Advanced Studies in Pure Mathematics 30, 2001 Class Field Theory – Its Centenary and Prospect pp. 445–461

Some Congruences for Binomial Coefficients

Sang Geun Hahn and Dong Hoon Lee

Abstract.

Suppose that p = tn + r is a prime and that h is the class number of the imaginary quadratic field, $\mathbb{Q}(\sqrt{-t})$. If $t \equiv 3 \pmod{4}$ is a prime, just r is a quadratic residue modulo t and the order of r modulo t is $\frac{t-1}{2}$, then $4p^h$ can be written in the form $a^2 + tb^2$ for some integers a and b. And if t = 4k where $k \equiv 1 \pmod{4}$, $r \equiv 3 \pmod{4}$, $r \equiv 3 \pmod{4}$, r is a quadratic non-residue modulo t and the order of rmodulo t is k-1, then $p^h = a^2 + kb^2$ for some integers a and b. Our result is that a or 2a is congruent modulo p to a product of certain binomial coefficients modulo sign. As an example, we give explicit formulas for t = 11, 19, 20 and 23.

§1. Introduction

Let p be a prime number throughout the paper. Gauss [1, 3, 4] proved that if p = 4n + 1 then $p = a^2 + b^2$ where $a \equiv 1 \pmod{4}$ and

$$2a \equiv \binom{2n}{n} \pmod{p}.$$

Jacobi [4, 6] proved that if p = 3n + 1 then $4p = a^2 + 27b^2$ where $a \equiv 1 \pmod{3}$ and

$$a \equiv -\binom{2n}{n} \pmod{p}.$$

Eisenstein [1, 2] proved several results. If p = 8n + 3 then $p = a^2 + 2b^2$ where $a \equiv (-1)^n \pmod{4}$ and

$$2a \equiv -\binom{4n+1}{n} \pmod{p}.$$

Received September 14, 1998.

He also proved that if p is a prime of the form p = 7n + 2 or 7n + 4 then $p = a^2 + 7b^2$ where $a \equiv p^2 \pmod{7}$ and

$$2a \equiv \begin{cases} -\binom{3n}{n} \pmod{p} & \text{if } p = 7n+2, \\ \binom{3n+1}{n} \pmod{p} & \text{if } p = 7n+4. \end{cases}$$

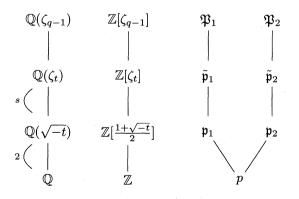
In this paper we study similar problems for primes of the form p = tn+r.

§2. $t \equiv 3 \pmod{4}$ is a prime

Since $t \equiv 3 \pmod{4}$, the ring of integers of $\mathbb{Q}(\sqrt{-t})$ is $\mathbb{Z}[\frac{1+\sqrt{-t}}{2}]$ and $\mathbb{Q}(\zeta_t)$ is the extension field of $\mathbb{Q}(\sqrt{-t})$ with degree $\frac{\phi(t)}{2} = \frac{t-1}{2}$. Set $s = \frac{\phi(t)}{2}$. Let r be a quadratic residue modulo t such that 1 < r < tand the order of r modulo t is s. If s is a prime, then the order of a quadratic residue r modulo t such that 1 < r < t is s. Let p = tn + rbe a prime. By Dirichlet's theorem, there are infinitely many primes of this type since (r, t) = 1. Then

$$\left(\frac{-t}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{t}{p}\right) = (-1)^{\frac{p-1}{2}} (-1)^{\frac{t-1}{2}\frac{p-1}{2}} \left(\frac{r}{t}\right) = 1$$

where (\div) is Legendre symbol. So p splits in $\mathbb{Q}(\sqrt{-t})$ as $p = \mathfrak{p}_1\mathfrak{p}_2$. Let $\tilde{\mathfrak{p}}_i$ be the prime ideal of $\mathbb{Q}(\zeta_t)$ over \mathfrak{p}_i . Since the order of r modulo t is s, so is the order of p. Hence the residue class degree of $\tilde{\mathfrak{p}}_i/p$ is s and \mathfrak{p}_i is inert in $\mathbb{Q}(\zeta_t)/\mathbb{Q}(\sqrt{-t})$. Let $q = p^s$. If \mathfrak{P}_i is a prime in $\mathbb{Q}(\zeta_{q-1})$ lying above $\tilde{\mathfrak{p}}_i$, then the residue class degree of \mathfrak{P}_i/p is also s, hence we can identify $\mathbb{Z}[\zeta_{q-1}]/\mathfrak{P}_1$ with \mathbb{F}_q where \mathbb{F}_q is a finite field with q elements. Note that \mathfrak{P}_i/p is unramified.



2.1. Gauss Sums

The unit group of the finite field \mathbb{F}_q^{\times} can be identified with the (q-1)-st roots of unity via Teichmüller character ω :

$$\omega = \omega_{\mathfrak{P}_1} : \mathbb{F}_q^{\times} \longrightarrow \langle \zeta_{q-1} \rangle$$

satisfying

$$\omega(a) \equiv a \pmod{\mathfrak{P}_1}$$
 for all $a \in \mathbb{F}_a^{\times}$

where ζ_{q-1} is the primitive (q-1)-st root of unity. Let χ be a multiplicative character such that

$$egin{array}{rcl} \chi:\mathbb{F}_q^{ imes}&\longrightarrow&\langle\zeta_t
angle\ a&\longmapsto&\omega(a)^{rac{q-1}{t}} \end{array}$$

where ζ_t is the primitive *t*-th root of unity. Note that t|(q-1). Define the Gauss sum as follows:

$$g(\chi) := -\sum_{a \in \mathbb{F}_q} \chi(a) \zeta_p^{tr(a)}$$

where $tr : \mathbb{F}_q \longrightarrow \mathbb{F}_p$ is the trace map and ζ_p is the primitive *p*-th root of unity. Note that $g(\chi) \in \mathbb{Q}(\zeta_{tp})$ since $\chi(a) \in \mathbb{Q}(\zeta_t)$.

Definition 2.1.1 (Adler [1]).

$$\Gamma_{\nu} := \sum_{a \in \mathbb{F}_q^{\times}, \ tr(a) = 1} \chi^{\nu}(a)$$

Lemma 2.1.2 (Adler).

$$g(\chi^{\nu}) = p\Gamma_{\nu} \text{ for } \chi = \omega^{\frac{q-1}{t}}$$

Proof.

$$g(\chi^{\nu})$$

$$= -\left(\sum_{\substack{a \in \mathbb{F}_q^{\times} \\ tr(a)=0}} \chi^{\nu}(a) + \zeta_p \sum_{\substack{a \in \mathbb{F}_q^{\times} \\ tr(a)=1}} \chi^{\nu}(a) + \dots + \zeta_p^{p-1} \sum_{\substack{a \in \mathbb{F}_q^{\times} \\ tr(a)=p-1}} \chi^{\nu}(a)\right)$$

$$= (1 - \zeta_p) \left(\sum_{\substack{a \in \mathbb{F}_q^{\times} \\ tr(a)=1}} \chi^{\nu}(a)\right) + \dots + (1 - \zeta_p^{p-1}) \left(\sum_{\substack{a \in \mathbb{F}_q^{\times} \\ tr(a)=p-1}} \chi^{\nu}(a)\right)$$

$$= (1 - \zeta_p) \left(\sum_{\substack{a \in \mathbb{F}_q^{\times} \\ tr(a)=1}} \chi^{\nu}(a)\right) + \dots + (1 - \zeta_p^{p-1}) \left(\sum_{\substack{a \in \mathbb{F}_q^{\times} \\ tr(a)=1}} \chi^{\nu}((p-1)a)\right)$$

$$= ((1 - \zeta_p) + (1 - \zeta_p^{2})\chi^{\nu}(2) + \dots + (1 - \zeta_p^{p-1})\chi^{\nu}(p-1))\Gamma_{\nu}.$$

For $a \in \mathbb{F}_p^{\times}$, $a^{\frac{q-1}{t}} = (a^{p-1})^{\frac{q-1}{t(p-1)}} = 1$ because t, (p-1)|(q-1) and (t, p-1) = 1. Hence

$$\chi^{\nu}(a) = \omega(a)^{\frac{q-1}{t}\nu} = \omega(1)^{\nu} = 1.$$

Therefore

$$g(\chi^{\nu}) = \{(p-1) - (\zeta_p + \zeta_p^2 + \dots + \zeta_p^{p-1})\}\Gamma_{\nu} \\ = p\Gamma_{\nu}.$$

Definition 2.1.3 ([1]).

$$\phi(x) := \sum_{j=0}^{t-1} c_j x^j$$

where $c_j = \#\{a \in \mathbb{F}_q^{\times} \mid tr(a) = 1, \quad \chi(a) = \zeta_t^j\}.$

Then $\phi(\zeta_t^{\nu}) = \sum_{j=0}^{t-1} c_j(\zeta_t^j)^{\nu} = \sum_{\substack{a \in \mathbb{F}_q^{\vee} \\ tr(a)=1}} \chi^{\nu}(a) = \Gamma_{\nu}$. We know that

$$tr(a) = a + a^{p} + a^{p^{2}} + \dots + a^{p^{s-1}} = tr(a^{p}).$$

Hence

$$\begin{array}{rcl} c_{j} & = & \#\{a \in \mathbb{F}_{q}^{\times} \mid tr(a) = 1, & \chi(a) = \zeta_{t}^{j}\} \\ & = & \#\{a \in \mathbb{F}_{q}^{\times} \mid tr(a^{p}) = 1, & \chi(a^{p}) = \zeta_{t}^{pj}\} \\ & = & \#\{b \in \mathbb{F}_{q}^{\times} \mid tr(b) = 1, & \chi(b) = \zeta_{t}^{pj}\} \\ & = & c_{pj}. \end{array}$$

Since c_j is determined by $j \pmod{t}$ and $p \equiv r \pmod{t}$, $c_j = c_{pj} = c_{rj}$.

Lemma 2.1.4.

$$g(\chi^{\nu}) \in \mathbb{Q}(\sqrt{-t})$$

Proof. The Galois group $Gal(\mathbb{Q}(\zeta_t)/\mathbb{Q}(\sqrt{-t}))$ is cyclic of order s generated by

$$\begin{aligned} \tau : \mathbb{Q}(\zeta_t) &\longrightarrow & \mathbb{Q}(\zeta_t) \\ \zeta_t &\longmapsto & \zeta_t^r \end{aligned}$$

Hence

$$\tau(\Gamma_{\nu}) = \tau\left(\sum_{j=0}^{t-1} c_j(\zeta_t^j)^{\nu}\right)$$
$$= \sum_{j=0}^{t-1} c_j(\zeta_t^{rj})^{\nu}$$
$$= \sum_{j=0}^{t-1} c_{rj}(\zeta_t^{rj})^{\nu}$$
$$= \Gamma_{\nu}.$$

So $\Gamma_{\nu} \in \mathbb{Q}(\sqrt{-t})$. By Lemma 2.1.2, the above lemma is proved.

Definition 2.1.5 (Washington [10]).

$$\theta := \sum_{b=1}^{t-1} \frac{b}{t} \sigma_b^{-1} \in \mathbb{Q}[Gal(\mathbb{Q}(\zeta_t)/\mathbb{Q})]$$

where $\sigma_b : \mathbb{Q}(\zeta_t) \longrightarrow \mathbb{Q}(\zeta_t)$ such that $\sigma_b(\zeta_t) = \zeta_t^b$.

 θ is called the Stickelberger element for $\mathbb{Q}(\zeta_t)/\mathbb{Q}$. Since $\chi = \omega^{\frac{q-1}{t}}$

$$\left(g(\chi^{-1})^t\right) = \tilde{\mathfrak{p}}_1^{t\theta} = \tilde{\mathfrak{p}}_1^{\sum_{b=1}^{t-1} b\sigma_b^{-1}}$$

by Stickelberger's theorem.

 $Gal(\mathbb{Q}(\zeta_t)/\mathbb{Q}(\sqrt{-t})) = \{\sigma_b | b \text{ is a quadratic residue modulo } t\}$ fixes $\tilde{\mathfrak{p}}_1$, and all the other $\sigma_b s$ send $\tilde{\mathfrak{p}}_1$ to $\tilde{\mathfrak{p}}_2$. So

$$\left(g(\chi^{-1})^t\right) = \tilde{\mathfrak{p}}_1^{\sum_{\substack{(b)=1\\t}} b} \tilde{\mathfrak{p}}_2^{\sum_{\substack{(b)=1\\t}} b} \tilde{\mathfrak{p}}_2^{\sum_{\substack{(b)=1\\t}} b}.$$

Let $\sum_{(\frac{b}{t})=1} b = \alpha t$, $\sum_{(\frac{b}{t})=-1} b = \beta t$ for some integers $\alpha, \beta \ge 1$. Then

$$\left(g(\chi^{-1})\right) = \tilde{\mathfrak{p}}_1^{\alpha} \tilde{\mathfrak{p}}_2^{\beta} \subset \mathbb{Z}[\zeta_t].$$

Note that $(g(\chi)) = \tilde{\mathfrak{p}}_1^{\beta} \tilde{\mathfrak{p}}_2^{\alpha}$ and $\tilde{\mathfrak{p}}_1 \tilde{\mathfrak{p}}_2 = (p)$ in $\mathbb{Q}(\zeta_t)$.

Lemma 2.1.6.

$$\begin{pmatrix} g(\chi) \end{pmatrix} = \mathfrak{p}_1^{\beta} \mathfrak{p}_2^{\alpha} \\ \begin{pmatrix} g(\chi^{-1}) \end{pmatrix} = \mathfrak{p}_1^{\alpha} \mathfrak{p}_2^{\beta}$$

as ideals in $\mathbb{Z}[\frac{1+\sqrt{-t}}{2}]$.

Proof. $g(\chi) \in \mathbb{Q}(\sqrt{-t})$ by Lemma 2.1.4 and $\tilde{\mathfrak{p}}_i \cap \mathbb{Q}(\sqrt{-t}) = \mathfrak{p}_i$. So we are done.

Consider the analytic class number formula

$$\frac{2^{r_1}(2\pi)^{r_2}hR}{w\sqrt{|d|}} = \prod_{\substack{\psi \in X \\ \chi \neq id}} L(1,\psi)$$

for abelian extensions. We know that if $\psi(-1) = -1$ then

$$L(1,\psi) = \pi i \frac{\tau(\psi)}{f} \frac{1}{f} \sum_{a=1}^{f-1} \bar{\psi}(a)a$$

where f is the conductor of ψ and $\tau(\psi) = \sum_{a=1}^{f} \psi(a) e^{2\pi i/f}$ is a Gauss sum.

Apply these formulas to $\mathbb{Q}(\sqrt{-t})$. Then $r_1 = 0, r_2 = 1, R = 1, w = 2, |d| = t$, and $\psi = (\frac{1}{t})$. Hence f = t and $|\tau(\psi)| = \sqrt{t}$. So

$$\frac{2\pi h}{2\sqrt{t}} = \frac{\pi h}{\sqrt{t}} = L(1, \left(\frac{\cdot}{t}\right)).$$

By taking the absolute value

$$h = \frac{\sqrt{t}}{\pi} \left| L(1, \left(\frac{\cdot}{t}\right)) \right| = \frac{\sqrt{t}}{\pi} \left| \pi i \frac{\sqrt{t}}{t} \frac{1}{t} \sum_{a=1}^{t-1} \overline{\left(\frac{a}{t}\right)} a \right|$$
$$= \frac{1}{t} \left| \sum_{b=1}^{t-1} \left(\frac{b}{t}\right) b \right|$$
$$= \frac{1}{t} \left| \sum_{(\frac{b}{t})=1}^{t-1} b - \sum_{(\frac{b}{t})=-1}^{t-1} b \right|$$
$$= \frac{1}{t} \left| \alpha t - \beta t \right| = \left| \alpha - \beta \right|.$$

2.2. *p*-adic Gamma Function

Definition 2.2.1 (Lang [7]).

$$\Gamma_p(z) := \lim_{m \to z} (-1)^m \prod_{\substack{0 < j < m \\ (p,j) = 1}} j$$

where m approaches z p-adically through positive integers.

Definition 2.2.2 ([10]). If $0 \le d \le q-1$ and $d = d_0 + d_1p + \dots + d_{s-1}p^{s-1}$ such that $0 \le d_j < p$, define

$$s(d) := \sum_{j=0}^{s-1} d_j.$$

 Γ_p is called *p*-adic Gamma function. Note that if $\tilde{\mathfrak{P}}_1$ is a prime in $\mathbb{Q}(\zeta_{q-1}, \zeta_p)$ lying above \mathfrak{P}_1 then

$$s(d) = v_{\tilde{\mathfrak{B}}_1}(g(\omega^{-d}))$$

where $v_{\tilde{\mathfrak{P}}_1}$ is $\tilde{\mathfrak{P}}_1$ -adic valuation.

Let Π be a (p-1)-st root of -p. Then Gross-Koblitz formula is

$$g(\omega^d) = (-p)^s \Pi^{-s(d)} \prod_{j=0}^{s-1} \Gamma_p \left(1 - \left\langle \frac{p^j d}{q-1} \right\rangle \right).$$

Lemma 2.2.3. If $d = \frac{q-1}{t}(t-1) = d_0 + d_1p + \dots + d_{s-1}p^{s-1}$ and $d' = \frac{q-1}{t} = d'_0 + d'_1p + \dots + d'_{s-1}p^{s-1}$, then

$$g(\chi^{-1}) = (-p)^{\alpha} \prod_{j=0}^{s-1} \Gamma_p \left(1 - \left\langle \frac{p^j d}{q-1} \right\rangle \right),$$
$$g(\chi) = (-p)^{\beta} \prod_{j=0}^{s-1} \Gamma_p \left(1 - \left\langle \frac{p^j d'}{q-1} \right\rangle \right).$$

Proof. It is sufficient to show that $s(d) = (p-1)\beta$ and $s(d') = (p-1)\alpha$.

$$s(d) = v_{\tilde{\mathfrak{P}}_1}(g(\omega^{-d})) = v_{\tilde{\mathfrak{P}}_1}(g(\chi)).$$

Since $g(\chi) \in \mathbb{Q}(\sqrt{-t}), \mathfrak{P}_1 = \tilde{\mathfrak{P}}_1^{p-1}$ and $\mathfrak{P}_1/\mathfrak{p}_1$ is unramified, $v_{\tilde{\mathfrak{P}}_1} = (p-1)v_{\mathfrak{P}_1} = (p-1)v_{\mathfrak{p}_1}$. So by Lemma 2.1.5

$$s(d) = (p-1)v_{p_1}(g(\chi)) = (p-1)\beta.$$

Similary $s(d') = (p-1)\alpha$. So we are done.

2.3. Main Result

Theorem 2.3.1. Suppose that $t \equiv 3 \pmod{4}$ is a prime and that r > 1 is a quadratic residue modulo t and its order is $s = \frac{\phi(t)}{2} = \frac{t-1}{2}$. Let h be the class number of $\mathbb{Q}(\sqrt{-t})$ and p = tn + r be a prime. Let $p = \mathfrak{p}_1\mathfrak{p}_2$ in $\mathbb{Z}[\frac{1+\sqrt{-t}}{2}]$, $\mathfrak{p}_1^h = \left(\frac{a+b\sqrt{-t}}{2}\right)$, $\sum_{\substack{(b)\\t} = 1} b = \alpha t$, $\sum_{\substack{(b)\\t} = -1} b = \beta t$, $d = (\frac{q-1}{t})(t-1) = \sum_{j=0}^{s-1} d_j p^j$ and $d' = (\frac{q-1}{t}) = \sum_{j=0}^{s-1} d'_j p^j$ as in the previous section. Then

1. $4p^h = a^2 + tb^2$, 2.

$$a \equiv \begin{cases} \pm \prod_{\substack{j=0\\s-1\\ j \equiv 0}}^{s-1} (d_j)! \pmod{p} & \text{if } \alpha < \beta, \\ \\ \pm \prod_{j=0}^{s-1} (d'_j)! \pmod{p} & \text{if } \beta < \alpha. \end{cases}$$

In particular, if \mathfrak{p}_1 is principal ideal, $\mathfrak{p}_1 = \left(\frac{A+B\sqrt{-t}}{2}\right)$, then $4p = A^2 + tB^2$ and $A^h \equiv \pm a \pmod{p}$.

Remark. Note that $h = |\alpha - \beta|$, and a and b are unique up to sign. Since s(d) and s(d') are multiples of (p-1), $\prod(d_i)!$ and $\prod(d'_i)!$

can be expressed as some products of binomial coefficients by Wilson's Theorem.

Proof. The first statement is trivial.

For the second, we will prove only $\alpha < \beta$ case because the other case is done in a similar manner. By Lemma 2.1.6 and Gross-Koblitz formula,

$$\begin{split} & \left(g(\chi^{-1})\right) &= \mathfrak{p}_1^{\alpha}\mathfrak{p}_2^{\beta} = p^{\alpha}\mathfrak{p}_2^h \\ & g(\chi^{-1}) &= (-p)^{\alpha}\prod_{j=0}^{s-1}\Gamma_p\Big(1-\Big\langle\frac{p^jd}{q-1}\Big\rangle\Big). \end{split}$$

Hence

$$\frac{a-b\sqrt{-t}}{2} = \pm \prod_{j=0}^{s-1} \Gamma_p \left(1 - \left\langle \frac{p^j d}{q-1} \right\rangle \right)$$

$$\frac{a+b\sqrt{-t}}{2} + \frac{a-b\sqrt{-t}}{2} \equiv \pm \prod_{j=0}^{s-1} \Gamma_p\left(1 - \left\langle \frac{p^j d}{q-1} \right\rangle\right) \pmod{\mathfrak{p}_1}$$
$$a \equiv \pm \prod_{j=0}^{s-1} \Gamma_p\left(1 - \left\langle \frac{p^j d}{q-1} \right\rangle\right) \pmod{p}.$$

Since

$$\Gamma_p\left(1 - \left\langle \frac{p^{s-j}d}{q-1} \right\rangle\right) \equiv (-1)^{1+d_j}(d_j)! \pmod{p},$$
$$a \equiv \pm \prod_{j=0}^{s-1} (d_j)! \pmod{p}.$$

If \mathfrak{p}_i is principal, then

$$\mathfrak{p}_1^h = \left(\frac{A + B\sqrt{-t}}{2}\right)^h = \left(\frac{a + b\sqrt{-t}}{2}\right)$$

as ideals. So

$$\left(\frac{A+B\sqrt{-t}}{2}\right)^n = \pm \left(\frac{a+b\sqrt{-t}}{2}\right).$$

Since $\frac{B\sqrt{-t}}{2} \equiv \frac{A}{2} \pmod{\mathfrak{p}_2}$ and $\frac{b\sqrt{-t}}{2} \equiv \frac{a}{2} \pmod{\mathfrak{p}_2}$, we have $A^h \equiv \pm a \pmod{p}$.

Example 2.3.2. Let t = 7, then s = 3, $\alpha = 1$, $\beta = 2$ so $h(\mathbb{Q}(\sqrt{-7})) = 1$. Since h = 1 if $4p = a^2 + 7b^2$ then a and b are unique up to sign. Let p be a prime of the form 7n+2 or 7n+4 and $d = 6(p^3-1)/7$. Then

$$d = \begin{cases} 3n + (5n+1)p + (6n+1)p^2 & \text{if } p = 7n+2, \\ (5n+2) + (3n+1)p + (6n+3)p^2 & \text{if } p = 7n+4. \end{cases}$$

By Theorem 2.3.1, if $4p = a^2 + 7b^2$, then

$$a \equiv \begin{cases} \pm (3n)!(5n+1)!(6n+1)! \pmod{p} & \text{if } p = 7n+2, \\ \pm (5n+2)!(3n+1)!(6n+3)! \pmod{p} & \text{if } p = 7n+4. \end{cases}$$

By Wilson's theorem, if p is a prime and p-1 = x + y, then $x!y! \equiv (-1)^{y+1} \pmod{p}$. So we get the Eisenstein's result.

$$a \equiv \begin{cases} \pm (3n)! \cdot \frac{1}{(2n)!} \cdot \frac{1}{(n)!} \equiv \pm \binom{3n}{n} \pmod{p} \\ & \text{if } p = 7n + 2, \\ \pm \frac{1}{(2n+1)!} \cdot (3n+1)! \cdot \frac{1}{(n)!} \equiv \pm \binom{3n+1}{n} \pmod{p} \\ & \text{if } p = 7n + 4. \end{cases}$$

Since $a \leq 2\sqrt{p} < p/2$, the sign can be uniquely determined.

Example 2.3.3. Let t = 11, then s = 5, $\alpha = 2$, $\beta = 3$, and so $h(\mathbb{Q}(\sqrt{-11})) = 1$. Jacobi[4,5] showed that if p = 11n + 1 is a prime and $4p = a^2 + 11b^2$ where $a \equiv 2 \pmod{11}$ then

$$a \equiv \frac{1}{(n)!(3n)!(4n)!(5n)!(9n)!} \pmod{p}$$
$$\equiv {\binom{3n}{n}} {\binom{6n}{3n}} {\binom{4n}{2n}^{-1}} \pmod{p}.$$

Suppose that p = 11n + 5 is a prime.

$$d = \frac{10(p^5 - 1)}{11} = 2n + (7n + 3)p + (8n + 3)p^2 + (6n + 2)p^3 + (10n + 4)p^4.$$

By Theorem 2.3.1, if $4p = a^2 + 11b^2$ then

$$a \equiv \pm (2n)!(7n+3)!(8n+3)!(6n+2)!(10n+4)! \pmod{p}$$

$$\equiv \pm \binom{3n+1}{n} \binom{6n+2}{3n+1} \binom{4n+1}{2n}^{-1} \pmod{p}.$$

Since $a \leq 2\sqrt{p} < p/2$, the sign can be uniquely determined. In a similar manner, we can get the following corollary.

Corollary 2.3.4. Let p = 11n + r be a prime and $4p = a^2 + 11b^2$ where r is a quadratic residue modulo 11. Then

$$a \equiv \begin{cases} \pm \binom{3n+1}{n} \binom{6n+1}{3n} \binom{4n+1}{2n}^{-1} \pmod{p} & \text{if } r = 3, \\ \pm \binom{3n+1}{n} \binom{6n+2}{3n+1} \binom{4n+1}{2n}^{-1} \pmod{p} & \text{if } r = 4 \text{ or } 5, \\ \pm \binom{3n+2}{n} \binom{6n+4}{3n+2} \binom{4n+3}{2n+1}^{-1} \pmod{p} & \text{if } r = 9. \end{cases}$$

Example 2.3.5. Let t = 19, then s = 9, $\alpha = 4$, $\beta = 5$, and so $h(\mathbb{Q}(\sqrt{-19})) = 1$. Since s is not a prime, the order of a quadratic residue is not always s(=9). Suppose p = 19n + 4 is a prime. Then

$$d = (14n+2) + (13n+2)p + (8n+1)p^2 + (2n)p^3 + (10n+2)p^4 + (12n+2)p^5 + (3n)p^6 + (15n+3)p^7 + (18n+3)p^8.$$

If $4p = a^2 + 19b^2$, then by Theorem 2.3.1 and Wilson's theorem,

$$a \equiv \pm \binom{6n+1}{n} \binom{10n+1}{4n} \binom{10n+2}{3n+1} \binom{6n+1}{3n}^{-1} \binom{10n+1}{2n}^{-1} \pmod{p}.$$

Similarly we get the following corollary.

Corollary 2.3.6. Let p = 19n + r be a prime where r is a quadratic residue and its order is 9. If $4p = a^2 + 19b^2$, then a is congruent modulo p to a product of binomial coefficients modulo sign.

$$1. \ a \equiv \pm \binom{6n+1}{n} \binom{10n+1}{4n} \binom{10n+2}{3n+1} \binom{6n+1}{3n} \binom{-1}{10n+1} \binom{10n+1}{2n}^{-1} if r = 4;$$

$$2. \ a \equiv \pm \binom{6n+1}{n} \binom{10n+2}{4n+1} \binom{10n+2}{3n+1} \binom{6n+1}{3n} \binom{-1}{10n+2} \binom{-1}{2n}^{-1} if r = 5;$$

$$3. \ a \equiv \pm \binom{6n+1}{n} \binom{10n+2}{4n+1} \binom{10n+3}{3n+1} \binom{6n+1}{3n} \binom{-1}{10n+2} \binom{-1}{2n}^{-1} if r = 6;$$

$$4. \ a \equiv \pm \binom{3n+1}{n} \binom{10n+4}{5n+2} \binom{13n+5}{6n+2} \binom{4n+1}{2n} \binom{-1}{13n+5} \binom{-1}{5n+2}^{-1} if r = 9;$$

5.
$$a \equiv \pm \binom{3n+2}{n} \binom{10n+8}{5n+4} \binom{13n+10}{6n+5} \binom{4n+3}{2n+1}^{-1} \binom{13n+10}{5n+4}^{-1}$$

if $r = 16$;
6. $a \equiv \pm \binom{3n+2}{n} \binom{10n+8}{5n+4} \binom{13n+11}{6n+5} \binom{4n+3}{2n+1}^{-1} \binom{13n+11}{5n+4}^{-1}$
if $r = 17$.

Example 2.3.7. Suppose p = 23n+4 is a prime. Then $h(\mathbb{Q}(\sqrt{-23})) = 3$ and

$$\begin{split} d &= (17n+2) + (10n+1)p + (14n+2)p^2 + (15n+2)p^3 + (21n+3)p^4 \\ &+ (11n+1)p^5 + (20n+3)p^6 + (5n)p^7 + (7n+1)p^8 + (19n+3)p^9 \\ &+ (22n+3)p^{10}. \end{split}$$

If $4p^3 = a^2 + 23b^2$ for $p \not| a$, then by Theorem 2.3.1 and Wilson's theorem,

$$a \equiv \pm \binom{4n}{n} \binom{10n+1}{4n} \binom{11n+1}{2n} \binom{12n+1}{4n} \binom{12n+1}{5n}^{-1} \pmod{p}.$$

If \mathfrak{p}_i is principal, then 4p can be written in the form $A^2 + 23B^2$. For example, if p = 211, then $4p = 4^2 + 23 \cdot 6^2$. So we can verify Theorem 2.3.1 that $4p^3 = 2468^2 + 23 \cdot 1170^2$ and $4^2 \equiv -(2468) \pmod{p}$. Note that if $t \not\equiv 3 \pmod{8}$ then *a* and *b* are even. Similarly we get the following corollary.

Corollary 2.3.8. Let p = 23n + r be a prime and $4p^3 = a^2 + 23b^2$ for $p \not| a$ where r is a quadratic residue modulo 23. Then a is congruent modulo p to a product of binomial coefficients modulo sign.

1.
$$a \equiv \pm \binom{4n}{n} \binom{10n}{4n} \binom{11n}{2n} \binom{12n}{4n} \binom{12n}{5n}^{-1}$$

if $r = 2$;
2. $a \equiv \pm \binom{5n}{2n} \binom{10n+1}{n} \binom{10n}{4n} \binom{11n+1}{3n} \binom{10n}{3n}^{-1}$
if $r = 3$;
3. $a \equiv \pm \binom{4n}{n} \binom{10n+1}{4n} \binom{11n+1}{2n} \binom{12n+1}{4n} \binom{12n+1}{5n}^{-1}$
if $r = 4$;
4. $a \equiv \pm \binom{4n}{n} \binom{10n+2}{4n+1} \binom{11n+2}{2n} \binom{12n+2}{4n} \binom{12n+2}{5n+1}^{-1}$
if $r = 6$;
5. $a \equiv \pm \binom{4n+1}{n} \binom{10n+3}{4n+1} \binom{11n+3}{2n} \binom{12n+3}{4n+1} \binom{12n+3}{5n+1}^{-1}$
if $r = 8$;

Some Congruences for Binomial Coefficients

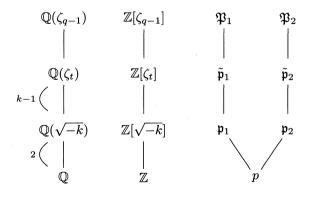
$$6. \ a \equiv \pm \binom{5n+1}{2n} \binom{10n+3}{n} \binom{10n+3}{4n+1} \binom{11n+4}{3n+1} \binom{10n+3}{3n+1}^{-1} \\ if r = 9; \\ 7. \ a \equiv \pm \binom{4n+1}{n} \binom{10n+5}{4n+2} \binom{11n+5}{2n+1} \binom{12n+5}{4n+1} \binom{12n+5}{5n+2}^{-1} \\ if r = 12; \\ 8. \ a \equiv \pm \binom{4n+1}{n} \binom{10n+5}{4n+2} \binom{11n+6}{2n+1} \binom{12n+5}{4n+1} \binom{12n+5}{5n+2}^{-1} \\ if r = 13; \\ 9. \ a \equiv \pm \binom{4n+2}{n} \binom{10n+6}{4n+2} \binom{11n+7}{2n+1} \binom{12n+7}{4n+2} \binom{12n+7}{5n+3}^{-1} \\ if r = 16; \\ 10. \ a \equiv \pm \binom{4n+2}{n} \binom{10n+7}{4n+3} \binom{11n+8}{2n+1} \binom{12n+8}{4n+2} \binom{12n+8}{5n+3}^{-1} \\ if r = 18. \end{aligned}$$

§3. t = 4k for a prime $k \equiv 1 \pmod{4}$

Suppose p = 4kn + r is a prime where $k \equiv 1 \pmod{4}$ is a prime and $r \equiv 3 \pmod{4}$ is a quadratic non-residue modulo k, that is $\left(\frac{r}{k}\right) = -1$. Then the ring of integers of $\mathbb{Q}(\sqrt{-k})$ is $\mathbb{Z}[\sqrt{-k}]$ and

$$\left(\frac{-k}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{k}{p}\right) = (-1)^{\frac{p-1}{2}} (-1)^{\frac{k-1}{2}\frac{p-1}{2}} \left(\frac{r}{k}\right) = 1.$$

So p splits in $\mathbb{Q}(\sqrt{-k})$ as $p = \mathfrak{p}_1\mathfrak{p}_2$. Suppose the order of r modulo t is k-1. Then \mathfrak{p}_i is inert in $\mathbb{Q}(\zeta_t)/\mathbb{Q}(\sqrt{-k})$. Let $\tilde{\mathfrak{p}}_i$ be the prime ideal of $\mathbb{Q}(\zeta_t)$ over \mathfrak{p}_i and $q = p^{k-1}$. If \mathfrak{P}_i is a prime in $\mathbb{Q}(\zeta_{q-1})$ lying above $\tilde{\mathfrak{p}}_i$, then the residue class degree of \mathfrak{P}_i is k-1; hence we can identify $\mathbb{Z}[\zeta_{q-1}]/\mathfrak{P}_1$ with \mathbb{F}_q . Note that \mathfrak{P}_i/p is unramified.



3.1. Gauss Sums and *p*-adic Gamma Functions

Let χ be a multiplicative character such that

$$\begin{array}{cccc} \chi: \mathbb{F}_q^{\times} & \longrightarrow & \langle \zeta_t \rangle \\ & a & \longmapsto & \omega(a)^{\frac{q-1}{t}} \end{array}$$

where ω is the Teichmüller character. $g(\chi)$, Γ_{ν} , $\phi(x)$ and Γ_{p} are defined as in the previous section.

Lemma 3.1.1.

$$g(\chi^
u) = p\Gamma_
u$$
 for $\chi = \omega^{rac{q-1}{t}}$

Proof. It is sufficient to show that for $a \in \mathbb{F}_p^{\times}$, $a^{\frac{q-1}{t}} = 1$ as in the Lemma 2.1.2.

We will show that 4k(p-1)|(q-1). Since $r \equiv 3 \pmod{4}$, $\frac{p-1}{2}$ is odd. So 8, k and $\frac{p-1}{2}$ are relatively prime. Clearly k|(q-1) and $\frac{p-1}{2}|(q-1)$.

$$q-1 = (4kn+r)^{k-1} - 1$$

= $\sum_{i=0}^{k-1} {\binom{k-1}{i}} (4kn)^i r^{k-1-i} - 1.$

If $i \ge 2$, then $8|(4kn)^i$. If i = 1, then $2|\binom{k-1}{1} = k-1$ and 4|4kn, and hence $8|\binom{k-1}{1}(4kn)$. Since $r \equiv 3 \pmod{4}$, $r^2 \equiv 1 \pmod{8}$, and hence $(r^2)^{\frac{k-1}{2}} \equiv 1 \pmod{8}$. So if i = 0, then $8|r^{k-1} - 1$. Thus we showed 8|(q-1), and hence 4k(p-1)|(q-1). So we are done.

The Galois group $Gal(\mathbb{Q}(\zeta_t)/\mathbb{Q}(\sqrt{-k}))$ is cyclic of order k-1 generated by

$$\begin{aligned} \tau : \mathbb{Q}(\zeta_t) &\longrightarrow & \mathbb{Q}(\zeta_t) \\ \zeta_t &\longmapsto & \zeta_t^r \end{aligned}$$

because the order of r modulo t is k-1. Hence $\tau(\Gamma_{\nu}) = \Gamma_{\nu}$ since $c_j = c_{rj}$ as in the previous section. So $g(\chi^{\nu}) \in \mathbb{Q}(\sqrt{-k})$. Let θ denote the Stickelberger element for $\mathbb{Q}(\zeta_t)/\mathbb{Q}$. By Stickelberger's theorem

$$\left(g(\chi^{-1})^t\right) = \tilde{\mathfrak{p}}_1^{t\theta}.$$

 $\begin{aligned} & Gal(\mathbb{Q}(\zeta_t)/\mathbb{Q}(\sqrt{-k})) = \{\sigma_b | b \equiv r^i \pmod{t}, i = 1, 2, \cdots, k-1\} \text{ fixes } \tilde{\mathfrak{p}}_1. \\ & \text{Let } \sum_{i=1}^{k-1} (r^i \pmod{t}) = \alpha t \text{ and } (\sum_{(b,t)=1} b) - \alpha t = (k-1)t - \alpha t = \beta t \\ & \text{for some integers } \alpha, \beta \geq 1. \text{ Then} \end{aligned}$

$$\left(g(\chi^{-1})\right) = \tilde{\mathfrak{p}}_1^{\alpha} \tilde{\mathfrak{p}}_2^{\beta} \subset \mathbb{Z}[\zeta_t].$$

Hence

$$egin{array}{rcl} \left(g(\chi)
ight)&=&\mathfrak{p}_1^{eta}\mathfrak{p}_2^{lpha} \ \left(g(\chi^{-1})
ight)&=&\mathfrak{p}_1^{lpha}\mathfrak{p}_2^{eta} \end{array}$$

as ideals in $\mathbb{Z}[\sqrt{-k}]$.

Let ψ be a multiplicative character $\psi : (\mathbb{Z}/t\mathbb{Z})^{\times} \longrightarrow \mathbb{C}^{\times}$ such that

$$\psi(a) = \begin{cases} 1 & \text{if } a \equiv r^i \pmod{t} \text{ for some } i, \\ -1 & \text{otherwise.} \end{cases}$$

Then $\mathbb{Q}(\sqrt{-k})$ is the field belonging to ψ .

Lemma 3.1.2. $\psi(-1) = -1$.

Proof. If $-1 \equiv r^i \pmod{4k}$ for some *i*. Then $i = \frac{k-1}{2}$ because the order of *r* is k - 1. But

 $r \equiv 3 \pmod{4} \Rightarrow r^2 \equiv 1 \pmod{4} \Rightarrow r^{2(\frac{k-1}{4})} \equiv 1 \pmod{4}.$

It is a contradiction.

Apply the analytic class number formula to $\mathbb{Q}(\sqrt{-k})$ and take the absolute value. Then

$$\begin{aligned} \left|\frac{2\pi h}{2\sqrt{t}}\right| &= \left|L(1,\psi)\right| \\ &= \left|\pi\frac{\sqrt{t}}{t}\frac{1}{t}\right|\sum_{i=1}^{t-1}\bar{\psi}(a)a\right| &= \left|\frac{\pi}{t\sqrt{t}}\right|\alpha t - \beta t\Big|. \end{aligned}$$

So $h = |\alpha - \beta|$.

Let Π be a (p-1)-st root of -p. Then Gross-Koblitz formula is

$$g(\omega^d) = (-p)^{k-1} \Pi^{-s(d)} \prod_{j=0}^{k-2} \Gamma_p \Big(1 - \Big\langle \frac{p^j d}{q-1} \Big\rangle \Big).$$

Lemma 3.1.3. If $d = \frac{q-1}{t}(t-1) = d_0 + d_1p + \dots + d_{k-2}p^{k-2}$ and $d' = \frac{q-1}{t} = d'_0 + d'_1p + \dots + d'_{k-2}p^{k-2}$, then

$$g(\chi^{-1}) = (-p)^{\alpha} \prod_{j=0}^{k-2} \Gamma_p \left(1 - \left\langle \frac{p^j d}{q-1} \right\rangle \right)$$
$$g(\chi) = (-p)^{\beta} \prod_{j=0}^{k-2} \Gamma_p \left(1 - \left\langle \frac{p^j d'}{q-1} \right\rangle \right).$$

459

Proof. See the proof of Lemma 2.2.3.

3.2. Main Result

Theorem 3.2.1. Suppose that t = 4k for a prime $k \equiv 1 \pmod{4}$ and that $r \equiv 3 \pmod{4}$ is a quadratic non-residue modulo k and its order is $\frac{\phi(t)}{2} = k - 1$. Let h be the class number of $\mathbb{Q}(\sqrt{-k})$ and p = tn + rbe a prime. Let $p = \mathfrak{p}_1\mathfrak{p}_2$ in $\mathbb{Z}[\sqrt{-k}]$, $\mathfrak{p}_1^h = (a + b\sqrt{-k})$, $\sum_{i=1}^{k-1}(r^i \pmod{t}) = \alpha t$, $\beta = (k-1) - \alpha$, $d = (\frac{q-1}{t})(t-1) = \sum_{j=0}^{k-2} d_j p^j$ and k-2

 $d' = \left(\frac{q-1}{t}\right) = \sum_{j=0}^{k-2} d'_j p^j \text{ as in the previous section. Then}$ 1. $p^h = a^2 + kb^2$;
2. $2a \equiv \begin{cases} \pm \prod_{j=0}^{k-2} (d_j)! \pmod{p} & \text{if } \alpha < \beta, \\ \pm \prod_{j=0}^{k-2} (d'_j)! \pmod{p} & \text{if } \beta < \alpha. \end{cases}$

Proof. See the proof of Theorem 2.3.1.

Example 3.2.2. Let k = 5, then $\alpha = 1, \beta = 3$ so $h(\mathbb{Q}(\sqrt{-5})) = 2$. Let p be a prime of the form 20n + 3 or 20n + 7 and $d = 19(p^4 - 1)/20$. Then

$$d = \begin{cases} (13n+1) + (11n+1)p + (17n+2)p^2 + (19n+2)p^3 \\ & \text{if } p = 20n+3, \\ (17n+5) + (11n+3)p + (13n+4)p^2 + (19n+6)p^3 \\ & \text{if } p = 20n+7. \end{cases}$$

By Theorem 3.2.1, if $p^2 = a^2 + 5b^2$, then

$$2a \equiv \begin{cases} \pm (13n+1)!(11n+1)!(17n+2)!(19n+2)! \pmod{p} \\ & \text{if } p = 20n+3, \\ \pm (17n+5)!(11n+3)!(13n+4)!(19n+6)! \pmod{p} \\ & \text{if } p = 20n+7. \end{cases}$$

By Wilson's theorem,

$$2a \equiv \begin{cases} \pm \binom{4n}{n} \binom{11n+1}{4n} \pmod{p} & \text{if } p = 20n+3, \\ \pm \binom{4n+1}{n} \binom{11n+3}{4n+1} \pmod{p} & \text{if } p = 20n+7. \end{cases}$$

At the time of the publication of this paper, we could remove the sign ambiguity of our results in [8]. Moreover we generalized our results to the primes of the form of p = tn + r such that p splits in $\mathbb{Q}(\sqrt{-t})$ [9].

References

- Allan Adler, Eisenstein and the Jacobian Varieties of Fermat Curves, Rocky Mountain Journal of Mathematics, 27 (no. 1) Winter (1997), 1-60.
- [2] Gotthold Eisenstein, Zur Theorie der Quadratische Zerfallung der Primzahlen 8n+3, 7n+2 und 7n+4, Crelle, 37 (1948), 97–126 [Math. Werke II, pp. 506–535, art. 33].
- [3] Carl Friedrich Gauss, *Theoria Residuorum Biquadraticorum*, Comment. I, Comment. soc. reg. sci. Gottingensis rec., 6 (1828), 27 [Werke, vol. II, pp. 89–90].
- [4] Richard H. Hudson and Kenneth S. Williams, Binomial Coefficients and Jacobi Sums, Trans. of the Amer. Math. Soc., 281 (no. 2) February (1984), 431–505.
- [5] C.G.J. Jacobi, De Residuis Cubics Commentatio Numerosa, J. Reine Angew. Math., 2 (1827), 66–69.
- [6] C.G.J. Jacobi, Uber die Kreistheilung und ihre Anwendung auf die Zahlentheorie, J. Reine Angew. Math., 30 (1846), 166–182.
- [7] Serge Lang, Cyclotomic Fields I and II, Springer-Verlag, GTM 121, 1990.
- [8] D.H. Lee and S.G. Hahn, Some congruences for binomial coefficients. II, Proc. Japan Acad., 76, Ser. A (2000), 104–107.
- [9] D.H. Lee and S.G. Hahn, Gauss sums and binomial coefficients, J. Number Theory (2000); submitted.
- [10] Lawrence C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, GTM 83, 1997.

Sang Geun Hahn Department of Mathematics KAIST Yusong-Gu Kusong-Dong 373-1 Taejon 305-701 South Korea E-mail address: sghahn@math.kaist.ac.kr

Dong Hoon Lee Department of Mathematics KAIST Yusong-Gu Kusong-Dong 373-1 Taejon 305-701 South Korea E-mail address: dhlee@math.kaist.ac.kr