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On the homotopy theory of arrangements, II 

Michael Falk and Richard Randell 

Abstract, 

In "On the homotopy theory of arrangements" published in 1986 
the authors gave a comprehensive survey of the subject. This arti­
cle updates and continues the earlier article, noting some key open 
problems. 

Let M be the complement of a complex arrangement. Our interest 
here is in the topology, and especially the homotopy theory of M, which 
turns out to have a rich structure. In the first paper of this name (37], 
we assembled many of the known results; in this paper we wish to sum­
marize progress in the intervening years, to reiterate a few key unsolved 
questions, and propose some new problems we find of interest. 

In the first section we establish some terminology and notation, and 
discuss general homotopy classification problems. We introduce the 
matroid-theoretic terminology that has become more prevalent in the 
subject in recent years. In this section we also sketch Rybnikov's con­
struction of arrangements with the same matroidal structure but non­
isomorphic fundamental groups. In Section 2 we consider some algebraic 
properties of the fundamental group of the arrangement. Properties of 
interest include the lower central series, the Chen groups, the rational 
homotopy theory of the complement, and the cohomology of the group. 
At the time of our first paper many questions in this area were in flux, 
so we make a special effort here to clarify the situation. The group 
cohomology is naturally of interest in the third section as well, which 
focuses on when or if the complement is aspherical. It is this property 
which fostered much of the initial interest in arrangements (in the guise 
of the pure braid space); it is of interest that the determination of when 

Date: November 30, 1998 
2000 Mathematics Subject Classification. Primary 57N65; Secondary 

32S22,05B35, 14F35, 14F40, 20F36, 20F55. 
Key words and phrases. hyperplane arrangements. 
This paper is in final form and no version of it will be submitted for 

publication elsewhere. 



94 M. Falk and R. Randell 

the complement is aspherical is far from settled. Finally, in the fourth 
section we consider what one might call the topology of the fundamen­
tal group. We describe group presentations that have been discovered 
since the publication of [37], including the recent development of braided 
wiring diagrams. We also sketch the considerable progress in the study 
of the Milnor fiber associated with an arrangement. 

In 1992 the long-awaited book Arrangements of Hyperplanes, by Pe­
ter Orlik and Hiroaki Terao appeared, to the delight of all of us working 
in arrangements. We refer the reader to this text as a general refer­
ence on arrangements, and adopt their notation and terminology except 
where specified. We also mention that perhaps the most interesting de­
velopment in arrangements in the last ten years involves the deep and 
fascinating connections with hypergeometric functions. We are pleased 
to refer the reader to the lecture notes of Orlik and Terao [64] from the 
1998 Tokyo meeting for a comprehensive exposition of this material. 

Sl. Combinatorial and topological structure 

One significant change in the study of the homotopy theory of ar­
rangements since the publication of [37] has been the introduction of 
matroid-theoretic terminology and techniques into the subject. In this 
section we review this approach and describe progress toward the topo­
logical classification of hyperplane complements. Refer to [89, 66] for 
further details on matroids. 

1.1. The matroid of an arrangement 

Let V = ct and let A= {H1, ... , Hn} be a central arrangement 
of hyperplanes in V. For each hyperplane Hi choose a linear form O:i E 
V* with Hi = ker(o:i)- The product Q(A) = Il~=l O:i is the defining 
polynomial of the arrangement. 

The underlying matroid G(A) of A is by definition the collection of 
subsets of [n] := {1, ... , n} given by 

G(A) = {S ~ [n] I {o:i Ii ES} is linearly dependent}. 

Elements of G = G(A) are called dependent sets. Minimal depen­
dent sets are called circuits. Independent sets and bases are defined in 
the obvious way. The rank rk(S) of a set S ~ [n] is the size of a maximal 
independent subset of S. The rank of G (or A) is rk([n]). The closure 
S of a set S is defined by 

S = LJ{T ~ [n] I T 2 S and rk(T) = rk(S)}. 
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A set S is closed if S = S. Closed sets are also called fiats. The 
collection of closed sets, ordered by inclusion, forms a geometric lat­
tice L( G) which is isomorphic to the intersection lattice L(A) defined 
and studied in [65]. The isomorphism L(G) - L(A) is given by S 1-+ 

niES Hi. 
Thus the matroid G(A) contains the same information as the in­

tersection lattice L(A). One of the simple advantages of the matroid­
theoretic approach is the fact that the matroid G(A) is determined 
uniquely by any of a number of different pieces of data besides the set 
of flats. For instance, the set of circuits, the rank function, or the set of 
bases, each determine the matroid, and thus the intersection lattice. Be­
sides giving a nice conceptual framework for the combinatorial structure 
of arrangements, techniques and deep results from the matroid theory 
literature have been applied with some benefit in the study of the topol­
ogy of arrangements. 

The line generated by ai in V* depends only on Hi, and thus 
A determines a unique point configuration A* in the projective space 
IP'(V*) ~ c,pt-l _ The dual point configuration A* can be used to de­
pict the combinatorial structure of an arrangement in case rk(A) ::::; 4 if 
the defining forms ai have real coefficients. (In this case A is called a 
complexified arrangement.) One merely plots the points ai in a suitably 
chosen affine chart JRf-l in the real projective space JRpt- 1, for instance 
by scaling the ai so that the coefficient of x 1 in each is equal to 1, and 
then ignoring this coefficient. Dependent flats of rank two ( or three) are 
seen in these affine configurations as lines ( or planes) containing more 
than two ( or three) points. These lines and planes are usually explicitly 
indicated in the picture. This is especially useful for arrangements of 
rank four. Since the hyperplanes are indicated by points in JR3 , they 
don't obscure the internal structure as a collection of affine planes in 
JR3 would (see Figure 5). These depictions of projective point config­
urations are generalized to give affine diagrams of arbitrary matroids. 
Dependent flats are again explicitly indicated with "lines" or "planes", 
which in the general case may not be straight or flat in the euclidean 
sense. It is common to refer to flats of rank one, two, or three in an ar­
bitrary matroid as points, lines, or planes respectively. These diagrams 
are useful for the study of arrangements which are not complexified real 
arrangements ( see Figures 1 and 2). 

1.2. Basic topological results 

The seminal result in the homotopy theory of arrangements is the 
calculation of the cohomology algebra of the complement M = M(A) := 
ct - LJ7= 1 Hi by Orlik and Solomon [63]. Motivated by work of Arnol'd 



96 M. Falk and R. Randell 

[1], and using tools established by Brieskorn [10], they gave a presenta­
tion of H*(M) in terms of generators and relations. The presentation 
A(A) depends only on the underlying matroid G = G(A), and is now 
called the Orlik-Solomon ( or OS) algebra of G. Henceforth we will refer 
to the OS algebra A(A) rather than the cohomology ring H*(M). The 
algebra A(A) is defined as the quotient of the exterior algebra on gener­
ators e1 , ... , en by the ideal I generated by "boundaries" of dependent 
sets of G. See [65) for a precise definition. 

This result of [63] gave rise to a collection of "homotopy type" con­
jectures, which assert that various homotopy invariants of the comple­
ment depend only on G(A). A great deal of research in the homotopy 
theory of arrangements has been focused on conjectures of this type. 
Note that such conjectures may have "weak" or "strong" solutions: one 
may show that the invariant depends only on the matroid, or one may 
give an algorithm to compute the invariant from matroidal data. 

The major positive result in this direction is the lattice-isotopy the­
orem, proved by the second author in [77). It asserts that the homo­
topy type, indeed the diffeomorphism type of the complement remains 
constant through a "lattice-isotopy," that is, a one-parameter family of 
arrangements in which the intersection lattice, or equivalently, the un­
derlying matroid remains constant. 

This result is often recast in terms of matroid realization spaces, 
which are related to the well-known "matroid stratification" of the Grass­
mannian. We describe this connection. The defining forms O:i of A can 
be identified with row vectors, and thus the arrangement A can be iden­
tified with an n x f matrix R over C. This matrix is called a realization 
of the underlying matroid. Two realizations R and R' are equivalent if 
there is a nonsingular diagonal n x n matrix S and a nonsingular £ x £ 
matrix T such that R' = SRT. The corresponding arrangements will 
then be linearly isomorphic. The set of equivalence classes of realiza­
tions of a fixed matroid G is called the (projective) realization space 
'R(G) of G. Now assume the matrix R has rank £, i.e., that A is an 
essential arrangement. Then the column space of R is an £-plane PR 
(sometimes denoted PA) in en. Note that an isomorphic copy of the 
arrangement A inside PR is formed by the intersection of PR with the 
coordinate hyperplanes in en. Postmultiplying A by a nonsingular ma­
trix doesn't affect PR. Thus we see that the realization space 'R(G) can 
be identified with a subset r( G) of the space of orbits of the diagonal 
(e*)n action on the Grassmanian Qe(Cn) of £-planes in en. The sub­
sets r(G) = {PR I Risa realization of G} ~ Qe(Cn) are called matroid 
strata, although they do not comprise a stratification in the usual sense, 
since the closure of a stratum may not be a union of strata [85]. These 



Homotopy theory, II 97 

strata play a central role in the theory of generalized hypergeometric 
functions, especially when the original arrangement A is generic. The 
topology of the strata themselves can be as complicated as arbitrary 
affine varieties over Ql even for matroids of rank three, by a celebrated 
theorem of Mnev [59]. These strata are connected by "deletion maps," 
whose fibers are themselves complements of arrangements [5, 30]. 

Realizations in f(G) correspond to arrangements which have the 
same underlying matroid G, as determined by the arbitrary ordering of 
the hyperplanes. Thus, for the study of homotopy type as a function of 
intrinsic combinatorial structure (i.e., without regard to labelling), the 
true "moduli space" for arrangements should be the quotient of 9c(<Cn) 
by the action of the Sn x (<C*)n. Then linear isomorphism classes of ar­
rangements with isomorphic underlying matroids ( or isomorphic inter­
section lattices) correspond to points of the orbit space f(G)/ Aut(G). 

Randell's lattice-isotopy theorem can be reformulated as follows: 
two arrangements which are connected by a path in I'(G) (or f(G)) have 
diffeomorphic complements. Thus one is led to the difficult problem of 
understanding the set of path components of f(G)/ Aut(G). 

More detailed combinatorial data will suffice to uniquely determine 
the homotopy type of the complement. For instance, in the case of com­
plexified real arrangements, the defining forms Cti, 1 :S i :S n determine 
an underlying oriented matroid. This is most easily described in terms 
of bases: the matroid G(A) is determined by the collection B of max­
imal independent subsets B ~ [n]. These can naturally be identified 
with ordered subsets of [n]. The oriented matroid G(A) is then a par­
tition B = B+ U B_ of the set of ordered bases of G(A) into positive 
and negative bases, corresponding to the sign of the (nonzero) deter­
minant of the corresponding ordered sets of linear forms. The work of 
Salvetti [81], as refined by Gelfand and Rybnikov [39], shows that the 
underlying oriented matroid of a complexified real arrangement uniquely 
determines the homotopy type of the complement. In fact one can con­
struct a partially ordered set K( G) directly from the oriented matroid 
G whose "nerve", or collection of linearly ordered subsets, forms a sim­
plical complex homotopy equivalent to the complement. In subsequent 
work, Bjorner and Ziegler [7] (see also Orlik [61]) generalized the con­
struction to arbitrary arrangements (or arrangements of subspaces), in 
terms of combinatorial structures called 2-matroids [7] or complex ori­
ented matroids [93]. They showed that this detailed combinatorial data 
determines the complement up to piecewise-linear homeomorphism. 

The relation between Randell's lattice-isotopy theorem and the com­
binatorial complexes of [81, 39, 7, 61] has not been fully explored. In 
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particular, it would be interesting to cast the notion of lattice-isotopy in 
combinatorial terms, i.e., as a sequence of elementary "isotopy moves" 
on the posets K,( G) which leave the homotopy type of the nerve un­
changed. A first step in this direction was accomplished in [29]. We 
pose this as our first open problem. 

Problem 1.1. Prove a combinatorial lattice-isotopy theorem, that 
"isotopic" (complex) oriented matroids ( with the same underlying ma­
troid) determine homotopy equivalent cell complexes. 

1.3. Homotopy classification 
The fundamental question whether the homotopy type of M(A) is 

uniquely determined by G(A) was answered in the negative by Rybnikov 
in [80]. The basic building block of his construction is the MacLane ma­
troid, whose affine diagram is pictured in Figure 1. For this matroid 

FIGURE 1. The MacLane matroid 

G, the realization space R(G) consists of two conjugate complex real­
izations R and R, corresponding to arrangements A and A. One can 
"amalgamate" these realizations along one of the three-point lines (rank­
two flats) to form arrangements A*A and A*A of rank four with thirteen 
hyperplanes. These arrangements have the same underlying matroid, of 
rank four on 13 points, pictured in Figure 2. Rybnikov establishes some 
special properties of this matroid, for instance, that any automorphism 
of the OS algebra arises from a matroid automorphism, which must pre­
serve or interchange the factors of the amalgamation. Using these he is 
able to show that the arrangements A* A and A* A have nonisomorphic 
fundamental groups, since the first has an automorphism which switches 
the factors preserving orientations of the natural generators, while the 
only automorphism of the second which switches factors must reverse 
orientations. Refer to Section 4.1 for a more detailed description of the 
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FIGURE 2. The Rybnikov matroid 

fundamental group. Rybnikov actually uses the rank-three truncation of 
this matroid, and 3-dimensional generic sections of these arrangements, 
but this operation does not affect the fundamental group. 

The last part of Rybnikov's argument is quite delicate and very 
specialized. None of the known invariants of fundamental groups, for 
instance those described elsewhere in this paper, will distinguish these 
two groups. 

Problem 1.2. Find a general invariant of arrangement groups 
that distinguishes the two Rybnikov arrangements, and generalize his 
construction. 

To date this is the only known example of this phenomenon. In 
particular it is not known if this behavior is exhibited by complexified 
arrangements. 

Problem 1.3. Prove that the underlying matroid of a complexified 
arrangement determines the homotopy type, or find a counter-example. 

Partial results along these lines were obtained by Jiang and Yau [44] 
and Cordovil [18]. In [44] a condition on the underlying matroid G is 
given which implies that the realization space of G is path-connected, so 
that any two arrangements realizing G have diffeomorphic complements 
by the lattice-isotopy theorem. In [18] it is shown that complexified 
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arrangements whose underlying matroids are isomorphic via a corre­
spondence which preserves a (geometrically defined) "shelling order" 
will have identical braid-monodromy groups. 

The extent to which arrangements with non-isomorphic matroids 
can have homotopy equivalent complements has also been studied (see, 
e.g., [28, 29, 13, 24, 32]) with some degree of success. One approach 
to this problem is purely combinatorial, namely to classify OS alge­
bras up to graded algebra isomorphism. This approach is adopted in 
[28, 32, 24]. A powerful invariant is developed in [32], sufficient to dis­
tinguish all known non-trivial examples which are not already known to 
be isomorphic. 

At this point all known examples of matroids with isomorphic OS 
algebras can be explained by two simple operations [35, 72]. The first 
of these is a construction involving a well-known equivalence of affine 
arrangements arising from the "cone-decone" construction [65, Prop. 
5.1], along with the trivial fact that the complement of the direct sum of 
affine arrangements, denoted 11 in [65], is diffeomorphic to ·the cartesian 
product of the complements of the factors. In fact this construction can 
be applied to arbitrary pairs of matroids to yield central arrangements 
with non-isomorphic matroids and diffeomorphic complements [24, 35]. 
This construction always yields arrangements with non-connected (i.e., 
nontrivial direct sum) matroids. Jiang and Yau [45] show that this 
phenomenon cannot occur in rank three, that is, the diffeomorphism 
type of the complement of a rank-three arrangement uniquely determines 
the underlying matroid. Thus the rank-three examples of [29], which 
have non-isomorphic underlying matroids, have complements which are 
homotopy equivalent but not diffeomorphic. 

The second operation which yields isomorphic OS algebras is trun­
cation. It is shown in [72] that the truncations of two matroids with 
isomorphic OS algebras will have the same property. (It is not known if 
truncation preserves homotopy equivalence). These two "moves" suffice 
to explain the examples produced in [65, 29], indeed all known exam­
ples of this phenomenon. Thus it seems an orderly classification of OS 
algebras may be within reach. 

Problem 1.4. Classify OS algebms up to gmded isomorphism. 

In the alternative, we suggest the following. 

Problem 1.5. Find a pair of arrangements with homotopy equiv­
alent complements and whose underlying matroids are non-isomorphic, 
connected, and inerectible (i.e., not truncations). 
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Cohen and Suciu in [12, 13, 14] approach this same problem of ho­
motopy classification using invariants of the fundamental group. Their 
approach has the advantage that it may also be used to distinguish the 
complements of arrangements with the same underlying matroid. Some 
of this work is described elsewhere in this paper. Here we merely re­
mark on the surprising connection described in [14, 55, 54] between the 
characteristic varieties of [53] arising from the Alexander invariant of the 
fundamental group, and the resonant varieties of [32], which arise from 
the OS algebra. 

S2. Algebraic properties of the group of an arrangement 

The topology of hyperplane complements seems to be to a large ex­
tent controlled by the fundamental group. These "arrangement groups" 
have relatively simple global structure, being pieced together out of free 
groups in a fairly straightforward way (see Sections 4.1 and 3.3), but 
have surprisingly delicate fine structure. At the time of the writing of 
[37] there was a great deal of activity around the study of the lower 
central series of these groups, and connections with rational homotopy 
theory and Chen's theory of iterated integrals. In this section we report 
on progress in these areas in the intervening years. 

2.1. The LCS formula, quadratic algebras, rational K(1r, 1) 
and parallel arrangements 

Discoveries of Kohno [48] and the authors [36] showed that Witt's 
formula for the lower central series of finitely generated free Lie algebras 
(or, equivalently, free groups) generalized to a wide class of hyperplane 
complements. The so-called LCS formula reads 

relating the ranks </Jn of factors in the lower central series of the funda­
mental group rr1(M) to the betti numbers bi = dim(Ai(A)) of M. In 
[36, 43] it is shown that this formula holds for all fiber-type arrange­
ments. These are arrangements whose underlying matroids are super­
solvable [87]. This result was ostensibly extended to rational K(rr, l) 
arrangements in [26, 47]. (See also Section 2.2.) We refer the reader to 
[26, 65] for a precise definition of rational K(rr, 1) arrangement. Briefly, 
if Sis the 1-minimal model of M (or, equivalently, of A(A)), then A is 
rational K(rr, 1) if H*(S) ~ A(A). It is shown in [26] that fiber-type 
arrangements are rational K(rr, 1). 



102 M. Falk and R. Randell 

The technical results of [36] were used in [38] to show that funda­
mental groups of fiber-type arrangements (in particular, the pure braid 
group) are residually nilpotent. This result turned out to be important 
for the theory of knot invariants of finite type [84]. 

The situation surrounding the LCS formula was very much in flux 
during the preparation of [37], a fact reflected in the equivocal foot­
notes in the table of implications in that paper. The situation has been 
clarified somewhat in the meantime. Our purpose here is to briefly sum­
marize the current understanding of these issues. 

Recall that an arrangement of rank three is parallel if for any four 
hyperplanes of A in general position, there is a fifth hyperplane in A 
containing two of the six pairwise intersections. The OS algebra A(A) 
is quadratic if the relation ideal I ( defined in Section 1.2) is generated by 
its elements of degree two. We will sometimes say A is quadratic. This 
is a combinatorial condition, which will be discussed in further detail in 
Section 3.2. In general the quotient of the exterior algebra A( e1 , ... , en) 
by the ideal generated by the degree two elements of I is called the 
quadratic closure of A(A), denoted A(A). Here is a summary of cogent 
results established in [26, 27]. 

(i) If A is a rational K(1r, 1) arrangement, then A is quadratic. 
(ii) Every parallel arrangement is quadratic. 
(iii) Every rational K(1r, 1) arrangement satisfies the LCS formula. 
(iv) Every quadratic arrangement satisfies the LCS formula at least 

to third degree. 

In [37] we cited an unpublished note which claimed that every par­
allel arrangement is a rational K(1r, 1). Using the construction of [26], 
in 1994 Falk wrote a Mathematica program to compute ¢4, and checked 
the smallest example of a parallel, non-fiber-type arrangement of rank 
3. This arrangement, labelled X2 in [37], consists of the planes x ± z = 
0, y ± z = 0, x + y ± 2z = 0, and z = 0, and is pictured in Figure 3. 
We obtained the result <P4 = 15, whereas the LCS formula would predict 
<P4 = 10. 

So the implications 

parallel ==> rational K(1r, 1), 

quadratic ==> rational K(1r, 1), 

parallel ==> LCS, 

and 

quadratic ==> LCS 

recorded in [37] are all false. 
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FIGURE 3. The arrangement X2 

Subsequently, work of Shelton-Yuzvinsky [82], and Papadima-Yuz­
vinsky [67] provided further clarification. Let .C denote the holonomy Lie 
algebra of M, the quotient of the free Lie algebra on generators x1 , ... Xn 

by the image of the map H1(M) -t A2 (H1(M)) dual to the cup product. 
Let U = U(A) be its universal enveloping algebra, a dual object to 
the !-minimal model S. The Hilbert series of U is Tin>i(l - tn)-1/>". 

Kohno constructs a chain complex (R, 8) which, when exact, forms a 
resolution of Q as a trivial U-module. In this case A is a rational K ( 1r, 1) 
arrangement, and the LCS formula holds. 

Shelton and Yuzvinsky [82] realized that U(A) is the Koszul dual of 
the quadratic closure of A(A). We refer the reader to (82] for a precise 
definition; loosely speaking, the defining relations for the Koszul dual 
U form the orthogonal complement to those of A(A) inside the tensor 
product T2(A1 (A)). They observed that the Aomoto-Kohno complex 
(R, 8) is the usual Koszul complex of U, and thus is exact if and only if 
U is a Koszul algebra - U is Koszul iff Extf/(Q, Q) = 0 unless p = q. 
It follows from this that A(A) is a quadratic algebra. (This observation 
was also made by Hain [41].) The LCS formula is then a consequence of 
Koszul duality. They give a combinatorial proof that A(A) is quadratic 
and that U(A) is Koszul if A is a supersolvable arrangement. 

The results of (82] were strengthened and extended in (67] to give a 
description of H* ( S) in terms of Koszul algebra theory, for more general 
spaces. In particular, it is shown in (67] that A is rational K(1r, 1) if 
only if the OS algebra is Koszul. In addition, Papadima and Yuzvinsky 
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gave an alternate proof that the arrangement X2 above fails the LCS 
formula. Finally, using a "central-to-affine" reduction argument, they 
were able to prove the following. 

Theorem 2.1 ([67]). For arrangements of rank three, the LCS 
formula holds if and only if the arrangement is fiber-type. 

Peeva [71] applies techniques of commutative algebra and Grabner basis 
theory to obtain a short proof that supersolvable arrangements satisfy 
the LCS formula, in addition to other related computational results. 

In research closely related to the lower central series of arrange­
ment groups, Kohno used the iterated integral/holonomy Lie algebra 
approach to construct representations of the (pure) braid group, and 
more generally to study the monodromy of local systems over hyper­
plane complements. This work is also closely tied to the theory of gen­
eralized hypergeometric functions. See [49] for a description of these 
developments. Cohen and Suciu pursued similar ideas using methods 
more closely connected to those of [36] in [15]. 

2.2. The Dn reflection arrangements 

The fundamental groups of the reflection arrangements of type Dn 
have been studied using some of the technical machinery of [36]. Note 
that these arrangements, for n > 3, are not supersolvable. The author 
of [58] constructs a presentation which he claims presents these funda­
mental groups as "almost direct products" in the sense of [36, 15]. He 
used this to show that these groups are residually nilpotent. In 1994 
we tried to use this presentation to get more precise calculations for 
the lower central series of these groups, at least for n = 4. In fact 
we found that the presentation in [58] is not correct. Even for the D3 

arrangement, which is supersolvable, the results one deduces from [58] 
do not jibe with the LCS formula, which is known to hold for D3 . In 
[56] Liebman and Markushevich adopt a different approach and derive 
a different presentation to show that the Dn arrangement groups are 
residually nilpotent. 

It was in the course of this research that we started computing <p4 
by machine. In addition to finding the counterexample X 2 described 
above, we also computed <p4 = 183 for the D4 reflection arrangement. 
The LCS formula yields <p4 = 186. So the D4 arrangement fails the LCS 
formula, contrary to another assertion [46] reported on in [37]. 

The work of Shelton and Yuzvinsky [82] make it clear why the ar­
gument of [46] for the LCS formula for the Dn reflection arrangements 
fails: these arrangements, for n > 3, do not have quadratic OS algebras, 
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by [26]. Hence the Aomoto-Kohno complex R. cannot be exact for these 
arrangements. 

So we are left with no examples of arrangements which are not 
supersolvable, yet are rational K ( 1r, 1), and no examples of arrangements 
satisfying the LCS formula which are not rational K ( 1r, 1). 

Problem 2.2. Find examples of non-supersolvable or non-rational 
K(1r, 1) arrangements satisfying the LCS formula, or prove that such ex­
amples do not exist. 

2.3. Work of Cohen and Suciu on the Chen groups 

As noted above, the ranks of the quotients in the lower central series 
of fiber-type arrangements are determined by the betti numbers of the 
complement. From this point of view, the pure braid groups look like 
products of free groups (though they are not; see [38].) In the last few 
years, Cohen and Suciu have introduced the Chen groups into the study 
of arrangements, providing a computable tool for distinguishing similar 
arrangements. 

The Chen groups of a group G are the lower central series quotients 
of G modulo its second commutator subgroup G". If for any group 
G we let rk(G) denote the k th lower central series subgroup, then the 
homomorphism G-, G/G" induces an epimorphism 

Thus the ranks <Pk of quotients of lower central series groups are no 
less than the corresponding ranks 0k of Chen groups. In the case of the 
pure braid group, the ranks 0k are determined in [12]; they are given by 
the generating function 

~ k-2 (n + 1) 1 (n) 
L..,0kt = 4 . (1-t)2 - 4 
k=2 

In particular, these numbers differ from those for the product of free 
groups, providing a tidy proof that the pure braid groups are not such 
products. 

Cohen and Suciu [11] provide a detailed study of these groups includ­
ing a method for their computation from a presentation of the Alexander 
invariant (see the discussion of presentations of the fundamental group 
below.) It is interesting that while these groups are very effective in 
distinguishing similar groups, there is not yet an example of combinato­
rially equivalent arrangements with different Chen ranks. In particular, 
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they do not distinguish the examples of Rybnikov [80] of combinatorially 
equivalent, homotopically different arrangements (see Section 1.3). 

2.4. Cohomological properties of the fundamental group 

In 1972 Deligne [21] proved that for a complexification of a real 
simplicial arrangement, the complement M is aspherical ( also expressed 
by saying that M is a K ( 7f, 1) space.) That is, the universal cover of 
M is contractible. Since all real reflection arrangements are simplicial, 
this solved a question raised and partially answered by Brieskorn in 
[9]. The original study of this sort of problem was the work of Fadell 
and Neuwirth [25] on the pure braid group. Following [86], the authors 
introduced in [36] the notion of fiber-type arrangement and observed 
that for this class M is aspherical, essentially by the iterated fibration 
argument of Fadell and Neuwirth. So it is natural to ask: for what 
arrangements is M aspherical? It is known by work of Hattori [42] that 
not all are - the arrangement defined by Q = xyz(x + y + z) is the 
simplest example. 

Here we wish to touch upon the algebraic consequences of aspheric­
ity. Now if Mis aspherical, the (known) cohomology of Mis isomorphic 
to the cohomology of the group. Since M has cohomological dimension 
rk(A) < oo,1r1 (M) does also. In addition, 1r1 (M) has no torsion, and 
there is a K ( 7f, 1) space, 7f = 1r1 ( M), with the homotopy type of a finite 
complex (namely, M). So here is another open problem: 

Problem 2.3. Are all arrangement groups torsion-free? 

The answer is of course yes for real reflection arrangements and 
for fiber-type (or supersolvable) arrangements. One approach to this 
question is to show that all arrangement groups are orderable. Here we 
say a group G is orderable provided that there is a linear order < on G 
so that g < h implies cg < ch for all c E G. It follows easily that an 
orderable group has no torsion. The braid group was shown orderable 
by Dehornoy in [20]; at the Tokyo meeting L. Paris proved that the 
group of a fiber-type arrangement is orderable [68]. It is not known 
whether all arrangement groups are orderable. Note that the group of 
an arrangement has a finite presentation of a fairly restricted type, as 
described in Section 4.1, and that the relators all lie in the commutator 
subgroup. 

There are some useful observations concerning these ideas in [78]. 
For instance, we have the following theorem. 

Theorem 2.4. For j ~ 2 the Hurewicz map 
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is trivial. 

As a consequence, the second homology of rr1 (M) is isomorphic to 
H2(M). In addition, it is mentioned there that the arrangement defined 
by , 

Q = xyz(y + z)(x - z)(2x + y) 

has the property that there is no arrangement with aspherical com­
plement with the same intersection lattice in rank one and two. The 
following result is also proved in [78]. 

Theorem 2.5. The complement of a central arrangement of rank 
three is aspherical provided that the fundamental group has cohomological 
dimension three and is of type FL. 

A group 1r is type FL provided that Z (as a trivial Z[rr]-module) 
has a finite resolution by free Z[rr]-modules. An equivalent statement is 
that there should exist a finite CW complex which is a K(rr, 1)-space. 
Theorem 2.5 shows that for central rank three arrangements asphericity 
is determined by the fundamental group. 

S3. Arrangements with aspherical complements 

Much of the early history of the topology of arrangements revolves 
around the "K(rr, 1) problem," the problem of determining which ar­
rangements have aspherical complements. (Such an arrangement is 
called a K(rr, 1) arrangement.) This history is described in some detail 
in [37] (see also Section 2.4). In addition, we proved an ad hoc necessary 
condition [37, Thm. 3.1] for asphericity involving "simple triangles," and 
introduced the notion offormal arrangement, which was shown to be a 
necessary condition for K(rr, 1) and rational K(rr, 1) arrangements. A 
great deal of progress was made in these areas in the intervening years, 
which we report on in this section. 

3.1. Free arrangements are not aspherical 

In our earlier survey, we highlighted the Saito conjecture, that all 
free arrangements are aspherical. In 1995 Edelman and Reiner [23] pro­
vided counterexamples, which we briefly describe. 

Let S denote the polynomial ring of V. A linear map 0 : S -t S is a 
derivation if for f,g ES, we have 0(/g) = f0(g) + g0(f). The module 
of A-derivations is defined by 

D(A) = {0 I 0(Q) E QB} 
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where Q is the defining polynomial of the arrangement. Then the ar­
rangement is free provided that D(A) is a free S-module. 

It is known [86] that reflection arrangements are free; for their many 
pleasant properties see [65]. In 1975 K. Saito conjectured that free ar­
rangements should be aspherical. In their study of tilings of centrally 
symmetric octagons in [23], Edelman and Reiner found the family of 
arrangements given by 

Q(A,,) = xyz(x - y)(x - z)(y - z)(x - ay)(x - az)(y - az) 

with a E JR. They proved that the corresponding arrangements are free 
for all a, while they are not aspherical for a -=/:- -1, 0, 1. The proof of 
freeness is direct, using addition-deletion [65, Theorem 4.51] while the 
non-asphericity follows from the "simple triangle" criterion of [37]. The 
counter-example A-2 is pictured in Figure 4. 

FIGURE 4. Free but not K(1r, 1) 

3.2. Formality and related concepts 

The fundamental group of arrangement is determined by a generic 
3-dimensional section. Based on the idea that K(1r, 1) arrangements 
should be extremal in some sense, we developed the notion of formal 
arrangement in (37]. This has been the subject of several papers since 
(5, 8, 91, 33], which provide a better understanding of the concept. Here 
is a "modern" definition, equivalent to the original from (37]. 
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Let <I> : en -+ V* be given by <I>(x) = I:~=l Xiai, where the O!i are 
the defining forms for A. Let K = ker( <I>) and let F be the subspace 
of K spanned by its elements of weight three (i.e., having three nonzero 
entries). Then the arrangement A is formal if F = K. 

The orthogonal complement Kl. ~ en coincides with the point PA E 
9t(en) defined in Section 1.2. Thus the arrangement A is isomorphic to 
the arrangement in K 1. formed by the coordinate hyperplanes. In the 
same way, the orthogonal complement pl. 2 Kl. defines an arrangement 
AF, called the formalization of A. So A is formal if and only if A = 
AF. If A is not formal, AF has strictly greater rank, and A is a (not 
necessarily generic) section of AF. Also, A and AF have isomorphic 
generic "planar" (i.e., rank-three) sections. 

These properties of formalization were asserted in [37], but the ar­
guments we had in mind were not correct. The clarification described 
here is due to Yuzvinsky [91]. Examples in [74] show that non-formal ar­
rangements need not be generic sections of their formalizations. The ar­
rangement of Example 2.19 of (7 4] has the property that the free erection 
of the underlying matroid is not realizable, but ( contrary to the asser­
tion in [74]) there is nevertheless a realizable (formal) erection. Matroid 
"erection" is the reverse of ( corank one) truncation; truncation is the 
matroid-theoretic analogue of generic section. The free erection of an 
erectible matroid is the unique erection with "the most general position" 
- see (89]. 

These observations are enough to establish the following results from 
(37]. The third assertion follows immediately from the second. 

(i) If A is a K(7r, 1) arrangement, then A is formal. 
(ii) If A is quadratic, then A is formal. 

(iii) If A is a rational K(7r, 1) arrangement, then A is formal. 

We asked whether free arrangements· are also necessarily formal. 
This was established by Yuzvinsky. 

Theorem 3.1 ((91]). If A is a free arrangement, then A is for­
mal. 

The preceding result was generalized by Brandt and Terao (8]. They 
define the notion of k-formal arrangement. A formal arrangement has 
the property that all relations among the defining equations are conse­
quences of relations which are "localized" at rank-two flats, in the sense 
that an element of K of weight three gives rise to a three-element sub­
set of a rank-two flat. A formal arrangement is 3-formal if all relations 
among these local generators of F = K are themselves consequences of 
relations which are localized at rank-three flats of A. This construction 
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is iterated to define the notion of k-formal arrangement for every k 2:: 2. 
See [8] for the precise definition. An arrangement of rank r is automati­
cally k-formal for every k 2:: r. The original notion of formality coincides 
with the case k = 2. 

Theorem 3.2 ([8]). If A is a free arrangement of rank r, then A 
is k-formal for every 2 ~ k < r. 

The converse is false [8]. 
Related work appears in [5], where the authors show that the dis­

criminantal arrangements of Manin and Schechtman [57] (see Section 
3.4.2) are formal, and the "very generic" discriminantal arrangements 
are 3-formal, though none are free. 

An arrangement is locally formal [91] if, for every flat X ~ [n], the 
arrangement Ax = { Hi I i E X} is formal. Since freeness, quadratic­
ity, and K(1r, 1)-ness are all "hereditary properties," in that they are 
inherited by the localizations Ax, one has that every free, quadratic, or 
K(1r, 1) arrangement is locally formal. 

We asked in [37] whether formality is a "combinatorial property", 
depending only on the underlying matroid. Yuzvinsky constructed coun­
ter-examples in [91]. 

Theorem 3.3 ([91]). There exist arrangements A1 and A2 with 
the same underlying matroid, such that A1 is formal and A2 is not 
formal. 

In Figure 5 are the dual point configurations of Yuzvinsky's ar­
rangements. The dotted line in Figure 5(b) indicates where to "fold" 
the configuration to erect it to a rank-four configuration. The nontrivial 
planes in the erection are 

12389, 12456, 13458, 13678, 14579, 23567, 24789, 25689, and 34679. 

Note that these two configurations are lattice-isotopic (over C), so nei­
ther is free or K(1r, 1). 

If A is not formal, then the underlying matroid of A is a strong 
map image (under the identity map) of that of Ap (see [66] for the gen­
eral definition), and the two matroids have the same rank-three trunca­
tions. These combinatorial properties gave rise to several attempts to 
replace the notion of formality with some clearly matroidal condition, 
and strengthen Theorem 3.1 and assertion (i) above. For example one 
can ask for conditions on a matroid G so that every ( complex) realization 
of G is formal. One is naturally led to the notion of line-closure. 
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3 8 

(a) A formal configuration (b) A non-formal configuration 

FIGURE 5. Formality is not matroidal 

Let G be a matroid on ground set [n]. The line-closure of a subset 
S of [n] is the smallest subset of [n] which contains every line {that is, 
rank-two flat) spanned by points of S. A set is line-closed ifit is equal to 
its line-closure. The matroid G is line-closed if every line-closed subset 
of [n] is a flat of G. In his current work in progress [33], the first author 
has established the following result. 

Theorem 3.4. An arrangement A is quadratic only if the under­
lying matroid G(A) is line-closed. 

Corollary 3.5. The underlying matroid of a rational K(1r, 1) ar­
rangement is necessarily line-closed. 

The converse of Theorem 3.4, that A is quadratic when G(A) is 
line-closed, is very likely also true. A crucial step in the proof is yet to 
be completed, however, so this assertion remains an open problem. 

Yuzvinsky [90] defined a formal matroid to be a matroid G possessing 
a basis (of rk{G) points) whose line-closure is [n]. Every line-closed 
matroid is formal in this sense. In fact a matroid G is line-closed if and 
only if the line-closure of every basis of each flat X is equal to X. Every 
realization of a formal matroid is formal. 

In [33] we define a matroid G to be taut if G is not a strong map 
image of a matroid G' of greater rank with the same points and lines, 
and locally taut if every flat of G is taut. Every line-closed matroid is 
locally taut, in fact every formal matroid is taut. Every realization of 
a {locally) taut matroid is {locally) formal. There exist matroids which 
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are taut but not formal [19]. A weak version of the first part of the 
following problem was suggested by Yuzvinsky in his talk [90]. 

Problem 3.6. Prove that the matroid of a free or K(1r, 1) ar­
rangement is. necessarily taut. 

Joseph Kung has pointed out to us that a locally taut matroid is 
uniquely determined by its points and lines, which suggests the following 
interesting problem. 

Problem 3. 7. Prove that the underlying matroid of a locally for­
mal arrangement (e.g. a free or K(1r, 1) arrangement) is uniquely de­
termined by its points and lines. 

This last problem is a variant on the following questions from [37], 
the first of which is Terao's Conjecture, and both of which remain open. 

Problem 3.8. Prove that freeness and K(1r, 1)-ness of arrange­
ments are matroidal properties. 

We will refrain from discussing Terao's Conjecture further, except to 
pose a weak version which fits the spirit of this paper, and is interesting 
in its own right. 

Problem 3.9. Prove that freeness is preserved under lattice-isotopy. 

3.3. Tests for asphericity 
Some progress was also made on the problem of finding sufficient 

conditions for an arrangement to be K(1r, 1). The main results are the 
weight test of [31) and its application to factored arrangements by Paris 
[69). A new technique involving modular flats was recently discovered 
and presented at the conference [70, 35). 

The complement M of a 2-dimensional affine arrangement A is built 
up out of K(1r, 1) spaces, specifically (r, r) torus link complements, in a 
relatively simple way, as is reflected in the Randell-Salvetti-Arvola pre­
sentations (see Section 4.1). In fact this structure mirrors precisely con­
structions from geometric group theory related to complexes of groups. 
This observation allows one to construct a relatively well-behaved cell 
complex which has the homotopy type of the universal cover of M, and 
to apply the weight test of Gersten and Stallings [83] to derive a test for 
asphericity of M. 

Theorem 3.10 ([31)). If A is a complexified affine arrangement 
in C2 that admits an A-admissible, aspherical system of weights, then 
A is a K ( 1r, 1) arrangement. 
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The question remains what an A-admissible, aspherical system of 
weights is. This involves the complex B of bounded faces in the subdi­
vision of R.2 determined by A. A weight system is an assignment of a 
real number weight to each "corner" of each 2-cell in B. The system is 
aspherical if the sum of weights around any d-gon at most d - 2. The 
system is A-admissible if certain sums of weights at vertices of r are at 
least 2rr. See [31] for more detail. 

The universal cover complex constructed in [31] may be used in 
some cases to construct explicit essential spheres showing that M is 
not aspherical. Radloff [7 4] used this method to prove some necessary 
conditions for K ( rr, 1 )-ness, along the lines of the "simple triangle" test 
of [37], and found several new examples of non-K(rr, 1) arrangements. 

Falk and Jambu introduced the notion of factored arrangement in 
[34], originally in an attempt to find a combinatorial criterion for free­
ness. A factorization of an arrangement A is a partition of [n] such that 
each flat of G(A) of rank p meets precisely p blocks, and meets one of 
them in a singleton, for each p. This property is necessary and sufficient 
for the OS algebra A(A) to have a complete tensor product factorization 
- see [6, 34, 88, 65]. When A has a factorization, we say A is factored. 

Paris realized that a factorization of a rank-three arrangement pro­
vides a template for a very simple A-admissible, aspherical weight sys­
tem. 

Theorem 3.11 ([69]). If A is a factored, complexified arrange­
ment in C3, then A is a K ( rr, 1) arrangement. 

Every supersolvable arrangement is factored, so this result provides 
a new, wider class of K(rr, 1) arrangements, at least in rank three. 

Problem 3.12. Show that factored arrangements of arbitrary rank 
are K(rr, 1). 

A flat X of a matroid G is modular if rk(X VY) + rk(X /\ Y) 
rk(X) + rk(Y) for every flat Y. The following result was discovered 
independently by Paris and Falk-Proudfoot 

Theorem 3.13 ([70, 73, 35]). If X is a modular flat of arbitrary 
rank in G(A), then there is a topological fibration M(A) --+ M(Ax) 
whose fiber is the complement of a projective arrangement. 

This generalizes the corank-one case, which gives rise to fiber-type 
arrangements, established in [87]. The new result can be used to con­
struct or recognize K(rr, 1) arrangements if the base (whose matroid is 
the modular flat X) and fiber (whose matroid is the complete principal 
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truncation of G(A) along X) are known to be K(1r, 1). This method is 
used to construct some interesting new examples in [35]. Refer to Paris' 
paper [68] in this volume for more details. 

3.4. Some crucial examples 
In this section we want to briefly discuss some specific and inter­

esting types of arrangements for which the K(1r, 1) problem is unsolved. 
These might be regarded as test subjects for new techniques; they qualify 
as "the first unknown cases." 

First we cite another improvement to the table of implications in 
[37]. Recall the definition of parallel arrangement from Section 2.1. 
In [37] we had listed the implication "parallel ==} K(1r, 1)" as "not 
known, of significant interest." In unpublished work, Luis Paris has 
shown this implication to be false. Specifically, he showed that the 
Kohno arrangement X2 (defined in Section 2.1) is not K(1r, 1). The proof 
establishes that the fundamental group contains a subgroup isomorphic 
to Z4; the result then follows from [37, Thm. 3.2]. The copy of Z4 is 
generated by a, b, c, and the commutator [d, e], where a, b, c, d, and e 
are the canonical generators corresponding to the hyperplanes x ± z = 
0, z = 0, and x + y ± 2z = 0 respectively. 

3.4.1. Complex reflection arrangements Fadell and Neuwirth showed 
in 1962 that the complement of the Ai reflection (or braid) arrangement 
is K(1r, 1). In 1973 Brieskorn proved this for many real reflection ar­
rangements, followed soon thereafter by Deligne's proof of the general 
case. Orlik and Solomon extensively studied arrangements of hyper­
planes invariant under finite groups generated by complex reflections 
(see [65, Chapter 6]). It is natural to ask if all such arrangements are as­
pherical. We believe the conjecture that they are is due to Orlik, though 
it was proposed long before it ever appeared in print. It is known [65] 
that the answer is affirmative in all cases except six exceptional, non­
complexified arrangements, some of which have rank three. The proofs 
for the known cases use a variety of techniques, and essentially proceed 
from the Shepard-Todd classification of irreducible unitary reflection 
groups (see, e.g., [65]). What seems to be missing is a unifying prop­
erty, similar to the simplicial property for real reflection arrangements 
exploited by Deligne. The closest approach to this goal is the work 
reported in [65, p. 265] which proves the asphericity of arrangements 
associated to Shephard groups (symmetry group of a regular convex 
polytope.) Here the problem is reduced to the (already solved) problem 
for an associated real reflection arrangement. 

Problem 3.14. Give a uniform proof that all unitary reflection 
arrangements are K ( 1r, 1). 
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3.4.2. Discriminantal arrangements Experience seems to show us 
that questions involving asphericity are quite complex for all arrange­
ments but tractible for restricted classes (reflection, fiber-type, generic). 
One interesting class is that of the discriminantal arrangements intro­
d uced by Manin and Schechtmann [57]. Rather than give the full defi­
nition here we will describe the rank three examples, where the problem 
is already interesting. 

Consider a real affine arrangement of lines in the plane, obtained 
by taking a collection of n points, no three of which are collinear, and 
drawing all (;) lines through pairs of these points. Then embed this 
configuration in the plane z = 1 in three-space and cone over the origin 
to obtain a central real three-arrangement. Then complexify. 

This process can result in arrangements with distinct matroidal and 
topological structure, even for fixed n [30, 5]. The discriminantal ar­
rangements are obtained from "very generic" collections of points, for 
which no three of the (;) lines are concurrent except at the original n 
points. 

The arrangement C(4) is linearly equivalent to the braid arrange­
ment of rank three. An easy calculation shows that the Poincare poly­
nomial associated to the cohomology of C ( n) does not factor over Z for 
n ~ 5, so that these arrangements are not free and are not of fiber-type. 
Also C(n) is not simplicial for n ~ 5. The arrangements C(n) for n ~ 6 
are not aspherical, by [37, Thm. 3.1]. 

For n = 5, one obtains a complexified central three-arrangement of 
10 planes. This arrangement is not factored. More generally C(5) does 
not support an admissible, aspherical system of weights, so the weight 
test fails. On the other hand, all of the standard necessary conditions 
for asphericity hold. 

Problem 3.15. Determine whether the discriminantal arrange­
ment C(5) is K(1r, 1). 

A solution to this problem would also determine whether the space 
of configurations of six points in general position in CP2 is aspherical 
[30], a result which would be of significant interest. 

3.4.3. Deformations of reflection arrangements A "deformation" of 
a reflection arrangement is an affine arrangement with defining equations 
of the form 

where the ai are the positive roots in some root system, and Cij E R. 
This class of arrangements is of great interest to combinatorialists, and 
is the subject of the paper of Athanasiadis in this volume [4]. 
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As is our custom, we "cone" to obtain a central arrangement. For 
instance, based on the root system of type B2, we obtain the B2 Shi 
arrangement, defined by the polynomial 

Q = xyz(x + y)(x - y)(x - z)(y - z)(x + y - z)(x - y - z). 

(Shi arrangements are obtained by setting cil = 0 and ci2 = 1 for all 
i.) This nine-line complexified arrangement has a factorization, given 
by the partition 

{{4},{1,2,5,7},{3,6,8,9}}, 

and is therefore a K(1r, 1) arrangement. On the other hand, the Shi 
arrangement constructed in a similar way from the root system of type 
G2 is not factored or simplicial, and has no simple triangle. 

Problem 3.16. Decide whether the G2 Shi arrangement is K ( 7r, 1). 

More generally, we propose the following. 

Problem 3. 1 7. Decide which Shi arrangements are K ( 7r, 1). 

S4. Topological properties of the group of an arrangement 

At the time of the publication of [37], a presentation of the fun­
damental group of the complement of a complexified arrangement had 
been derived [76]. In the meantime, a similar presentation was found for 
arbitrary complex arrangements [3], and several different "spines" for 
the complement, some of them modelled on group presentations, were 
constructed [81, 29, 13, 50]. These group presentations have been used to 
study the Milnor fibration and Alexander invariants of the complement. 
We report briefly on these ideas here. 

4.1. Presentations of 11"1 

We have seen earlier in the discussion of the lower central series, 
Chen groups and group cohornology that certain classes of arrangements 
(fiber-type, simplicial) have well-behaved fundamental groups. Due to 
work of Arvola [3], Randell [76] and Salvetti [81] an explicit presentation 
of 1r1(M) can be written. See [65, Section 5.3] for a clear exposition of 
Arvola's presentation for any complex arrangement, and [29] for the 
explicit presentation and some applications of Randell's presentation, 
which holds for complexified arrangements and is naturally simpler than 
the general case. A different approach, using the notion of "labyrinth," 
is adopted by Dung and Vui in [22] to arrive at similar presentations for 
arbitrary arrangement groups. 
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In these presentations one first takes a planar section (or, more 
precisely, the projective image), so that one is working with an affine 
arrangement in C2 . Then there is one generator for each line of the 
arrangement, and one set of relations for each intersection. In all cases 
the relations consist entirely of commutators, but to date this has not 
shed much light on the questions of group cohomology, torsion in the 
fundamental group, or other properties (such as orderability) of the fun­
damental group. A general theme for questions is: to what extent do 
arrangement groups mimic the properties of the pure braid groups. 

The concept of braid monodromy was introduced by B. Moishezon 
[60]. Libgober showed in [50] that the braid monodromy presentation of 
the fundamental group yields a two-complex with the homotopy type of 
the complement of an algebraic curve (e.g., a line arrangement) trans­
verse to the line at infinity. 

Motivated in part by [50], the first author showed in [29] that for 
arbitrary line arrangements the 2-complex modelled on the presentation 
of [76] serves as an efficient model for constructing the homotopy type of 
the complement (in the case of 3-arrangements). This construction was 
then used to construct a number of examples with different intersection 
lattice but same homotopy type (see also Section 1.3). 

In related work Cohen and Suciu [13] have given an explicit descrip­
tion of the braid monodromy of a complex arrangement, using Hansen's 
theory of polynomial covering maps. They show that the resulting pre­
sentation of the fundamental group is equivalent to the Randell-Arvola 
presentation via Tietze transformations that do not affect the homo­
topy type of the associated 2-complex. It follows that the complement 
is homotopy equivalent to the 2-complex modelled on either of these 
presentations, generalizing the result of [29]. For this work Cohen and 
Suciu used extensively the concept of braided wiring diagram, which we 
briefly describe below. The notion of braided wiring diagram generalizes 
Goodman's concept of wiring diagram [40], and was earlier considered 
for arrangements in [17]. (Wiring diagrams appear in combinatorics as 
geometric models for rank-three oriented matroids.) The presentations 
of [76] and [3] use versions of this idea. In brief, the braided wiring 
diagram can be thought of as a template for the fundamental group (or, 
for line arrangements, the homotopy type.) 

Here is a sketch of the construction. For examples and further 
details, in particular, a beautiful derivation using polynomial covering 
space theory, see [13]. Since we are interested in the fundamental group, 
consider an affine arrangement A in C2 . Choose coordinates in C2 so 
that the projection to the first coordinate is generic. Suppose that the 
images y1 , ... , Yn of the intersections of the lines have distinct real parts. 
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Choose a basepoint Yo EC\ {Y1, ... , Yn}, and assume the real parts of 
Yi are decreasing with i. Let e be a smooth path which begins with y0 

and passes in order through the Yi, horizontal near each Yi· Then the 
braided wiring diagram is w = {(x, z) E e X C I Q(x, z) = O}. (Recall 
that Q is the defining polynomial of the arrangement.) 

This braided wiring diagram should be viewed as a picture of the 
braid monodromy of the fundamental group of the arrangement ( or as 
a picture of the fundamental group itself). In a sense, it carries the 
attaching (or amalgamating) information as one computes the funda­
mental group using the Seifert-Van Kampen theorem. Each actual node 
in the wiring diagram gives a set of relators, as does each crossing. In 
particular, it is shown in (13] that the braided wiring diagram recovers 
the Arvola or Randell presentation of 7r1(M). Indeed, in the real case, 
the braided wiring diagram can be identified with the usual drawing of 
the arrangement in lR.2 . 

As is the case with ordinary braids, there are "Markov moves" 
with which one can modify such a wiring diagram to realize any braid­
equivalence of the underlying braid monodromies. These are given ex­
plicitly in (13]. Rudimentary moves of this type, called "flips," first 
appeared in [29]. Among the consequences we note the following results 
which relate braid monodromy and braided wiring diagrams to lattice 
isotopy of line arrangements (that is, arrangements in C2). 

Theorem 4.1 ([13]). Lattice-isotopic arrangements in C2 have 
braided wiring diagrams which are related by a finite sequence of Markov 
moves and their inverses. 

Theorem 4.2 ([13]). Line arrangements with braid-equivalent mo­
nodromies have isomorphic underlying matroids. 

4.2. The Milnor fiber 

The defining polynomial Q = I]~=l ai is homogeneous of degree n 
and can be considered as a map 

Q:M---+C* 

It is well-known that this map is the projection of a fiber bundle, called 
the Milnor fibration, and that the Milnor fiber F = Q- 1(1) should be 
of interest. In [79] it was shown that this Milnor fibration is constant in 
a lattice-isotopic family, so that the Milnor fiber is indeed an invariant 
of lattice-isotopy. Because of this we propose the following definition, 
analogous to the definition made in the theory of knots. 
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Definition 4.3. Two arrangements are called (topologically) equiv­
alent if they are lattice-isotopic. We say the arrangements have the same 
(topological) type. 

Thus, arrangements are topologically equivalent if and only if they 
lie in the same path component of some matroid stratum in the Grass­
mannian. With this terminology, we have the following result. 

Theorem 4.4 ((79]). The Milnor fiber and fibration are invari­
ants of topological type. 

Now, F is simply an n-fold cover of the complement of the pro­
jectivized arrangement in c,pt-l _ Since the algorithms of the previous 
section work to compute the fundamental group of this latter space, 
questions involving the fundamental group and cohomology of F are also 
questions involving the group of the arrangement. In particular, while 
the cohomology of M is determined by the intersection lattice, that of 
F may no~ be. The situation is analogous to that of plane curves, where 
work going back to Zariski (92] shows that not only the type but the po­
sition of the singularities affects the irregularity. (The irregularity here 
is simply half the "excess" in the first betti number of F.) 

Early results concerning the Milnor fiber of an arrangement (of­
ten in the general context of plane curves) appear in work of Libgober 
(50, 51, 52, 53] and Randell (75], particularly with respect to Alexan­
der invariants. Libgober's work gave considerable information about 
the homology of the Milnor fiber in relation to the number and type of 
singularities of the arrangement, their position and the number of lines. 
The paper (75] observed that the Alexander polynomial was equal to the 
characteristic polynomial of the monodromy on the Milnor fiber. 

The paper of Artal-Bartolo (2] included an interesting example: for 
the rank three braid arrangement A3 the first betti number of the Milnor 
fiber is seven, an excess of two over the five "predicted" by the number of 
lines. (This result can be obtained as an interesting exercise by applying 
the Reidemeister-Schreier rewriting algorithm to the presentations of the 
fundamental group.) Orlik and Randell (54] showed that in the generic 
case the cohomology of the Milnor fiber is minimal, given the number 
of lines, below the middle dimension. 

Cohen and Suciu carry forward the study of the Milnor fiber in (11]. 
Using the group presentation and methods of Fox calculus they give 
twisted chain complexes whose homology gives that of the Milnor fiber. 
Their methods are effective, and several explicit examples are given. 
The monodromy action on the Milnor fiber is of course crucial, and this 
monodromy is determined as well. 
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Finally, we note the following problem, which remains open after 
many years. 

Problem 4.5. Prove that the homology of the Milnor fiber of A 
depends only on the underlying matroid. 
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