Some Congruences for Binomial Coefficients

Sang Geun Hahn and Dong Hoon Lee

Abstract

. Suppose that $p=t n+r$ is a prime and that h is the class number of the imaginary quadratic field, $\mathbb{Q}(\sqrt{-t})$. If $t \equiv 3(\bmod 4)$ is a prime, just r is a quadratic residue modulo t and the order of r modulo t is $\frac{t-1}{2}$, then $4 p^{h}$ can be written in the form $a^{2}+t b^{2}$ for some integers a and b. And if $t=4 k$ where $k \equiv 1(\bmod 4), r \equiv 3$ $(\bmod 4), r$ is a quadratic non-residue modulo t and the order of r modulo t is $k-1$, then $p^{h}=a^{2}+k b^{2}$ for some integers a and b. Our result is that a or $2 a$ is congruent modulo p to a product of certain binomial coefficients modulo sign. As an example, we give explicit formulas for $t=11,19,20$ and 23.

§1. Introduction

Let p be a prime number throughout the paper. Gauss $[1,3,4]$ proved that if $p=4 n+1$ then $p=a^{2}+b^{2}$ where $a \equiv 1(\bmod 4)$ and

$$
2 a \equiv\binom{2 n}{n} \quad(\bmod p)
$$

Jacobi $[4,6]$ proved that if $p=3 n+1$ then $4 p=a^{2}+27 b^{2}$ where $a \equiv 1$ $(\bmod 3)$ and

$$
a \equiv-\binom{2 n}{n} \quad(\bmod p)
$$

Eisenstein [1,2] proved several results. If $p=8 n+3$ then $p=a^{2}+2 b^{2}$ where $a \equiv(-1)^{n}(\bmod 4)$ and

$$
2 a \equiv-\binom{4 n+1}{n} \quad(\bmod p)
$$

Received September 14, 1998.

He also proved that if p is a prime of the form $p=7 n+2$ or $7 n+4$ then $p=a^{2}+7 b^{2}$ where $a \equiv p^{2}(\bmod 7)$ and

$$
2 a \equiv\left\{\begin{array}{lll}
-\binom{3 n}{n} & (\bmod p) & \text { if } p=7 n+2 \\
\binom{3 n+1}{n} & (\bmod p) & \text { if } p=7 n+4
\end{array}\right.
$$

In this paper we study similar problems for primes of the form $p=t n+r$.
\S 2. $t \equiv 3(\bmod 4)$ is a prime
Since $t \equiv 3(\bmod 4)$, the ring of integers of $\mathbb{Q}(\sqrt{-t})$ is $\mathbb{Z}\left[\frac{1+\sqrt{-t}}{2}\right]$ and $\mathbb{Q}\left(\zeta_{t}\right)$ is the extension field of $\mathbb{Q}(\sqrt{-t})$ with degree $\frac{\phi(t)}{2}=\frac{t-1}{2}$. Set $s=\frac{\phi(t)}{2}$. Let r be a quadratic residue modulo t such that $1<r<t$ and the order of r modulo t is s. If s is a prime, then the order of a quadratic residue r modulo t such that $1<r<t$ is s. Let $p=t n+r$ be a prime. By Dirichlet's theorem, there are infinitely many primes of this type since $(r, t)=1$. Then

$$
\left(\frac{-t}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{t}{p}\right)=(-1)^{\frac{p-1}{2}}(-1)^{\frac{t-1}{2} \frac{p-1}{2}}\left(\frac{r}{t}\right)=1
$$

where (\div) is Legendre symbol. So p splits in $\mathbb{Q}(\sqrt{-t})$ as $p=\mathfrak{p}_{1} \mathfrak{p}_{2}$. Let $\tilde{\mathfrak{p}}_{i}$ be the prime ideal of $\mathbb{Q}\left(\zeta_{t}\right)$ over \mathfrak{p}_{i}. Since the order of r modulo t is s, so is the order of p. Hence the residue class degree of $\tilde{\mathfrak{p}}_{i} / p$ is s and \mathfrak{p}_{i} is inert in $\mathbb{Q}\left(\zeta_{t}\right) / \mathbb{Q}(\sqrt{-t})$. Let $q=p^{s}$. If \mathfrak{P}_{i} is a prime in $\mathbb{Q}\left(\zeta_{q-1}\right)$ lying above $\tilde{\mathfrak{p}}_{i}$, then the residue class degree of \mathfrak{P}_{i} / p is also s, hence we can identify $\mathbb{Z}\left[\zeta_{q-1}\right] / \mathfrak{P}_{1}$ with \mathbb{F}_{q} where \mathbb{F}_{q} is a finite field with q elements. Note that \mathfrak{P}_{i} / p is unramified.

2.1. Gauss Sums

The unit group of the finite field \mathbb{F}_{q}^{\times}can be identified with the ($q-1$)-st roots of unity via Teichmüller character ω :

$$
\omega=\omega_{\mathfrak{P}_{1}}: \mathbb{F}_{q}^{\times} \longrightarrow\left\langle\zeta_{q-1}\right\rangle
$$

satisfying

$$
\omega(a) \equiv a \quad\left(\bmod \mathfrak{P}_{1}\right) \text { for all } a \in \mathbb{F}_{q}^{\times}
$$

where ζ_{q-1} is the primitive $(q-1)$-st root of unity. Let χ be a multiplicative character such that

$$
\begin{aligned}
\chi: \mathbb{F}_{q}^{\times} & \longrightarrow\left\langle\zeta_{t}\right\rangle \\
a & \longmapsto \omega(a)^{\frac{q-1}{t}}
\end{aligned}
$$

where ζ_{t} is the primitive t-th root of unity. Note that $t \mid(q-1)$. Define the Gauss sum as follows:

$$
g(\chi):=-\sum_{a \in \mathbb{F}_{q}} \chi(a) \zeta_{p}^{t r(a)}
$$

where $\operatorname{tr}: \mathbb{F}_{q} \longrightarrow \mathbb{F}_{p}$ is the trace map and ζ_{p} is the primitive p-th root of unity. Note that $g(\chi) \in \mathbb{Q}\left(\zeta_{t p}\right)$ since $\chi(a) \in \mathbb{Q}\left(\zeta_{t}\right)$.

Definition 2.1.1 (Adler [1]).

$$
\Gamma_{\nu}:=\sum_{a \in \mathbb{F}_{q}^{\times}, \operatorname{tr}(a)=1} \chi^{\nu}(a)
$$

Lemma 2.1.2 (Adler).

$$
g\left(\chi^{\nu}\right)=p \Gamma_{\nu} \text { for } \chi=\omega^{\frac{q-1}{t}}
$$

Proof.

$$
\begin{aligned}
& g\left(\chi^{\nu}\right) \\
& =-\left(\sum_{\substack{a \in \mathbb{F}_{q}^{\times} \\
\operatorname{tr}(a)=0}} \chi^{\nu}(a)+\zeta_{p} \sum_{\substack{a \in \mathbb{F}_{Q}^{\times} \\
\operatorname{tr}(a)=1}} \chi^{\nu}(a)+\cdots+\zeta_{p}^{p-1} \sum_{\substack{a \in \mathbb{F}_{q}^{\times} \\
\operatorname{tr}(a)=p-1}} \chi^{\nu}(a)\right) \\
& =\left(1-\zeta_{p}\right)\left(\sum_{\substack{a \in \mathbb{F}_{Q}^{\times} \\
\operatorname{tr}(a)=1}} \chi^{\nu}(a)\right)+\cdots+\left(1-\zeta_{p}^{p-1}\right)\left(\sum_{\substack{a \in \mathbb{F}_{q}^{\times} \\
\operatorname{tr}(a)=p-1}} \chi^{\nu}(a)\right) \\
& \left(\text { since } \chi^{\nu} \text { is a non-trivial character, } \sum_{a \in \mathbb{F}_{q}^{\times}} \chi^{\nu}(a)=0\right) \\
& =\left(1-\zeta_{p}\right)\left(\sum_{\substack{a \in \mathbb{F}_{\underset{Q}{\times}}^{\begin{subarray}{c}{x} }}} \\
{t r(a)=1}\end{subarray}} \chi^{\nu}(a)\right)+\cdots+\left(1-\zeta_{p}^{p-1}\right)\left(\sum_{\substack{a \in \mathbb{F}_{\alpha}^{\times} \\
\operatorname{tr}(a)=1}} \chi^{\nu}((p-1) a)\right) \\
& =\left(\left(1-\zeta_{p}\right)+\left(1-\zeta_{p}^{2}\right) \chi^{\nu}(2)+\cdots+\left(1-\zeta_{p}^{p-1}\right) \chi^{\nu}(p-1)\right) \Gamma_{\nu} .
\end{aligned}
$$

For $a \in \mathbb{F}_{p}^{\times}, a^{\frac{q-1}{t}}=\left(a^{p-1}\right)^{\frac{q-1}{t(p-1)}}=1$ because $t,(p-1) \mid(q-1)$ and $(t, p-1)=1$. Hence

$$
\chi^{\nu}(a)=\omega(a)^{\frac{q-1}{t} \nu}=\omega(1)^{\nu}=1
$$

Therefore

$$
\begin{aligned}
g\left(\chi^{\nu}\right) & =\left\{(p-1)-\left(\zeta_{p}+\zeta_{p}^{2}+\cdots+\zeta_{p}^{p-1}\right)\right\} \Gamma_{\nu} \\
& =p \Gamma_{\nu}
\end{aligned}
$$

Definition 2.1.3 ([1]).

$$
\phi(x):=\sum_{j=0}^{t-1} c_{j} x^{j}
$$

where $c_{j}=\#\left\{a \in \mathbb{F}_{q}^{\times} \mid \operatorname{tr}(a)=1, \quad \chi(a)=\zeta_{t}^{j}\right\}$.
Then $\phi\left(\zeta_{t}^{\nu}\right)=\sum_{j=0}^{t-1} c_{j}\left(\zeta_{t}^{j}\right)^{\nu}=\sum_{\substack{a \in \mathbb{F}^{\times} \\ \operatorname{tr}(a)=1}} \chi^{\nu}(a)=\Gamma_{\nu}$. We know that

$$
\operatorname{tr}(a)=a+a^{p}+a^{p^{2}}+\cdots+a^{p^{s-1}}=\operatorname{tr}\left(a^{p}\right) .
$$

Hence

$$
\begin{aligned}
c_{j} & =\#\left\{a \in \mathbb{F}_{q}^{\times} \mid \operatorname{tr}(a)=1, \quad \chi(a)=\zeta_{t}^{j}\right\} \\
& =\#\left\{a \in \mathbb{F}_{q}^{\times} \mid \operatorname{tr}\left(a^{p}\right)=1, \quad \chi\left(a^{p}\right)=\zeta_{t}^{p j}\right\} \\
& =\#\left\{b \in \mathbb{F}_{q}^{\times} \mid \operatorname{tr}(b)=1, \quad \chi(b)=\zeta_{t}^{p j}\right\} \\
& =c_{p j} .
\end{aligned}
$$

Since c_{j} is determined by $j(\bmod t)$ and $p \equiv r(\bmod t), c_{j}=c_{p j}=c_{r j}$.

Lemma 2.1.4.

$$
g\left(\chi^{\nu}\right) \in \mathbb{Q}(\sqrt{-t})
$$

Proof. The Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{t}\right) / \mathbb{Q}(\sqrt{-t})\right)$ is cyclic of order s generated by

$$
\begin{aligned}
\tau: \mathbb{Q}\left(\zeta_{t}\right) & \longrightarrow \mathbb{Q}\left(\zeta_{t}\right) \\
\zeta_{t} & \longmapsto \zeta_{t}^{r}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\tau\left(\Gamma_{\nu}\right) & =\tau\left(\sum_{j=0}^{t-1} c_{j}\left(\zeta_{t}^{j}\right)^{\nu}\right) \\
& =\sum_{j=0}^{t-1} c_{j}\left(\zeta_{t}^{r j}\right)^{\nu} \\
& =\sum_{j=0}^{t-1} c_{r j}\left(\zeta_{t}^{r j}\right)^{\nu} \\
& =\Gamma_{\nu}
\end{aligned}
$$

So $\Gamma_{\nu} \in \mathbb{Q}(\sqrt{-t})$. By Lemma 2.1.2, the above lemma is proved.
Definition 2.1.5 (Washington [10]).

$$
\theta:=\sum_{b=1}^{t-1} \frac{b}{t} \sigma_{b}^{-1} \in \mathbb{Q}\left[\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{t}\right) / \mathbb{Q}\right)\right]
$$

where $\sigma_{b}: \mathbb{Q}\left(\zeta_{t}\right) \longrightarrow \mathbb{Q}\left(\zeta_{t}\right)$ such that $\sigma_{b}\left(\zeta_{t}\right)=\zeta_{t}^{b}$.
θ is called the Stickelberger element for $\mathbb{Q}\left(\zeta_{t}\right) / \mathbb{Q}$. Since $\chi=\omega^{\frac{q-1}{t}}$

$$
\left(g\left(\chi^{-1}\right)^{t}\right)=\tilde{\mathfrak{p}}_{1}^{t \theta}=\tilde{\mathfrak{p}}_{1}^{\sum_{b=1}^{t-1} b \sigma_{b}^{-1}}
$$

by Stickelberger's theorem.
$\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{t}\right) / \mathbb{Q}(\sqrt{-t})\right)=\left\{\sigma_{b} \mid b\right.$ is a quadratic residue modulo $\left.t\right\}$ fixes $\tilde{\mathfrak{p}}_{1}$, and all the other $\sigma_{b} \mathrm{~s}$ send $\tilde{\mathfrak{p}}_{1}$ to $\tilde{\mathfrak{p}}_{2}$. So

$$
\left(g\left(\chi^{-1}\right)^{t}\right)=\tilde{\mathfrak{p}}_{1}^{\sum_{\left(\frac{b}{t}\right)=1} b} \tilde{\mathfrak{p}}_{2}^{\sum_{\left(\frac{b}{t}\right)=-1} b} .
$$

Let $\sum_{\left(\frac{b}{t}\right)=1} b=\alpha t, \sum_{\left(\frac{b}{t}\right)=-1} b=\beta t$ for some integers $\alpha, \beta \geq 1$. Then

$$
\left(g\left(\chi^{-1}\right)\right)=\tilde{\mathfrak{p}}_{1}^{\alpha} \tilde{\mathfrak{p}}_{2}^{\beta} \subset \mathbb{Z}\left[\zeta_{t}\right]
$$

Note that $(g(\chi))=\tilde{\mathfrak{p}}_{1}^{\beta} \tilde{\mathfrak{p}}_{2}^{\alpha}$ and $\tilde{\mathfrak{p}}_{1} \tilde{\mathfrak{p}}_{2}=(p)$ in $\mathbb{Q}\left(\zeta_{t}\right)$.

Lemma 2.1.6.

$$
\begin{aligned}
(g(\chi)) & =\mathfrak{p}_{1}^{\beta} \mathfrak{p}_{2}^{\alpha} \\
\left(g\left(\chi^{-1}\right)\right) & =\mathfrak{p}_{1}^{\alpha} \mathfrak{p}_{2}^{\beta}
\end{aligned}
$$

as ideals in $\mathbb{Z}\left[\frac{1+\sqrt{-t}}{2}\right]$.
Proof. $g(\chi) \in \mathbb{Q}(\sqrt{-t})$ by Lemma 2.1.4 and $\tilde{\mathfrak{p}}_{i} \cap \mathbb{Q}(\sqrt{-t})=\mathfrak{p}_{i}$. So we are done.

Consider the analytic class number formula

$$
\frac{2^{r_{1}}(2 \pi)^{r_{2}} h R}{w \sqrt{|d|}}=\prod_{\substack{\psi \in X \\ \chi \neq i d}} L(1, \psi)
$$

for abelian extensions. We know that if $\psi(-1)=-1$ then

$$
L(1, \psi)=\pi i \frac{\tau(\psi)}{f} \frac{1}{f} \sum_{a=1}^{f-1} \bar{\psi}(a) a
$$

where f is the conductor of ψ and $\tau(\psi)=\sum_{a=1}^{f} \psi(a) e^{2 \pi i / f}$ is a Gauss sum.
Apply these formulas to $\mathbb{Q}(\sqrt{-t})$. Then $r_{1}=0, r_{2}=1, R=1, w=$ $2,|d|=t$, and $\psi=(\dot{\bar{t}})$. Hence $f=t$ and $|\tau(\psi)|=\sqrt{t}$. So

$$
\frac{2 \pi h}{2 \sqrt{t}}=\frac{\pi h}{\sqrt{t}}=L(1,(\bar{t}))
$$

By taking the absolute value

$$
\begin{aligned}
h & =\frac{\sqrt{t}}{\pi}\left|L\left(1,\left(\frac{\dot{t}}{t}\right)\right)\right|=\frac{\sqrt{t}}{\pi}\left|\pi i \frac{\sqrt{t}}{t} \frac{1}{t} \sum_{a=1}^{t-1} \overline{\left(\frac{a}{t}\right) a}\right| \\
& =\frac{1}{t}\left|\sum_{b=1}^{t-1}\left(\frac{b}{t}\right) b\right| \\
& =\frac{1}{t}\left|\sum_{\left(\frac{b}{t}\right)=1} b-\sum_{\left(\frac{b}{t}\right)=-1} b\right| \\
& =\frac{1}{t}|\alpha t-\beta t|=|\alpha-\beta| .
\end{aligned}
$$

2.2. $\quad p$-adic Gamma Function

Definition 2.2.1 (Lang [7]).

$$
\Gamma_{p}(z):=\lim _{m \rightarrow z}(-1)^{m} \prod_{\substack{0<j<m \\(p, j)=1}} j
$$

where m approaches z p-adically through positive integers.
Definition 2.2.2 ([10]). If $0 \leq d \leq q-1$ and $d=d_{0}+d_{1} p+\cdots+$ $d_{s-1} p^{s-1}$ such that $0 \leq d_{j}<p$, define

$$
s(d):=\sum_{j=0}^{s-1} d_{j} .
$$

Γ_{p} is called p-adic Gamma function. Note that if $\tilde{\mathfrak{P}}_{1}$ is a prime in $\mathbb{Q}\left(\zeta_{q-1}, \zeta_{p}\right)$ lying above \mathfrak{P}_{1} then

$$
s(d)=v_{\tilde{\mathfrak{P}}_{1}}\left(g\left(\omega^{-d}\right)\right)
$$

where $v_{\tilde{\mathfrak{P}}_{1}}$ is $\tilde{\mathfrak{P}}_{1}$-adic valuation.
Let Π be a $(p-1)$-st root of $-p$. Then Gross-Koblitz formula is

$$
g\left(\omega^{d}\right)=(-p)^{s} \Pi^{-s(d)} \prod_{j=0}^{s-1} \Gamma_{p}\left(1-\left\langle\frac{p^{j} d}{q-1}\right\rangle\right)
$$

Lemma 2.2.3. If $d=\frac{q-1}{t}(t-1)=d_{0}+d_{1} p+\cdots+d_{s-1} p^{s-1}$ and $d^{\prime}=\frac{q-1}{t}=d_{0}^{\prime}+d_{1}^{\prime} p+\cdots+d_{s-1}^{\prime} p^{s-1}$, then

$$
\begin{aligned}
g\left(\chi^{-1}\right) & =(-p)^{\alpha} \prod_{j=0}^{s-1} \Gamma_{p}\left(1-\left\langle\frac{p^{j} d}{q-1}\right\rangle\right) \\
g(\chi) & =(-p)^{\beta} \prod_{j=0}^{s-1} \Gamma_{p}\left(1-\left\langle\frac{p^{j} d^{\prime}}{q-1}\right\rangle\right)
\end{aligned}
$$

Proof. It is sufficient to show that $s(d)=(p-1) \beta$ and $s\left(d^{\prime}\right)=$ $(p-1) \alpha$.

$$
s(d)=v_{\tilde{\mathfrak{P}}_{1}}\left(g\left(\omega^{-d}\right)\right)=v_{\tilde{\mathfrak{P}}_{1}}(g(\chi))
$$

Since $g(\chi) \in \mathbb{Q}(\sqrt{-t}), \mathfrak{P}_{1}=\tilde{\mathfrak{P}}_{1}^{p-1}$ and $\mathfrak{P}_{1} / \mathfrak{p}_{1}$ is unramified, $v_{\tilde{\mathfrak{P}}_{1}}=$ $(p-1) v_{\mathfrak{P}_{1}}=(p-1) v_{\mathfrak{p}_{1}}$. So by Lemma 2.1.5

$$
s(d)=(p-1) v_{\mathfrak{p}_{1}}(g(\chi))=(p-1) \beta
$$

Similary $s\left(d^{\prime}\right)=(p-1) \alpha$. So we are done.

2.3. Main Result

Theorem 2.3.1. Suppose that $t \equiv 3(\bmod 4)$ is a prime and that $r>1$ is a quadratic residue modulo t and its order is $s=\frac{\phi(t)}{2}=\frac{t-1}{2}$. Let h be the class number of $\mathbb{Q}(\sqrt{-t})$ and $p=t n+r$ be a prime. Let $p=\mathfrak{p}_{1} \mathfrak{p}_{2}$ in $\mathbb{Z}\left[\frac{1+\sqrt{-t}}{2}\right], \mathfrak{p}_{1}^{h}=\left(\frac{a+b \sqrt{-t}}{2}\right), \sum_{\left(\frac{b}{t}\right)=1} b=\alpha t, \sum_{\left(\frac{b}{t}\right)=-1} b=\beta t$, $d=\left(\frac{q-1}{t}\right)(t-1)=\sum_{j=0}^{s-1} d_{j} p^{j}$ and $d^{\prime}=\left(\frac{q-1}{t}\right)=\sum_{j=0}^{s-1} d_{j}^{\prime} p^{j}$ as in the previous section. Then

1. $4 p^{h}=a^{2}+t b^{2}$,
2.

$$
a \equiv\left\{\begin{array}{lll}
\pm \prod_{j=0}^{s-1}\left(d_{j}\right)! & (\bmod p) & \text { if } \alpha<\beta \\
\pm-1 & & \\
\pm \prod_{j=0}^{s-1}\left(d_{j}^{\prime}\right)! & (\bmod p) & \text { if } \beta<\alpha
\end{array}\right.
$$

In particular, if \mathfrak{p}_{1} is principal ideal, $\mathfrak{p}_{1}=\left(\frac{A+B \sqrt{-t}}{2}\right)$, then $4 p=A^{2}+$ $t B^{2}$ and $A^{h} \equiv \pm a(\bmod p)$.

Remark. Note that $h=|\alpha-\beta|$, and a and b are unique up to sign. Since $s(d)$ and $s\left(d^{\prime}\right)$ are multiples of $(p-1), \Pi\left(d_{i}\right)$! and $\Pi\left(d_{i}^{\prime}\right)$!
can be expressed as some products of binomial coefficients by Wilson's Theorem.

Proof. The first statement is trivial.
For the second, we will prove only $\alpha<\beta$ case because the other case is done in a similar manner. By Lemma 2.1.6 and Gross-Koblitz formula,

$$
\begin{aligned}
\left(g\left(\chi^{-1}\right)\right) & =\mathfrak{p}_{1}^{\alpha} \mathfrak{p}_{2}^{\beta}=p^{\alpha} \mathfrak{p}_{2}^{h} \\
g\left(\chi^{-1}\right) & =(-p)^{\alpha} \prod_{j=0}^{s-1} \Gamma_{p}\left(1-\left\langle\frac{p^{j} d}{q-1}\right\rangle\right)
\end{aligned}
$$

Hence

$$
\begin{gathered}
\frac{a-b \sqrt{-t}}{2}= \pm \prod_{j=0}^{s-1} \Gamma_{p}\left(1-\left\langle\frac{p^{j} d}{q-1}\right\rangle\right) \\
\frac{a+b \sqrt{-t}}{2}+\frac{a-b \sqrt{-t}}{2} \equiv \pm \prod_{j=0}^{s-1} \Gamma_{p}\left(1-\left\langle\frac{p^{j} d}{q-1}\right\rangle\right) \quad\left(\bmod \mathfrak{p}_{1}\right) \\
a \equiv \pm \prod_{j=0}^{s-1} \Gamma_{p}\left(1-\left\langle\frac{p^{j} d}{q-1}\right\rangle\right)(\bmod p)
\end{gathered}
$$

Since

$$
\begin{gathered}
\Gamma_{p}\left(1-\left\langle\frac{p^{s-j} d}{q-1}\right\rangle\right) \equiv(-1)^{1+d_{j}}\left(d_{j}\right)!\quad(\bmod p) \\
a \equiv \pm \prod_{j=0}^{s-1}\left(d_{j}\right)!\quad(\bmod p)
\end{gathered}
$$

If \mathfrak{p}_{i} is principal, then

$$
\mathfrak{p}_{1}^{h}=\left(\frac{A+B \sqrt{-t}}{2}\right)^{h}=\left(\frac{a+b \sqrt{-t}}{2}\right)
$$

as ideals. So

$$
\left(\frac{A+B \sqrt{-t}}{2}\right)^{h}= \pm\left(\frac{a+b \sqrt{-t}}{2}\right)
$$

Since $\frac{B \sqrt{-t}}{2} \equiv \frac{A}{2}\left(\bmod \mathfrak{p}_{2}\right)$ and $\frac{b \sqrt{-t}}{2} \equiv \frac{a}{2}\left(\bmod \mathfrak{p}_{2}\right)$, we have $A^{h} \equiv$ $\pm a(\bmod p)$.

Example 2.3.2. Let $t=7$, then $s=3, \alpha=1, \beta=2$ so $h(\mathbb{Q}(\sqrt{-7}))=1$. Since $h=1$ if $4 p=a^{2}+7 b^{2}$ then a and b are unique up to sign. Let p be a prime of the form $7 n+2$ or $7 n+4$ and $d=6\left(p^{3}-1\right) / 7$. Then

$$
d= \begin{cases}3 n+(5 n+1) p+(6 n+1) p^{2} & \text { if } p=7 n+2 \\ (5 n+2)+(3 n+1) p+(6 n+3) p^{2} & \text { if } p=7 n+4\end{cases}
$$

By Theorem 2.3.1, if $4 p=a^{2}+7 b^{2}$, then

$$
a \equiv \begin{cases} \pm(3 n)!(5 n+1)!(6 n+1)!\quad(\bmod p) & \text { if } p=7 n+2 \\ \pm(5 n+2)!(3 n+1)!(6 n+3)!\quad(\bmod p) & \text { if } p=7 n+4\end{cases}
$$

By Wilson's theorem, if p is a prime and $p-1=x+y$, then $x!y!\equiv$ $(-1)^{y+1}(\bmod p)$. So we get the Eisenstein's result.

$$
a \equiv \begin{cases} \pm(3 n)!\cdot \frac{1}{(2 n)!} \cdot \frac{1}{(n)!} \equiv \pm\binom{ 3 n}{n} & (\bmod p) \\ \pm \frac{1}{(2 n+1)!} \cdot(3 n+1)!\cdot \frac{1}{(n)!} \equiv \pm\binom{ 3 n+1}{n} & (\bmod p) \\ & \text { if } p=7 n+2\end{cases}
$$

Since $a \leq 2 \sqrt{p}<p / 2$, the sign can be uniquely determined.
Example 2.3.3. Let $t=11$, then $s=5, \alpha=2, \beta=3$, and so $h(\mathbb{Q}(\sqrt{-11}))=1$. Jacobi $[4,5]$ showed that if $p=11 n+1$ is a prime and $4 p=a^{2}+11 b^{2}$ where $a \equiv 2(\bmod 11)$ then

$$
\begin{aligned}
a & \equiv \frac{1}{(n)!(3 n)!(4 n)!(5 n)!(9 n)!} \quad(\bmod p) \\
& \equiv\binom{3 n}{n}\binom{6 n}{3 n}\binom{4 n}{2 n}^{-1} \quad(\bmod p)
\end{aligned}
$$

Suppose that $p=11 n+5$ is a prime.

$$
d=\frac{10\left(p^{5}-1\right)}{11}=2 n+(7 n+3) p+(8 n+3) p^{2}+(6 n+2) p^{3}+(10 n+4) p^{4}
$$

By Theorem 2.3.1, if $4 p=a^{2}+11 b^{2}$ then

$$
\begin{aligned}
a & \equiv \pm(2 n)!(7 n+3)!(8 n+3)!(6 n+2)!(10 n+4)!\quad(\bmod p) \\
& \equiv \pm\binom{ 3 n+1}{n}\binom{6 n+2}{3 n+1}\binom{4 n+1}{2 n}^{-1} \quad(\bmod p)
\end{aligned}
$$

Since $a \leq 2 \sqrt{p}<p / 2$, the sign can be uniquely determined. In a similar manner, we can get the following corollary.

Corollary 2.3.4. Let $p=11 n+r$ be a prime and $4 p=a^{2}+11 b^{2}$ where r is a quadratic residue modulo 11. Then

$$
a \equiv\left\{\begin{array}{lll}
\pm\binom{ 3 n+1}{n}\binom{6 n+1}{3 n}\binom{4 n+1}{2 n}^{-1} & (\bmod p) & \text { if } r=3 \\
\pm\binom{ 3 n+1}{n}\binom{6 n+2}{3 n+1}\binom{4 n+1}{2 n}^{-1} & (\bmod p) & \text { if } r=4 \text { or } 5 \\
\pm\binom{ 3 n+2}{n}\binom{6 n+4}{3 n+2}\binom{4 n+3}{2 n+1}^{-1} & (\bmod p) & \text { if } r=9
\end{array}\right.
$$

Example 2.3.5. Let $t=19$, then $s=9, \alpha=4, \beta=5$, and so $h(\mathbb{Q}(\sqrt{-19}))=1$. Since s is not a prime, the order of a quadratic residue is not always $s(=9)$. Suppose $p=19 n+4$ is a prime. Then

$$
\begin{aligned}
d= & (14 n+2)+(13 n+2) p+(8 n+1) p^{2}+(2 n) p^{3}+(10 n+2) p^{4} \\
& +(12 n+2) p^{5}+(3 n) p^{6}+(15 n+3) p^{7}+(18 n+3) p^{8}
\end{aligned}
$$

If $4 p=a^{2}+19 b^{2}$, then by Theorem 2.3.1 and Wilson's theorem,
$a \equiv \pm\binom{ 6 n+1}{n}\binom{10 n+1}{4 n}\binom{10 n+2}{3 n+1}\binom{6 n+1}{3 n}^{-1}\binom{10 n+1}{2 n}^{-1}(\bmod p)$.
Similarly we get the following corollary.
Corollary 2.3.6. Let $p=19 n+r$ be a prime where r is a quadratic residue and its order is 9 . If $4 p=a^{2}+19 b^{2}$, then a is congruent modulo p to a product of binomial coefficients modulo sign.

1. $a \equiv \pm\binom{ 6 n+1}{n}\binom{10 n+1}{4 n}\binom{10 n+2}{3 n+1}\binom{6 n+1}{3 n}^{-1}\binom{10 n+1}{2 n}^{-1}$ if $r=4$;
2. $a \equiv \pm\binom{ 6 n+1}{n}\binom{10 n+2}{4 n+1}\binom{10 n+2}{3 n+1}\binom{6 n+1}{3 n}^{-1}\binom{10 n+2}{2 n}^{-1}$ if $r=5$;
3. $a \equiv \pm\binom{ 6 n+1}{n}\binom{10 n+2}{4 n+1}\binom{10 n+3}{3 n+1}\binom{6 n+1}{3 n}^{-1}\binom{10 n+2}{2 n}^{-1}$ if $r=6$;
4. $a \equiv \pm\binom{ 3 n+1}{n}\binom{10 n+4}{5 n+2}\binom{13 n+5}{6 n+2}\binom{4 n+1}{2 n}^{-1}\binom{13 n+5}{5 n+2}^{-1}$ if $r=9$;
5. $a \equiv \pm\binom{ 3 n+2}{n}\binom{10 n+8}{5 n+4}\binom{13 n+10}{6 n+5}\binom{4 n+3}{2 n+1}^{-1}\binom{13 n+10}{5 n+4}^{-1}$ if $r=16$;
6. $a \equiv \pm\binom{ 3 n+2}{n}\binom{10 n+8}{5 n+4}\binom{13 n+11}{6 n+5}\binom{4 n+3}{2 n+1}^{-1}\binom{13 n+11}{5 n+4}^{-1}$ if $r=17$.

Example 2.3.7. Suppose $p=23 n+4$ is a prime. Then $h(\mathbb{Q}(\sqrt{-23}))$ $=3$ and

$$
\begin{aligned}
d & =(17 n+2)+(10 n+1) p+(14 n+2) p^{2}+(15 n+2) p^{3}+(21 n+3) p^{4} \\
& +(11 n+1) p^{5}+(20 n+3) p^{6}+(5 n) p^{7}+(7 n+1) p^{8}+(19 n+3) p^{9} \\
& +(22 n+3) p^{10} .
\end{aligned}
$$

If $4 p^{3}=a^{2}+23 b^{2}$ for $p \nmid a$, then by Theorem 2.3.1 and Wilson's theorem,

$$
a \equiv \pm\binom{ 4 n}{n}\binom{10 n+1}{4 n}\binom{11 n+1}{2 n}\binom{12 n+1}{4 n}\binom{12 n+1}{5 n}^{-1} \quad(\bmod p)
$$

If \mathfrak{p}_{i} is principal, then $4 p$ can be written in the form $A^{2}+23 B^{2}$. For example, if $p=211$, then $4 p=4^{2}+23 \cdot 6^{2}$. So we can verify Theorem 2.3.1 that $4 p^{3}=2468^{2}+23 \cdot 1170^{2}$ and $4^{2} \equiv-(2468)(\bmod p)$. Note that if $t \not \equiv 3(\bmod 8)$ then a and b are even. Similarly we get the following corollary.

Corollary 2.3.8. Let $p=23 n+r$ be a prime and $4 p^{3}=a^{2}+23 b^{2}$ for $p \nmid a$ where r is a quadratic residue modulo 23. Then a is congruent modulo p to a product of binomial coefficients modulo sign.

1. $a \equiv \pm\binom{ 4 n}{n}\binom{10 n}{4 n}\binom{11 n}{2 n}\binom{12 n}{4 n}\binom{12 n}{5 n}^{-1}$

$$
\text { if } r=2
$$

2. $a \equiv \pm\binom{ 5 n}{2 n}\binom{10 n+1}{n}\binom{10 n}{4 n}\binom{11 n+1}{3 n}\binom{10 n}{3 n}^{-1}$ if $r=3$;
3. $a \equiv \pm\binom{ 4 n}{n}\binom{10 n+1}{4 n}\binom{11 n+1}{2 n}\binom{12 n+1}{4 n}\binom{12 n+1}{5 n}^{-1}$

$$
\text { if } r=4
$$

4. $a \equiv \pm\binom{ 4 n}{n}\binom{10 n+2}{4 n+1}\binom{11 n+2}{2 n}\binom{12 n+2}{4 n}\binom{12 n+2}{5 n+1}^{-1}$ if $r=6$;
5. $a \equiv \pm\binom{ 4 n+1}{n}\binom{10 n+3}{4 n+1}\binom{11 n+3}{2 n}\binom{12 n+3}{4 n+1}\binom{12 n+3}{5 n+1}^{-1}$ if $r=8$;
6. $a \equiv \pm\binom{ 5 n+1}{2 n}\binom{10 n+3}{n}\binom{10 n+3}{4 n+1}\binom{11 n+4}{3 n+1}\binom{10 n+3}{3 n+1}^{-1}$ if $r=9$;
7. $a \equiv \pm\binom{ 4 n+1}{n}\binom{10 n+5}{4 n+2}\binom{11 n+5}{2 n+1}\binom{12 n+5}{4 n+1}\binom{12 n+5}{5 n+2}^{-1}$ if $r=12$;
8. $a \equiv \pm\binom{ 4 n+1}{n}\binom{10 n+5}{4 n+2}\binom{11 n+6}{2 n+1}\binom{12 n+5}{4 n+1}\binom{12 n+5}{5 n+2}^{-1}$
if $r=13$;
9. $a \equiv \pm\binom{ 4 n+2}{n}\binom{10 n+6}{4 n+2}\binom{11 n+7}{2 n+1}\binom{12 n+7}{4 n+2}\binom{12 n+7}{5 n+3}^{-1}$
if $r=16$;
10. $a \equiv \pm\binom{ 4 n+2}{n}\binom{10 n+7}{4 n+3}\binom{11 n+8}{2 n+1}\binom{12 n+8}{4 n+2}\binom{12 n+8}{5 n+3}^{-1}$
if $r=18$.
§3. $t=4 k$ for a prime $k \equiv 1(\bmod 4)$
Suppose $p=4 k n+r$ is a prime where $k \equiv 1(\bmod 4)$ is a prime and $r \equiv 3(\bmod 4)$ is a quadratic non-residue modulo k, that is $\left(\frac{r}{k}\right)=-1$. Then the ring of integers of $\mathbb{Q}(\sqrt{-k})$ is $\mathbb{Z}[\sqrt{-k}]$ and

$$
\left(\frac{-k}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{k}{p}\right)=(-1)^{\frac{p-1}{2}}(-1)^{\frac{k-1}{2} \frac{p-1}{2}}\left(\frac{r}{k}\right)=1 .
$$

So p splits in $\mathbb{Q}(\sqrt{-k})$ as $p=\mathfrak{p}_{1} \mathfrak{p}_{2}$. Suppose the order of r modulo t is $k-1$. Then \mathfrak{p}_{i} is inert in $\mathbb{Q}\left(\zeta_{t}\right) / \mathbb{Q}(\sqrt{-k})$. Let $\tilde{\mathfrak{p}}_{i}$ be the prime ideal of $\mathbb{Q}\left(\zeta_{t}\right)$ over \mathfrak{p}_{i} and $q=p^{k-1}$. If \mathfrak{P}_{i} is a prime in $\mathbb{Q}\left(\zeta_{q-1}\right)$ lying above $\tilde{\mathfrak{p}}_{i}$, then the residue class degree of \mathfrak{P}_{i} is $k-1$; hence we can identify $\mathbb{Z}\left[\zeta_{q-1}\right] / \mathfrak{P}_{1}$ with \mathbb{F}_{q}. Note that \mathfrak{P}_{i} / p is unramified.

3.1. Gauss Sums and p-adic Gamma Functions

Let χ be a multiplicative character such that

$$
\begin{aligned}
\chi: \mathbb{F}_{q}^{\times} & \longrightarrow\left\langle\zeta_{t}\right\rangle \\
a & \longmapsto \omega(a)^{\frac{q-1}{t}}
\end{aligned}
$$

where ω is the Teichmüller character. $g(\chi), \Gamma_{\nu}, \phi(x)$ and Γ_{p} are defined as in the previous section.

Lemma 3.1.1.

$$
g\left(\chi^{\nu}\right)=p \Gamma_{\nu} \text { for } \chi=\omega^{\frac{q-1}{t}}
$$

Proof. It is sufficient to show that for $a \in \mathbb{F}_{p}^{\times}, a^{\frac{q-1}{t}}=1$ as in the Lemma 2.1.2.

We will show that $4 k(p-1) \mid(q-1)$. Since $r \equiv 3(\bmod 4), \frac{p-1}{2}$ is odd. So $8, k$ and $\frac{p-1}{2}$ are relatively prime. Clearly $k \mid(q-1)$ and $\left.\frac{p-1}{2} \right\rvert\,(q-1)$.

$$
\begin{aligned}
q-1 & =(4 k n+r)^{k-1}-1 \\
& =\sum_{i=0}^{k-1}\binom{k-1}{i}(4 k n)^{i} r^{k-1-i}-1
\end{aligned}
$$

If $i \geq 2$, then $8 \mid(4 k n)^{i}$. If $i=1$, then $2 \left\lvert\,\binom{ k-1}{1}=k-1\right.$ and $4 \mid 4 k n$, and hence $8 \left\lvert\,\binom{ k-1}{1}(4 k n)\right.$. Since $r \equiv 3(\bmod 4), r^{2} \equiv 1(\bmod 8)$, and hence $\left(r^{2}\right)^{\frac{k-1}{2}} \equiv 1(\bmod 8)$. So if $i=0$, then $8 \mid r^{k-1}-1$. Thus we showed $8 \mid(q-1)$, and hence $4 k(p-1) \mid(q-1)$. So we are done.

The Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{t}\right) / \mathbb{Q}(\sqrt{-k})\right)$ is cyclic of order $k-1$ generated by

$$
\begin{aligned}
\tau: \mathbb{Q}\left(\zeta_{t}\right) & \longrightarrow \mathbb{Q}\left(\zeta_{t}\right) \\
\zeta_{t} & \longmapsto \zeta_{t}^{r}
\end{aligned}
$$

because the order of r modulo t is $k-1$. Hence $\tau\left(\Gamma_{\nu}\right)=\Gamma_{\nu}$ since $c_{j}=c_{r j}$ as in the previous section. So $g\left(\chi^{\nu}\right) \in \mathbb{Q}(\sqrt{-k})$. Let θ denote the Stickelberger element for $\mathbb{Q}\left(\zeta_{t}\right) / \mathbb{Q}$. By Stickelberger's theorem

$$
\left(g\left(\chi^{-1}\right)^{t}\right)=\tilde{\mathfrak{p}}_{1}^{t \theta}
$$

$\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{t}\right) / \mathbb{Q}(\sqrt{-k})\right)=\left\{\sigma_{b} \mid b \equiv r^{i}(\bmod t), i=1,2, \cdots, k-1\right\}$ fixes $\tilde{\mathfrak{p}}_{1}$. Let $\sum_{i=1}^{k-1}\left(r^{i}(\bmod t)\right)=\alpha t$ and $\left(\sum_{(b, t)=1} b\right)-\alpha t=(k-1) t-\alpha t=\beta t$ for some integers $\alpha, \beta \geq 1$. Then

$$
\left(g\left(\chi^{-1}\right)\right)=\tilde{\mathfrak{p}}_{1}^{\alpha} \tilde{\mathfrak{p}}_{2}^{\beta} \subset \mathbb{Z}\left[\zeta_{t}\right]
$$

Hence

$$
\begin{aligned}
(g(\chi)) & =\mathfrak{p}_{1}^{\beta} \mathfrak{p}_{2}^{\alpha} \\
\left(g\left(\chi^{-1}\right)\right) & =\mathfrak{p}_{1}^{\alpha} \mathfrak{p}_{2}^{\beta}
\end{aligned}
$$

as ideals in $\mathbb{Z}[\sqrt{-k}]$.
Let ψ be a multiplicative character $\psi:(\mathbb{Z} / t \mathbb{Z})^{\times} \longrightarrow \mathbb{C}^{\times}$such that

$$
\psi(a)= \begin{cases}1 & \text { if } a \equiv r^{i} \quad(\bmod t) \text { for some } i \\ -1 & \text { otherwise }\end{cases}
$$

Then $\mathbb{Q}(\sqrt{-k})$ is the field belonging to ψ.
Lemma 3.1.2. $\quad \psi(-1)=-1$.
Proof. If $-1 \equiv r^{i}(\bmod 4 k)$ for some i. Then $i=\frac{k-1}{2}$ because the order of r is $k-1$. But

$$
r \equiv 3 \quad(\bmod 4) \Rightarrow r^{2} \equiv 1 \quad(\bmod 4) \Rightarrow r^{2\left(\frac{k-1}{4}\right)} \equiv 1 \quad(\bmod 4)
$$

It is a contradiction.
Apply the analytic class number formula to $\mathbb{Q}(\sqrt{-k})$ and take the absolute value. Then

$$
\begin{aligned}
\left|\frac{2 \pi h}{2 \sqrt{t}}\right| & =|L(1, \psi)| \\
& =\pi \frac{\sqrt{t}}{t} \frac{1}{t}\left|\sum_{i=1}^{t-1} \bar{\psi}(a) a\right|=\frac{\pi}{t \sqrt{t}}|\alpha t-\beta t|
\end{aligned}
$$

So $h=|\alpha-\beta|$.
Let Π be a $(p-1)$-st root of $-p$. Then Gross-Koblitz formula is

$$
g\left(\omega^{d}\right)=(-p)^{k-1} \Pi^{-s(d)} \prod_{j=0}^{k-2} \Gamma_{p}\left(1-\left\langle\frac{p^{j} d}{q-1}\right\rangle\right)
$$

Lemma 3.1.3. If $d=\frac{q-1}{t}(t-1)=d_{0}+d_{1} p+\cdots+d_{k-2} p^{k-2}$ and $d^{\prime}=\frac{q-1}{t}=d_{0}^{\prime}+d_{1}^{\prime} p+\cdots+d_{k-2}^{\prime} p^{k-2}$, then

$$
\begin{aligned}
g\left(\chi^{-1}\right) & =(-p)^{\alpha} \prod_{j=0}^{k-2} \Gamma_{p}\left(1-\left\langle\frac{p^{j} d}{q-1}\right\rangle\right) \\
g(\chi) & =(-p)^{\beta} \prod_{j=0}^{k-2} \Gamma_{p}\left(1-\left\langle\frac{p^{j} d^{\prime}}{q-1}\right\rangle\right)
\end{aligned}
$$

Proof. See the proof of Lemma 2.2.3.

3.2. Main Result

Theorem 3.2.1. Suppose that $t=4 k$ for a prime $k \equiv 1(\bmod 4)$ and that $r \equiv 3(\bmod 4)$ is a quadratic non-residue modulo k and its order is $\frac{\phi(t)}{2}=k-1$. Let h be the class number of $\mathbb{Q}(\sqrt{-k})$ and $p=t n+r$ be a prime. Let $p=\mathfrak{p}_{1} \mathfrak{p}_{2}$ in $\mathbb{Z}[\sqrt{-k}], \mathfrak{p}_{1}^{h}=(a+b \sqrt{-k}), \sum_{i=1}^{k-1}\left(r^{i}\right.$ $(\bmod t))=\alpha t, \beta=(k-1)-\alpha, d=\left(\frac{q-1}{t}\right)(t-1)=\sum_{j=0}^{k-2} d_{j} p^{j}$ and $d^{\prime}=\left(\frac{q-1}{t}\right)=\sum_{j=0}^{k-2} d_{j}^{\prime} p^{j}$ as in the previous section. Then

1. $p^{h}=a^{2}+k b^{2}$;
2.

$$
2 a \equiv\left\{\begin{array}{lll}
\pm \prod_{j=0}^{k-2}\left(d_{j}\right)! & (\bmod p) & \text { if } \alpha<\beta \\
\pm \prod_{j=0}^{k-2}\left(d_{j}^{\prime}\right)! & (\bmod p) & \text { if } \beta<\alpha
\end{array}\right.
$$

Proof. See the proof of Theorem 2.3.1.
Example 3.2.2. Let $k=5$, then $\alpha=1, \beta=3$ so $h(\mathbb{Q}(\sqrt{-5}))=2$. Let p be a prime of the form $20 n+3$ or $20 n+7$ and $d=19\left(p^{4}-1\right) / 20$. Then

$$
d=\left\{\begin{array}{c}
(13 n+1)+(11 n+1) p+(17 n+2) p^{2}+(19 n+2) p^{3} \\
\text { if } p=20 n+3 \\
(17 n+5)+(11 n+3) p+(13 n+4) p^{2}+(19 n+6) p^{3} \\
\text { if } p=20 n+7
\end{array}\right.
$$

By Theorem 3.2.1, if $p^{2}=a^{2}+5 b^{2}$, then
$2 a \equiv \begin{cases} \pm(13 n+1)!(11 n+1)!(17 n+2)!(19 n+2)! & (\bmod p) \\ & \text { if } p=20 n+3, \\ \pm(17 n+5)!(11 n+3)!(13 n+4)!(19 n+6)! & (\bmod p) \\ & \text { if } p=20 n+7 .\end{cases}$
By Wilson's theorem,

$$
2 a \equiv \begin{cases} \pm\binom{ 4 n}{n}\binom{11 n+1}{4 n} \quad(\bmod p) & \text { if } p=20 n+3 \\ \pm\binom{ 4 n+1}{n}\binom{11 n+3}{4 n+1} \quad(\bmod p) & \text { if } p=20 n+7\end{cases}
$$

At the time of the publication of this paper, we could remove the sign ambiguity of our results in [8]. Moreover we generalized our results to the primes of the form of $p=t n+r$ such that p splits in $\mathbb{Q}(\sqrt{-t})[9]$.

References

[1] Allan Adler, Eisenstein and the Jacobian Varieties of Fermat Curves, Rocky Mountain Journal of Mathematics, 27 (no. 1) Winter (1997), 1-60.
[2] Gotthold Eisenstein, Zur Theorie der Quadratische Zerfallung der Primzahlen $8 n+3,7 n+2$ und $7 n+4$, Crelle, 37 (1948), 97-126 [Math. Werke II, pp. 506-535, art. 33].
[3] Carl Friedrich Gauss, Theoria Residuorum Biquadraticorum, Comment. I, Comment. soc. reg. sci. Gottingensis rec., 6 (1828), 27 [Werke, vol. II, pp. 89-90].
[4] Richard H. Hudson and Kenneth S. Williams, Binomial Coefficients and Jacobi Sums, Trans. of the Amer. Math. Soc., 281 (no. 2) February (1984), 431-505.
[5] C.G.J. Jacobi, De Residuis Cubics Commentatio Numerosa, J. Reine Angew. Math., 2 (1827), 66-69.
[6] C.G.J. Jacobi, Uber die Kreistheilung und ihre Anwendung auf die Zahlentheorie, J. Reine Angew. Math., 30 (1846), 166-182.
[7] Serge Lang, Cyclotomic Fields I and II, Springer-Verlag, GTM 121, 1990.
[8] D.H. Lee and S.G. Hahn, Some congruences for binomial coefficients. II, Proc. Japan Acad., 76, Ser. A (2000), 104-107.
[9] D.H. Lee and S.G. Hahn, Gauss sums and binomial coefficients, J. Number Theory (2000); submitted.
[10] Lawrence C. Washington, Introduction to Cyclotomic Fields, SpringerVerlag, GTM 83, 1997.

Sang Geun Hahn
Department of Mathematics
KAIST
Yusong-Gu Kusong-Dong 373-1
Taejon 305-701
South Korea
E-mail address: sghahn@math.kaist.ac.kr
Dong Hoon Lee
Department of Mathematics
KAIST
Yusong-Gu Kusong-Dong 373-1
Taejon 305-701
South Korea
E-mail address: dhlee@math.kaist.ac.kr

