Advanced Studies in Pure Mathematics 26, 2000

Analysis on Homogeneous Spaces and Representation Theory of Lie Groups pp. $129{-}144$

On $\wedge \mathfrak{g}$ for a Semisimple Lie Algebra \mathfrak{g} , as an Equivariant Module over the Symmetric Algebra $S(\mathfrak{g})$

Bertram Kostant

§1. Introduction

1.1. Let \mathfrak{g} be a complex semisimple Lie algebra and let \mathcal{C} be the set of all commutative Lie subalgebras \mathfrak{a} of \mathfrak{g} . If $\mathfrak{a} \in \mathcal{C}$ and $k = \dim \mathfrak{a}$ let $[\mathfrak{a}] = \wedge^k \mathfrak{a}$. Regard $[\mathfrak{a}]$ as a 1-dimensional subspace of $\wedge^k \mathfrak{g}$ and let $C \subset \wedge \mathfrak{g}$ be the span of all $[\mathfrak{a}]$ for all $\mathfrak{a} \in \mathcal{C}$. The exterior algebra $\wedge \mathfrak{g}$ is a \mathfrak{g} -module with respect to the extension, θ , of the adjoint representation, defined so that $\theta(x)$ is a derivation for any $x \in \mathfrak{g}$. It is obvious that $C = \sum_{k=1}^n C^k$ is a graded \mathfrak{g} -submodule of $\wedge \mathfrak{g}$. Of course $C^k = 0$ for $k > n_{abel}$ where n_{abel} is the maximal dimension of an abelian Lie subalgebra of \mathfrak{g} . The paper [4] initiated a study of the \mathfrak{g} -module C. It was motivated by a result of Malcev giving the value of n_{abel} for all complex simple Lie subalgebras. For example, for the exceptional Lie algebras G_2, F_4, E_6, E_7 and E_8 , the value of n_{abel} , respectively, is 3, 9, 16, 27 and 36. See [10].

One of the results in [4] is that C (denoted by A in [4]) is a multiplicity free \mathfrak{g} -module. Let \mathfrak{b} be a Borel subalgebra of \mathfrak{g} . If Ξ is an index set for the set of all abelian ideals $\{\mathfrak{a}_{\xi}\}, \xi \in \Xi$, of \mathfrak{b} , then the irreducible components of C may also be indexed by Ξ . The irreducible components, written as $C_{\xi}, \xi \in \Xi$, are characterized by the property that $[\mathfrak{a}_{\xi}]$ is the highest weight space of C_{ξ} . One therefore has the unique decomposition

$$C = \sum_{\xi \in \Xi} C_{\xi}$$

into irreducible components. Sometime after [4] was published, Dale Peterson established the striking result that the cardinality of Ξ was 2^{l} . His ingenious proof, using the affine Weyl group, sets up a natural bijection between Ξ and the set of elements of order 2 (and the identity) in a maximal torus of a simply-connected Lie group G with Lie

Research supported in part by NSF grant DMS-9625941 Received March 2, 1998.

algebra \mathfrak{g} . An outline of Peterson's theory is given in [8]. Peterson's result suggested to us that there should be some interesting connection between the set of abelian ideals $\{a_{\ell}\}$ of b and the theory of symmetric spaces of inner type (i.e. where the corresponding Cartan involution is an inner automorphism). By Harish-Chandra theory, the corresponding inner real forms $G_{\mathbb{R}}$ of G are exactly the real forms which admit discrete series representations. In fact we have obtained results giving a construction of the abelian ideals $\mathfrak{a}_{\mathcal{E}}$ in terms of the Cartan decompositions corresponding to such real forms. In addition we have set up natural bijections between the families of discrete series for such groups and the 2^l-element set $\{\mathfrak{a}_{\mathcal{E}}\}$ of abelian ideals in \mathfrak{b} . In fact, using W. Schmid's construction of the discrete series (see [11]), we establish a direct connection between, on the one hand, minimal "K-types" and the cohomological degree in which the discrete series appears and, on the other hand, the dimension of the corresponding abelian ideal $\{a_{\ell}\}$ and the highest weight of $C_{\mathcal{E}}$.

A summary of the above results (for \mathfrak{g} simple) will appear in [8]. Another result, stated as Theorem 1.5 in [8], is a theorem on the role C plays in the full structure of $\wedge \mathfrak{g}$. The present paper is an elaboration and proof of this result.

In more detail let $B_{\mathfrak{g}}$ be the Killing form on \mathfrak{g} and let $B_{\wedge \mathfrak{g}}$ be its natural extension to $\wedge \mathfrak{g}$. Identify \mathfrak{g} with its dual space \mathfrak{g}^* so that $\wedge \mathfrak{g}$ has the structure of a cochain complex with respect to the usual, degree 1, Lie algebra coboundary operator. The coboundary operator is denoted by d. In particular $d\mathfrak{g} \subset \wedge^2 \mathfrak{g}$. The subspace $d\mathfrak{g}$ is a \mathfrak{g} -submodule and, as such, is equivalent to \mathfrak{g} itself. For any $u \in \wedge \mathfrak{g}$, let $\iota(u)$ be the operator on $\wedge \mathfrak{g}$ of interior product by u. Let \mathcal{A} be the ideal in $\wedge \mathfrak{g}$ generated by the subspace $d\mathfrak{g}$. One of the main results in the present paper is the following completely different characterization of the submodule $C \subset \wedge \mathfrak{g}$.

Theorem A. One has

$$C = \{ u \in \wedge \mathfrak{g} \mid \iota(dx)u = 0, \, \forall x \in \mathfrak{g} \}$$

Moreover $B_{\wedge \mathfrak{g}}$ is non-singular on C and

$$\wedge \mathfrak{g} = \mathcal{A} \oplus C$$

is a $B_{\wedge \mathfrak{g}}$ -orthogonal direct sum.

Fix a non-zero element $\mu \in \wedge^n \mathfrak{g}$. For any $v \in \wedge \mathfrak{g}$, let $\tilde{v} = \iota(v)\mu$ and $\tilde{C} = \{\tilde{v} \mid v \in C\}$. It is immediate that $C \to \tilde{C}, v \mapsto \tilde{v}$ is a \mathfrak{g} -module isomorphism. An easy consequence of Theorem A is

Theorem B. One has

$$\widetilde{C} = \{ v \in \land \mathfrak{g} \mid dx \land v = 0, \, \forall x \in \mathfrak{g} \}$$

1.2. We will express Theorems A and B in a "functorial" way. Consider the symmetric algebra $S(\mathfrak{g})$ over \mathfrak{g} . Since the elements of $\wedge^2 \mathfrak{g}$ commute with each other, there exists a unique homomorphism

$$s:S(\mathfrak{g})\to\wedge\mathfrak{g}$$

where s(x) = dx for $x \in \mathfrak{g}$. The homomorphism s of course defines the structure of an $S(\mathfrak{g})$ module on $\wedge \mathfrak{g}$. Furthermore since s is a \mathfrak{g} -map with respect to the adjoint action, this $S(\mathfrak{g})$ -module structure is equivariant with respect to the adjoint action.

The homomorphism s arises in a number of contexts. For example, if K is a compact Lie group corresponding to the compact form \mathfrak{k} of \mathfrak{g} and P is a principal K-bundle, with connection, then s arises from Chern-Weil theory if one considers the fiber instead of the base. Along these lines the map s is the main tool used in Chevalley's well known construction of the "transgression" map, of invariants, $S(\mathfrak{g})^{\mathfrak{g}} \to (\wedge \mathfrak{g})^{\mathfrak{g}}$. See e.g. [2] and in more detail §6 in [7]. The map s also plays a key role in the Lie algebra generalization of the Amitsur-Levitski theorem as formulated in [6].

The functors $Ext^{j}_{S(\mathfrak{g})}(\mathbb{C}, \wedge \mathfrak{g})$ clearly have the structure of \mathfrak{g} -modules. Considering only the two extreme values of j, one has \mathfrak{g} -module maps

$$(a) \qquad \qquad Ext^0_{S(\mathfrak{g})}(\mathbb{C},\wedge\mathfrak{g})\to\wedge\mathfrak{g}$$

and

(b)
$$\wedge \mathfrak{g} \to Ext^n_{S(\mathfrak{g})}(\mathbb{C}, \wedge \mathfrak{g})$$

Recalling the definitions of Ext at these two extremes, Theorems A and B immediately translate to

Theorem C. The map (a) defines a g-module isomorphism

$$Ext^0_{S(\mathfrak{g})}(\mathbb{C},\wedge\mathfrak{g})\to\widetilde{C}$$

and the map (b) restricts to a g-module isomorphism

 $C \to Ext^n_{S(\mathfrak{g})}(\mathbb{C}, \wedge \mathfrak{g})$

1.3. An element $u \in \wedge \mathfrak{g}$ is called totally exact if it is the sum of products of elements of the form $dx, x \in \mathfrak{g}$. Let A be the image of s so that A is the algebra of all totally exact elements in $\wedge \mathfrak{g}$. See Theorem 1.4 in [6] for a characterization of A. Some features of the \mathfrak{g} -module structure of A were studied and used in [7]. See Theorem 69 in [7]. Of course the $S(\mathfrak{g})$ -module structure on $\wedge \mathfrak{g}$ can be regarded as defining an A-module structure on $\wedge \mathfrak{g}$. Consider the question of determining generators for this module. A subspace $C_o \subset \wedge \mathfrak{g}$ will be said to be A-generating if C_o is a graded \mathfrak{g} -submodule of $\wedge \mathfrak{g}$ such that $\wedge \mathfrak{g} = A \wedge C_o$.

Theorem D. The subspace C is A-generating so that

$$\wedge g = A \wedge C$$

Moreover it is minimal among all A-generating subspaces in $\land \mathfrak{g}$. In fact if C_o is any graded \mathfrak{g} -submodule of $\land \mathfrak{g}$, then C_o is A-generating if and only if $C \subset C_o$.

Note that Theorem D implies that the set of elements of the form $y_1 \wedge \cdots \wedge y_k \wedge dx_1 \wedge \cdots \wedge dx_m$ spans $\wedge \mathfrak{g}$, where $x_i, y_j \in \mathfrak{g}$ and the $\{y_j\}$ pairwise commute.

§2. V_{ρ} and the "spin" of the adjoint representation

2.1. Let V be a complex finite dimensional vector space endowed with some fixed non-singular symmetric bilinear form B_V . Let n = dim V. The bilinear form B_V extends to a non-singular symmetric bilinear form $B_{\wedge V}$ on the exterior algebra $\wedge V$ where $\wedge^p V$ is orthogonal to $\wedge^q V$ for $p \neq q$ and for $x_i, y_i \in V, i, j = 1, \ldots, k$,

$$(x_1 \wedge \cdots \wedge x_k, y_1 \wedge \cdots \wedge y_k) = det(x_i, y_j)$$

where (u, v) denotes the value of the $B_{\wedge V}$ on $u, v \in \wedge V$. For any $u \in \wedge V$ let $\epsilon(u) \in End \wedge V$ be the operator of left exterior multiplication by u and let $\iota(u) \in End \wedge V$ be the transpose of $\epsilon(u)$ with respect to $B_{\wedge V}$. Regarding $\wedge V$ as a \mathbb{Z} -graded super commutative associative algebra, let $Der \wedge V = \sum_{j=-1}^{n-1} Der^j \wedge V$ be the \mathbb{Z} -graded super Lie algebra of all super derivations of $\wedge V$. If $y \in V$ one has $\iota(y) \in Der^{-1} \wedge V$ and if also $x \in V$ then

(2.1)
$$\epsilon(x)\iota(y) + \iota(y)\epsilon(x) = (x, y)I$$

where I is the identity operator on $\wedge V$.

Let $Lie SO(V) \subset End V$ be the Lie algebra of all skew-symmetric operators on V with respect to B_V . One defines a linear isomorphism $\tau : \wedge^2 V \to Lie SO(V)$ so that if $\omega \in \wedge^2 V$ and $x \in V$, then $\tau(\omega)x =$ $-2\iota(x)\omega$. (See §2.3 in [7].) The introduction of the factor -2 is motivated by Clifford algebra considerations.) Let $\omega \in \wedge^2 V$ be arbitrary. Proposition 2.1 below gives a formula for the commutator $[\epsilon(\omega), \iota(\omega)]$. In the special case where V is the complexified tangent space at a point p of a Kahler manifold and ω is the Kahler form at p one knows, e.g. from Hodge theory, that the Lie algebra generated by $\epsilon(\omega)$ and $\iota(\omega)$ is isomorphic to $Lie Sl(2, \mathbb{C})$. See Chapter 1 in Weil's book [12] for formulas involving the action of this Lie algebra on $\wedge V$. See [9] for other recent results in this area.

Returning to the general case, for any $\alpha \in End V$ let D_{α} be the unique element in $Der^0 \wedge V$ such that $D_{\alpha}|V = \alpha$.

Proposition 2.1. Let $\omega \in \wedge^2 V$. Let $\alpha = -\frac{1}{4}\tau(\omega)^2$. Then (2.2) $[\epsilon(\omega), \iota(\omega)] = D_{\alpha} - \frac{tr \, \alpha}{2}I$

Proof. We may assume $n \ge 2$. Let $x, y \in V$ be such that (x, x) = (y, y) = 1 and (x, y) = 0. It follows immediately from (2.1) that

$$[\epsilon(x \wedge y), \iota(x \wedge y)] = \epsilon(x)\iota(x) + \epsilon(y)\iota(y) - I$$

However if $W = \mathbb{C}x + \mathbb{C}y$ and $\pi : V \to W$ is the B_V -orthogonal projection then one readily has that $\epsilon(x)\iota(x) + \epsilon(y)\iota(y) = D_{\pi}$. Thus

(2.3)
$$[\epsilon(x \wedge y), \iota(x \wedge y)] = D_{\pi} - I$$

Assume that ω is such that $\tau(\omega)$ is a semisimple element of Lie SO(V). Then from the normal form of such elements there exists a subset $\{x_1, \ldots, x_k, y_1, \ldots, y_k\}$ of an orthonormal basis of V and scalars $\mu_i \in \mathbb{C}, i = 1, \ldots, k$ such that $\omega = \sum_{i=1}^k \omega_i$ where $\omega_i = \mu_i x_i \wedge y_i$. But clearly $[\epsilon(\omega_i), \iota(\omega_j)] = 0$ for $i \neq j$ by (2.1) so that

$$[\epsilon(\omega), \iota(\omega)] = \sum_{i=1}^{k} [\epsilon(\omega_i), \iota(\omega_i)]$$

But then

(2.4)
$$[\epsilon(\omega), \iota(\omega)] = (\sum_{i=1}^{k} \mu_i^2 D_{\pi_i}) - (\sum_{i=1}^{k} \mu_i^2) I$$

by (2.3) where W_i is the span of x_i and y_i and $\pi_i : V \to W_i$ is the orthogonal projection. Now let $\beta_i = \frac{1}{2}\tau(\omega_i)$. One notes that the 2-plane W_i is stable under β_i and that β_i vanishes on the B_V orthocomplement of W_i in V. Clearly then $\beta_i\beta_j = 0$ for $i \neq j$ so that

$$\alpha = -\sum_{i=1}^k \beta_i^2$$

But it is also immediate that $-\beta_i^2 = \mu_i^2 \pi_i$. Hence

(2.5)
$$\alpha = \sum_{i=1}^{k} \mu_i^2 \pi_i$$

But since $tr \pi_i = 2$ the equality (2.2) follows from (2.4) and (2.5). Thus the proposition has been established for any $\omega \in U$ where U is the set of all $\omega \in \wedge^2 V$ such that $\tau(\omega)$ is semisimple. But then note that, by continuity, (2.2) follows for all elements in $\wedge^2 V$ since U is Zariski open and dense in $\wedge^2 V$. QED

2.2. We now consider the case $V = \mathfrak{g}$ where \mathfrak{g} is a complex semisimple Lie algebra and $B_{\mathfrak{g}}$ is the Killing form on \mathfrak{g} . Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} and let \mathfrak{h}^* be the dual space to \mathfrak{h} . Let $l = \dim \mathfrak{h}$ and let $\Delta \subset \mathfrak{h}^*$ be the set of roots for the pair $\{\mathfrak{h}, \mathfrak{g}\}$. Let \mathfrak{b} be a Borel subalgebra of \mathfrak{g} which contains \mathfrak{h} . Let Δ_+ be the set of roots for $\{\mathfrak{h}, \mathfrak{b}\}$ so that $\Delta_+ \subset \Delta$ is a choice of a system of positive roots. Let $\Lambda_+ \subset \mathfrak{h}^*$ be the semigroup of integral linear forms on \mathfrak{h} which are dominant with respect to \mathfrak{b} . In particular $\rho \in \Lambda_+$ where, as usual, $\rho = \frac{1}{2} \sum_{\varphi \in \Delta_+} \varphi$. The restriction $B_{\mathfrak{g}}|\mathfrak{h}$ induces a symmetric non-singular bilinear form on \mathfrak{h}^* . Its value on $\mu, \nu \in \mathfrak{h}^*$ is denoted by (μ, ν) . This bilinear form is positive definite on the real span $\mathfrak{h}^*_{\mathbb{R}}$ of Λ_+ and we put $|\nu| = \sqrt{(\nu, \nu)}$ for $\nu \in \mathfrak{h}^*_{\mathbb{R}}$.

For any $\lambda \in \Lambda_+$ let $\pi_{\lambda} : \mathfrak{g} \to End V_{\lambda}$ be some fixed irreducible representation with highest weight λ . Let $U(\mathfrak{g})$ be the enveloping algebra of \mathfrak{g} . If M is a \mathfrak{g} -module with respect to a representation π of \mathfrak{g} we will also use π to denote the extension $U(\mathfrak{g}) \to End M$ of the representation to $U(\mathfrak{g})$. Let $Q \in Cent U(\mathfrak{g})$ be the Casimir element corresponding to the Killing form $B_{\mathfrak{g}}$. Thus if $\{x_i\}$ and $\{y_j\}$ are dual bases of \mathfrak{g} with respect to $B_{\mathfrak{g}}$ and π is a representation of \mathfrak{g} then

(2.6)
$$\pi(Q) = \sum_{i=1}^{n} \pi(x_i) \pi(y_i)$$

Let $\lambda \in \Lambda_+$ and let $\pi : \mathfrak{g} \to End M$ be a finite dimensional representation. The representation π is said to be primary of type π_{λ} if every irreducible component of π is equivalent to π_{λ} . One knows that $\pi_{\lambda}(Q)$ is a scalar operator where the scalar is $|\lambda + \rho|^2 - |\rho|^2$. It follows therefore that if π is primary of type π_{λ} , then

(2.7)
$$\pi(Q) = (|\lambda + \rho|^2 - |\rho|^2) I$$

where I here is the identity operator on M.

2.3. The adjoint representation of $\mathfrak g$ on itself will be denoted by $ad_{\mathfrak g}.$ Let

$$\theta:\mathfrak{g}\to End\,\wedge\mathfrak{g}$$

be the representation of \mathfrak{g} on $\wedge \mathfrak{g}$ defined so that $\theta(x) = D_{ad_{\mathfrak{g}}x}$ for any $x \in \mathfrak{g}$. Identify \mathfrak{g} with its dual \mathfrak{g}^* using the Killing form $B_{\mathfrak{g}}$. Then $(\wedge \mathfrak{g}, d)$ is a cochain complex with respect to the usual Lie algebra coboundary operator d. We recall that explicitly,

(2.8)
$$d = \frac{1}{2} \sum_{i=1}^{n} \epsilon(x_i) \theta(y_i)$$

using notation in (2.6). One readily establishes that $d \in Der^1 \wedge \mathfrak{g}$ and $d^2 = 0$. In particular

$$d:\mathfrak{g}\to\wedge^2\mathfrak{g}$$

and one notes that d is equivariant with the action defined by θ . The derived cohomology is Lie algebra cohomology $H^*(\mathfrak{g})$. The following result was implicitly established in [7].

Theorem 2.2. For any $x \in \mathfrak{g}$ let $\pi(x) \in End \wedge \mathfrak{g}$ be defined by putting

(2.9)
$$\pi(x) = \frac{1}{2}(\epsilon(dx) - \iota(dx) + \theta(x))$$

Then

$$\pi:\mathfrak{g}
ightarrow End\,\wedge\mathfrak{g},\quad x\mapsto\pi(x)$$

is representation of g. Furthermore π is primary of type π_{ρ} .

Proof. The Clifford algebra over \mathfrak{g} is denoted by $C(\mathfrak{g})$ in [7]. Following Chevalley in his treatment of Clifford algebras, the underlying vector spaces of $C(\mathfrak{g})$ and $\wedge \mathfrak{g}$ are identified in [7]. Consequently there are two

multiplicative structures on $\wedge \mathfrak{g}$. If $u, v \in \wedge \mathfrak{g}$ then $uv \in \wedge \mathfrak{g}$ denotes the Clifford product and $u \wedge v \in \wedge \mathfrak{g}$ is the original exterior product. Using Clifford commutation, an operator adu on $\wedge \mathfrak{g}$ was defined in §2.3 of [7]. If $u \in \wedge^2 \mathfrak{g}$ (or more generally if u is even) then (adu)(w) = uw - wu for any $w \in \wedge \mathfrak{g}$. By (71) and (106) in [7] one has

(2.10)
$$\theta(x) = ad \frac{dx}{2}$$

for any $x \in \mathfrak{g}$. But then if $\gamma(u) \in End \wedge \mathfrak{g}$, for $u \in \wedge \mathfrak{g}$, is the operator of left Clifford multiplication by u, it follows from (19) in [7] that

(2.11)
$$\gamma(\frac{dx}{2}) = \pi(x)$$

where $\pi(x)$ is defined by (2.9) above. On the other hand by (66) and (106) in [7] the map $\delta : \mathfrak{g} \to \wedge^2 \mathfrak{g}, x \mapsto \frac{1}{2} dx$ is a Lie algebra homomorphism, using Clifford commutation in $\wedge^2 \mathfrak{g}$. But then π is a representation by (2.11) (above). Furthermore π is primary of type π_{ρ} by Theorem 39 in [7], recalling the definitions at the beginning of §5.2 in [7]. QED

§3. The operators \Box and \Box'

3.1. We now introduce two operators \Box and \Box' on $\land \mathfrak{g}$, both of degree 0. Let $\{x_i\}$ be a basis of \mathfrak{g} and let $\{y_i\}$ be the $B_\mathfrak{g}$ -dual basis. Put

$$\Box = \sum_{i=1}^{n} \epsilon(dx_i) \iota(dy_i)$$

and reversing the order of multiplication,

$$\Box' = \sum_{i=1}^{n} \iota(dx_i) \epsilon(dy_i)$$

It is clear that the definitions are independent of the choice of basis $\{x_i\}$. Recall that the identity operator on $\wedge \mathfrak{g}$ is denoted by I.

Theorem 3.1. One has

(3.1)
$$3|\rho|^2 I = \frac{1}{4}(\theta(Q) - \Box - \Box')$$

Proof. Obviously $|\rho + \rho|^2 - |\rho|^2 = 3|\rho|^2$. Using the notation of (2.6) it then follows from (2.7) and Theorem 2.2 that

(3.2)
$$3|\rho|^2 I = \frac{1}{4}(\theta(Q) - \Box - \Box') + \beta_4 + \beta_2 + \beta_{-2} + \beta_{-4}$$

where

$$\beta_4 = \frac{1}{4} \sum_{i=1}^n \epsilon(dx_i)\epsilon(dy_i)$$

$$\beta_{-4} = \frac{1}{4} \sum_{i=1}^n \iota(dx_i)\iota(dy_i)$$

$$\beta_2 = \frac{1}{4} \sum_{i=1}^n (\epsilon(dx_i)\theta(dy_i) + \theta(dx_i)\epsilon(dy_i))$$

$$\beta_{-2} = -\frac{1}{4} \sum_{i=1}^n (\iota(dx_i)\theta(dy_i) + \theta(dx_i)\iota(dy_i))$$

But now both sides of (3.1) are operators of degree 0. On the other hand β_i , for $i \in \{4, 2, -2, -4\}$, is an operator of degree *i*. Thus all β_i vanish by (3.2). But then (3.1) follows from (3.2). QED

3.2. We can further simplify (3.1) by applying the "strange formula"

$$|\rho|^2 = \frac{\dim \mathfrak{g}}{24}$$

of Freudental-de Vries. See p. 243 in [1]. But in fact (3.1) yields a proof of the "strange formula" (3.3). Indeed first note that for any $x, y \in \mathfrak{g}$ one has

(3.4)
$$(dx, dy) = -\frac{1}{2}(x, y)$$

To establish (3.4) let ∂ be the negative transpose of d with respect to $B_{\wedge \mathfrak{g}}$. Then $L = d\partial + \partial d$ is the "Hodge" Laplacian. But it is an easy consequence of (2.8) that $L = \frac{1}{2}\theta(Q)$. See e.g. (2.1.7) in [4]. But, by definition of the Killing form, $\theta(Q)$ reduces to the identity on \mathfrak{g} . Thus $(dx, dy) = -(x, Ly) = \frac{1}{2}(x, y)$ proving (3.4). Now apply both sides of (3.1) to $1 \in \wedge^0 \mathfrak{g}$. Then by (3.4)

$$3|\rho|^2 = -\frac{1}{4}\sum_{i=1}^n (dx_i, dy_i)$$
$$= \frac{n}{8}$$

But this proves the "strange formula" (3.3) of Freudental-de Vries. Applying the formula to (3.1) one has the refinement

(3.5)
$$\frac{n}{2}I = \theta(Q) - \Box - \Box'$$

3.3. Now by applying the commutation formula (2.2) we can separate out the terms and solve individually for \Box and \Box' . We first make a better choice of basis for \mathfrak{g} . Let \mathfrak{k} be a compact real form of \mathfrak{g} and let $\mathfrak{q} = i\mathfrak{k}$. Then $B_{\mathfrak{g}}$ is positive definite on \mathfrak{q} . Let $\{z_i\}$ be an orthonormal basis of \mathfrak{q} . Then in the definition of \Box and \Box' we can choose

$$(3.6) x_i = y_i = z_i$$

Let ε be the identity operator on \mathfrak{g} so that the derivation D_{ε} is the Euler operator on $\wedge \mathfrak{g}$. That is

$$(3.7) D_{\varepsilon} = k \ on \ \wedge^{k} \mathfrak{g}$$

Theorem 3.2. One has

(3.8)
$$\Box = \frac{1}{2}(\theta(Q) - D_{\varepsilon})$$
$$\Box' = \frac{1}{2}(\theta(Q) - (nI - D_{\varepsilon}))$$

Proof. For $x \in \mathfrak{g}$ note that (see §2.1)

(3.9)
$$\tau(\frac{dx}{2}) = ad_{\mathfrak{g}}x$$

Indeed (3.9) is implied by (18), (71) and (106) in [7]. Let $\{z_i\}$ be as in (3.6) and let $\alpha_i = -(ad_{\mathfrak{g}}z_i)^2 \in End\mathfrak{g}$. By definition of the Killing form, one has $tr \alpha_i = -1$. Thus

(3.10)
$$\epsilon(dz_i)\iota(dz_i) - \iota(dz_i)\epsilon(dz_i) = D_{\alpha_i} + \frac{1}{2}I$$

by (2.2) and (3.9). But $\theta(Q)$ reduces to the identity ε on \mathfrak{g} so that $\sum_{i=1}^{n} \alpha_i = -\varepsilon$. Hence, by linearity, $\sum_{i=1}^{n} D_{\alpha_i} = -D_{\varepsilon}$. Thus

(3.11)
$$\Box - \Box' = \sum_{i=1}^{n} (\epsilon(dz_i)\iota(dz_i) - \iota(dz_i)\epsilon(dz_i))$$
$$= \frac{n}{2}I - D_{\varepsilon}$$

138

But

$$(3.12) \qquad \qquad \Box + \Box' = \theta(Q) - \frac{n}{2}I$$

by (3.5). But then adding and subtracting (3.11) and (3.12) yields (3.8). QED

3.4. We define a Hilbert space structure H in $\wedge \mathfrak{g}$. The inner product of $u, v \in \wedge \mathfrak{g}$ will be denoted by $\{u, v\}$. This structure has been defined in §3.2 of [3] and we refer to that reference for a more comprehensive treatment of H. The discussion here will be limited to what will be needed in this paper. The real exterior algebra $\wedge_{\mathbb{R}}\mathfrak{q}$ is a real form of \mathfrak{g} . Furthermore $B_{\wedge \mathfrak{g}}$ is positive definite on $\wedge_{\mathbb{R}}\mathfrak{q}$. One defines a *-operation in $\wedge \mathfrak{g}$ by defining $(u + iv)^* = u - iv$ for $u, v \in \wedge_{\mathbb{R}}\mathfrak{q}$. Then H is given by defining $\{u, v\} = (u, v^*)$ for $u, v \in \wedge \mathfrak{g}$. For any $\beta \in End \wedge \mathfrak{g}$, let $\beta^* \in End \wedge \mathfrak{g}$ be the Hermitian adjoint of β with respect to H. By (3.9.3) in [3] one has

$$(3.13) \qquad \qquad \iota(u)^* = \epsilon(u^*)$$

for any $u \in \wedge \mathfrak{g}$. But for $z \in \mathfrak{g}$ one has

$$(3.14) dz^* = -dz$$

Indeed since $[\mathfrak{q},\mathfrak{q}] \subset \mathfrak{k} = i\mathfrak{q}$, the equation (3.14) clearly follows from (2.8) when we make the choice given in (3.6).

Proposition 3.3. Let $\{z_i\}$ be the basis of \mathfrak{g} defined as in (3.6). Then the operators $\epsilon(dz_i)\iota(dz_i)$ and $\iota(dz_i)\epsilon(dz_i)$ are negative semidefinite with respect to H for all i. In particular $\Box = \sum_{i=1}^{n} \epsilon(dz_i)\iota(dz_i)$ and $\Box' = \sum_{i=1}^{n} \iota(dz_i)\epsilon(dz_i)$ are negative semidefinite with respect to H.

Proof. This is immediate from (3.13) and (3.14). QED

$\S4$. The main results

4.1. Let C be the set of all commutative Lie subalgebras \mathfrak{a} of \mathfrak{g} . If $\mathfrak{a} \in C$ and $k = \dim \mathfrak{a}$ let $[\mathfrak{a}] = \wedge^k \mathfrak{a}$. Regard $[\mathfrak{a}]$ as a 1-dimensional subspace of $\wedge^k \mathfrak{g}$ and let $C \subset \wedge \mathfrak{g}$ be the span of all $[\mathfrak{a}]$ for all $\mathfrak{a} \in C$. It is obvious that $C = \sum_{k=1}^n C^k$ is a graded \mathfrak{g} -submodule (with respect to θ) of $\wedge \mathfrak{g}$. Of course $C^k = 0$ for $k > n_{abel}$ where n_{abel} is the maximal dimension of an abelian Lie subalgebra of \mathfrak{g} .

One of the results in [4] is that C (denoted by A in [4]) is a multiplicity free \mathfrak{g} -module. See Theorem (8) in [4]. If Ξ is an index set for the set of all abelian ideals $\{\mathfrak{a}_{\xi}\}, \xi \in \Xi$, of \mathfrak{b} then the irreducible components of C may also be indexed by Ξ . The irreducible components, written as $C_{\xi}, \xi \in \Xi$, are characterized by the property that $[\mathfrak{a}_{\xi}]$ is the highest weight space of C_{ξ} . One therefore has the unique decomposition

(4.1)
$$C = \sum_{\xi \in \Xi} C_{\xi}$$

into irreducible components. For Peterson's results and our subsequent new results about C, see [8].

For k = 0, ..., n, let m_k be the maximal eigenvalue of the Casimir operator $\theta(Q)$ on $\wedge^k \mathfrak{g}$. The following result is a restatement of Theorem (5) in [4] (noting that m_k in [4] is one half its value here).

Theorem 4.1. For k = 0, ..., n, one has

$$(4.2) m_k \le k$$

Furthermore one has equality $m_k = k$ if and only if there exists an abelian subalgebra $\mathfrak{a} \subset \mathfrak{g}$ such that $\dim \mathfrak{a} = k$, that is, if and only if $k \leq n_{abel}$. Moveover in such a case the eigenspace for the eigenvalue k of $\theta(Q)$ in $\wedge^k \mathfrak{g}$ is exactly C^k . In particular $\theta(Q)$ has integral (and consecutive) eigenvalues on C.

As an example, illustrating the first part of Theorem 4.1, if $\mathfrak{g} \simeq E_8$, then, since $n_{abel} = 36$, one has $m_k = k$ for $k \leq 36$. But $m_k < k$ for $k \geq 37$.

Remark 4.2. Note that (4.2) also follows from Theorem 3.2, using Proposition 3.3, since the Proposition 3.3 implies that the spectrum of \Box is non-negative.

4.2. We can now establish one of the main results of the paper. Let \mathcal{A} be the ideal in $\wedge \mathfrak{g}$ generated by all $dx \in \wedge^2 \mathfrak{g}$ for $x \in \mathfrak{g}$. Corollary (5.1) in [4] asserts that

(4.3)
$$\wedge^2 \mathfrak{g} = d\mathfrak{g} \oplus C^2$$

is a direct sum. Note that (4.5) below in Theorem 4.3 is a generalization of (4.3). Recall the definition \Box in §3.

Theorem 4.3. One has $C = Ker \square$. In addition

$$(4.4) C = \{ u \in \land \mathfrak{g} \mid \iota(dx)u = 0, \, \forall x \in \mathfrak{g} \}$$

Moreover $B_{\wedge g}$ is non-singular on C and

$$(4.5) \qquad \qquad \wedge \mathfrak{g} = \mathcal{A} \oplus C$$

is a $B_{\wedge g}$ -orthogonal direct sum.

Proof. The statement that $C = Ker \square$ is an immediate consequence of Theorem 4.1 and (3.8) in Theorem 3.2. On the one hand since, using the notation of Proposition 3.3, the operators $\epsilon(dz_i)\iota(dz_i)$ are negative semidefinite with respect to H, one has

(4.6)
$$Ker \Box = \bigcap_{i=1}^{n} Ker \,\epsilon(dz_i)\iota(dz_i)$$

On the other hand $\epsilon(dz_i) = -\iota(dz_i)^*$ by (3.13) and (3.14). Hence

(4.7)
$$Ker \epsilon(dz_i)\iota(dz_i) = Ker \iota(dz_i)$$

This establishes (4.4). Of course $B_{\wedge \mathfrak{g}}$ is non-singular on $\wedge^k \mathfrak{g}$ for any $k = 0, \ldots, n_{abel}$. But then since \Box is diagonalizable and symmetric with respect to $B_{\wedge \mathfrak{g}}$ it follows that the restriction of $B_{\wedge \mathfrak{g}}$ to the eigenspace C_k of \Box in $\wedge^k \mathfrak{g}$ is non-singular. Hence $B_{\wedge \mathfrak{g}}$ is non-singular on C. But then (4.5) follows immediately from (4.4) and the equality $(dx \wedge v, u) = (v, \iota(dx)u)$ for any $u, v \in \wedge \mathfrak{g}$ and $x \in \mathfrak{g}$. QED

4.3. Fix an element $\mu \in \wedge^n \mathfrak{g}$ where $(\mu, \mu) = 1$. For any $v \in \wedge \mathfrak{g}$ let $\widetilde{v} = \iota(v)\mu$. Also if $M \subset \wedge \mathfrak{g}$ is a subspace let $\widetilde{M} = \{\widetilde{v} \mid v \in M\}$. It is a simple fact that if $M \subset \wedge \mathfrak{g}$ is a graded subspace, then

(4.8)
$$\widetilde{\widetilde{M}} = M$$

Furthermore since $\theta(\mathfrak{g})$ annihilates μ it is clear that if M is a \mathfrak{g} submodule (with respect to θ) then $M \to \widetilde{M}, v \mapsto \widetilde{v}$ is a \mathfrak{g} -module isomorphism. In particular \widetilde{C} is isomorphic to C as a \mathfrak{g} -module.

(4.9) Corollary 4.4. One has $\widetilde{C} = Ker \Box'$. In addition $\widetilde{C} = \{v \in \land \mathfrak{g} \mid dx \land v = 0, \forall x \in \mathfrak{g}\}$ **Proof.** If $v \in \wedge \mathfrak{g}$ and $x \in \mathfrak{g}$ note that

(4.10)
$$\widetilde{dx \wedge v} = \iota(dx)\widetilde{v}$$

But then (4.9) follows from (4.4) and (4.8). The argument in the proof of Theorem 4.3 establishing the equivalence of the equation $C = Ker \square$ with (4.4) likewise, upon interchanging $\epsilon(dz_i)$ with $\iota(dz_i)$, clearly establishes the equivalence of the equation $\tilde{C} = Ker \square'$ with (4.9). QED

4.4. We will express (4.4) and (4.9) in a "functorial" way. Consider the symmetric algebra $S(\mathfrak{g})$ over \mathfrak{g} . Since the elements of $\wedge^2 \mathfrak{g}$ commute with each other there exists a unique homomorphism

$$(4.11) s: S(\mathfrak{g}) \to \wedge \mathfrak{g}$$

where s(x) = dx for $x \in \mathfrak{g}$. The homomorphism s of course defines the structure of an $S(\mathfrak{g})$ module on $\wedge \mathfrak{g}$. Furthermore since s is a \mathfrak{g} -map with respect to the adjoint action, this $S(\mathfrak{g})$ -module structure is equivariant with respect to the adjoint action.

The functors $Ext^{j}_{S(\mathfrak{g})}(\mathbb{C}, \wedge \mathfrak{g})$ clearly have the structure of \mathfrak{g} -modules. Considering only the two extreme values of j, one has \mathfrak{g} -module maps

$$(4.12) \qquad \qquad Ext^0_{S(\mathfrak{g})}(\mathbb{C},\wedge\mathfrak{g})\to\wedge\mathfrak{g}$$

 and

$$(4.13) \qquad \qquad \wedge \mathfrak{g} \to Ext^n_{S(\mathfrak{g})}(\mathbb{C}, \wedge \mathfrak{g})$$

Recalling the definitions of Ext at these two extremes, (4.4) and (4.9) immediately translate to

Theorem 4.10. The map (4.12) defines a g-module isomorphism

(4.14)
$$Ext^0_{S(\mathfrak{g})}(\mathbb{C},\wedge\mathfrak{g})\to\widetilde{C}$$

and the map (4.13) restricts to a g-module isomorphism

(4.15)
$$C \to Ext^n_{S(\mathfrak{g})}(\mathbb{C}, \wedge \mathfrak{g})$$

4.5. An element $u \in \wedge \mathfrak{g}$ is called totally exact if it is the sum of products of elements of the form $dx, x \in \mathfrak{g}$. Let A be the image of s so

that A is the algebra of all totally exact elements in $\wedge \mathfrak{g}$. See Theorem 1.4 in [6] for a characterization of A. Some features of the \mathfrak{g} -module structure of A were studied and used in [7]. See Theorem 69 in [7]. Of course the $S(\mathfrak{g})$ module structure on $\wedge \mathfrak{g}$ can be regarded as defining an A-module structure on $\wedge \mathfrak{g}$. Consider the question of determining generators for this module. A subspace $C_o \subset \wedge \mathfrak{g}$ will be said to be A-generating if C_o is a graded \mathfrak{g} -submodule (with respect to θ) of $\wedge \mathfrak{g}$ such that $\wedge \mathfrak{g} = A \wedge C_o$.

Theorem 4.6. The subspace C is A-generating so that

$$(4.16) \qquad \qquad \wedge g = A \wedge C$$

Moreover it is minimal among all A-generating subspaces in $\land \mathfrak{g}$. In fact if C_o is any graded \mathfrak{g} -submodule (with respect to θ) of $\land \mathfrak{g}$ then C_o is A-generating if and only if $C \subset C_o$.

Proof. The proof that C is A-generating is a standard exercise using (4.5). Assume inductively that for $k \ge 1$, $\wedge^j \mathfrak{g} \subset A \wedge C$ for all $j \le k$. Obviously $\wedge^0 \mathfrak{g} = C^0 \subset A \wedge C$ and $\wedge^1 \mathfrak{g} = C^1 \subset A \wedge C$. Let $u \in \wedge^{k+1} \mathfrak{g}$. By (4.5) we may write u = v + w where $v \in \mathcal{A}^{k+1}$ and $w \in C^{k+1}$. Then $w \in A \wedge C$. But $v \in d\mathfrak{g} \wedge (\wedge^{k-1}\mathfrak{g})$. But $\wedge^{k-1}\mathfrak{g} \subset A \wedge C$ by induction. Hence $v \in A \wedge C$. Thus C is A-generating.

Obviously if $C \subset C_o$ one has $\wedge \mathfrak{g} = A \wedge C_o$. Now for $k = 0, \ldots, n$, let $p_k : \wedge^k \mathfrak{g} \to C^k$ be the projection defined by (4.5). Obviously p_k is a \mathfrak{g} -map. Assume $C_o \subset \wedge \mathfrak{g}$ is A-generating. Then clearly the restriction $p_k : C_o^k \to C^k$ is a surjective \mathfrak{g} -map. However by Theorem 4.1 the irreducible representations \mathfrak{g} occurring in C^k do not occur in \mathcal{A}^k . Thus one must have $C^k \subset C_o^k$. Hence $C_o \subset C$. QED

Remark 4.7. Note that (4.15) implies that the set of elements of the form $y_1 \wedge \cdots \wedge y_k \wedge dx_1 \wedge \cdots \wedge dx_m$ span $\wedge \mathfrak{g}$, where $x_i, y_j \in \mathfrak{g}$ and the $\{y_j\}$ pairwise commute. QED

References

- H. Freudenthal and H. de Vries, *Linear Lie Groups*, Academic Press, 1969.
- [2] C. Chevalley, The Betti numbers of the exceptional Lie groups, Proceedings of the International Congress of Mathematicians, 1950, Vol. II, 21-24.

- [3] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math., Vol. 74(1961), No. 2, 329-387.
- [4] B. Kostant, Eigenvalues of a Laplacian and commutative Lie subalgebras, *Topology*, Vol. 3(1965), Suppl. 2, 147-159.
- [5] B. Kostant, On MacDonald's η-function formula, the Laplacian, and generalized exponents, Adv. in Math., Vol. 20(1976), No. 2, 179-212.
- [6] B. Kostant, A Lie algebra generalization of the Amitsur-Levitski theorem, Adv. in Math., Vol. 40(1981), No. 2.
- [7] B. Kostant, Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the ρ -decomposition $C(\mathfrak{g}) = End V_{\rho} \otimes C(P)$, and the \mathfrak{g} -module structure of $\wedge \mathfrak{g}$, Adv. in Math., Vol. 125(1997), No. 2, 275-350.
- [8] B. Kostant, The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations, IMRN, 5(1998), 225-252.
- [9] E. Looijenga and and V. A. Lunts, A Lie algebra attached to a projective variety, *Inventiones Mathematica*, Vol. 129(1997), 361-412.
- [10] A. I. Malcev, Commutative subalgebras of semisimple Lie algebras, *Izv. Akad. Nauk SSR, Ser. Mat.*, Vol. 9(1945), 291-300 (Russian); *Translation*, No. 40, Series 1, American Mathematics Society (English).
- [11] W. Schmid, L^2 cohomology and the discrete series, Ann. of Math., Vol. 103(1976), 375-394.
- [12] A. Weil, variétés kahlériennes, Actualités scientifiques et industrielles 1267, Institut de Math. de l'Univ. de Nancago.

Bertram Kostant Dept. of Math. MIT Cambridge, MA 02139 E-mail kostant@math.mit.edu