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§1. Introduction 

1.1. q-Series identity. 

Let s.x(x) be the Schur function in infinite variables x = (x1 , x 2 , ... ) 

corresponding to a Young diagram>.. For each node v in the diagram>., 
h(v) denotes the hook length of>. at v. Cf. [9] for the Young diagrams 
and related notions. In a recent work [7], Kawanaka obtained a q-series 
identity 

(1) 

where 

(2) 

"f.x(q)s.x(x) = IT ITOO 1 + Xiqr+l IT 1 ' 
~ 1-x-qr 1-x·x· 

>. i r=O • i<j • J 

1 + qh(v) 

J.x(q) = IT 1 _ h(v)' 
vE>. q 

and the sum on the left hand side of (1) is taken over all Young diagrams 
>.. If q = 0, then (1) reduces to the Schur-Littlewood identity. 

Using (1), Kawanaka showed that for a Youndg diagram >. with n 
nodes, (2) is expressed as 

(3) I ( )=l<5 1_1 " ( 2)det(l+qp(s)) 
>. q n ~ X>. 8 det(l - qp(s))' 

sE6n 

where X>. is the irreducible character of the symmetric group 6n cor­
responding to >. and p : 6n -+ GLn(Z) is the representation of 6n by 
permutation matrices. 
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Since (3) is expressed in terms of the symmetric group and its rep­
resentation, we can generalize such rational function for characters of 
other Weyl groups. 

Definition 1.1. Let W be a Weyl group acting on a complex vector 
space b faithfully as a reflection group. For a character x of a finite 
dimensional representation 1r of W, we define a rational function of an 
indeterminate q by 

I ( . ) = 1w1-l " ( 2)det(l + qwlfJ) 
w X, q ~ X w det(l - qwlfJ)' 

wEW 

and we call it the Kawanaka invariant of 1r. 

The main object of this paper is the expression for the Kawanaka 
invariants. We have obtained it in the Bi-case, which is stated in §2 
(Theorem 2.1). This is not an immediate corollary of Kawanaka's result; 
in fact, we need a non-trivial argument. If we proceed to the Di-case, the 
situation becomes much more difficult. We succeeded in expressing it 
by means of the Littlewood-Richardson coefficients (Theorem 2.2) and 
we obtained a conjectural formula for it (Conjecture 3.2). These are 
included in §2 and §3. 

1.2. Invariants for cells. 
The Kawanaka invariant plays a role as an invariant for two-sided 

cells. 
In (4), a polynomial invariant 

r*(x;t) := x(e)- 1 L x(w)tdiml)w 
wEW 

is defined for a character x of a finite dimensional representation 1r of 
W. Here, bw is the subset of w-fixed vectors in b- It is observed that, if 
W is of type Ai or Bi, then r* characterizes the two-sided cells. If W is 
not of these types, some deviation occurs. Trying to save this defect, a 
modified invariant 

i'(x; q, y) := 1w1-1 L x(w) det(l + ywlfJ), 
W det(l - qwllJ) 

wE 

motivated by [l)Chap. V, §5, Ex. 3, is introduced, and the relationship 
between f and the two-sided cells is studied in (4). Note that 

IWl- 1r* (x; t) = lim i'(x; q, -1 + t(l - q)). 
q---+1 
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Hence, in principle, we can extract information on 7* from i. In other 
words, i is a refinement of the invariant 7*. 

Because of the resemblance between the definition of i and Iw, 
we expect that the Kawanaka invariant is also related to the two-sided 
cells. Detailed discussion on the two-sided cells and invariants 7*, i, Iw 
is contained in §4. 

Added on March 23, 1999. 

After completing the first draft, the authors learned from Kawanaka 
his recent result, which incidentally implies our Conjecture 3.2. Thus 
our conjecture is affirmatively settled. 

§2. Expression of the Kawanaka invariant 

In this section, we present closed expression for Kawanaka invari­
ants. 

2.1. Ai-case. 

As is explained in §1, the Kawanaka invariant for representations of 
symmetric group 61 is given by 

2.2. Bi-case. 

1 + qh(v) 
1e1(n;q)=II1- h(v)" 

vE>. q 

In the Bi-case, we have similar expression. The irreducible repre­
sentation of W = W(B1) ~ 61 ~ Z~ is parametrized by the ordered pair 
(>.',>.'') of Young diagrams (cf. [8]). Let X>.'Y' be the corresponding 
irreducible character. 

Theorem 2.1 ([5]). We have 

1 + q2h(v') 1 + q2h(v") 
Iw(B1)(X>. 1Y';q) = II 1- 2h(v') II 1- 2h(v") 

v'E>.' q v"E>." q 

= lei, (X>.'; q2)Ie1" (X>. 11 ; q2), 

where l' = l>.'I and l" = l>.''1-

2.3. Di-case. 

Let us denote the restriction of X>.',>." of W(B1) to W(D1) '.::::'. 61 ~ 
z&- 1 by the same symbol X>.' ,>.". If>.' =I- >.", then X>.1 ,>." is an irreducible 
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character. If A = A' = A'', then X>.,>. decomposes into two inequiva­
lent irreducible characters xi and xf, which are interchanged by the 
outer automorphism induced from the conjugation by the non-unit el­
ement of W(Bz)/W(Dz). So we have Iw(Dz)(Xi; q) = Iw(Dz)(xf; q) = 
Iw(Di)(X>.,>.i q)/2. Therefore, it is enough to compute Iw(Dz)(X>.1,>. 11 ; q) 
for obtaining Kawanaka invariants in the Dz-case. 

Denote by c the one dimensional representation of W(Bz), induced 
from W(Bz) __.. W(B1)/W(D1) ~ {O, 1} 3 E f--> (-1)'. Since W(Dz) = 
Kerc: and IW(Bz)I = 2IW(Dz)I, we have 

Iw(Dz)(X>. 1 ,>.11 i q) = Iw(Bi)(X>.1,>. 11 i q) + I*(x>.1,>. 11 ; q), 

where 

I*(x>.1,>."i q) = IW(Bz)l-1 

Since the explicit form of Iw(Bi)(X>.1,>."i q) is known (Theorem 2.1), in 
order to determine the explicit form of Iw(Di) (X>.' ,>."; q) it is enough to 
determine I*(x>.1,>. 11 ; q). 

Unfortunately, we have not obtained a closed formula of I*. The 
next theorem is the expression by means of the Littlewood-Richardson 
coefficients. 

Theorem 2.2 ([5]). Denote by c~,µ, the Littlewood-Richardson coeffi­
cient. Then I* (X>.1 ,>.''; q) is given by 

(4) 
min{ I>.' I ,I>." I} 

I*(x>.1y,;q) = L l-2N 
N=O 

" ( " >.' >." ) 2 2 X L..., L..., Cv,,µ,Cv",µ, G(Xv'i q )G(Xv"i q ), 
v',v" lµ,l=N 

where 

. - n(>.) II 1 + qc(v) 
G(X>., q) - q l - h(v). 

vE>. q 

2.4. Other cases. 

For Weyl groups of exceptional types and for dihedral groups, we 
have calculated the Kawanaka invariants of all the irreducible represen­
tations explicitly. 
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§3. Conjectures on Kawanaka invariants of type D1 

In this section, we give two conjectures, which are formulated in 
[5). The first one follows from the second one. The second one is of 
purely combinatorial nature, which involves only an identity of polyno­
mial functions. 

3.1. Conjectural formula for I*. 

For partitions >..' and >..'' with l(>..') :::; 3 and i>-"i :::; 3, we calcu­
lated ( 4) explicitly with the help of Mathematica, and we obtained a 
conjectural formula of I* (XN ,>."; q). 

Definition 3.1 (The rational function T>.',>."(q)). If >.' = (>.'i 2: 
>.; 2: · · · 2: >.~ 2: 0) and >." = (>.t 2: >.~ 2: · · · 2: >.~ 2: 0) are a 
pair of partitions, put µi := >.i + n - i, µi' := >.? + n - i, and define new 
partitions byµ':= (µ'i,µ;, ···)andµ":= (µt,µ~, • • · ). Put 

·- n lµ'l+lµ"I II 1 + q2h(v') II 1 + q2h(v") 
T>.',N 1 (q) .-2 q 1- 2h(v') 1 _ 2h(v") 

v'E>.' q v"E>." q 

TI1<i<j<n(q2µj + q2µ:)(q2µ? + q2µ/) 

X 2µ' 2µ'-' 
[Il'.Si,j'.Sn(q i + q 1 ) 

Our first conjecture is as follows. 

Conjecture 3.2 (A closed formula for I*(XN,>.";q)). 

I*(X>. 1 ,>.11 ; q) = T>.'y,(q). 

Example 3.3. 1. If>." = 0, we get I*(XN,0;q) = TN,0(q) from 
(4). 

2. If >.' and >." correspond to trivial representations, i.e. >..' = [l'), 
>." = [l"], we can prove J*(X[l'],[l"]; q) = T[l'],[l"](q) by induction 
on min{l', l"}. 

3. As is written at the beginning of this subsection, if l(>..') :::; 3 
and i>-"i :::; 3, our conjecture is true. We check it by the aid of 
Mathematica. 

Remark 3.4. If >. = >..' = >.", it is not difficult to see 
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3.2. A recursive formula for J*. 

Toward the proof of Conjecture 3.2, we exploited a recursive formula 
for I*(n,,A,,;q). 

Define an inner product on the space of symmetric functions with 
n variables y = (Yi,··· ,Yn) by (sA1 (y),sN 1 (y))aLn(Y) := 8N,A", where 
sA(y)'s are the Schur functions. For infinitely many variables x = 
(xi, x 2 , • • • ), consider sA(x, y)'s as symmetric functions in y, and put 
i(n,;N',x) := (sN(x,y),sA11(x,y))aLn(Yf Consider the specialization 

r 1 + 2i-2 
elementary symmetric function er ( x) i---+ qr IT q 2 . 

1-q• 
i=i 

By this specialization, sA(x) becomes q1AIG(>.;q2), and I*(n,,N,;q) is 
the result coming out from i(n,,N'i x) = Lµ SN fµ(x)sA" fµ(x). 

Theorem 3.5 (A recursive formula for I*). Fix partitions>.', >." 
and a positive integer r. Denote by V(r) the set of all vertical r-strips, 
i .. e., the skew diagrams which have at most one square in each row. Then 

µ' 
µ 1 -A1 EV(r) 

i,j'2:0 µ 11 
i+j=r A11 -µ" EV(j) 

I*(n,,µ", q). 

Thanks to this theorem, our first conjecture reduces to the following 
second conjecture. 

Conjecture 3.6. TA, ,N' satisfies the same recursive formula. 

§4. Application - Invariants for two-sided cells 

In this section, we discuss the two-sided cells and the invariants 7*, 

f,Iw. 
Here we do not reproduce the definition of the two-sided cell [8) §4.2, 

but we note that this concept is important in the representation theory, 
e.g., in the work of A. Joseph [6) on the classification of primitive ideals 
of the enveloping algebras of complex semisimple Lie algebras, and in 
the work of G.Lusztig [8) on the classification and the description of 
irreducible characters of finite Chevalley groups. 

4.1. Invariant 7*. 

Let us recall the definition of 7* and f. We assume the same notation 
as in Definition. 1.1. 
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Definition 4.1. For a character x of a finite dimensional representa­
tion of a Weyl group W, we define 

7*(x; t) = x(e)-1 L x(w)tdim r,w and 
wEW 

-( . ) = 1w1-1" ( )det(l +ywlr,) 
7 x,q,y L...,wX w det(l-qwlr,)" 

WE 

Example 4.2. Let X>. be the irreducible character of 6 1, associated 
to the Young diagram>-.. Then we have 

7*(n; t) = II (t + c(v)) and 
vE>. 

- . - n(>.) II 1 + yqc(v) 
7 (X>., q, y) - q 1 _ h(v) ' 

vE>. q 

where c( v) 's are the contents, and 

n(>-.) := L(i - 1)>-.i where>-.= (>-.1 ~ >-.2 ~ •.• ). 
i>O 

For the Weyl group of type B1, we also have a similar formula for 
7* and f (Cf. [4]). Especially, they are factorized analogously. 

Looking over these results, we can observe a curious phenomenon. 

Observation 4.3 ([4]). Let W be the Weyl group of type A1 or B1 
{l > 2), then for two irreducible character x and x' of W, the two 
invariants 7* (x; t) and 7* (x'; t) coincide if and only if x and x' belong 
to the same two-sided cell. 

The arguments used in the theory of two-sided cells is sometimes 
very deep, based on JC-complexes, D-modules, and so on. Sometimes it 
is very ad hoc. Therefore it is surprising that such an easy invariant like 
7* characterizes two-sided cells. However such a heavenly simple picture 
is not true in general. Even if we replace 7* by fin the Observation 4.3, 
we can not extend the simple picture Observation 4.3 for general W. 
Therefore we want to understand the deviation itself. 

4.2. Refined two-sided cells. 

For the above purpose, we introduce a certain refinement of the 
two-sided cells. 
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Definition 4.4 (Iwahori-Hecke algebra). For an irreducible Weyl 
group W, let S be the set of simple reflections. Let {qs}sES be a set 
of indeterminates such that q8 = q8 , if and only if s and s' are W­
conjugate and such that the different q8 's are algebraically independent. 
Put R := Z[q!12 ,q;112]sES· Let K be the fractional field Frac(R) of R, 
and H(W)R = EBwEW RTw the free R-module generated by the formal 
basis parametrized by W. Then an associative R-algebra structure of 
H(W)R is given by 

(5) 

TwTw' = Tww' if l(w) + l(w') = l(ww'), and 

(Ts+ l)(Ts - q8 ) = 0 for SES. 

Now consider the specialization 

modp 
R --• Frac(R ® Z/pZ), 

and consider the modular representation theory of H(W)K := H(W)R® 
K with respect to this specialization; in particular, consider the blocks of 
H(Wff. Here H(Wff is the set of irreducible characters of H(W)K, or 
equivalently, the set of irreducible representations modulo isomorphism. 

Recall that H (W) k can be identified with wv: 

H(W)'k = wv. 

Definition 4.5 (The equivalence relation~). For two characters 
* X, x' E H (W) k = wv, and for a prime number p, define equivalence 

relations ~ and ~ by 
p * 

1. x ~ x' if and only if x and x' belong to the same block of H (W) 'k 
p 

with respect to the specialization (5). 
2. X ~ x' if and only if there exist prime numbers PI, ... ,Pn and 

* 
irreducible characters Xi, ... , Xn-l such that 

X ~ XI ~ . . . ~ Xn-l ~ x'. 
Pt P2 Pn-1 Pn 

Theorem 4.6 ([3], [4] § 4.2). Assume that Wis of type Ai, D1 or E1. 
Then X ~ x' if and only if x and x' belong to the same two-sided cell. 

* In general, the implication 'only if' holds. 

In the sequel, let us call refined two-sided cells, the equivalence 
classes in wv with respect to the equivalence relation ~. 

* 
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4.3. Invariants i- and Iw. 

We have calculated i-'s and the Kawanaka invariants systematically 
using Mathematica and MAPLE in [4] and [5]. Looking over the results 
of the calculation, we have made some observations. For the statement 
of our observation, we need the following definition. 

Definition 4.7 (Modified exceptional representations). Put 

{

{x E wv I dimx = 2}, 

wv = {x E wv I dimx = 512}, 
ex.m {x E wv I dimx = 4096}, 

<p, 

if W = W(G2), 

if W = W(E1), 

if W = W(Es), 
otherwise. 

Observation 4.8. 1. An irreducible character x E wv \ W 0';<-m 
forms a refined two-sided cell by itself if and only if 

- n l l + yqci 
T(x;q,y) = q IJ 1 h , l = dimf) 

i=l - q ' 

with some integers n, {cih~i:::;I and {hih~i~l, which are uniquely 
determined by x. 

2. If x E wv forms a refined two-sided cell by itself, then 

I 1 +qhi 
Iw(x; q) = IJ ~' l = dim f) 

i=l - q ' 

with the same integers { hi}i as above. 

Note that, in the A1 or Bi-case, every irreducible character x E wv 
forms a refined two-sided cell by itself and i- is factorized as above. See 
Example 4.2. 

In this way, we observed that the invariants i- and the Kawanaka 
invariants I are related to the two-sided cells and the refined two-sided 
cells. 
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