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Deformations of Coxeter hyperplane arrangements 
and their characteristic polynomials 

Christos A. Athanasiadis 

Abstract. 

Let A be a Coxeter hyperplane arrangement, that is the arrange
ment of reflecting hyperplanes of an irreducible finite Coxeter group. 
A deformation of A is an affine arrangement each of whose hyper
planes is parallel to some hyperplane of A. We survey some of the 
interesting combinatorics of classes of such arrangements, reflected 
in their characteristic polynomials. 

§1. Introduction 

Much of the motivation for the study of arrangements of hyperplanes 
comes from Coxeter arrangements. Because of their importance in alge
bra, Coxeter arrangements have been studied a great deal in the context 
of representation theory of semisimple Lie algebras (where they arose), 
invariant theory of reflection groups, combinatorics of root systems and 
Coxeter groups, combinatorics of convex polytopes and oriented ma
troids and within the general theory of hyperplane arrangements [42]. 
From a geometric, combinatorial and algebraic point of view, they are 
fairly well understood in terms of their classification, facial structure, in
tersection posets, characteristic polynomials and freeness; see [17, §2.3] 
and [42, Chapter 6]. 

A deformation of a Coxeter arrangement A is an affine arrangement 
each of whose hyperplanes is parallel to some hyperplane of A. Inter
esting examples of such arrangements first arose in the study of affine 
Weyl groups by Shi [53, 54] and have appeared since then in various 
mathematical contexts. Their combinatorics was first investigated sys
tematically by Stanley [59] and relates to objects studied classically in 
enumeration such as trees, set partitions and partially ordered sets. A 

1The present article was written while the author was a Hans Rademacher 
Instructor at the University of Pennsylvania. 
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major role in this study has been played by the characteristic polyno
mial. 

In the present exposition we describe some of the lively work on 
deformations of Coxeter arrangements that has been carried out in the 
recent past. We emphasize the combinatorial and algebraic properties 
related to their characteristic polynomials, a topic which we find rich 
and interesting enough to stand on its own. We discuss some of the 
relevant motivation and include a number of open questions which are 
often suggested naturally by the results. 

Acknowledgement . The author has benefited from the work of 
Alexander Postnikov and Richard Stanley [44, Chapter 1]145, 59), some 
of which was carried out in parallel with his own thesis work [3)14, 
Part II), as well as from various discussions with Anders Bjiirner, Vic
tor Reiner, Gian-Carlo Rota, Bruce Sagan, Hiroaki Terao and Gunter 
Ziegler. He is indebted to Victor Reiner and Richard Stanley for their 
valuable comments. 

§2. Background 

The characteristic polynomial. Let JI{ be a field. A hyperplane 
arrangement A in oc£ is a finite collection of affine hyperplanes in oct, i.e. 
affine subspaces of oct of codimension one. We will mostly be interested 
in arrangements over the reals, so that JI{ = R We call A central if 
all hyperplanes in A are linear. The characteristic polynomial of A is 
defined as 

(1) x(A,q) = ~ µ(O,x) qdimx, 
xEL.4 

where LA= {n:F: :F ~ A} (partially ordered by reverse inclusion) is 
the intersection poset of A, 6 = oct is the unique minimal element of 
LA (which corresponds to :F being empty) andµ stands for its Mobius 
function [60, §3.7]. 

The characteristic polynomial x(A, q) is a fundamental combinato
rial and topological invariant of A and plays a significant role throughout 
the theory of hyperplane arrangements [42]. If JI{= JR then x(A, q) gives 
valuable enumerative information about the cell decomposition of the 
space JR£, induced by A [17, §2.1]. The cells in this decomposition are 
the faces of A. The faces of dimension i are simply the connected com
ponents of the space obtained from JR£ by removing the hyperplanes of 
A and are called the regions or chambers of A. 
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2.1. Theorem (Zaslavsky [69]). The number of regions into which 
A dissects Re is equal to (-l)ex(A, -1). 

In particular, for any k, the number of faces of A of dimension k 
depends only on LA and£. 

On the other hand, if 1K = C then x(A, q) gives topological informa
tion about the complement MA= ce - LJHEA H. The following result 
was proved by Orlik and Solomon in the context of their fundamental 
work [41] on the cohomology algebra H*(MA, Z) of MA, 

2.2. Theorem (Orlik-Solomon (41]). If A is a central arrangement 
in ce then 

L rank Hi(MA, Z) l = ( -q/x(A, -1/ q). 
i;?:O 

For the cohomological significance of x(A, q) when A is a subspace 
arrangement we refer to Bjorner [15, §7] and Bjorner and Ekedahl [16]. 
The following corollary of Theorem 2.2 continues to hold when A is a 
subspace arrangement, see [15, §8.3]. 

2.3 . . Corollary. If A is an arrangement in Re then 

I:rankHi(MA,Z) = I:rankH\MAc,Z), 

where MA is the complement of A in Re and MAc is the complement of 
its complexification Ac in ce. 

Freeness. Let A be central and§:= IK[x1,x2, ... ,xe] be the poly
nomial ring over 1K in f variables. Let Q be the product of the linear 
forms in § defining the hyperplanes of A, so that Q is unique up to 
multiplication by an element of IK*, and let Q § be the principal ideal 
in§ generated by Q. The module of derivations D(A) of A is the set 
of all derivations 0: §-+§such that 0(Q) E Q§. D(A) is actually a 
module over§. The arrangement A is called free [63] if D(A) is a free 
§..module. One can associate to A a multiset off_ nonnegative integers, 
called the exponents of A. They are the degrees of the elements in any 
basis of the free §..module D(A). 

2.4. Theorem (Terao [651(41, Theorem 4.137]). If A is free with 
exponents ei, e2, ... , ee then 

i 

x(A, q) = IT (q - ei)-
i=l 
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Theorem 2.4 is one of a number of results which explain factorization 
phenomena for x(A, q). Other approaches include supersolvability (58] 
and its generalizations [14, 19], inductive freeness [63], recursive freeness 
[75], factorization of rooted complexes (18], factorization [26, 67] and in
ductive factorization [34]. For background we refer to these sources, [42, 
Chapter 4] and the survey article [50]. A purely algebraic-combinatorial 
proof of Theorem 2.4 was given in Solomon and Terao [56]; see also [42, 
Chapter 4]. 

Coxeter arrangements. Let 4-> be an irreducible root system in 
JRi [33, §1.2], equipped with the standard inner product. We rely on (33] 
for basic background and terminology on root systems. The Coxeter 
arrangement A<J? corresponding to 4-> is the arrangement of the linear 
hyperplanes 

(a,x) = 0 

orthogonal to the roots a E 4->, i.e. the reflecting hyperplanes of the 
associated finite Coxeter group W. See (42, Chapter 6] and (17, §2.3] 
for expositions of Coxeter arrangements from algebraic-topological and 
geometric-combinatorial points of view, respectively. The following re
sult will be of interest here. 

2.5. Theorem (Arnol'd [1, 2], Saito [51, 52]). The Coxeter ar
rangement A<J? is free with exponents the exponents of the root system 
q>. 

In fact, explicit bases for the modules of derivations were constructed 
in terms of the basic invariants [33, §3.5] of the algebra of W-invariant 
polynomials by Saito (51] and Terao [64]. The analogue of Theorem 
2.5 for complex reflection groups and a generalization to all reflection 
arrangements appear in Terao [64, 66]. 

2.6. Corollary. If e1, e2, ... , ee are the exponents of 4-> then 

i 

x(A<J?, q) = IT (q - ei)-
i=l 

§3. Deformations of Coxeter arrangements 

We now assume that 4-> is crystallographic [33, §2.9], so that W is 
a Weyl group. We let 4->+ be a choice of positive roots. When we give 
equations for the hyperplanes of deformations of A<J? we will choose 4-> and 
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<P+ as in [33, §2.10] and denote the dimension of the ambient space by 
n. The braid arrangement An, for instance, consists of the hyperplanes 
in !Rn of the form Xi - Xj = 0. In this notation we prefer to consider 
An as an arrangement in !Rn (so that its characteristic polynomial has 
q as a factor), even though it corresponds to the Coxeter arrangement 
A<l> for <P = An-1, which is an arrangement in !Rn-l (so that f_ = n -1). 
We extend this convention to deformations of An as well. 

We begin with three motivating classes of examples to which we will 
come back in the next section. 

FIG 1. The Catalan arrangement for A2. 

The Catalan arrangement. The Catalan arrangement Catcp con-
sists of the hyperplanes 

(a,x) = -1, 
(a,x) = 0, a E <P+ 
(a,x) = 1, 

in JRl. It is invariant under the action of the Weyl group W and is shown 
in Figure 1 for <P = A2. For <P = An-1 the hyperplanes are 

Xi - Xj = -1, 0, 1 for 1 :::; i < j:::; n. 

We denote this arrangement in !Rn by Catn. The terminology "Catalan 
arrangement" comes from the fact that the number of regions of Catn, 
divided by n!, is equal to the nth Catalan number. It was observed by 
Stanley [59, §2] that the regions of Catn within the fundamental Weyl 
chamber of An are in bijection with unit interval orders with n elements, 
i.e. partial orders which come from unit intervals 11, 12, ... , In on the 



6 C.A. Athanasiadis 

real line by letting Ji < Ij if Ii lies entirely to the left of Ij. To see this, 
it suffices to let the ith interval be [xi, Xi+ 1], where x1 < x2 < · · · < Xn, 

and observe that the partial order defined by these n intervals depends 
only on the region of Catn in which the point (x1, X2, ... , Xn) lies. For 
a treatment of the theory of interval orders see [27]. 

In another direction, it was observed by Postnikov (see Remark 2 in 
[47, §6] and [71) that the regions of Catep within the fundamental Weyl 
chamber of Aep are in bijection with non nesting partitions on <I>, i.e. 
antichains in the root order of <I>, defined on <1>+ by o: ~ /3 if /3 - o: is a 
linear combination of positive roots with nonnegative coefficients. The 
following theorem is a special case of Theorem 4.6 for the classical root 
systems and has also been verified for <I>= G2, F4 and E6 (see [24, §31). 

3.1. Theorem ([3, 41). Let <I> be of type A, B, C or D. We have 
x(Catep,q) = x(Aep,q- h), where his the Coxeter number of<I>. In 
particular, the number of regions of Catep is equal to 

l 

IT (ei + h + l) 
i=l 

and the number of nonnesting partitions on <I> is equal to 

where e1, e2, ... , et are the exponents of <I>. 

The Shi arrangement. The Shi arrangement Sep consists of the 
hyperplanes 

(o:, x) = 0, 
(o:,x)=l, 

in Rl. This is shown in Figure 2 for <I> = A2 . For <I> 
hyperplanes are 

Xi - Xj = 0 for 1 ~ i < j ~ n, 
Xi - Xj = l for 1 ~ i < j ~ n. 

An-1 the 

We denote this arrangement in Rn by Sn, The arrangement Sep was first 
considered by Shi in his investigation of the affine Weyl group An- I of 
type An-1 [53, §7]. The regions of Sn correspond to certain equivalence 
classes of elements of An-1, called "admissible sign types", which were 
shown by Shi to play a significant role in the Kazhdan-Lusztig theory 
of cells [36] for this group. 
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FIG 2. The Shi arrangement for A2. 

Since Shi's work, the arrangement S1p has continued to appear as 
related to affine Weyl groups in Headley (30, 31, 32], invariant theory 
of finite Coxeter groups in Solomon and Terao [57], and representations 
of affine Hecke algebras in Ram [46], as an object of independent in
terest in enumerative combinatorics in the type A case [5, 10, 59, 61], 
and as a particularly nice example where techniques from the theory of 
hyperplane arrangements apply [3, 4, 6, 32, 44, 45]. Much of the in
terest initially attracted by the Shi arrangement is due to the following 
surprising result. 

3.2. Theorem (Shi [54], [53, Corollary 7.3.10] for 'P=An-1), The 
number of regions of S1p is (h + ll, where h is the Coxeter number of 
cf?. In particular, the number of regions of Sn is (n + l)n-l. 

Shi gave a constructive proof of this fact for Sn [53] by considering 
the elements of the affine Weyl group of type An-1 which correspond 
to the regions and a uniform but lengthy proof in the general case [54] 
using his notion of "sign type" for affine Weyl groups. More direct 
combinatorial proofs in the type A case can be found in Headley [31], 
Stanley [59] and Athanasiadis and Linusson [10, §2]. The proof in [59] 
yields an interesting refinement of the enumeration of the regions by a 
certain distance statistic; see Theorem 6.13. 

The following stronger result, via Theorem 2.1, on the characteristic 
polynomial of S1p was proved by Headley, whose argument relied on 
Theorem 3.2 and induction. 
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3.3. Theorem (Headley [30, 31, 32]). We have x(S<I>, q) = (q-h/, 
where h is the Coxeter number of <I>. In particular, we have x( Sn, q) = 
q(q-nt-1. 

FIG 3. The Linial arrangements for A2 and B2. 

The Linial arrangement. In the rest of the paper we allow <I> to 
be the non-reduced system BCn, which is the union of Bn and Cn in 
the standard choice of [33, §2.10]. 

The Linial arrangement L<I> consists of the hyperplanes 

(o:,x)=l, o:E<l>+ 

in R". It is shown in Figure 3 for <I> = A2 and B2. For <I> = An-1 the 
hyperplanes are 

Xi - x1 = 1 for 1 :::; i < j :::; n. 

We denote this arrangement in Rn by Ln. Interest in the arrangement 
Ln came from a surprising conjecture of Linial, Ravid and Stanley (see 
[59, §4]) stating that the number of regions of Ln is equal to the number 
f n of alternating trees on n + 1 vertices, i.e. trees on the vertex set 
{1, 2, ... , n + 1} such that no i < j < k are consecutive vertices of a 
path in the tree, in the order i, j, k. Alternating trees first appeared in 
[28]. The explicit formula 

(2) fn = 2~ t (~) (k + l)n-1 
k=O 

was found by Postnikov [43, Theorem 1], who later proved the conjecture 
about Ln as follows. 



Deformations of Coxeter arrangements 9 

3.4. Theorem (Postnikov [44, Theorem 1.4.5][45, Theorem 8.ll). 
The number of regions of the Linial arrangement Cn is equal to fn-

There is no bijective proof of the Linial-Ravid-Stanley conjecture at 
present. Postnikov's theorem naturally suggests the problem of finding 
directly an explicit formula for the characteristic polynomial of Cn. Such 
a formula was first given in [3, 4); see also (44, §1.5][45, §9) and (59, 
Corollary 4.2). The proof in (3, 4) was simplified in [9, §3); see also 
Section 4. 

3.5. Theorem ([3, Theorem 4.2)[4, Theorem 6.4.2!). The Linial 
arrangement Cn has characteristic polynomial 

x(Cn,q) = 2~ t (;) (q-kt- 1 • 

k=O 

This expression implies Theorem 3.4, via Theorem 2.1. For results 
on the asymptotic behaviour of x(Cn, q) for large n, see Postnikov (44, 
§1.6.3). The analogous problem to compute x(£<I>, q) in general is also 
suggested by a conjecture of Postnikov and Stanley [45, §9) which, in a 
special case, states that all roots of x(£<I>, q) have the same real part; 
see Conjecture 3.6. 

The affine Weyl arrangement. As is apparent from the previous 
examples, interesting deformations of A<I> often occur as subarrange
ments of the affine Weyl arrangement .A<I> 

(o:,x)=k, o:E<J.>+, kEZ, 

the arrangement of reflecting hyperplanes of the affine Coxeter group W. 
For integers a ~ b we denote by AJ:,bl the subarrangement of hyperplanes 

(o:,x)=k, o:E<J.>+, k=a,a+l, ... ,b. 

These include A<I>, Catcp, Sep and £,<I> and, more generally, the extended 
Catalan arrangements A!;a,a] 

(o:,x)=-a,-a+l, ... ,a, o:E<J.>+, 

the extended Shi arrangements A!;a+l,a] 

(a:, x) =-a+ 1, -a+ 2, ... , a, a: E <J.>+ 

and the extended Linial arrangements A~•b] 

(o:,x)=l,2, ... ,b, o:E<J.>+. 
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These extended analogues have similar properties with those of Cat4-, 
S4- and £4-, respectively; see Section 4. The connection between interval 
orders and deformations of An, for instance, was extended in (59, §2] by 
considering labeled marked intervals with arbitrary prescribed lengths. 
As an example, suppose that the ith interval Ji = [xi, Xi + Ai - 1] has 
integral length Ai - 1 and is marked at all its points Xi + k which are an 
integral distance k from the endpoint Xi- The number of inequivalent 
orders for placing these marked intervals on a line such that no two 
marks coincide is equal to the number of regions of the deformation of 
An with hyperplanes 

(3) xi-x3 =-Ai+l, ... ,-l,O,l, ... ,A3 -1 for 1$i<j$n, 

since comparing the marks Xi + k and x 3 + l amounts to choosing 
one of the halfspaces determined by the hyperplane Xi+ k = x 3 + l. 
These placements correspond to nonnesting set partitions (7] whose 
blocks are labeled and have sizes A1, A2, ... , An (a set partition 7r of 
(m] := {1, 2, ... , m} is nonnesting if whenever a < b < c < d and a, d 
are consecutive elements of a block B of 7r, b and c are not both con
tained in a block B' of rr). They have also appeared in a geometric 
context related to monotone paths on polytopes (8]. The characteristic 
polynomials of the arrangements (3), which include the extended Cata
lan arrangements of type A, and those of root system analogues of (3) 
have turned out to be useful for the enumeration of nonnesting partitions 
by block size; see Proposition 4. 7 and (7]. 

The family of arrangements in the following conjecture includes the 
extended Shi and Linial arrangements. 

3.6. Conjecture (Postnikov-Stanley [45, §9]). If a, b are non
negative integers, not both zero, satisfying a $ b then all roots of the 
polynomial x(A!;a+l,b], q) have the same real part. 

For a semi-generic deformation of An, see (59, §3](45, §6]. Other 
deformations of Coxeter arrangements appear in (59, §2], (4, Chapters 
6-7]. 

§4. The characteristic polynomial 

The examples in the previous section make it clear that tools to 
compute the characteristic polynomial explicitly are desirable. Such 
tools have traditionally included the following. 
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Definition: the defining equation (1) [32] or the equivalent expres
sion, given in [42, Lemma 2.55], 

(4) x(A, q) = L (-l)#F limF, 
FS:::A 

where the sum is over all subarrangements F of A and dim F is the 
dimension of the intersection of the hyperplanes in F; see, e.g., [44, 45]. 

Deletion-Restriction: this powerful technique in the theory of 
arrangements yields the formula ([42, Theorem 2.56]) 

x(A, q) = x(A', q) - x(A", q), 

where A' and A" are obtained from A by deleting or restricting on a 
hyperplane HE A [42, p. 14]; see, e.g., [23, 24, 6]. 

Chromatic Polynomials: the "signed chromatic polynomial" in
terpretation of Zaslavsky [70] (if A consists of some of the reflecting 
hyperplanes of Coxeter type B) and its generalization to "gain graph 
coloring" [73, §4]; see, e.g., [70, 71, 20], [42, §2.4] and [29, 73, 74], re
spectively. 

Factorizations: the theory of supersolvable [58], inductively free 
[63] or, more generally, free arrangements [63] [42, Chapter 4], when 
x(A, q) factors; see, e.g., [42, §4.3] and [23, 24, 6, 12, 35]. 

For a discussion from a matroid theoretic point of view we refer to 
Kung [38, §5]; see also Zaslavsky [72]. Here we mention that Crapo's 
identity [21] [38, p. 49], which, in the language of arrangements, ex
presses the characteristic polynomial of a subarrangement of A in terms 
of those of its restrictions, has been of use in this context; see, e.g., [39]. 

Useful tools have resulted recently by interpreting the right hand 
sides of (1) or ( 4) using Mobius inversion or inclusion-exclusion, respec
tively. This is easily done when A is defined over a finite field IF q, since 
then qdimx is the cardinality of x. The following theorem appeared, in 
a dual formulation, as early as 1970 in the work of Crapo and Rota [22, 
§16] (see the discussion in [3, §1]) and was stated in the language of ar
rangements by Terao [66, Proposition 4.10]; see also [42, Theorem 2.69]. 
The proof is an easy application of Mobius inversion [49] [60, §3.7]. We 
denote by VA the union of the hyperplanes of A. 

4.1. Theorem (Crapo-Rota [22], Terao [66]). If A is an arrange
ment in IF~ then the cardinality of IF~ - VA is equal to the value x(A, q) 
of the characteristic polynomial of A at q. 
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Let A be an arrangement in ocn where 1K has characteristic zero, say 
1K = JR for simplicity, and let Zq denote the abelian group of integers 
modulo q. We call A a 'll,-arrangement if its hyperplanes are given by 
equations with integer coefficients. Such equations define subsets of the 
finite set 'll,~ if we reduce their coefficients modulo q. We still denote by 
VA the union of these subsets, supressing q in the notation. If q avoids 
a finite set of prime factors, which depends on A, then the intersection 
poset of the reduced arrangement in 'll,~ is isomorphic to that of A and 
Theorem 4.1 gives a combinatorial interpretation to the value x(A, q). 
This idea was first used for the purpose of computing the characteristic 
polynomial in [3][4, Part II] and allows for a variety of techniques from 
enumerative combinatorics to be employed. 

The next theorem, stated as in [9, Theorem 2.1], generalizes easily 
to subspace arrangements [3, Theorem 2.2][4, Theorem 5.2.1] [16]. It 
was given independently by Bjorner and Ekedahl in their recent work 
[16] on the cohomology of subspace arrangements over finite fields; see 
Proposition 3.2 and Lemma 5.1 in [16]. 

4.2. Theorem (Athanasiadis [3, 4, 9], Bjorner-Ekedahl [16]). Let 
A be a Z-arrangement in !Rn. There exist positive integers m, k which 
depend only on A, such that for all q relatively prime to m with q > k, 

x(A,q) = # (Z~ - VA). 

For subarrangements of the Coxeter arrangement of type B, Theo
rem 4.2 specializes to Zaslavsky's chromatic polynomial interpretation 
[70] or its generalization to subspace arrangements by Blass and Sagan 
[20, Theorem 2.1]. For a different generalization of Theorem 4.1 in the 
context of the Tutte polynomial see Reiner [48]. Finally, an interesting 
point of view and interpretation to (1) and (4) in terms of valuations 
appears in Ehrenborg and Readdy [25], who give several applications to 
classes of complex arrangements. 

Theorem 4.2 has been quite useful for classes of deformations of 
Coxeter arrangements [3, 4, 7, 8, 9] [68, §4]. In the remainder of this 
section we give applications related to the examples in Section 3. For 
an illustration, we give a proof of Theorem 3.3 in the case <I> = An-l, 
taken from [3, 4]. 

Proof of Theorem 3.3 for <I>= An-l· Theorem 4.2 implies that, for large 
primes q, x(Sn, q) counts the number of n-tuples x = (x1 , x 2 , ... , Xn) E 

IF~ which satisfy 

X·-X·--,L0l i J r , 
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in IF q for all 1 :::; i < j :::; n. Since x satisfies these conditions if and only if 
x+m := (x1 +m, ... , Xn +m) does so, this number is the number of such 
x with Xn = 0, multiplied by q. These n-tuples x are in bijection with 
linear orderings of the integers 1, 2, ... , n and q - n indistinguishable 
objects such that n is first in the ordering and no two integers i < j 
occur consecutively in the order j, i. Indeed, let i be in position k + 1 if 
Xi= k mod q, to get such an ordering. 

To construct these orderings, one can place the q - n objects along a 
line, place n first from the left and then insert 1, ... , n -1 in (q - n)n-l 
ways, so that between any two consecutive objects or to the right of the 
rightmost one, the integers are ordered in increasing order. This shows 
that x(Sn, q) = q(q - n)n-l for infinitely many values of q and proves 
the result. Q.E.D. 

The next few results can be proved by variations of the argument in 
the previous proof. The proofs of Theorems 4.3 and 4.6 are case by case. 
The next result was also obtained by Postnikov and Stanley [44, p. 39] 
[45, §9.2] for <I> = An-1 (see also [9, Proposition 5.3]) and generalizes 
Theorem 3.3 for the classical root systems. 

4.3. Theorem ([4, §7.1-7.2]). Let<I> be oftypeA,B,C,D or BC. 

For the extended Shi arrangement A = A!;a+i,a] we have 

x(A,q) = (q- ah/, 

where for <I> = BCn the Coxeter number is defined as h = 2n + 1. In 
particular, the number of regions of A!;a+i,a] is ( ah + 1 )t. 

An application in the spirit of [23, 35] comes from considering ar
rangements between the braid and Catalan arrangement An and Catn, 
For G ~ &n := {(i,j) E [n] x [n] : i =/ j}, let An,G be the arrangement 
of hyperplanes 

(5) 
Xi - xi = 0 for 1 :::; i < j :::; n, 
Xi - Xj = 1 for (j, i) E G. 

Note that if G is empty, G = {(j, i) E &n : i < j}, or G = &n, then 
An,G specializes to An, Sn, or Catn, respectively, to which the next 
proposition applies. For a generalization and analogous results for other 
root systems see [4, Theorem 6.2.10 and §6.3][3, §3]. 

4.4. Proposition ([3, Theorem 3.9][4, Theorem 6.2.7]). Suppose 
that the set G ~ &n has the following properties: 

(i) Ifi,j < k, i =/j and (i,j) E G, then (i,k) E G or (k,j) E G. 
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(ii) lfi,j < k, i -/-j and (i,k) E G, (k,j) E G, then (i,j) E G. 

Then 

x(An,a,q)=q II (q-cj), 
l<j'.Sn 

where Cj = n + ai - j + 1 and ai is the number of (j, i) or ( i, j) in G 
with i < j. 

The conditions in Proposition 4.4 become simpler if An,G contains 
hyperplanes of the form xi - Xj = l only for i < j, i.e. if it lies between 
An and Sn. We state this special case for later reference. 

4.5. Corollary ([3, Theorem 3.4][4, Theorem 6.2.2]). Suppose that 
the set G ~ { (j, i) E En : i < j} has the following property: if 1 :::; i < 
j < k:::; n and (j,i) E G then (k,i) E G. Then 

x(An,a,q)=q II (q-cj), 
l<j'.Sn 

where Cj = n - #{i < j: (j,i) (/: G}. 

Recall from Theorem 2.6 that the characteristic polynomial of A<I> 
factors with roots the exponents of <I>. The following result was also 
obtained in [44, Proposition 1.5.8][45, Theorem 9.8] for <I> = An-1; see 
also [3, Theorem 5.5] and [9, Proposition 5.3]. 

4.6. Theorem ([4, Corollary 7.2.3 and Theorem 7.2.6]). Let <I> be 
of type A, B, C, D or BC. For the extended Catalan arrangement A = 
A!;a,a] we have 

x(A, q) = x(A<I>, q - ah), 

if <I> has type A, B, C or D and 

x(A, q) = {x(A<I>, q - (2n + l)a), 
x(A<I>, q - (2n + l)a - 1), 

if <I> has type BC. 

if a is even, 

if a is odd, 

The arrangement (3) reduces to the extended Catalan arrangement 
of type A for A1 = A2 = · · • = An = a + l. Its characteristic polynomial 
can be computed by an easy application of Theorem 4.2. 
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4.7. Proposition ([8, §4]). If A is the arrangement (3) and mis 
the sum of the positive integers Ai for l :S i :Sn, then 

m-1 

x(A,q) = q IT (q -j). 
j=m-n+l 

In particular, the number of nonnesting partitions of [m] with block sizes 
A1, A2, ... , An is equal to 

m! 
r>. (m - n + 1)!' 

where r>. = r1!r2! · · · and ri is the number of indices i with Ai= j. 

Root system analogues of Proposition 4. 7 for <I> = Bn and Cn appear 
in [7]. 

The expression for x(Cn, q) in Theorem 3.5 was obtained in [3, 4] 
by a similar but less straightforward argument, based on Theorem 4.2. 
It generalizes easily to the extended Linial arrangements. Let S be the 
shift operator, acting on polynomials in y by 

Sf(y) := f(y - 1). 

We state the next result in the elegant form given in [44, 45]. For a 
relatively short proof based on Theorem 4.2 see [9, §3). 

4.8. Theorem ([3, §4)[4, §6.4) [45, Theorem 9.7]). For <I>= An-l 
and a ~ l, the extended Linial arrangement has characteristic polyno
mial 

(A[l,a] ) - 1 (1 + s + 32 + ... + sa)n qn-1 _ 
X <I> ,q -(a+l)n 

Theorem 4.8 implies the fact that all roots of x(A~,a], q) have the 
same real part. Indeed, if the polynomial f has this property then so 
does (S+()f, if( E Csatisfies 1(1 = 1; see [44, Lemma 1.5.12)[45, Lemma 
9.12) for an elegant, short proof. Using this reasoning, Postnikov and 
Stanley settled their Conjecture 3.6 in the type A case. 

4.9. Theorem ([44, Theorem 1.5.11] [45, Theorem 9.11]). Conjec
ture 3.6 is true for <I>= An-1· 

Explicit formulae for the characteristic polynomials of the arrange
ments in Conjecture 3.6 were obtained in [9, §4-5] for the other classical 
root systems. The proofs follow the ones for the type A case in [9, §3] 
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but are more involved. We give the formulae for the extended Linial 
arrangements. 

4.10. Theorem ([9, §4]). For the extended Linial arrangement 
A= A~,a] and for a even or odd, respectively, x(A, q) is equal to 

{ 
(a+1\n+t (1 + s2 + S4 + ... + s2a)n-l (1 + s + s2 + ... + sa) qn, 

(a+ifn+t (1 + s2 + s4 + ... + s2a)n-l (1 + s2 + S4 + ... + sa-1) qn 

if <I> = Bn or On, 

{ 
(a+i)..+i (1 + s2 + s4 + ... + s2a)n-2 (1 + S + s2 + ... + sa)4 qn, 

(a+~fn+i (1 + S2) (1 + S2 + ... + S2a)n-1 (1 + S2 + ... + sa-1)4 qn 

if <I> = Dn and 

{
(a+i)..+1 (l+S2 +S4 +•··+S2ar(1+S+S2 +-··+Sa) qn, 
(a+;fn+i (1 + s2 + S4 + ... + s2ar (1 + s2 + S4 + ... + sa-1) qn 

if <I>= BCn. 

The next result follows as in the type A case; see [9]. 

4.11. Theorem ([9, Theorem 1.2]). Conjecture 3.6 is true for all 
root systems of type A, B, C, D or BC. 

§5. Freeness 

Recall from Theorem 2.4 that the characteristic polynomial of a free 
arrangement factors completely over the nonnegative integers and from 
Theorem 2.5 that the Coxeter arrangement Ag? is free with exponents 
the exponents e1, e2, ... , el of <I>. In view of the numerous instances in 
Sections 3 and 4 in which x(A, q) factors, it is natural to ask whether 
various deformations of Ag? are free, when homogenized to central ar
rangements by the cone operation [42, Definition 1.15]. 

Freeness of the cones of the extended Catalan and Shi arrangements 
was conjectured in [24] and remains unsettled, except for the type A 
case [24, §3] [6, §3]. We continue to denote by h the Coxeter number of 
<I>. 

5.1. Conjecture (Edelman-Reiner [24, Conjecture 3.3]). The cone 
of the extended Catalan arrangement A!;a,a] is free with exponents 1, e1 + 
ah, e2 + ah, ... , el + ah. 
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5.2. Conjecture (Edelman-Reiner [24, Conjecture 3.3]). The cone 

of the extended Shi arrangement A!;a+l,a] is free with exponents l with 
multiplicity one, and ah with multiplicity f. 

Edelman and Reiner have stated these conjectures for an irreducible 
crystallographic root system <I>. In view of Theorems 4.3 and 4.6, it is 
natural to include the non-reduced system BCn. The conjectures are 
not true in general in the non-crystallographic case; see the comments 
after Conjecture 3.3 in [24]. 

Except for Theorems 4.3 and 4.6, evidence in support of the con
jectures is provided by the fact that they have been verified in the case 
of type A; see the proof of [24, Theorem 3.2] and [6, Corollary 3.4], re
spectively. Moreover, in the case of Conjecture 5.2, additional evidence 
is provided by work of Solomon and Terao [57] on the double Coxeter 
arrangement, which we will briefly describe. 

Suppose A is central in OC.l and that OH is the linear form which 
defines HE A, so that H = ker(aH)- Let§= IK[x1,x2, ... ,xe] be the 
polynomial ring, as in Section 2, and Ders be its module of derivations. 
In his theory of free multiarrangements [76], Ziegler has defined the §.. 

module 

E(A) = {0 E Ders: 0(aH) E §ak for HE A}, 

which is a submodule of D(A). Note that the restriction of the cone of Sip 
to the hyperplane at infinity x 0 = 0 is the double Coxeter arrangement, 
i.e. Aip with each hyperplane having multiplicity two. Thus by Ziegler's 
[76, Theorem 11], the a = l case of Conjecture 5.2 implies that the 
double Coxeter arrangement is free, in the sense of the following theorem. 

5.3. Theorem (Solomon-Terao (57]). Let <I> be any irreducible root 
system. The module E(Aip) is free with all degrees of the elements in a 
basis equal to the Coxeter number h. 

Moreover, Solomon and Terao [57, Theorem 1.4] construct an ex
plicit basis of E(Aip) in terms of the invariant theory of the Coxeter 
group W. This raises naturally the following question. 

5.4. Question. Is there a basis of the module of derivations of 
the cone of Sip which can be described explicitly in terms of the invariant 
theory of the Weyl group W? 

Beginning with work of Stanley [58] on subarrangements of the braid 
arrangement An, called gmphical arrangements, classes of subarrange
ments of Coxeter arrangements have been studied [35] and characterized 
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[23, 13] from the point of view of freeness; see also [24], [11, §7][12]. It 
was shown by Stanley [58] that the supersolvable - or free - graphical 
arrangements correspond to chordal graphs and by Edelman and Reiner 
[23] that the free arrangements between An and the Coxeter arrange
ment of type Bn correspond to threshold graphs. For interesting classes 
of free or non-free subarrangements, in particular for non-free graphical 
arrangements whose characteristic polynomials factor completely over 
the integers, see Kung [38]. 

Various deformations of An were studied in this sense in [6]. We 
mention a complete characterization for the family of arrangements 
An,G, defined in (5), which lie between An and Sn. The class of ar
rangements in this family with free cones turns out to be, essentially, 
the class which appears in Corollary 4.5. The condition in Corollary 
4.5 has also appeared in the characterization of freeness in a different 
family; see Bailey [11, Theorem 7.3][12]. 

5.5. Theorem ([6, Theorem 4.1]). Let G ~ En := {(j, i) E [n] x 
[n] : i < j}. The following are equivalent: 

(i) An,G is inductively free. 
(ii) The cone of An,G is free. 

(iii) There is a permutation w = w1 w2 · · · Wn of [n] such that 

w- 1 • G = {(j,i): (wj,wi) E G} 

is contained in En and satisfies the condition in Corollary 4.5. 

A similar characterization for the family of arrangements between 
Sn and Catn is given in [6, Theorem 4.3]. Specifically, if En ~ G ~ &n 
and G = {(j, i) : (i,j) E £n - G} ~ En, then An,c has free cone if 
and only if so does An,a· In contrast with the situation in [23], most 
of the free arrangements of Theorem 5.5 are not supersolvable; see [6, 
Theorem 4.2]. For characterizations of supersolvability for deformations 
of An, see Zaslavsky [7 4, §3]. 

§6. Remarks and open questions 

In this section we include a number of questions other than Con
jecture 3.6 (which is still open for the exceptional root systems), Con
jectures 5.1 and 5.2 and Question 5.4. Our main objective is to point 
out that from many perspectives, the classes of deformations of Coxeter 
arrangements we have discussed are still not well understood. 

All known proofs of Theorem 3.3 proceed with a case by case veri
fication. A positive answer to Question 5.4 would give a uniform proof, 
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via Terao's factorization theorem. The fact that Theorem 3.3 is stated 
in an elementary, uniform way suggests the following question. 

6.1. Question. Is there an elementary, case-free proof of Theorem 
3.3? 

Similar questions can be asked about Theorems 4.3 and 4,6 and the 
curious property of x(A, q) in Conjecture 3.6, which Postnikov and Stan
ley refer to as the "Riemann hypothesis" for A [44, 45). In particular, 
it is natural to ask whether Theorems 4.3, 4.6 and 4.11 extend to the 
exceptional root systems . 

. 6.2. Question. Are there case-free proofs of Theorems 4.3 and 
4.6? In particular, are these theorems valid for the exceptional crystal
lographic root systems? 

6.3. Question. Is there a case-free, conceptual proof of Conjecture 
3.6? 

It would also be desirable to find simpler derivations of the formulae 
in Theorem 4.10 than those of [9), which may not give the best insight 
possible, especially in the case of the root system Dn. In particular, there 
is no conceptual explanation to the fact that these formulae coincide for 
the root systems Bn and Cn. 

The Riemann hypothesis for A does not apply exclusively to the 
arrangements of Conjecture 3.6, as the following example shows. 

6.4. Example ([9, Proposition 6.1)). The arrangement with hy-
perplanes 

2xi=0,1,2, ... ,2a for l5i5n, 
Xi - Xj = 0, l, ... , a for l 5 i < j 5 n, 
Xi + Xj = 0, l, ... , a for l 5 i < j 5 n 

has characteristic polynomial 

_1_ 32n+l (1 + 32 + 34 + ... + 32a-2t+l qn 
an+l 

and hence satisfies Conjecture 3. 6. 

By analogy with the numerous theories built to explain the phenom
enon of complete factorization of x(A, q) over the integers (see Section 
2), we ask the following. 

6.5. Question. Is there a natural algebraic condition on A which 
implies the Riemann hypothesis of Conjecture 3.6 for x(A, q)? 
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In various characterizations of freeness, such as those in [23, 24, 6, 
11], the families of arrangements under consideration are indexed by 
undirected graphs on n vertices. Classes of arrangements which corre
spond to pairs of graphs seem to be more challenging to analyze from 
the point of view of freeness. It is not known, for instance, which the free 
subarrangements of the Coxeter arrangement of type Bn are; see [23]. 
Proposition 4.4 suggests an explicit characterization of the arrangements 
between An and Catn with free cones. 

6.6. Conjecture. For G ~ &n, the cone of An,G is free if and 
only if G satisfies the two conditions in Proposition 4.4. 

Motivated by the fact that Coxeter arrangements are K(1r, 1) [42, 
Chapter 6] we ask the following about the topology of the complexifica-
tions of Sip and Catip. · 

6.7. Question. Is the Shi arrangement Sip a K(1r, 1) arrange
ment'? Is the Catalan arrangement Catip a K(1r, 1) arrangement'? 

Finally, we collect some questions and facts about the combinatorics 
of the face structure of the arrangements in Section 3. 

Direct bijective proofs of Theorem 3.2 for the type A case can be 
found in [61, §2] [10, §2]; see also [31] and Remark 1 in [10, §4] for 
a proof by deletion-restriction. The bijections in [61, 10] generalize to 
the extended Shi arrangements. The one in [10] generalizes also to the 
family of arrangements between An and Sn [10, Theorem 1.2]. 

6.8. Question. Are there simple bijective proofs of Theorem 3.2 
for cases other than that of type A'? 

For the braid arrangement An, it is well known that faces of a fixed 
dimension k correspond to ordered partitions of the set [n] with k blocks. 
In the case of type A, Shi's formula for the number of regions of Sn was 
generalized to k-dimensional faces in [3, Theorem 6.5] [4, Corollary 8.2.2] 
as follows. 

6.9. Theorem ([3, 4]). For O ~ k ~ n, the number of faces of Sn 
of dimension k is given by 
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Equivalently, 

(6) fk(Sn) = (~) # {f: [n - 1]---; [n + 1] I [n - k] <:;;; Im!}, 

where Imf is the image of the map f. 

6.10. Question. Is there a simple bijective proof of Theorem 
6.9? Can the poset of faces of Sn, partially ordered by inclusion of their 
closures, be described in terms of the maps in (6)? 

It is plausible that such a bijection will specialize to the one between 
regions of Sn and parking functions given in [10, §2] fork= n. Theorem 
6.9 generalizes to the extended Shi arrangements [4, Theorem 8.2.1]. 

The "coincidence" of the formulae for the number f n of regions of the 
Linial arrangement .Cn and alternating trees on n + l vertices suggests 
the following question. 

6.11. Question. Is there a bijective proof of Theorem 3.4? 

We refer to [59, §4] for a number of combinatorial interpretations 
and expressions for fn• In particular, Postnikov [43, §4][44, Theorem 
1.4.3] has given a bijection between alternating trees on n + l vertices 
and local binary search trees on n vertices. Here we remark that f n is 
also equal to the number of n-tuples x = (xi, x 2 , •.. , xn) E Z~+l which 
satisfy Xi - Xj i- l in Zn+l for 1 ~ i < j ~ n and x1 = 0 or, in 
other words, to the number of ways to distribute 1, 2, ... , n in n + l 
boxes arranged cyclically, with repetitions allowed, such that no j is 
immediately followed clockwise by an i < j. This follows from the proof 
of Theorem 3.5 in [3, 4, 9] by letting q = n + l. 

The regions of Catn, Sn and .Cn are in bijection with certain classes 
of posets that can be characterized in terms of forbidden induced sub
posets, see [44, §1.3.1][45, §7], [5] and [44, §1.4.6][45, §8.2], respectively. 
It would be interesting to find other instances of this phenomenon. 

The enumeration of regions by the "distance statistic" has been of 
interest in the context of deformations of Coxeter arrangements. The 
distance p Ro ( R) of a region R of A from a fixed base region Ro is the 
number of hyperplanes of A which separate R from R0 . The following 
result for Coxeter arrangements is classical. 
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6.12. Theorem (Solomon [55]). For any irreducible root system 
<I> we have 

l 

LqPn0 (R) = Il(l+q+q2+···+qe;), 
R i=l 

where R runs through all regions of A4,, Ro is any fixed region and 
e1, e2, ... , el are the exponents of <I>. 

For the Shi arrangement Sn the distance enumerator, for a suitably 
chosen base region Ro, turns out to be the inversion enumerator for 
trees [40]. Indeed, let Ro be the region defined by the inequalities xi > 
x2 > · · · > Xn and x1 - Xn < 1. An inversion of a tree T on the vertex 
set {0, 1, ... , n} is a pair ( i, j) with 1 ~ i < j ~ n such that vertex j 
lies on the path in T from 0 to i. The bijection described in [59, §5] 
and one due to Kreweras [37] yield the following result. A proof and 
generalization to the extended Shi arrangements is given in [61]. 

6.13. Theorem (Pak-Stanley [59, Theorem 5.1][61]). For each 
m = 0, 1, ... , {;), the number of regions R of Sn with distance m from Ro 
is equal to the number of trees on {O, 1, ... , n} with (;) - m inversions. 

It would be interesting to find a simpler and more direct proof of 
this theorem. See the notes in [61, §3] for related open questions. 

6.14. Question (Stanley [62]). Are there analogues of Theorem 
6.13 for root systems other than those of type A? Is there an analogue 
for the Linial arrangement Ln ? 

It was observed by Stanley [62] that the distance enumerator for the 
Catalan arrangement Catn is 

n-1 L qPRo(R) = Cn(q) IT (1 + q + q2 + ... + l), 
R i=l 

where Ro is as in the case of Sn and 

with >. = (>.1, >.2, ... ) running over all partitions with >.i ~ n - i. 
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