R_{3}$ with $X_{3} / R_{3} \cong L_{3}(2)$ and $C_{H}\left(V_{3}\right) / R_{3} \cong A_{5}$.
(2) R_{3} has chief series

$$
0<V_{3}<U_{3}<S_{3}<R_{3}
$$

with V_{3} the natural module for $X_{3} / R_{3},\left[X_{3}, U_{3}\right] \leq V_{3}$ and U_{3} / V_{3} is the $L_{2}(4)$-module for $C_{H}\left(V_{3}\right) / R_{3}, S_{3} / U_{3}$ is the tensor product of the dual of V_{3} as an X_{3} / R_{3}-module with the $\Omega_{4}^{-}(2)$-module for $C_{H}\left(V_{3}\right) / R_{3}$, and R_{3} / S_{3} is the tensor product of V_{3} as an X_{3} / R_{3}-module with the $L_{2}(4)$ module for $C_{H}\left(V_{3}\right) / R_{3}$.
(8.3) There exists $s \in z^{G}$ with $s z$ of order $3, C_{G}(\langle s, z\rangle) \cong U_{6}(2)$, and $N_{G}(\langle s z\rangle)=\langle s, z\rangle \times C_{G}(\langle s, z\rangle)$.

Proof. Let $X_{2}=\left\langle Q, Q^{g}\right\rangle$. Then $X_{2} \leq X_{3}$ so there is x of order 3 in X_{2} fused to $y \in X_{3} \cap H$. Notice y^{*} is inverted by a transvection in H^{*} as $\tilde{H}_{0} \cong \tilde{H}$ and the remark holds in H_{0}^{*} since y is inverted by some conjugate $c \in Q^{g}$ of z in H_{0} and c^{*} is a transvection in H_{0}^{*} by 7.2 and 7.3.2. Therefore $C_{Q}(y) \cong D_{8}^{4}$ and $C_{H}(y) / C_{Q}(y)\langle y\rangle \cong U_{4}(2)$. Let $T_{y} \in S y l_{2}\left(C_{H}(y)\right)$; then $\langle z\rangle=Z\left(T_{y}\right)$ and T_{y} is of order 2^{15}. As $\langle z\rangle=Z\left(T_{y}\right), T_{y} \in \operatorname{Syl}_{2}\left(C_{G}(y)\right)$.

Next let $T_{x} \in S y l_{2}\left(C_{P_{2}}(x)\right)$. From the structure of P_{2} described in 6.1,

$$
C_{P_{2}}(x) /\langle x\rangle \cong L_{3}(4) / E_{2^{9}}
$$

with $O_{2}\left(C_{P_{2}}(x)\right)$ quasiequivalent to the Todd module for $C_{P_{2}}(x) / O_{2}\left(C_{P_{2}}\right.$ $(x))\langle x\rangle$. In particular T_{x} is of order 2^{15} and hence as x and y are conjugate, the previous paragraph says that $T_{x} \in S y l_{2}\left(C_{G}(x)\right)$ and $Z\left(T_{x}\right)$ is generated by a conjugate of z. Now the hypotheses of Theorem 30.1 in $[3 T]$ are satisfied, so by that Theorem, $C_{G}(x) /\langle x\rangle \cong C_{G}(y) /\langle y\rangle \cong U_{6}(2)$.

Next x is inverted by an involution $u \in Q$ with $\left[C_{P_{2}}(x), u\right]=$ $\langle x\rangle$, so u induces an automorphism of $C_{G}(x) /\langle x\rangle \cong U_{6}(2)$ centralizing
the parabolic $C_{P_{2}}(x) /\langle x\rangle$, and hence centralizing $C_{G}(x) /\langle x\rangle$. Therefore $N_{G}(\langle x\rangle)=\langle x, u\rangle \times E\left(C_{G}(x)\right)$ with $E\left(C_{G}(x)\right) \cong U_{6}(2)$.

Finally $u \in Q$ centralizes a $L_{3}(4)$-section of H, so as $\tilde{H} \cong \tilde{H}_{0}, 7.5$ says that $u \in t^{H} \subseteq z^{G}$. Hence there exists $s \in z^{G}$ with $\langle s, z\rangle$ conjugate to $\langle u, x\rangle$, completing the proof.
Q.E.D.
(8.4) $H \cong H_{0}$.

Proof. By 8.3 there is $s \in z^{G}$ with $C_{G}(\langle s, z\rangle)$ a complement to Q in H. Hence 7.13.5 completes the proof. Q.E.D.

By 8.4 there is an isomorphism $\alpha: H \rightarrow H_{0}$. Let $t_{0}=t \alpha, t_{0}=t^{g_{0}}$, $h_{0}=h \alpha$ where $k=g h, V_{3}^{0}=V_{3} \alpha$, and $P_{3}^{0}=N_{G_{0}}\left(V_{3}^{0}\right)$.
(8.5) There exist an isomorphism $\zeta: P_{3} \rightarrow P_{3}^{0}$ such that $\alpha=\zeta$ on $H \cap P_{3}$.

Proof. We appeal to 21.12 in $[3 \mathrm{~T}]$. The P_{3}-chief series required in that lemma is:

$$
1<V_{3}<U_{3}<S_{3}<R_{3}
$$

and by 8.2 , the image of this series under α is the corresponding series in R_{3}^{0}. Namely by definition, $V_{3}^{0}=V_{3} \alpha$. Also as $t_{0}=t \alpha, V_{0}=V \alpha$ and then as $E / V=C_{Q / V}\left(O_{2}\left(C_{H}(\tilde{V})\right)\right)$,

$$
\left(Q \cap Q^{g}\right) \alpha=E \alpha=E_{0}=Q_{0} \cap Q_{0}^{g_{0}}
$$

Therefore $U_{3} \alpha=\left(E \cap E^{h}\right) \alpha=E_{0} \cap E_{0}^{h_{0}}=U_{3}^{0}$.
Next $\left(Q \cap H^{g}\right) / E,\left(Q^{g} \cap H\right) / E$, and $\left(Q^{g u} \cap H\right) / E, u \in Q-C_{Q}(t)$, are the three $C_{H}(\tilde{t})$-invariant subspaces of $O_{2}\left(C_{H}(\tilde{t})\right) / E$, with $Q^{g} \cap H$ distinguished by $\Phi\left(Q^{g} \cap H\right)=\langle t\rangle$, so $\left(Q^{g} \cap H\right) \alpha=Q_{0}^{g_{0}} \cap H_{0}$. Then

$$
\left(Q^{g} \cap Q^{g h}\right) \alpha=Q_{0}^{g_{0}} \cap H_{0} \cap Q_{0}^{g_{0} h_{0}} \cap H_{0}=Q_{0}^{g_{0}} \cap Q_{0}^{g_{0} h_{0}}
$$

so

$$
S_{3} \alpha=\left(Q \cap Q^{g}\right)\left(\left(Q \cap Q^{g h}\right)\left(Q^{g} \cap Q^{g h}\right) \alpha=S_{3}^{0} .\right.
$$

Finally $R_{3}=O_{2}\left(C_{H}\left(V_{3}\right)\right)$, so $R_{3} \alpha=R_{3}^{0}$.
Next 8.2 says that hypotheses (2), (3), (5) and (6) of 21.12 in [3T] are satisfied. To check hypothesis (4) of that lemma, use Remark 21.9 and Lemma 21.13 of [3T]. Now 21.12 in [3T] supplies the extension $\zeta: P_{3} \rightarrow P_{3}^{0}$ of $\alpha: P_{3} \cap H \rightarrow P_{3}^{0} \cap H_{0}$.
Q.E.D.
(8.6) $G=\left\langle H, P_{3}\right\rangle$.

Proof. Let $K=\left\langle H, P_{3}\right\rangle$ and assume that $K \neq G$. Then by induction on the order of $G, K \cong{ }^{2} E_{6}(2)$. By $7.7, K$ has 3 classes of involutions with representatives $j_{i}, 1 \leq i \leq 3$, while by 7.5 , each class is fused into Q under K. By 4.7.2,

$$
z^{G} \cap Q=\{z\} \cup t^{H}=z^{K} \cap Q
$$

so $z^{G} \cap K=z^{K}$. Hence as also $C_{G}(z)=H \leq K, 7.3$ in [SG] says K is the unique point of G / K fixed by z. We show K is strongly embedded in G; then 7.6 in $[\mathrm{SG}]$ contradicts the fact that K has more than one class of involutions.

To show K is strongly embedded in G it remains to show $C_{G}(j) \leq$ K for each involution $j \in K$. So assume $Y=C_{G}(j) \not \pm K$ for some involution $j \in K$ and let $Y^{*}=Y /\langle j\rangle$. We have seen $j \neq j_{1}=z$. If $j=j_{2}$, then from 7.5, we may take $j \in Z_{4}=Z\left(P_{4}\right)$ with $R_{4} \leq C_{K}(j) \leq P_{4}$ and $C_{K}(j) / R_{4} \cong S p_{6}(2)$. By 7.4 in [SG], $C_{K}(j)$ controls 2 -fusion in $C_{K}(j)$, so Z_{4}^{*} is a strongly closed abelian subgroup of $C_{K}(j)^{*}$ in Y^{*}. From 7.5, Z_{4} has the structure of an 8-dimensional orthogonal space over \mathbf{F}_{2} with $z^{G} \cap Z_{4}$ the singular points and $j^{G} \cap Z_{4}$ the nonsingular points. The subspace U_{4} of this orthogonal space orthogonal to j is $C_{K}(j)$ invariant.

Pick $u \in Y-K$ to be fused to an element of $z^{G} \cap Z_{4}-U_{4}$ under Y. As $C_{K}(j)$ controls 2-fusion in $C_{K}(j), z^{*}$ and u^{*} are not conjugate in Y^{*}, so $z^{*} u^{*}$ has even order. Let i^{*} be the involution in $\left\langle z^{*} u^{*}\right\rangle$. Then $i^{*} \in C_{Y^{*}}\left(z^{*}\right) \leq C_{K}(j)^{*}$ and $z^{*} i^{*}$ is fused to z^{*} or u^{*}, and hence is in Z_{4}^{*}, so $i^{*} \in Z_{4}^{*}$. Then as $C_{Y^{*}}\left(i^{*}\right) \not \leq C_{K}(j)^{*}$, it follows that $\langle i, j\rangle=J$ contains no conjugate of z, so J is a definite line in Z_{4}. Then $R_{4} \leq C_{K}(J) \leq P_{4}$ with $C_{K}(J) / R_{4} \cong \Omega_{6}^{+}(2)$ and $X=C_{G}(J) \not \leq K$.

Let $X^{\prime}=X / J$. Again $C_{K}(J)^{\prime}$ controls 2-fusion in $C_{K}(J)^{\prime}$, so Z_{4}^{\prime} is a strongly closed abelian subgroup of $C_{K}(J)^{\prime}$ in X^{\prime}. This time there are two X^{\prime}-classes of involutions z^{\prime} and v^{\prime} in Z_{4}^{\prime} corresponding to the singular and nonsingular points of the orthogonal space Z_{4}^{\prime}. As both $z J$ and $v J$ contain a member of z^{G}, both z^{\prime} and v^{\prime} fix a unique point of $X^{\prime} / C_{K}(J)^{\prime}$. But now the argument of the previous paragraph applied to $u \in X-K$ fused under Y to v supplies a contradiction.

So $C_{G}\left(j_{2}\right) \leq K$ and $j=j_{3}$. By 7.5 we may take $j \in E$ and $C_{K}(j) \leq P_{2}$. Then V^{*} and E^{*} are strongly closed abelian subgroups of $C_{K}(j)^{*}$ and we argue as above on $u \in Y-K$ fused under Y to a conjugate of z in $E-V$ to obtain a contradiction and complete the proof.
Q.E.D.

Theorem 8.7. Each group of type ${ }^{2} E_{6}(2)$ is isomorphic to ${ }^{2} E_{6}(2)$.

Proof. We must show G is isomorphic to G_{0}. We use the machinery of Section 37 of [SG] to do so. In particular we construct uniqueness systems \mathcal{U} and \mathcal{U}_{0} for G and G_{0}.

Let Δ be the graph with vertex set z^{G} and $\Delta(z)=t^{H}$. Then G is an edge and vertex transitive group of automorphisms. Define Δ_{0} for G_{0} similarly. By $7.9, \Delta_{0}$ is simply connected.

Let θ be the complete graph with vertex set $z^{P_{3}}$. Then θ is a subgraph of Δ and P_{3} is vertex and edge transitive on θ. Define θ_{0} for G_{0} similarly. As $C_{H}(t)$ is transitive on $t^{H} \cap E-V, G$ has two orbits on triangles of Δ, so each triangle in Δ is fused under G_{0} into θ.

Let $\mathcal{U}=\left(G, \Delta, P_{3}, \theta\right)$ and $\mathcal{U}_{0}=\left(G_{0}, P_{3}^{0}, \Delta_{0}, \theta_{0}\right)$. As G_{0} is simple, Δ_{0} is simply connected, and each triangle in Δ_{0} is fused into θ_{0}, so to show $G \cong G_{0}$ it suffices by Exercise 13.1 in [SG] to show that \mathcal{U} and \mathcal{U}_{0} are equivalent uniqueness systems.

It is trivial that \mathcal{U} and \mathcal{U}_{0} are uniqueness systems, given 8.6. The maps α, ζ define a similarity of \mathcal{U} and \mathcal{U}_{0} in the sense of section 37 of [SG]. To complete the proof we appeal to Exercise 13.3.3 in [SG]. For this we need geometries Γ and Γ_{0} for G and G_{0} respectively. Define $\Gamma=\Gamma(G, \mathcal{F})$ to be the coset geometry of $\mathcal{F}=\left(H, P_{2}, P_{3}\right)$ and define Γ_{0} similarly. Hypothesis (Г0) of section 38 of [SG] can be seen to be satisfied by Γ and Γ_{0} by checking the conditions at the top of page 205 of [SG]. Observe Γ is isomorphic to the geometry with point set z^{G}, line set V^{G}, and plane set V_{3}^{G}, with incidence defined by inclusion. A similar remark holds for Γ_{0}. Thus Δ and Δ_{0} are isomorphic to the collinearity graphs of Γ and Γ_{0}, respectively, via the map $z^{x} \mapsto H x$. Using these isomorphisms, Hypotheses $(\Gamma i), 1 \leq i \leq 5$, of section 38 of [SG] are easy to check as are the remaining conditions of Exercise 13.3.3 of [SG].
Q.E.D.

§9. Groups of type $\mathbf{Z}_{2} /{ }^{2} E_{6}(2)$

Define a group \hat{G} to be of type $\mathbf{Z}_{2} /{ }^{2} E_{6}(2)$ if \hat{G} possesses an involution z such that $\hat{H}=C_{\hat{G}}(z)$ satisfies $Q=F^{*}(\hat{H}) \cong 2^{1+20}$ and \hat{H} has a subgroup H of index 2 with $H / Q \cong U_{6}(2)$, and z is not weakly closed in Q with respect to \hat{G}.

Throughout this section assume \hat{G} is of type $\mathbf{Z}_{2} /{ }^{2} E_{6}(2)$ and let z be an involution in \hat{G} such that $\hat{H}=C_{\hat{G}}(z)$ and $Q=F^{*}(\hat{H})$ satisfy our hypotheses. We will show that \hat{G} has a subgroup G of index 2 such that $H=C_{G}(z)$. Hence G is of type ${ }^{2} E_{6}(2)$ and hence by Theorem 8.7:

Theorem 9.1. If \hat{G} is of type $\mathbf{Z}_{2} /{ }^{2} E_{6}(2)$ then $F^{*}(\hat{G})$ is of index

2 in \hat{G} and isomorphic to ${ }^{2} E_{6}(2)$.

Much of the initial analysis is the same as that for groups of type ${ }^{2} E_{6}(2)$, so rather than repeat all details we only indicate where more needs to be said. Adopt the notation of section 6. In particular let $t=z^{g} \in Q-\{z\}$ and $E=Q \cap Q^{g}$. We observe first that
(9.2) (1) \hat{H} / \hat{Q} is the extension of $H^{*} \cong U_{6}(2)$ by an involutory outer automorphism τ.
(2) Lemma 6.1 holds in \hat{G} with $N_{\hat{H}}\left(R^{*}\right)$ the split extension of $R^{*} \cong$ $E_{2^{9}}$ by $L_{3}(4)$ extended by a field automorphism. This time $\hat{P}_{2}=N_{\hat{G}}(V)$ $=X C_{\hat{H}}(V)$ with

$$
R=O_{2}\left(N_{\hat{G}}(V)\right)=C_{X}(V)
$$

$\hat{P}_{2} / R=X / R \times C_{\hat{G}}(V) / R, X / R \cong S_{3}$, and $C_{\hat{G}}(V) / R$ the extension of $L_{3}(4)$ by a field automorphism.

Proof. As $F^{*}(\hat{H})=Q$ and H is of index 2 in $\hat{H}, F^{*}(\hat{H} / Q)=H^{*} \cong$ $U_{6}(2)$ and hence (1) holds. The proof of Lemma 6.1 then goes through virtually unchanged once we observe that if $R \leq \hat{T} \in \operatorname{Syl}_{2}(\hat{H})$ and $T=\hat{T} \cap H$, then $J(\hat{T} / Q)=J\left(T^{*}\right) \cong E_{2^{9}}$. This follows from the fact that $N_{H^{*}}\left(J\left(T^{*}\right)\right)$ is the parabolic described in 6.1.2 and $N_{\hat{H} / Q}\left(J\left(T^{*}\right)\right)$ is the split extension of $J\left(T^{*}\right)$ by $L_{3}(4)$ extended by a field automorphism τ. Then as $m\left(J\left(T^{*}\right) / C_{J\left(T^{*}\right)}(\tau)\right)=3$ while $C_{J\left(T^{*}\right)}(\tau)$ is not centralized by a complement $L_{3}(2)$ in $N_{H^{*}}\left(J\left(T^{*}\right)\right) \cap C_{H^{*}}(\tau)$, we conclude $J\left(T^{*}\right)=J(\hat{T})$ as claimed.
Q.E.D.

Now with the analogue of 6.1 established, Lemma 6.2 also holds in \hat{G} since its proof goes through verbatim. Similarly the analogue of Lemma 8.1 holds. Indeed if we let \hat{G}_{0} be the extension of $G_{0}={ }^{2} E_{6}(2)$ by the graph-field automorphism σ of Lemma 7.10 , then \hat{G}_{0} is of type $\mathbf{Z}_{2} /{ }^{2} E_{6}(2)$ with $\hat{H}_{0}=H_{0}\langle\sigma\rangle$. By 8.1, $\tilde{H}_{0} \cong \tilde{H}$, and hence by 7.14 , we have an isomorphism $\varphi: \hat{H}_{0} /\left\langle z_{0}\right\rangle \rightarrow \hat{H} /\langle z\rangle$. Let \tilde{L}_{0} be then image in \tilde{H}_{0} of a σ-invariant Levi factor of H_{0} and $\tilde{L}=\varphi\left(\tilde{L}_{0}\right)$. Finally let $u \in \hat{H}$ with $\tilde{u}=\varphi(\sigma)$. Then by 7.10:
(9.3) (1) $C_{H}(u) / C_{Q}(u) \cong S p_{6}(2), C_{Q}(u)=D_{1} D_{2}$ where $D_{1} \cap D_{2}=$ $\langle z\rangle, \tilde{D}_{1}$ is the natural module for $C_{H}(u) / C_{Q}(u)$, and $C_{Q}(u) / D_{1}$ is the spin module.
(9.4) u is an involution.

Proof. As \tilde{u} is an involution, $u^{2}=1$ or z, so it remains to show $u^{2} \neq z$. To see this we consider the local subgroup \hat{P}_{2} of 9.2. Let $\bar{P}_{2}=$ \hat{P}_{2} / V. The isomorphism φ induces an isomorphism $\varphi: N_{\hat{H}_{0}}\left(V_{0}\right) / V_{0} \rightarrow$ $N_{\hat{H}}(V) / V$ which extends to an isomorphism $\psi: \bar{P}_{2,0}=P_{2,0} / V_{0} \rightarrow \bar{P}_{2}$ by 21.12 in $[3 \mathrm{~T}]$ and 9.2 . Hence by $7.10, \bar{u}$ centralizes a subgroup $\bar{I} \cong S_{3}$ faithful on V. Then $I \cong S_{4}$ and $\langle u\rangle V \unlhd I\langle u\rangle$, so it follows that $u^{2} \neq z$, and hence indeed u is an involution.
Q.E.D.
(9.5) (1) All involutions in H are fused under \hat{G} into Q.

Proof. Let $j \in H$ be an involution. We wish to show $j^{\hat{G}} \cap Q \neq \varnothing$, so we may assume $j^{*} \neq 1$. Then by 7.7 and as $\varphi: \tilde{H}_{0} \rightarrow \tilde{H}$ is an isomorphism, we may take $j^{*} \in R^{*}$ and j^{*} of type j_{1}, j_{2} or j_{3}. Then by $7.4, m([j, \tilde{Q}])=6,8,10$ in the respective case. Further by 7.4.2, if j^{*} is of type j_{3} then Q is transitive on the involutions in $j Q$, so as $Q^{g} \cap H$ contains an involution in $j Q$, each involution j with j^{*} of type j_{3} is fused into Q under \hat{G}.

In the remaining cases if $i \in j Q$ is an involution then $i=j x$ for some $\tilde{x} \in C_{\tilde{Q}}(j)$ and if $\tilde{x} \in[j, \tilde{Q}]$ then i is fused to j or $j z$ under Q. From the proof of 7.4 and recalling that $\tilde{H} \cong \tilde{H}_{0}, \tilde{L}$ contains a subgroup $\tilde{M}=\tilde{M}_{1} \times \tilde{M}_{2}$ with $\tilde{M}_{1} \cong S_{3}, \tilde{M}_{2} \cong U_{4}(2)$, and $\tilde{Q}=\left(\tilde{Q}_{1} \oplus \tilde{Q}_{2}\right) \perp \tilde{Q}_{3}$ corresponding to the decomposition described in the proof of 7.4.

Suppose j^{*} is of type j_{1}. Then as we saw during the proof of 7.4 , we may choose $\tilde{j} \in \tilde{M}_{1}$, so that $\tilde{M}_{2} \leq C_{\tilde{L}}(j), \tilde{Q}_{1}=[\tilde{Q}, j], C_{\tilde{Q}}(j)=\tilde{Q}_{1} \oplus \tilde{Q}_{3}$, and $C_{\tilde{Q}}(j)=\left[C_{\tilde{Q}}(j), M_{2}\right]$. Then as $C_{\tilde{L}}(j)=O^{2}\left(C_{\tilde{L}}(j)\right)$, also $C_{\tilde{H}}(j)=$ $O^{2}\left(C_{\tilde{H}}(j)\right)$, and hence $C_{\tilde{H}}(j)=C_{H}(j) /\langle z\rangle$. Thus if $j x$ is an involution then x is an involution, so as \tilde{M}_{2} is transitive on singular vectors of \tilde{Q}_{3}, each involution in $j Q$ is conjugate under $C_{H}(j)$ to $j, j z, j x$, or $j x z$, for some fixed $\tilde{x} \in \tilde{Q}_{3}$ singular. Then as we may choose $x \in E$ and $j \in Q^{g} \cap H$, each involution $j \in H$ with j^{*} of type j_{1} is fused into Q under \hat{G}.

Finally the case j^{*} of type j_{2} is quite similar. Namely from the proof of 7.4 , we may take $\tilde{j} \in \tilde{M}_{2}$ and $C_{\tilde{Q}}(j)=[\tilde{Q}, j] \oplus \tilde{Q}_{4}$ with $\tilde{Q}_{4} \leq \tilde{Q}_{1} \oplus \tilde{Q}_{2}$ a nondegenerate 4 -dimensional space of sign +1 and a Sylow 3 -subgroup of $C_{L}(j)$ is transitive on the singular vectors of \tilde{Q}_{4} and one such is contained in E. So we can repeat the argument of the previous paragraph.
Q.E.D.
(9.6) $u^{\hat{G}} \cap H=\varnothing$.

Proof. Assume otherwise. Then by $9.5, u^{\hat{G}} \cap Q \neq \varnothing$. Suppose first that $u=z^{y}$ for some $y \in \hat{G}$. Then as H^{*} has no $S p_{6}(2)$-sections in parabolics, $z \in C_{Q}(u)=\left[C_{Q}(u), C_{H}(u)\right] \leq Q^{y}$, so $u \in Q$, a contradiction.

Therefore $u \notin z^{\hat{G}}$. Let $S \in S y l_{2}\left(C_{\hat{H}}(u)\right)$ and $S \leq T_{1} \in S y l_{2}\left(C_{\hat{G}}(u)\right)$. By $4.3, Z\left(T_{1}\right)=\left\langle z^{y}, u\right\rangle$ with $u \in Q^{y}$. Then $Z\left(T_{1}\right) \leq C_{T_{1}}(z) \leq S$, so $Z\left(T_{1}\right) \leq Z(S)=\langle z, a, u\rangle \cong E_{8}$ with $\langle z, a\rangle \leq Q$ by 7.10.4. In particular $1 \neq Z\left(T_{1}\right) \cap\langle z, a\rangle$.

Suppose $z^{y} \in Q$. Then $u \in Q^{y} \cap \hat{H} \leq H$, a contradiction. Therefore $u z^{y} \in Q$. Next $u z^{y} \in u^{Q^{y}}$ and $u^{\hat{G}} \neq z^{\hat{G}}$, so $u z^{y} \neq z$. Now $\tilde{a} \in[\tilde{Q}, u]$, so $u a$ or $u a z \in u^{Q}$, and without loss $u a \in u^{Q}$. Thus $u a \neq z^{y}$, so $u z^{y} \neq a$. This leaves $u z^{y}=a z$, so $z^{y}=u a z \in(u z)^{Q}$. Thus $u z \in z^{\hat{G}}$, so we have a contradiction by symmetry between u and $u z$.
Q.E.D.

We are now in a position to complete the proof of Theorem 9.1. By 9.6 and a standard transfer argument such as 37.4 in [FGT], \hat{G} has a subgroup G of index 2 with $u \notin G$. Then as H is the unique subgroup of \hat{H} of index $2, H=G \cap \hat{H}$. Therefore G is of type ${ }^{2} E_{6}(2)$, so Theorem 8.7 completes the proof of Theorem 9.1.

References

[A] M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math., 76 (1984), 469-514.
[FGT] M. Aschbacher, "Finite Group Theory", Cambridge University Press, Cambridge, 1986.
[SG] M. Aschbacher, "Sporadic Groups", Cambridge University Press, Cambridge, 1994.
[3T] M. Aschbacher, "3-Transposition Groups", Cambridge University Press, Cambridge, 1997.
[ASe] M. Aschbacher and G. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J., 63 (1976), 1-91.
[CKS] C. Curtis, W. Kantor and G. Seitz, The 2-transitive permutation representations of the finite Chevalley groups, Trans. Amer. Math. Sci., 218 (1976), 1-59.
[S] M. Suzuki, Finite groups in which the centralizer of any element of order 2 is 2 -closed, Ann. Math., 82 (1965), 191-212.

California Institute of Technology
Pasadena, CA 91125
U.S.A.

