On $\wedge \mathfrak{g}$ for a Semisimple Lie Algebra \mathfrak{g}, as an Equivariant Module over the Symmetric Algebra $S(\mathfrak{g})$

Bertram Kostant

§1. Introduction

1.1. Let \mathfrak{g} be a complex semisimple Lie algebra and let \mathcal{C} be the set of all commutative Lie subalgebras \mathfrak{a} of \mathfrak{g}. If $\mathfrak{a} \in \mathcal{C}$ and $k=\operatorname{dim} \mathfrak{a}$ let $[\mathfrak{a}]=$ $\wedge^{k} \mathfrak{a}$. Regard [a] as a 1-dimensional subspace of $\wedge^{k} \mathfrak{g}$ and let $C \subset \wedge \mathfrak{g}$ be the span of all [a] for all $\mathfrak{a} \in \mathcal{C}$. The exterior algebra $\wedge \mathfrak{g}$ is a \mathfrak{g}-module with respect to the extension, θ, of the adjoint representation, defined so that $\theta(x)$ is a derivation for any $x \in \mathfrak{g}$. It is obvious that $C=\sum_{k=1}^{n} C^{k}$ is a graded \mathfrak{g}-submodule of $\wedge \mathfrak{g}$. Of course $C^{k}=0$ for $k>n_{\text {abel }}$ where $n_{\text {abel }}$ is the maximal dimension of an abelian Lie subalgebra of \mathfrak{g}. The paper [4] initiated a study of the \mathfrak{g}-module C. It was motivated by a result of Malcev giving the value of $n_{a b e l}$ for all complex simple Lie subalgebras. For example, for the exceptional Lie algebras $G_{2}, F_{4}, E_{6}, E_{7}$ and E_{8}, the value of $n_{a b e l}$, respectively, is $3,9,16,27$ and 36 . See [10].

One of the results in [4] is that C (denoted by A in [4]) is a multiplicity free \mathfrak{g}-module. Let \mathfrak{b} be a Borel subalgebra of \mathfrak{g}. If Ξ is an index set for the set of all abelian ideals $\left\{\mathfrak{a}_{\xi}\right\}, \xi \in \Xi$, of \mathfrak{b}, then the irreducible components of C may also be indexed by Ξ. The irreducible components, written as $C_{\xi}, \xi \in \Xi$, are characterized by the property that $\left[\mathfrak{a}_{\xi}\right]$ is the highest weight space of C_{ξ}. One therefore has the unique decomposition

$$
C=\sum_{\xi \in \Xi} C_{\xi}
$$

into irreducible components. Sometime after [4] was published, Dale Peterson established the striking result that the cardinality of Ξ was 2^{l}. His ingenious proof, using the affine Weyl group, sets up a natural bijection between Ξ and the set of elements of order 2 (and the identity) in a maximal torus of a simply-connected Lie group G with Lie
algebra \mathfrak{g}. An outline of Peterson's theory is given in [8]. Peterson's result suggested to us that there should be some interesting connection between the set of abelian ideals $\left\{\mathfrak{a}_{\xi}\right\}$ of \mathfrak{b} and the theory of symmetric spaces of inner type (i.e. where the corresponding Cartan involution is an inner automorphism). By Harish-Chandra theory, the corresponding inner real forms $G_{\mathbb{R}}$ of G are exactly the real forms which admit discrete series representations. In fact we have obtained results giving a construction of the abelian ideals \mathfrak{a}_{ξ} in terms of the Cartan decompositions corresponding to such real forms. In addition we have set up natural bijections between the families of discrete series for such groups and the 2^{l}-element set $\left\{\mathfrak{a}_{\xi}\right\}$ of abelian ideals in \mathfrak{b}. In fact, using W. Schmid's construction of the discrete series (see [11]), we establish a direct connection between, on the one hand, minimal " K-types" and the cohomological degree in which the discrete series appears and, on the other hand, the dimension of the corresponding abelian ideal $\left\{\mathfrak{a}_{\xi}\right\}$ and the highest weight of C_{ξ}.

A summary of the above results (for \mathfrak{g} simple) will appear in [8]. Another result, stated as Theorem 1.5 in [8], is a theorem on the role C plays in the full structure of $\wedge \mathfrak{g}$. The present paper is an elaboration and proof of this result.

In more detail let $B_{\mathfrak{g}}$ be the Killing form on \mathfrak{g} and let $B_{\wedge \mathfrak{g}}$ be its natural extension to $\wedge \mathfrak{g}$. Identify \mathfrak{g} with its dual space \mathfrak{g}^{*} so that $\wedge \mathfrak{g}$ has the structure of a cochain complex with respect to the usual, degree 1 , Lie algebra coboundary operator. The coboundary operator is denoted by d. In particular $d \mathfrak{g} \subset \wedge^{2} \mathfrak{g}$. The subspace $d \mathfrak{g}$ is a \mathfrak{g}-submodule and, as such, is equivalent to \mathfrak{g} itself. For any $u \in \wedge \mathfrak{g}$, let $\iota(u)$ be the operator on $\wedge \mathfrak{g}$ of interior product by u. Let \mathcal{A} be the ideal in $\wedge \mathfrak{g}$ generated by the subspace $d \mathfrak{g}$. One of the main results in the present paper is the following completely different characterization of the submodule $C \subset \wedge \mathfrak{g}$.

Theorem A. One has

$$
C=\{u \in \wedge \mathfrak{g} \mid \iota(d x) u=0, \forall x \in \mathfrak{g}\}
$$

Moreover $B_{\wedge \mathfrak{g}}$ is non-singular on C and

$$
\wedge \mathfrak{g}=\mathcal{A} \oplus C
$$

is a $B_{\wedge \mathfrak{g}}$-orthogonal direct sum.
Fix a non-zero element $\mu \in \wedge^{n} \mathfrak{g}$. For any $v \in \wedge \mathfrak{g}$, let $\widetilde{v}=\iota(v) \mu$ and $\widetilde{C}=\{\widetilde{v} \mid v \in C\}$. It is immediate that $C \rightarrow \widetilde{C}, v \mapsto \widetilde{v}$ is a \mathfrak{g}-module isomorphism. An easy consequence of Theorem A is

Theorem B. One has

$$
\widetilde{C}=\{v \in \wedge \mathfrak{g} \mid d x \wedge v=0, \forall x \in \mathfrak{g}\}
$$

1.2. We will express Theorems A and B in a "functorial" way. Consider the symmetric algebra $S(\mathfrak{g})$ over \mathfrak{g}. Since the elements of $\wedge^{2} \mathfrak{g}$ commute with each other, there exists a unique homomorphism

$$
s: S(\mathfrak{g}) \rightarrow \wedge \mathfrak{g}
$$

where $s(x)=d x$ for $x \in \mathfrak{g}$. The homomorphism s of course defines the structure of an $S(\mathfrak{g})$ module on $\wedge \mathfrak{g}$. Furthermore since s is a \mathfrak{g}-map with respect to the adjoint action, this $S(\mathfrak{g})$-module structure is equivariant with respect to the adjoint action.

The homomorphism s arises in a number of contexts. For example, if K is a compact Lie group corresponding to the compact form \mathfrak{k} of \mathfrak{g} and P is a principal K-bundle, with connection, then s arises from Chern-Weil theory if one considers the fiber instead of the base. Along these lines the map s is the main tool used in Chevalley's well known construction of the "transgression" map, of invariants, $S(\mathfrak{g})^{\mathfrak{g}} \rightarrow(\wedge \mathfrak{g})^{\mathfrak{g}}$. See e.g. [2] and in more detail $\S 6$ in [7]. The map s also plays a key role in the Lie algebra generalization of the Amitsur-Levitski theorem as formulated in [6].

The functors $E x t_{S(\mathfrak{g})}^{j}(\mathbb{C}, \wedge \mathfrak{g})$ clearly have the structure of \mathfrak{g}-modules. Considering only the two extreme values of j, one has \mathfrak{g}-module maps

$$
\begin{equation*}
\operatorname{Ext}_{S(\mathfrak{g})}^{0}(\mathbb{C}, \wedge \mathfrak{g}) \rightarrow \wedge \mathfrak{g} \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
\wedge \mathfrak{g} \rightarrow \operatorname{Ext}_{S(\mathfrak{g})}^{n}(\mathbb{C}, \wedge \mathfrak{g}) \tag{b}
\end{equation*}
$$

Recalling the definitions of Ext at these two extremes, Theorems A and B immediately translate to

Theorem C. The map (a) defines a g-module isomorphism

$$
\operatorname{Ext}_{S(\mathfrak{g})}^{0}(\mathbb{C}, \wedge \mathfrak{g}) \rightarrow \widetilde{C}
$$

and the map (b) restricts to a \mathfrak{g}-module isomorphism

$$
C \rightarrow E x t_{S(\mathfrak{g})}^{n}(\mathbb{C}, \wedge \mathfrak{g})
$$

1.3. An element $u \in \wedge \mathfrak{g}$ is called totally exact if it is the sum of products of elements of the form $d x, x \in \mathfrak{g}$. Let A be the image of s so that A is the algebra of all totally exact elements in $\wedge \mathfrak{g}$. See Theorem 1.4 in [6] for a characterization of A. Some features of the \mathfrak{g}-module structure of A were studied and used in [7]. See Theorem 69 in [7]. Of course the $S(\mathfrak{g})$-module structure on $\wedge \mathfrak{g}$ can be regarded as defining an A-module structure on $\wedge \mathfrak{g}$. Consider the question of determining generators for this module. A subspace $C_{o} \subset \wedge \mathfrak{g}$ will be said to be A-generating if C_{o} is a graded \mathfrak{g}-submodule of $\wedge \mathfrak{g}$ such that $\wedge \mathfrak{g}=A \wedge C_{o}$.

Theorem D. The subspace C is A-generating so that

$$
\wedge g=A \wedge C
$$

Moreover it is minimal among all A-generating subspaces in $\wedge \mathfrak{g}$. In fact if C_{o} is any graded \mathfrak{g}-submodule of $\wedge \mathfrak{g}$, then C_{o} is A-generating if and only if $C \subset C_{o}$.

Note that Theorem D implies that the set of elements of the form $y_{1} \wedge \cdots \wedge y_{k} \wedge d x_{1} \wedge \cdots \wedge d x_{m}$ spans $\wedge \mathfrak{g}$, where $x_{i}, y_{j} \in \mathfrak{g}$ and the $\left\{y_{j}\right\}$ pairwise commute.

§2. V_{ρ} and the "spin" of the adjoint representation

2.1. Let V be a complex finite dimensional vector space endowed with some fixed non-singular symmetric bilinear form B_{V}. Let $n=$ $\operatorname{dim} V$. The bilinear form B_{V} extends to a non-singular symmetric bilinear form $B_{\wedge V}$ on the exterior algebra $\wedge V$ where $\wedge^{p} V$ is orthogonal to $\wedge^{q} V$ for $p \neq q$ and for $x_{i}, y_{j} \in V, i, j=1, \ldots, k$,

$$
\left(x_{1} \wedge \cdots \wedge x_{k}, y_{1} \wedge \cdots \wedge y_{k}\right)=\operatorname{det}\left(x_{i}, y_{j}\right)
$$

where (u, v) denotes the value of the $B_{\wedge V}$ on $u, v \in \wedge V$. For any $u \in \wedge V$ let $\epsilon(u) \in$ End $\wedge V$ be the operator of left exterior multiplication by u and let $\iota(u) \in E n d \wedge V$ be the transpose of $\epsilon(u)$ with respect to $B_{\wedge V}$. Regarding $\wedge V$ as a \mathbb{Z}-graded super commutative associative algebra, let $\operatorname{Der} \wedge V=\sum_{j=-1}^{n-1} D e r^{j} \wedge V$ be the \mathbb{Z}-graded super Lie algebra of all super derivations of $\wedge V$. If $y \in V$ one has $\iota(y) \in \operatorname{Der}^{-1} \wedge V$ and if also $x \in V$ then

$$
\begin{equation*}
\epsilon(x) \iota(y)+\iota(y) \epsilon(x)=(x, y) I \tag{2.1}
\end{equation*}
$$

where I is the identity operator on $\wedge V$.

Let Lie $S O(V) \subset E n d V$ be the Lie algebra of all skew-symmetric operators on V with respect to B_{V}. One defines a linear isomorphism $\tau: \wedge^{2} V \rightarrow \operatorname{Lie} S O(V)$ so that if $\omega \in \wedge^{2} V$ and $x \in V$, then $\tau(\omega) x=$ $-2 \iota(x) \omega$. (See $\S 2.3$ in [7].) The introduction of the factor -2 is motivated by Clifford algebra considerations.) Let $\omega \in \wedge^{2} V$ be arbitrary. Proposition 2.1 below gives a formula for the commutator $[\epsilon(\omega), \iota(\omega)]$. In the special case where V is the complexified tangent space at a point p of a Kahler manifold and ω is the Kahler form at p one knows, e.g. from Hodge theory, that the Lie algebra generated by $\epsilon(\omega)$ and $\iota(\omega)$ is isomorphic to $\operatorname{Lie} \operatorname{Sl}(2, \mathbb{C})$. See Chapter 1 in Weil's book [12] for formulas involving the action of this Lie algebra on $\wedge V$. See [9] for other recent results in this area.

Returning to the general case, for any $\alpha \in E n d V$ let D_{α} be the unique element in $\operatorname{Der}{ }^{0} \wedge V$ such that $D_{\alpha} \mid V=\alpha$.

Proposition 2.1. Let $\omega \in \wedge^{2} V$. Let $\alpha=-\frac{1}{4} \tau(\omega)^{2}$. Then

$$
\begin{equation*}
[\epsilon(\omega), \iota(\omega)]=D_{\alpha}-\frac{\operatorname{tr} \alpha}{2} I \tag{2.2}
\end{equation*}
$$

Proof. We may assume $n \geq 2$. Let $x, y \in V$ be such that $(x, x)=$ $(y, y)=1$ and $(x, y)=0$. It follows immediately from (2.1) that

$$
[\epsilon(x \wedge y), \iota(x \wedge y)]=\epsilon(x) \iota(x)+\epsilon(y) \iota(y)-I
$$

However if $W=\mathbb{C} x+\mathbb{C} y$ and $\pi: V \rightarrow W$ is the B_{V}-orthogonal projection then one readily has that $\epsilon(x) \iota(x)+\epsilon(y) \iota(y)=D_{\pi}$. Thus

$$
\begin{equation*}
[\epsilon(x \wedge y), \iota(x \wedge y)]=D_{\pi}-I \tag{2.3}
\end{equation*}
$$

Assume that ω is such that $\tau(\omega)$ is a semisimple element of $\operatorname{Lie} S O(V)$. Then from the normal form of such elements there exists a subset $\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right\}$ of an orthonormal basis of V and scalars $\mu_{i} \in$ $\mathbb{C}, i=1, \ldots, k$ such that $\omega=\sum_{i=1}^{k} \omega_{i}$ where $\omega_{i}=\mu_{i} x_{i} \wedge y_{i}$. But clearly $\left[\epsilon\left(\omega_{i}\right), \iota\left(\omega_{j}\right)\right]=0$ for $i \neq j$ by (2.1) so that

$$
[\epsilon(\omega), \iota(\omega)]=\sum_{i=1}^{k}\left[\epsilon\left(\omega_{i}\right), \iota\left(\omega_{i}\right)\right]
$$

But then

$$
\begin{equation*}
[\epsilon(\omega), \iota(\omega)]=\left(\sum_{i=1}^{k} \mu_{i}^{2} D_{\pi_{i}}\right)-\left(\sum_{i=1}^{k} \mu_{i}^{2}\right) I \tag{2.4}
\end{equation*}
$$

by (2.3) where W_{i} is the span of x_{i} and y_{i} and $\pi_{i}: V \rightarrow W_{i}$ is the orthogonal projection. Now let $\beta_{i}=\frac{1}{2} \tau\left(\omega_{i}\right)$. One notes that the 2-plane W_{i} is stable under β_{i} and that β_{i} vanishes on the B_{V} orthocomplement of W_{i} in V. Clearly then $\beta_{i} \beta_{j}=0$ for $i \neq j$ so that

$$
\alpha=-\sum_{i=1}^{k} \beta_{i}^{2}
$$

But it is also immediate that $-\beta_{i}^{2}=\mu_{i}^{2} \pi_{i}$. Hence

$$
\begin{equation*}
\alpha=\sum_{i=1}^{k} \mu_{i}^{2} \pi_{i} \tag{2.5}
\end{equation*}
$$

But since $\operatorname{tr} \pi_{i}=2$ the equality (2.2) follows from (2.4) and (2.5). Thus the proposition has been established for any $\omega \in U$ where U is the set of all $\omega \in \wedge^{2} V$ such that $\tau(\omega)$ is semisimple. But then note that, by continuity, (2.2) follows for all elements in $\wedge^{2} V$ since U is Zariski open and dense in $\wedge^{2} V$. QED
2.2. We now consider the case $V=\mathfrak{g}$ where \mathfrak{g} is a complex semisimple Lie algebra and $B_{\mathfrak{g}}$ is the Killing form on \mathfrak{g}. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} and let \mathfrak{h}^{*} be the dual space to \mathfrak{h}. Let $l=\operatorname{dim} \mathfrak{h}$ and let $\Delta \subset \mathfrak{h}^{*}$ be the set of roots for the pair $\{\mathfrak{h}, \mathfrak{g}\}$. Let \mathfrak{b} be a Borel subalgebra of \mathfrak{g} which contains \mathfrak{h}. Let Δ_{+}be the set of roots for $\{\mathfrak{h}, \mathfrak{b}\}$ so that $\Delta_{+} \subset \Delta$ is a choice of a system of positive roots. Let $\Lambda_{+} \subset \mathfrak{h}^{*}$ be the semigroup of integral linear forms on \mathfrak{h} which are dominant with respect to \mathfrak{b}. In particular $\rho \in \Lambda_{+}$where, as usual, $\rho=\frac{1}{2} \sum_{\varphi \in \Delta_{+}} \varphi$. The restriction $B_{\mathfrak{g}} \mid \mathfrak{h}$ induces a symmetric non-singular bilinear form on \mathfrak{h}^{*}. Its value on $\mu, \nu \in \mathfrak{h}^{*}$ is denoted by (μ, ν). This bilinear form is positive definite on the real span $\mathfrak{h}_{\mathbb{R}}^{*}$ of Λ_{+}and we put $|\nu|=\sqrt{(\nu, \nu)}$ for $\nu \in \mathfrak{h}_{\mathbb{R}}^{*}$.

For any $\lambda \in \Lambda_{+}$let $\pi_{\lambda}: \mathfrak{g} \rightarrow E n d V_{\lambda}$ be some fixed irreducible representation with highest weight λ. Let $U(\mathfrak{g})$ be the enveloping algebra of \mathfrak{g}. If M is a \mathfrak{g}-module with respect to a representation π of \mathfrak{g} we will also use π to denote the extension $U(\mathfrak{g}) \rightarrow E n d M$ of the representation to $U(\mathfrak{g})$. Let $Q \in \operatorname{Cent} U(\mathfrak{g})$ be the Casimir element corresponding to the Killing form $B_{\mathfrak{g}}$. Thus if $\left\{x_{i}\right\}$ and $\left\{y_{j}\right\}$ are dual bases of \mathfrak{g} with respect to $B_{\mathfrak{g}}$ and π is a representation of \mathfrak{g} then

$$
\begin{equation*}
\pi(Q)=\sum_{i=1}^{n} \pi\left(x_{i}\right) \pi\left(y_{i}\right) \tag{2.6}
\end{equation*}
$$

Let $\lambda \in \Lambda_{+}$and let $\pi: \mathfrak{g} \rightarrow$ End M be a finite dimensional representation. The representation π is said to be primary of type π_{λ} if every irreducible component of π is equivalent to π_{λ}. One knows that $\pi_{\lambda}(Q)$ is a scalar operator where the scalar is $|\lambda+\rho|^{2}-|\rho|^{2}$. It follows therefore that if π is primary of type π_{λ}, then

$$
\begin{equation*}
\pi(Q)=\left(|\lambda+\rho|^{2}-|\rho|^{2}\right) I \tag{2.7}
\end{equation*}
$$

where I here is the identity operator on M.
2.3. The adjoint representation of \mathfrak{g} on itself will be denoted by $a d_{\mathfrak{g}}$. Let

$$
\theta: \mathfrak{g} \rightarrow E n d \wedge \mathfrak{g}
$$

be the representation of \mathfrak{g} on $\wedge \mathfrak{g}$ defined so that $\theta(x)=D_{a d_{\mathfrak{g}} x}$ for any $x \in \mathfrak{g}$. Identify \mathfrak{g} with its dual \mathfrak{g}^{*} using the Killing form $B_{\mathfrak{g}}$. Then $(\wedge \mathfrak{g}, d)$ is a cochain complex with respect to the usual Lie algebra coboundary operator d. We recall that explicitly,

$$
\begin{equation*}
d=\frac{1}{2} \sum_{i=1}^{n} \epsilon\left(x_{i}\right) \theta\left(y_{i}\right) \tag{2.8}
\end{equation*}
$$

using notation in (2.6). One readily establishes that $d \in D e r^{1} \wedge \mathfrak{g}$ and $d^{2}=0$. In particular

$$
d: \mathfrak{g} \rightarrow \wedge^{2} \mathfrak{g}
$$

and one notes that d is equivariant with the action defined by θ. The derived cohomology is Lie algebra cohomology $H^{*}(\mathfrak{g})$. The following result was implicitly established in [7].

Theorem 2.2. For any $x \in \mathfrak{g}$ let $\pi(x) \in$ End $\wedge \mathfrak{g}$ be defined by putting

$$
\begin{equation*}
\pi(x)=\frac{1}{2}(\epsilon(d x)-\iota(d x)+\theta(x)) \tag{2.9}
\end{equation*}
$$

Then

$$
\pi: \mathfrak{g} \rightarrow E n d \wedge \mathfrak{g}, \quad x \mapsto \pi(x)
$$

is representation of \mathfrak{g}. Furthermore π is primary of type π_{ρ}.
Proof. The Clifford algebra over \mathfrak{g} is denoted by $C(\mathfrak{g})$ in [7]. Following Chevalley in his treatment of Clifford algebras, the underlying vector spaces of $C(\mathfrak{g})$ and $\wedge \mathfrak{g}$ are identified in [7]. Consequently there are two
multiplicative structures on $\wedge \mathfrak{g}$. If $u, v \in \wedge \mathfrak{g}$ then $u v \in \wedge \mathfrak{g}$ denotes the Clifford product and $u \wedge v \in \wedge \mathfrak{g}$ is the original exterior product. Using Clifford commutation, an operator $a d u$ on $\wedge \mathfrak{g}$ was defined in $\S 2.3$ of [7]. If $u \in \wedge^{2} \mathfrak{g}$ (or more generally if u is even) then $(a d u)(w)=u w-w u$ for any $w \in \wedge \mathfrak{g}$. By (71) and (106) in [7] one has

$$
\begin{equation*}
\theta(x)=a d \frac{d x}{2} \tag{2.10}
\end{equation*}
$$

for any $x \in \mathfrak{g}$. But then if $\gamma(u) \in E n d \wedge \mathfrak{g}$, for $u \in \wedge \mathfrak{g}$, is the operator of left Clifford multiplication by u, it follows from (19) in [7] that

$$
\begin{equation*}
\gamma\left(\frac{d x}{2}\right)=\pi(x) \tag{2.11}
\end{equation*}
$$

where $\pi(x)$ is defined by (2.9) above. On the other hand by (66) and (106) in [7] the map $\delta: \mathfrak{g} \rightarrow \wedge^{2} \mathfrak{g}, x \mapsto \frac{1}{2} d x$ is a Lie algebra homomorphism, using Clifford commutation in $\wedge^{2} \mathfrak{g}$. But then π is a representation by (2.11) (above). Furthermore π is primary of type π_{ρ} by Theorem 39 in [7], recalling the definitions at the beginning of $\S 5.2$ in [7]. QED

§3. The operators \square and \square^{\prime}

3.1. We now introduce two operators \square and \square^{\prime} on $\wedge \mathfrak{g}$, both of degree 0 . Let $\left\{x_{i}\right\}$ be a basis of \mathfrak{g} and let $\left\{y_{j}\right\}$ be the $B_{\mathfrak{g}}$-dual basis. Put

$$
\square=\sum_{i=1}^{n} \epsilon\left(d x_{i}\right) \iota\left(d y_{i}\right)
$$

and reversing the order of multiplication,

$$
\square^{\prime}=\sum_{i=1}^{n} \iota\left(d x_{i}\right) \epsilon\left(d y_{i}\right)
$$

It is clear that the definitions are independent of the choice of basis $\left\{x_{i}\right\}$. Recall that the identity operator on $\wedge \mathfrak{g}$ is denoted by I.

Theorem 3.1. One has

$$
\begin{equation*}
3|\rho|^{2} I=\frac{1}{4}\left(\theta(Q)-\square-\square^{\prime}\right) \tag{3.1}
\end{equation*}
$$

Proof. Obviously $|\rho+\rho|^{2}-|\rho|^{2}=3|\rho|^{2}$. Using the notation of (2.6) it then follows from (2.7) and Theorem 2.2 that

$$
\begin{equation*}
3|\rho|^{2} I=\frac{1}{4}\left(\theta(Q)-\square-\square^{\prime}\right)+\beta_{4}+\beta_{2}+\beta_{-2}+\beta_{-4} \tag{3.2}
\end{equation*}
$$

where

$$
\begin{aligned}
\beta_{4} & =\frac{1}{4} \sum_{i=1}^{n} \epsilon\left(d x_{i}\right) \epsilon\left(d y_{i}\right) \\
\beta_{-4} & =\frac{1}{4} \sum_{i=1}^{n} \iota\left(d x_{i}\right) \iota\left(d y_{i}\right) \\
\beta_{2} & =\frac{1}{4} \sum_{i=1}^{n}\left(\epsilon\left(d x_{i}\right) \theta\left(d y_{i}\right)+\theta\left(d x_{i}\right) \epsilon\left(d y_{i}\right)\right) \\
\beta_{-2} & =-\frac{1}{4} \sum_{i=1}^{n}\left(\iota\left(d x_{i}\right) \theta\left(d y_{i}\right)+\theta\left(d x_{i}\right) \iota\left(d y_{i}\right)\right)
\end{aligned}
$$

But now both sides of (3.1) are operators of degree 0 . On the other hand β_{i}, for $i \in\{4,2,-2,-4\}$, is an operator of degree i. Thus all β_{i} vanish by (3.2). But then (3.1) follows from (3.2). QED
3.2. We can further simplify (3.1) by applying the "strange formula"

$$
\begin{equation*}
|\rho|^{2}=\frac{\operatorname{dim} \mathfrak{g}}{24} \tag{3.3}
\end{equation*}
$$

of Freudental-de Vries. See p. 243 in [1]. But in fact (3.1) yields a proof of the "strange formula" (3.3). Indeed first note that for any $x, y \in \mathfrak{g}$ one has

$$
\begin{equation*}
(d x, d y)=-\frac{1}{2}(x, y) \tag{3.4}
\end{equation*}
$$

To establish (3.4) let ∂ be the negative transpose of d with respect to $B_{\wedge \mathfrak{g}}$. Then $L=d \partial+\partial d$ is the "Hodge" Laplacian. But it is an easy consequence of (2.8) that $L=\frac{1}{2} \theta(Q)$. See e.g. (2.1.7) in [4]. But, by definition of the Killing form, $\theta(Q)$ reduces to the identity on \mathfrak{g}. Thus $(d x, d y)=-(x, L y)=\frac{1}{2}(x, y)$ proving (3.4). Now apply both sides of (3.1) to $1 \in \wedge^{0} \mathfrak{g}$. Then by (3.4)

$$
\begin{aligned}
3|\rho|^{2} & =-\frac{1}{4} \sum_{i=1}^{n}\left(d x_{i}, d y_{i}\right) \\
& =\frac{n}{8}
\end{aligned}
$$

But this proves the "strange formula" (3.3) of Freudental-de Vries. Applying the formula to (3.1) one has the refinement

$$
\begin{equation*}
\frac{n}{2} I=\theta(Q)-\square-\square^{\prime} \tag{3.5}
\end{equation*}
$$

3.3. Now by applying the commutation formula (2.2) we can separate out the terms and solve individually for \square and \square^{\prime}. We first make a better choice of basis for \mathfrak{g}. Let \mathfrak{k} be a compact real form of \mathfrak{g} and let $\mathfrak{q}=i \mathfrak{k}$. Then $B_{\mathfrak{g}}$ is positive definite on \mathfrak{q}. Let $\left\{z_{i}\right\}$ be an orthonormal basis of \mathfrak{q}. Then in the definition of \square and \square^{\prime} we can choose

$$
\begin{equation*}
x_{i}=y_{i}=z_{i} \tag{3.6}
\end{equation*}
$$

Let ε be the identity operator on \mathfrak{g} so that the derivation D_{ε} is the Euler operator on $\wedge \mathfrak{g}$. That is

$$
\begin{equation*}
D_{\varepsilon}=k \text { on } \wedge^{k} \mathfrak{g} \tag{3.7}
\end{equation*}
$$

Theorem 3.2. One has

$$
\begin{align*}
\square & =\frac{1}{2}\left(\theta(Q)-D_{\varepsilon}\right) \tag{3.8}\\
\square^{\prime} & =\frac{1}{2}\left(\theta(Q)-\left(n I-D_{\varepsilon}\right)\right)
\end{align*}
$$

Proof. For $x \in \mathfrak{g}$ note that (see §2.1)

$$
\begin{equation*}
\tau\left(\frac{d x}{2}\right)=a d_{\mathfrak{g}} x \tag{3.9}
\end{equation*}
$$

Indeed (3.9) is implied by (18), (71) and (106) in [7]. Let $\left\{z_{i}\right\}$ be as in (3.6) and let $\alpha_{i}=-\left(a d_{\mathfrak{g}} z_{i}\right)^{2} \in E n d \mathfrak{g}$. By definition of the Killing form, one has $\operatorname{tr} \alpha_{i}=-1$. Thus

$$
\begin{equation*}
\epsilon\left(d z_{i}\right) \iota\left(d z_{i}\right)-\iota\left(d z_{i}\right) \epsilon\left(d z_{i}\right)=D_{\alpha_{i}}+\frac{1}{2} I \tag{3.10}
\end{equation*}
$$

by (2.2) and (3.9). But $\theta(Q)$ reduces to the identity ε on \mathfrak{g} so that $\sum_{i=1}^{n} \alpha_{i}=-\varepsilon$. Hence, by linearity, $\sum_{i=1}^{n} D_{\alpha_{i}}=-D_{\varepsilon}$. Thus

$$
\begin{align*}
\square-\square^{\prime} & =\sum_{i=1}^{n}\left(\epsilon\left(d z_{i}\right) \iota\left(d z_{i}\right)-\iota\left(d z_{i}\right) \epsilon\left(d z_{i}\right)\right) \tag{3.11}\\
& =\frac{n}{2} I-D_{\varepsilon}
\end{align*}
$$

But

$$
\begin{equation*}
\square+\square^{\prime}=\theta(Q)-\frac{n}{2} I \tag{3.12}
\end{equation*}
$$

by (3.5). But then adding and subtracting (3.11) and (3.12) yields (3.8). QED
3.4. We define a Hilbert space structure H in $\wedge \mathfrak{g}$. The inner product of $u, v \in \wedge \mathfrak{g}$ will be denoted by $\{u, v\}$. This structure has been defined in $\S 3.2$ of [3] and we refer to that reference for a more comprehensive treatment of H. The discussion here will be limited to what will be needed in this paper. The real exterior algebra $\wedge_{\mathbb{R}} \mathfrak{q}$ is a real form of \mathfrak{g}. Furthermore $B_{\wedge \mathfrak{g}}$ is positive definite on $\wedge_{\mathbb{R}} \mathfrak{q}$. One defines a $*$-operation in $\wedge \mathfrak{g}$ by defining $(u+i v)^{*}=u-i v$ for $u, v \in \wedge_{\mathbb{R}} \mathfrak{q}$. Then H is given by defining $\{u, v\}=\left(u, v^{*}\right)$ for $u, v \in \wedge \mathfrak{g}$. For any $\beta \in E n d \wedge \mathfrak{g}$, let $\beta^{*} \in E n d \wedge \mathfrak{g}$ be the Hermitian adjoint of β with respect to H. By (3.9.3) in [3] one has

$$
\begin{equation*}
\iota(u)^{*}=\epsilon\left(u^{*}\right) \tag{3.13}
\end{equation*}
$$

for any $u \in \wedge \mathfrak{g}$. But for $z \in \mathfrak{q}$ one has

$$
\begin{equation*}
d z^{*}=-d z \tag{3.14}
\end{equation*}
$$

Indeed since $[\mathfrak{q}, \mathfrak{q}] \subset \mathfrak{k}=i \mathfrak{q}$, the equation (3.14) clearly follows from (2.8) when we make the choice given in (3.6).

Proposition 3.3. Let $\left\{z_{i}\right\}$ be the basis of \mathfrak{g} defined as in (3.6). Then the operators $\epsilon\left(d z_{i}\right) \iota\left(d z_{i}\right)$ and $\iota\left(d z_{i}\right) \epsilon\left(d z_{i}\right)$ are negative semidefinite with respect to H for all i. In particular $\square=\sum_{i=1}^{n} \epsilon\left(d z_{i}\right) \iota\left(d z_{i}\right)$ and $\square^{\prime}=\sum_{i=1}^{n} \iota\left(d z_{i}\right) \epsilon\left(d z_{i}\right)$ are negative semidefinite with respect to H.

Proof. This is immediate from (3.13) and (3.14). QED

§4. The main results

4.1. Let \mathcal{C} be the set of all commutative Lie subalgebras \mathfrak{a} of \mathfrak{g}. If $\mathfrak{a} \in \mathcal{C}$ and $k=\operatorname{dim} \mathfrak{a}$ let $[\mathfrak{a}]=\wedge^{k} \mathfrak{a}$. Regard [a] as a 1-dimensional subspace of $\wedge^{k} \mathfrak{g}$ and let $C \subset \wedge \mathfrak{g}$ be the span of all [a] for all $\mathfrak{a} \in \mathcal{C}$. It is obvious that $C=\sum_{k=1}^{n} C^{k}$ is a graded \mathfrak{g}-submodule (with respect to θ) of $\wedge \mathfrak{g}$. Of course $C^{k}=0$ for $k>n_{\text {abel }}$ where $n_{\text {abel }}$ is the maximal dimension of an abelian Lie subalgebra of \mathfrak{g}.

One of the results in [4] is that C (denoted by A in [4]) is a multiplicity free \mathfrak{g}-module. See Theorem (8) in [4]. If Ξ is an index set for the set of all abelian ideals $\left\{\mathfrak{a}_{\xi}\right\}, \xi \in \Xi$, of \mathfrak{b} then the irreducible components of C may also be indexed by Ξ. The irreducible components, written as $C_{\xi}, \xi \in \Xi$, are characterized by the property that $\left[\mathfrak{a}_{\xi}\right]$ is the highest weight space of C_{ξ}. One therefore has the unique decomposition

$$
\begin{equation*}
C=\sum_{\xi \in \Xi} C_{\xi} \tag{4.1}
\end{equation*}
$$

into irreducible components. For Peterson's results and our subsequent new results about C, see [8].

For $k=0, \ldots, n$, let m_{k} be the maximal eigenvalue of the Casimir operator $\theta(Q)$ on $\wedge^{k} \mathfrak{g}$. The following result is a restatement of Theorem (5) in [4] (noting that m_{k} in [4] is one half its value here).

Theorem 4.1. For $k=0, \ldots, n$, one has

$$
\begin{equation*}
m_{k} \leq k \tag{4.2}
\end{equation*}
$$

Furthermore one has equality $m_{k}=k$ if and only if there exists an abelian subalgebra $\mathfrak{a} \subset \mathfrak{g}$ such that $\operatorname{dim} \mathfrak{a}=k$, that is, if and only if $k \leq n_{\text {abel }}$. Moveover in such a case the eigenspace for the eigenvalue k of $\theta(Q)$ in $\wedge^{k} \mathfrak{g}$ is exactly C^{k}. In particular $\theta(Q)$ has integral (and consecutive) eigenvalues on C.

As an example, illustrating the first part of Theorem 4.1, if $\mathfrak{g} \simeq E_{8}$, then, since $n_{\text {abel }}=36$, one has $m_{k}=k$ for $k \leq 36$. But $m_{k}<k$ for $k \geq 37$.

Remark 4.2. Note that (4.2) also follows from Theorem 3.2, using Proposition 3.3, since the Proposition 3.3 implies that the spectrum of \square is non-negative.
4.2. We can now establish one of the main results of the paper. Let \mathcal{A} be the ideal in $\wedge \mathfrak{g}$ generated by all $d x \in \wedge^{2} \mathfrak{g}$ for $x \in \mathfrak{g}$. Corollary (5.1) in [4] asserts that

$$
\begin{equation*}
\wedge^{2} \mathfrak{g}=d \mathfrak{g} \oplus C^{2} \tag{4.3}
\end{equation*}
$$

is a direct sum. Note that (4.5) below in Theorem 4.3 is a generalization of (4.3). Recall the definition \square in $\S 3$.

Theorem 4.3. One has $C=K e r \square$. In addition

$$
\begin{equation*}
C=\{u \in \wedge \mathfrak{g} \mid \iota(d x) u=0, \forall x \in \mathfrak{g}\} \tag{4.4}
\end{equation*}
$$

Moreover $B_{\wedge \mathfrak{g}}$ is non-singular on C and

$$
\begin{equation*}
\wedge \mathfrak{g}=\mathcal{A} \oplus C \tag{4.5}
\end{equation*}
$$

is a $B_{\wedge \mathfrak{g}}$-orthogonal direct sum.
Proof. The statement that $C=K e r \square$ is an immediate consequence of Theorem 4.1 and (3.8) in Theorem 3.2. On the one hand since, using the notation of Proposition 3.3, the operators $\epsilon\left(d z_{i}\right) \iota\left(d z_{i}\right)$ are negative semidefinite with respect to H, one has

$$
\begin{equation*}
\operatorname{Ker} \square=\bigcap_{i=1}^{n} \operatorname{Ker} \epsilon\left(d z_{i}\right) \iota\left(d z_{i}\right) \tag{4.6}
\end{equation*}
$$

On the other hand $\epsilon\left(d z_{i}\right)=-\iota\left(d z_{i}\right)^{*}$ by (3.13) and (3.14). Hence

$$
\begin{equation*}
\operatorname{Ker} \epsilon\left(d z_{i}\right) \iota\left(d z_{i}\right)=\operatorname{Ker} \iota\left(d z_{i}\right) \tag{4.7}
\end{equation*}
$$

This establishes (4.4). Of course $B_{\wedge \mathfrak{g}}$ is non-singular on $\wedge^{k} \mathfrak{g}$ for any $k=0, \ldots, n_{\text {abel }}$. But then since \square is diagonalizable and symmetric with respect to $B_{\wedge \mathfrak{g}}$ it follows that the restriction of $B_{\wedge \mathfrak{g}}$ to the eigenspace C_{k} of \square in $\wedge^{k} \mathfrak{g}$ is non-singular. Hence $B_{\wedge \mathfrak{g}}$ is non-singular on C. But then (4.5) follows immediately from (4.4) and the equality $(d x \wedge v, u)=$ $(v, \iota(d x) u)$ for any $u, v \in \wedge \mathfrak{g}$ and $x \in \mathfrak{g}$. QED
4.3. Fix an element $\mu \in \wedge^{n} \mathfrak{g}$ where $(\mu, \mu)=1$. For any $v \in \wedge \mathfrak{g}$ let $\widetilde{v}=\iota(v) \mu$. Also if $M \subset \wedge \mathfrak{g}$ is a subspace let $\widetilde{M}=\{\widetilde{v} \mid v \in M\}$. It is a simple fact that if $M \subset \wedge \mathfrak{g}$ is a graded subspace, then

$$
\begin{equation*}
\widetilde{\widetilde{M}}=M \tag{4.8}
\end{equation*}
$$

Furthermore since $\theta(\mathfrak{g})$ annihilates μ it is clear that if M is a \mathfrak{g} submodule (with respect to θ) then $M \rightarrow \widetilde{M}, v \mapsto \widetilde{v}$ is a \mathfrak{g}-module isomorphism. In particular \widetilde{C} is isomorphic to C as a \mathfrak{g}-module.

Corollary 4.4. One has $\widetilde{C}=$ Ker \square^{\prime}. In addition

$$
\begin{equation*}
\widetilde{C}=\{v \in \wedge \mathfrak{g} \mid d x \wedge v=0, \forall x \in \mathfrak{g}\} \tag{4.9}
\end{equation*}
$$

Proof. If $v \in \wedge \mathfrak{g}$ and $x \in \mathfrak{g}$ note that

$$
\begin{equation*}
\widetilde{d x \wedge v}=\iota(d x) \widetilde{v} \tag{4.10}
\end{equation*}
$$

But then (4.9) follows from (4.4) and (4.8). The argument in the proof of Theorem 4.3 establishing the equivalence of the equation $C=K e r \square$ with (4.4) likewise, upon interchanging $\epsilon\left(d z_{i}\right)$ with $\iota\left(d z_{i}\right)$, clearly establishes the equivalence of the equation $\widetilde{C}=K e r \square^{\prime}$ with (4.9). QED
4.4. We will express (4.4) and (4.9) in a "functorial" way. Consider the symmetric algebra $S(\mathfrak{g})$ over \mathfrak{g}. Since the elements of $\wedge^{2} \mathfrak{g}$ commute with each other there exists a unique homomorphism

$$
\begin{equation*}
s: S(\mathfrak{g}) \rightarrow \wedge \mathfrak{g} \tag{4.11}
\end{equation*}
$$

where $s(x)=d x$ for $x \in \mathfrak{g}$. The homomorphism s of course defines the structure of an $S(\mathfrak{g})$ module on $\wedge \mathfrak{g}$. Furthermore since s is a \mathfrak{g}-map with respect to the adjoint action, this $S(\mathfrak{g})$-module structure is equivariant with respect to the adjoint action.

The functors $E x t_{S(\mathfrak{g})}^{j}(\mathbb{C}, \wedge \mathfrak{g})$ clearly have the structure of \mathfrak{g}-modules. Considering only the two extreme values of j, one has \mathfrak{g}-module maps

$$
\begin{equation*}
E x t_{S(\mathfrak{g})}^{0}(\mathbb{C}, \wedge \mathfrak{g}) \rightarrow \wedge \mathfrak{g} \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\wedge \mathfrak{g} \rightarrow \operatorname{Ext}_{S(\mathfrak{g})}^{n}(\mathbb{C}, \wedge \mathfrak{g}) \tag{4.13}
\end{equation*}
$$

Recalling the definitions of Ext at these two extremes, (4.4) and (4.9) immediately translate to

Theorem 4.10. The map (4.12) defines a \mathfrak{g}-module isomorphism

$$
\begin{equation*}
E x t_{S(\mathfrak{g})}^{0}(\mathbb{C}, \wedge \mathfrak{g}) \rightarrow \widetilde{C} \tag{4.14}
\end{equation*}
$$

and the map (4.13) restricts to a \mathfrak{g}-module isomorphism

$$
\begin{equation*}
C \rightarrow \operatorname{Ext}_{S(\mathfrak{g})}^{n}(\mathbb{C}, \wedge \mathfrak{g}) \tag{4.15}
\end{equation*}
$$

4.5. An element $u \in \wedge \mathfrak{g}$ is called totally exact if it is the sum of products of elements of the form $d x, x \in \mathfrak{g}$. Let A be the image of s so
that A is the algebra of all totally exact elements in $\wedge \mathfrak{g}$. See Theorem 1.4 in [6] for a characterization of A. Some features of the \mathfrak{g}-module structure of A were studied and used in [7]. See Theorem 69 in [7]. Of course the $S(\mathfrak{g})$ module structure on $\wedge \mathfrak{g}$ can be regarded as defining an A-module structure on $\wedge \mathfrak{g}$. Consider the question of determining generators for this module. A subspace $C_{o} \subset \wedge \mathfrak{g}$ will be said to be A-generating if C_{o} is a graded \mathfrak{g}-submodule (with respect to θ) of $\wedge \mathfrak{g}$ such that $\wedge \mathfrak{g}=A \wedge C_{o}$.

Theorem 4.6. The subspace C is A-generating so that

$$
\begin{equation*}
\wedge g=A \wedge C \tag{4.16}
\end{equation*}
$$

Moreover it is minimal among all A-generating subspaces in $\wedge \mathfrak{g}$. In fact if C_{o} is any graded \mathfrak{g}-submodule (with respect to θ) of $\wedge \mathfrak{g}$ then C_{o} is A-generating if and only if $C \subset C_{o}$.

Proof. The proof that C is A-generating is a standard exercise using (4.5). Assume inductively that for $k \geq 1, \wedge^{j} \mathfrak{g} \subset A \wedge C$ for all $j \leq k$. Obviously $\wedge^{0} \mathfrak{g}=C^{0} \subset A \wedge C$ and $\wedge^{1} \mathfrak{g}=C^{1} \subset A \wedge C$. Let $u \in \wedge^{k+1} \mathfrak{g}$. By (4.5) we may write $u=v+w$ where $v \in \mathcal{A}^{k+1}$ and $w \in C^{k+1}$. Then $w \in A \wedge C$. But $v \in d \mathfrak{g} \wedge\left(\wedge^{k-1} \mathfrak{g}\right)$. But $\wedge^{k-1} \mathfrak{g} \subset A \wedge C$ by induction. Hence $v \in A \wedge C$. Thus C is A-generating.

Obviously if $C \subset C_{o}$ one has $\wedge \mathfrak{g}=A \wedge C_{o}$. Now for $k=0, \ldots, n$, let $p_{k}: \wedge^{k} \mathfrak{g} \rightarrow C^{k}$ be the projection defined by (4.5). Obviously p_{k} is a \mathfrak{g}-map. Assume $C_{o} \subset \wedge \mathfrak{g}$ is A-generating. Then clearly the restriction $p_{k}: C_{o}^{k} \rightarrow C^{k}$ is a surjective \mathfrak{g}-map. However by Theorem 4.1 the irreducible representations \mathfrak{g} occurring in C^{k} do not occur in \mathcal{A}^{k}. Thus one must have $C^{k} \subset C_{o}^{k}$. Hence $C_{o} \subset C$. QED

Remark 4.7. Note that (4.15) implies that the set of elements of the form $y_{1} \wedge \cdots \wedge y_{k} \wedge d x_{1} \wedge \cdots \wedge d x_{m}$ span $\wedge \mathfrak{g}$, where $x_{i}, y_{j} \in \mathfrak{g}$ and the $\left\{y_{j}\right\}$ pairwise commute. QED

References

[1] H. Freudenthal and H. de Vries, Linear Lie Groups, Academic Press, 1969.
[2] C. Chevalley, The Betti numbers of the exceptional Lie groups, Proceedings of the International Congress of Mathematicians, 1950, Vol. II, 21-24.
[3] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math., Vol. 74(1961), No. 2, 329-387.
[4] B. Kostant, Eigenvalues of a Laplacian and commutative Lie subalgebras, Topology, Vol. 3(1965), Suppl. 2, 147-159.
[5] B. Kostant, On MacDonald's η-function formula, the Laplacian, and generalized exponents, Adv. in Math., Vol. 20(1976), No. 2, 179-212.
[6] B. Kostant, A Lie algebra generalization of the Amitsur-Levitski theorem, Adv. in Math., Vol. 40(1981), No. 2.
[7] B. Kostant, Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the ρ-decomposition $C(\mathfrak{g})=E n d V_{\rho} \otimes C(P)$, and the \mathfrak{g} module structure of $\wedge \mathfrak{g}, A d v$. in Math., Vol. 125(1997), No. 2, 275350.
[8] B. Kostant, The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations, IMRN, 5(1998), 225-252.
[9] E. Looijenga and and V. A. Lunts, A Lie algebra attached to a projective variety, Inventiones Mathematica, Vol. 129(1997), 361412.
[10] A. I. Malcev, Commutative subalgebras of semisimple Lie algebras, Izv. Akad. Nauk SSR, Ser. Mat., Vol. 9(1945), 291-300 (Russian); Translation, No. 40, Series 1, American Mathematics Society (English).
[11] W. Schmid, L^{2} - cohomology and the discrete series, Ann. of Math., Vol. 103(1976), 375-394.
[12] A. Weil, variétés kahlériennes, Actualités scientifiques et industrielles 1267, Institut de Math. de l'Univ. de Nancago.

Bertram Kostant
Dept. of Math.
MIT
Cambridge, MA 02139
E-mail kostant@math.mit.edu

