Advanced Studies in Pure Mathematics 25, 1997 CR-Geometry and Overdetermined Systems pp. 276–284

A Report on Isolated Singularities by Transcendental Methods

Takeo Ohsawa

Dedicated to Professor M. Kuranishi on his 70th birthday

1. An isolated singularity (of a complex analytic space) is by definition a germ of a reduced and irreducible complex analytic space at an isolated singular point. By a model of an isolated singularity we shall mean an irreducible complex analytic subset V of \mathbb{C}^N containing the origin as the unique singular point. To any model V of an isolated singularity (V, o), one can associate three manifolds of completely different nature.

i) A nonsingular model of V: By Hironaka's desingularization theorem, there exists a complex manifold \tilde{V} and a proper holomorphic map $\pi: \tilde{V} \to V$ such that $\pi | \tilde{V} \setminus \pi^{-1}(o)$ is a biholomorphism. In virtue of the existence of \tilde{V} , equivalence questions between the isolated singularities can be transferred to more geometric ones (cf. [G-2], [H-R]). Moreover a lot of work has been done on the classification of isolated singularities by manipulating the invariants on \tilde{V} (cf. [I]).

ii) $V \cap S_{\varepsilon}$, where $S_{\varepsilon} = \{z \in \mathbb{C}^N \mid ||z|| = \varepsilon\}$ and ε is so chosen that $S_{\varepsilon'}$ and V intersect transversally for all $\varepsilon' \in (0, 2\varepsilon)$: As a differentiable manifold, $V \cap S_{\varepsilon}$ falls into the class of strongly pseudoconvex CR manifolds, or spc manifolds. Since the spc structure naturally yields L^2 estimates for the tangential Cauchy-Riemann operators, the method of PDE in the theory of deformation of complex manifolds is carried over to spc manifolds. As a result, several fundamental questions including the construction of the versal family of singularities have been solved by this method (cf. [A-1], [A-M] and [N-O]).

iii) $V \setminus \{o\}$: Manifolds of this type appear as the ends of locally symmetric varieties of rank one, and they were studied in a general framework by Andreotti-Grauert [A-G] as the ends of "pseudoconcave"

Received September 25, 1995

Revised December 8, 1995

spaces. Afterwards it was noticed that some questions on isolated singularities are tractable as a sort of boundary value problem on $V \setminus \{o\}$ for the $\bar{\partial}$ -operator. In fact, analysis of this type turned out to be useful when one wants to understand the intersection cohomology of projective varieties (cf. [O-4,5,9]).

The purpose of this note is to report miscellaneous results on these three types of manifolds that are obtained since Professor M. Kuranishi gave a series of inspiring lectures at RIMS in 1976.

2. Given any desingularization $\pi : \tilde{V} \to V$, $\pi^{-1}(o)$ is called the *exceptional set*. Topology of the exceptional set is somewhat restrictive in the following sense.

Theorem 1. dim_{\mathbb{C}} $H^r(\pi^{-1}(o),\mathbb{C}) \equiv 0 \pmod{2}$ if $r \ge n$ and $r \equiv 1 \pmod{2}$.

This result seems to have been a sort of folklore in the late seventies (cf. [L-R], [F]), but rigorous proofs appeared only gradually in [O-1,2,6] and [O-T]. Although a complete proof of Theorem 1 is only available via Artin's algebraization theorem and Deligne's mixed Hodge theory, it may be worthwhile to note that the following constitutes already a significant part of the proof, which motivated further generalization of the Hodge theory to noncompact manifolds.

Theorem 2 (cf. [O-1,2], [O-T]). Let X be a Kähler manifold of dimension n and let $D \subset X$ be a strongly pseudoconvex domain with C^2 -smooth boundary. Then there exists a complete Kähler metric ω on D such that $H^r(D, \mathbb{C})$ are canonically isomorphic to the space of L^2 harmonic forms of degree r with respect to ω for all r > n.

The range r > n is optimal. In fact, $\dim_{\mathbb{C}} H^n(D, \mathbb{C}) < \infty$ but the space of L^2 harmonic *n*-forms is infinite dimensional for any strongly pseudoconvex domain. As the above ω one may take any complete Kähler metric which is quasi-isometrically equivalent to the Levi form of a C^{∞} exhaustion function with bounded gradient outside a compact subset of D. A typical example of such a metric is the Bergman metric on strongly pseudoconvex domains in \mathbb{C}^n (cf. [D-F]). For the Bergman metric, the L^2 cohomology groups of type (p,q) are known to be infinite dimensional for p + q = n (cf. [D-F], [O-8]). Recently the boundary values of these cohomology classes are studied for the unit ball (cf. [J-K]).

Applying Theorem 2, one can deduce the following Hartogs type theorem.

Theorem 3 (cf. [O-2]). The natural restriction map

$$\rho^{p,q}: H^{p,q}(\tilde{V}) \longrightarrow H^{p,q}(\tilde{V} \setminus \pi^{-1}(0))$$

is surjective if p + q < n - 1.

The range p + q < n - 1 is also optimal. In fact, since $\tilde{V} \setminus \pi^{-1}(o) \cong V \setminus \{o\}$ and $H^{n,0}(\tilde{V})$ is naturally identified with the set of L^2 holomorphic *n*-forms on $V \setminus \{o\}$, dim_{\mathbb{C}} Coker $\rho^{n,0}$ does not depend on the choice of the nonsingular model \tilde{V} . It is easy to see that dim_{\mathbb{C}} Coker $\rho^{n,0} = \dim_{\mathbb{C}} H^1(\tilde{V}, \mathcal{O}_{\tilde{V}})$ and to verify that $H^1(\tilde{V}, \mathcal{O}_{\tilde{V}}) \neq \{o\}$ if dim V = 2 and \tilde{V} contains a nonrational curve.

Van Straten [V-S] discovered a remarkable application of Theorem 3 to Zariski-Lipman conjecture by showing for the case dim $V \ge 3$ that the germ (V, o) is nonsingular if the tangent sheaf of V is locally free.

As for the de Rham cohomology classes on $\tilde{V} \setminus \pi^{-1}(o)$, we have the same extendability result for the degrees less than n-1. This range is also optimal in general, although one can prove the following by analysing a spectral sequence that abuts to $H^r(\pi^{-1}(o), \mathbb{C})$.

Theorem 4 (cf. [O-6]). If the inclusion map $\pi^{-1}(0) \hookrightarrow \tilde{V}$ is a homotopy equivalence, the natural restriction map

$$H^r(\tilde{V},\mathbb{C}) \longrightarrow H^r(\tilde{V} \setminus \pi^{-1}(0),\mathbb{C})$$

is surjective for $r \leq n-1$.

Corollary. In the above situation, every cohomology class in $H^n(\tilde{V}, \mathbb{C})$ can be represented by a compactly supported closed form.

Thus we are naturally led to the following

Question. Is every closed holomorphic (n-1)-form on $\tilde{V} \setminus \pi^{-1}(o)$ holomorphically extendable to \tilde{V} ?

Note that this is certainly true if n = 1, since closed 0-forms are locally constant functions. The first nontrivial case n = 2 was solved affirmatively by T. Ueda [U]. Mentioning further a partial result, we have that if \tilde{V} is a Zariski open subset of a nonsingular projective variety Z and the given form is extendable to $Z \setminus \pi^{-1}(o)$ then it is extendable also across $\pi^{-1}(o)$. In fact one can prove the following. **Theorem 5** (cf. [F1], [O-10]). Let X be an irreducible projective variety with singular locus Y, and let p be a nonnegative integer satisfying $p < \operatorname{codim} Y$. Then a holomorphic p-form f is extendable holomorphically to a nonsingular model of X if and only if f is closed.

After [O-10] was written down, S. Kosarew settled the question affirmatively by an algebraic method (personal communication).

As another question on \tilde{V} we would like to mention the following which was asked by S. Nakano around 1976.

Problem. Is any d-exact (1,1)-form on \tilde{V} of the form $\partial \bar{\partial} \varphi$?

In case the canonical bundle of \tilde{V} is trivial, one may employ the above mentioned L^2 Hodge theory (cf. Theorem 2 and the remark) to solve it affirmatively. As a result, one has the smoothness of Kuranishi spaces for the deformation of certain isolated singularities (cf. [M]). It should be noted, however, that the answer to Nakano's question is negative in general, because it is not necessarily true that all the topologically trivial line bundles over \tilde{V} arise as flat U(1) bundles.

3. Applying Theorem 4, one can describe some topological properties of $V \cap S_{\varepsilon}$.

Theorem 6. Let $\alpha_i \in H^{r_i}(V \cap S_{\varepsilon}, \mathbb{C})$, i = 1, 2, ..., m. Then the cup product $\alpha_1 \cup \alpha_2 \cup \cdots \cup \alpha_m$ is zero whenever $\sum_{i=1}^m r_i \ge n$ and $r_i \le n-1$ for all i.

Proof. Let $\tilde{V}_{\varepsilon} := \{w \in \tilde{V} \mid ||\pi(w)|| < 2\varepsilon\}$. Then, by Theorem 4 there exist $\tilde{\alpha}_i \in H^{r_i}(\tilde{V}_{\varepsilon}, \mathbb{C})$ such that $\tilde{\alpha}_i | V \cap S_{\varepsilon} = \alpha_i$. Since $\alpha_1 \cup \cdots \cup \alpha_m = (\tilde{\alpha}_1 \cup \cdots \cup \tilde{\alpha}_m) | V \cap S_{\varepsilon}$, we obtain the conclusion from the corollary of Theorem 4.

Corollary. If $n \ge 2$, there does not exist an isolated singularity (V, o) for which $V \cap S_{\varepsilon}$ is homotopically equivalent to $\underbrace{S^1 \times \cdots \times S^1}_{2n-1}$.

Such a phenomenon was first noticed by D. Sullivan for hypersurface singularities of dimension 2 (cf. [Ka]).

As we have mentioned earlier, there is a natural abstract notion of spc manifolds. Recall that a (2n-1)-dimensional differentiable manifold M of class C^{∞} is called a CR manifold if there are subbundles T, T', Fof the complexified tangent bundle $T_M \otimes \mathbb{C}$ such that T is involutive, $T = \overline{T'}$, rank_C F = 1 and $T_M \otimes \mathbb{C} = T \oplus T' \oplus F$. For any local frame

 $\{\omega_1,\ldots,\omega_{n-1}\}$ for T and a local frame θ for F with $\bar{\theta} = -\theta$, one has a matrix valued function (c_{ij}) defined by $[\omega_i, \bar{\omega}_j] = c_{ij}\theta \pmod{T \oplus T'}$. We say M is a strongly pseudoconvex CR manifold, or shortly an spc manifold, if one can choose the frames $\{\omega_i\}$ and θ around each point of M so that (c_{ij}) is positive definite. $V \cap S_{\varepsilon}$ is then an spc manifold if one puts $T = (T_{V \cap S_{\varepsilon}} \otimes \mathbb{C}) \cap T^{1,0}_{\mathbb{C}^N}, T' = \bar{T}$ and $F = (T \oplus T')^{\perp}$. In the same manner, the boundary of any strongly pseudoconvex domain is, if it is of class C^{∞} , regarded as an spc manifold. The following result ensures that passage from $V \cap S_{\varepsilon}$ to the class of spc manifolds is a good abstraction.

Theorem 7(cf. [B], [O-3]). Every connected compact spc manifold of dimension ≥ 5 is the boundary of a strongly pseudoconvex domain in a complex manifold.

Therefore, combining Theorem 7 with the remark preceding Theorem 4, one has the following by the same argument as in the proof of Theorem 6.

Theorem 8. Let M be a connected compact spc manifold of dimension 2n-1 with $n \geq 3$. Then the cup product $\alpha_1 \cup \cdots \cup \alpha_m$ of $\alpha_i \in H^{r_i}(M, \mathbb{C})$ is zero whenever $\sum_{i=1}^m r_i \geq n+1$ and $r_i \leq n-2$ for all i.

Question. Is there any direct proof of Theorem 8 that does not use Theorem 7 and the Hodge theory on strongly pseudoconvex domains?

A recent work of T. Akahori [A-2] may lead to an answer to it.

For three dimensional spc manifolds, it is well known that they are even locally not embeddable as a real hypersurface of a complex manifold (cf. [Ni]). As for the recent embeddability and non-embeddability results, the reader is referred to articles of C. Epstein [E-1,2].

4. Although the compactness of $V \cap S_{\varepsilon}$ is a great advantage for using analytic tools, one might also be inclined to study analytic objects on the manifold $V \setminus \{o\}$ because it carries a complete Kähler metric by a theorem of Grauert (cf. [G1]). Since Grauert's Kähler metric on $V \setminus \{o\}$ is of the form $\partial \bar{\partial} \varphi$, where φ is bounded near o, one can immediately deduce from Bochner-Nakano's formula that the $\bar{\partial}$ -equation $\bar{\partial} f = g$ has an L^2 solution near o for any $\bar{\partial}$ -closed L^2 (p,q)-form g on V, provided that p + q > n. In order to proceed further, we need the following observation due to Donnelly and Fefferman [D-F] (See [O-T] for a simplified proof).

280

Theorem 9. Let (M, ω) be a connected complete Kähler manifold of dimension n such that there exists a C^{∞} strictly plurisubharmonic function φ with bounded gradient on M such that $\partial \bar{\partial} \varphi$ is quasiisometrically equivalent to ω . Then the $L^2\bar{\partial}$ -cohomology group of (M, ω) of type (p, q) vanishes if $p + q \neq n$.

Metrics satisfying the hypothesis of Theorem 9 arise very naturally. Instances are the metric $\partial \bar{\partial}(-\log(-\log ||z||))$ on the punctured unit ball $\mathbb{B}_* := \{z \in \mathbb{C}^N \mid 0 < ||z|| < 1\}$ and its restriction to $V \cap \mathbb{B}_*$. As another immediate instance, one can mention the Bergman metric on a strongly pseudoconvex domain in \mathbb{C}^n . A remarkable fact attached to the L^2 cohomology vanishing in Theorem 9 is that the L^2 estimates

$$||u|| \le C(||\bar{\partial}u|| + ||\bar{\partial}^*u||)$$

hold for $C = 3 \sup |\partial \varphi|_{\omega}$. This allows us to study the L^2 cohomology of $V \cap \mathbb{B}_*$ with respect to non-complete metrics that are the limits of $\partial \bar{\partial} \varphi_t$ satisfying the uniformity condition $\partial \bar{\partial} \varphi_t \geq \partial \varphi_t \cdot \bar{\partial} \varphi_t$. Among such metrics is the restriction of the Euclidean metric $\partial \bar{\partial} ||z||^2$ to $V \cap$ \mathbb{B}_* . To state results of this kind, let us denote by $H_{(2)}^{p,q}(U)$, for any neighbourhood U of o in V, the $L^2 \bar{\partial}$ -cohomology group of $U \setminus \{o\}$ of type (p,q). For the unit ball $\mathbb{B} = \{z \in \mathbb{C}^N \mid ||z|| < 1\}$, it has long been known that $H_{(2)}^{0,q}(\mathbb{B}) = \{0\}$ for $q \geq 1$ (cf. [Hö]). By the above mentioned argument one can show that $H_{(2)}^{p,q}(\mathbb{B} \cap V) = \{0\}$ if p+q > n (cf. [O-4]). If one denotes by $H_{(2),0}^{p,q}(\mathbb{B} \cap V)$ the $L^2 \bar{\partial}$ -cohomology of $\mathbb{B}_* \cap V$ with respect to $\partial \bar{\partial} ||z||^2$ with supports contained in compact subsets of V, one has also the dual vanishing $H_{(2),0}^{p,q}(\mathbb{B} \cap V) = \{0\}, p+q < n$ (cf. [O-7]). Similarly one has also the vanishing of the L^2 de Rham cohomology groups for the corresponding degrees. Moreover, with an additional technical effort one can manage to prove

Theorem 10 (cf. [O-7,9]).

$$H_{(2)}^r(V \cap \mathbb{B}) = \{0\} \quad for \quad r \ge n$$

and

$$H^r_{(2),0}(V \cap \mathbb{B}) = \{0\} \text{ for } r < n.$$

Here $H^r_{(2)}(V \cap \mathbb{B})$ (resp. $H^r_{(2),0}(V \cap \mathbb{B})$) denotes the r-th L^2 de Rham cohomology group of $V \cap \mathbb{B}$ with respect to $\partial \bar{\partial} ||z||^2$ (resp. that with relatively compact supports in V).

Corollary. For any projective variety $X \subset \mathbb{P}^N$ whose singular points are isolated, the L^2 de Rham cohomology group of X is canonically isomorphic to the intersection cohomology group of X in the sense of Goresky-MacPherson.

As a concluding remark we would like to indicate a next interesting topic in the analysis of isolated singularities. This will be a question of estimating dim $H^{p,q}_{(2)}(V \cap \mathbb{B}_*)$ or dim $H^r_{(2)}(V \cap \mathbb{B}_*)$ with respect to complete Kähler metrics on $V \setminus \{o\}$ that does not satisfy the condition of Theorem 9. Such metrics arise naturally by adding Kähler metrics on \tilde{V} . Therefore it seems that something like the following must have an answer.

Question. Let ω_1 and ω_2 be complete Kähler metrics on $V \setminus \{o\}$. Is it true that $\omega_1 \geq \omega_2$ implies $\dim H^r_{(2)}(V \cap \mathbb{B}_*)_{\omega_1} \geq \dim H^r_{(2)}(V \cap \mathbb{B}_*)_{\omega_2}$?

References

[A-1]	Akahori, T., The new estimate for the subbundles E_j and its appli-
	cation to the deformation of boundaries of strongly pseudo-convex
	domains, Invent. math., 63 (1981), 311–334.

- [A-2] _____, On Hodge theory over strongly pseudoconvex boundaries, Geometric Complex Analysis, edited by Junjiro Noguchi et al., World Scientific, Singapore, 1995.
- [A-M] Akahori, T. and Miyajima, K., An analogy of Tian-Todorov theorem on deformations of CR-structures, Comp. Math., 85 (1993), 57–85.
- [A-G] Andreotti, A. and Grauert, H., Algebraische Körper von automorphen Funktionen, Nachr. Akad. Wiss. Göttingen, II. Math.-Phys., Kl (1961), 39–48.
- [B] Boutet de Monvel, L., Intégration des équations de Cauchy-Riemann induites formelles, Séminaire Goulaouc-Lions-Schwartz, 1974-75: Équations aux derivées partielles linéaires et non linéaires, Exp. No. 9, 14pp.
- [D-F] Donnelly, H. and Fefferman, C., L²-cohomology and index theorem for the Bergman metric, Ann. of Math., 118 (1983), 593-619.
- [E-1,2] Epstein, C.L., A relative index on the space of embeddable CR structures, I, II, preprint.
- [F1] Flenner, H., Extendability of differential forms on non-isolated singularities, Invent. math., 94 (1988), 317–326.
- [F] Fujiki, A., Hodge to de Rham spectral sequence on a strongly pseudoconvex manifold, unpublished.
- [G-1] Grauert, H., Characterisierung der Holomorphiegebiete durch die vollstäntige Kählersche Metrik, Math. Ann., 131 (1956), 38–75.

- [G-2] , Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., 146 (1962), 331–368.
- [H-R] Hironaka, H. and Rossi, H., On the equivalence of imbeddings of exceptional complex spaces, Math. Ann., 156 (1964), 313–333.
- [Hö] Hörmander, L., L^2 -estimates and existence theorems for the $\bar{\partial}$ -operator, Acta Math., **113** (1965), 89–152.
- [I] Ishii, S., Theory of singularities (In Japanese), Springer Verlag Tokyo, to appear.
- [Ka] Kato, M., Some problems in topology, Manifolds-Tokyo 1973, Proceedings of the International Conference on Manifolds and Related Topics in Topology, edited by A. Hattori, Univ. of Tokyo Press, 421–432.
- [L-R] Lieberman, D. and Rossi, H., Deformations of strongly pseudo-convex manifolds, Rencontre sur l'analyse complexe à plusieurs variables et les systèmes surdéterminés (Textes Conf., Univ. Montréal, Montréal, Que., 1974), 119–165 Presses Univ. Montréal, Montréal, Que., 1975.
- [M] Miyajima, K., A Bogomolov-type smoothness on deformations of quasi-Gorenstein cone singularities of dim 4, Geometric Complex Analysis, edited by Junjiro Noguchi et al., World Scientific, Singapore, 1995.
- [N-O] Nakano, S. and Omoto, H., Local deformations of isolated singularities associated with negative line bundle sover abelian varieties, Nagoya Math. J., 75 (1979), 41–70.
- [Ni] Nirenberg, L, On a problem of Hans Lewy, Uspeki Math. Nauk., 292 (1974), 241–251.
- [O-1] Ohsawa, T., A reduction theorem for cohomology groups of very strongly q-convex Kähler manifolds, Invent. math., 63 (1981), 335– 354.
- [O-2] _____, Addendum to: A reduction theorem for cohomology groups of very strongly *q*-convex Kähler manifolds, Invent. math., **66** (1982), 391–393.
- [O-3] _____, Global realization of strongly pseudoconvex CR manifolds, Publ. RIMS Kyoto Univ., 20 (1984), 599–605.
- [O-4] _____, Hodge spectral sequences on compact Kähler spaces, Publ RIMS Kyoto Univ., 23 (1987), 265–274.
- [O-5] _____, Cheeger-Goresky-MacPherson's conjecture for the varieties with isolated singularities, Math. Z., 206 (1991), 219–224.
- [O-6] _____, An extension of Hodge theory to Kähler spaces with isolated singularities of restricted type, Publ. RIMS Kyoto Univ., **24** (1988), 253–263.
- [O-7] _____, Supplement to: "Hodge spectral sequence on compact Kähler spaces", Publ. RIMS Kyoto Univ., 27 (1991), 505–507.

- [O-8] _____, On the infinite dimensionality of the middle L^2 cohomology of complex domains, Publ. RIMS Kyoto Univ., **25** (1989), 499–502.
- $[\text{O-9}] \qquad \underbrace{\qquad}_{\text{...}}, \text{ On the } L^2 \text{ cohomology group of isolated singularities, Adv.} \\ \text{Stud. in Pure Math., 22, Progress in Differential Geometry, 1993,} \\ 247-263. \end{aligned}$
- [O-10] _____, On the removable singularity of differential forms on algebraic varieties, preprint.
- [O-T] Ohsawa, T. and Takegoshi, K., Hodge spectral sequence on pseudoconvex domains, Math. Z., 197 (1988), 1–12.
- Ueda, T., Neighbourhoods of a rational curve with a node, Publ. RIMS Kyoto Univ., 27 (1991), 681–693.
- [V-S] Van Straten, D. and Steenbrink, J., Extendability of holomorphic differential forms near isolated hypersurface singularities, Abh. Math. Sem. Univ. Hamburg, 55 (1985), 97–110.

Graduate School of Polymathematics Nagoya University Chikusa-ku, Nagoya 464-01 Japan

284