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Orthogonal Spreads and Translation Planes 

William M. Kantor 

Abstract. 

There have been a number of striking new results concerning 
translation planes of characteristic 2, obtained using orthogonal and 
symplectic spreads. The impetus for this came from coding theory. 
This paper surveys the geometric advances, while providing a hint of 
their coding-theoretic connections. 

§1. Introduction 

Spreads are familiar in finite geometry since they produce transla
tion planes ( cf. Section 3.1 below). Orthogonal and symplectic spreads 
are less familiar. They have an underlying additional structure, pro
duced by a quadratic form or an alternating bilinear form on the vector 
space. When the field is Z2 they also produce Kerdock codes over Z2 
and Z4 • This note summarizes results that are more than 10 years old, 
while setting the stage for a discussion of new advances. 

§2. Orthogonal spreads 

Let V = GF(q)2n = X EBY for subspaces X and Y both of which 
are identified with GF(q)n. Equip V with the quadratic form Q defined 
by Q(x, y) = x • y (using the usual dot product on GF(q)n); this form is 
nonsingular, with isometry group 0+(2n, q) and associated symmetric 
bilinear form ( , ) . Then V has ( qn -1) ( qn-l + 1) nonzero singular vectors 
and each totally singular n-space (such as X and Y) contains qn - 1 
nonzero singular vectors. This suggests that there might be families of 
qn-l + 1 totally singular n-spaces that partition the set of all nonzero 
singular vectors; such a family is called an orthogonal spread. We will 
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assume that q is even and see that such a family cannot exist unless n 
is even, in which case there is always at least one orthogonal spread. 

2.1. Matrices 

Fix a basis X1, .•. , Xn of X and let Y1, ... , Yn be the dual· ba
sis of Y: (Xi, Yi) = Dij · Write matrices with respect to the basis 
X1' ·' .. ' Xn' YI' ... ' Yn. It is easy to check that the group o+ ( 2n, q) (Y) 

of isometries of V that fix every vector of Y consists of those linear 
transformations whose matrices are ( 6 3/) for some skew-symmetric 
nxn matrix Mover GF(q) (in characteristic 2, "skew-symmetric" means 
"symmetric with O diagonal"); O+(2n, q)(Y) is isomorphic to the vector 
space of all skew-symmetric n x n matrices over GF(q), and is regular 
on the set of totally singular n-spaces Z such that Y n Z = 0. 

Note that dimX(l 3/) nX(l f) = n-rank(M -N). In particular, 
if two such totally singular n-spaces meet only at 0, then n must be even 
(since M - N is skew-symmetric). There is another view of this parity 
remark: the totally singular n-spaces fall into two families such that 
two such subspaces are in the same family if and only if the dimension 
of their intersection has the same parity as n, so that there can be three 
such subspaces pairwise having only O in common only if n is even. 

It is now straightforward to prove 

Proposition 2.1. (i) If E is an orthogonal spread of V that 
contains both X and Y, then 

for a set K, of n x n skew-symmetric matrices, containing 0, and 
such that the difference of any two is nonsingular ( a Kerdock 
set of matrices). 

(ii) Conversely, if K, is a Kerdock set of n x n skew-symmetric ma
trices, then the set E defined in (i) is an orthogonal spread of V 
that contains both X and Y. 

Of course, since o+ (2n, q) is transitive on the ordered pairs of to
tally singular n-spaces having intersection 0, the restriction in (i) is 
insignificant. 

Definition 2.2. Kerdock sets K,1 and K,2 are equivalent if AtK,1A 
+M = K 2 for some A E GL(n,q), some skew-symmetric matrix M, 
and some field automorphism T. Orthogonal spreads E 1 and E 2 are 
equivalent if there is an element of I'O(V) sending E 1 to E 2 . (Here, 
I'O(V) is the set of semilinear maps g on V that preserve Q projectively: 
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Q(vg) = aQ(v)7 for some nonzero scalar a, some field automorphism T 

and all v EV.) 

Evidently, in Proposition 2.l(ii), E depends on K. It turns out that 
it is straightforward to determine more about the interdependence of E 
and K: 

Proposition 2.3. Let K1 and K2 be Kerdock sets of nxn matrices 
over GF(q). Then the following are equivalent: 

(i) 
(ii) 

K1 and K2 are equivalent; 
The orthogonal spreads E1 and E2 of V, determined by K,1 and 
K2 via Proposition 2.1, are equivalent by an element of fO(V) 
sending Y to itself. 

It is easy to deduce that there are many choices of inequivalent 
Kerdock sets that produce equivalent orthogonal spreads. 

2.2. To symplectic spreads 

Let z denote any nonsingular point (1-space) of V: Q(z) =I- 0. If E 
is any orthogonal spread of V, then n is even and 

{ z n zj_ I z E E } 

is a family of totally singular n - 1-spaces of zj_ that partitions the set 
of nonzero singular vectors. 

Since the characteristic is 2, z is contained in the hyperplane zj_. The 
2n - 2-space zj_ / z is turned into a symplectic space using the inherited 
alternating bilinear form ( u + z, v + z) : = ( u, v) ( for u, v E zj_). Then 

is a family of IEI = qn-l + 1 totally isotropic n - I-spaces of zJ_ / z that 
partitions the set of nonzero singular vectors. Such a family is called 
a symplectic spread of the symplectic space zJ_ / z. (N.B.-There is no 
quadratic form inherited by zJ_ / z.) 

2.3. From symplectic spreads 
The preceding construction can be reversed, proceeding from sym

plectic spreads to orthogonal ones. 
Namely, let m be odd, and start with a symplectic space V' of 

dimension 2m over GF(q) together with a symplectic spread E' in it. 
If m = n - l then we can identify V' with the symplectic space zj_ / z 
arising, as above, from the orthogonal space V and one of its nonsingular 
points z. Each totally isotropic subspace of V' is the projection, mod 
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z, of a unique totally singular subspace of z.l / z. In particular, E' arises 
from a family 

E'l := {U I (U,z)/z EE'} 

of totally singular n - I -spaces of z.l such that each nonzero vector of 
z.l / z lies in just one of its members. 

Finally, each totally singular n - I -space of z.l lies in exactly two 
totally singular n-spaces of V, one from each family. Pick a family M 
of such n-spaces, and let 

E := {Z I Z EM and Z contains a member of E'l}. 

Then E is an orthogonal spread of V, and Ez = E'. Note that this 
passage from symplectic to orthogonal spreads is essentially unique: it 
only depends on the choice of the family M. (Moreover, the nontrivial 
orthogonal transvection with center z interchanges M with the other 
family while leaving E' unchanged.) 

2.4. Back and forth 

Starting with a symplectic spread E' in a 2m-dimensional symplec
tic space over GF(q) with m odd, Section 2.3 produces an orthogonal 
spread in a 2m + 2-dimensional orthogonal space, in such a way that 
there is a nonsingular point z for which Ez is E'. Once we have E, 
Section 2.2 can be used to form a different symplectic spread Ez• using 
a different nonsingular point z*. 

2.5. Changing fields: up and down 

Iterating the procedure in Section 2.4 never produces a "new" or
thogonal spread. There is a simple way to modify that procedure in 
order to get large numbers of new orthogonal and symplectic spreads. 

Start with a symplectic spread E' in a 2m-dimensional vector space 
V' over K = GF(q). Let L be any proper subfield of K over which K 
has odd degree, and let T: K -+ L be the trace map. Then T( u, v) 
defines a nonsingular alternating £-bilinear form on the £-space V'. 
We can view E' as a family of subspaces of this £-space. It is still a 
spread, and each of its members is still totally isotropic with respect to 
the new form. Thus, E' is a symplectic spread of the £-space V'. Here, 
dimL V' = m[K : L]. 

Now Section 2.3 can be applied, producing an orthogonal spread of 
a (2m[K: L] + 2)-dimensional orthogonal £-space. In fact, Section 2.4 
now gives us "new" symplectic spreads. It is a difficult problem to 
decide, in general, whether these spreads are actually new: conceivably 
some are equivalent to ones already obtained. 
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Up and down process. This process of repeatedly going from a sym
plectic spread over some field, changing fields, going up to an orthogonal 
spread and then back down to a symplectic spread, is called the up and 
down process. It is difficult to keep control over properties of these 
spreads. However, in important special cases control can be maintained, 
a surprising discovery of Williams [Wi] that will be discussed shortly 
(Sections 3.5-3.9). 

§3. Projective planes 

An entirely different type of geometric view of symplectic spreads 
is provided by projective planes, and provides one of the principal m0-: 
tivations for their study. For this purpose we begin by ignoring the 
symplectic structure. 

3.1. From spreads to projective planes 

Let V' be a 2m-dimensional vector space over GF(q) (no restriction 
is placed even on the parity of q and m). 

Spreads A spread of V' is a family E' of qm + l subspaces of dimension 
m whose union is all of V'. This means that every nonzero vector is in a 
unique member ofE'. Any family of qm+l m-spaces in a 2m-space, any 
two of which have only O in common, is a spread. (N.B.-An orthogonal 
spread is not a spread in this sense, but a symplectic spread is.) 

Example 3.1. If V' is a 2-dimensional vector space over a finite 
field E, its set E' of I -spaces is a desarguesian ( or "regular") spread. 
Note that this spread is symplectic with respect to any alternating bi
linear form on V'. It is also symplectic when V' is viewed as a vector 
space over any subfield of E (cf. Section 2.5). 

Translation planes Any spread of V' determines a translation plane 
A(E'), an affine plane of order qm whose points are vectors and whose 
lines are the cosets W + v with W E E', v E V'. The plane A(E') 
corresponding to a desarguesian spread E' is a desarguesian plane. 

Any isomorphism between two translation planes is induced by a 
semilinear transformation of the underlying vector spaces. See [De] for 
more background concerning translation planes. The transition to pro
jective planes is standard: introduce a line at infinity whose points are 
all parallel classes of lines, in order to obtain a projective plane of order 
qm. 
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3.2. Symplectic translation planes 

Example 3.2. (Example 3.1 continued.) Starting with a desar
guesian spread E' in GF( q) 2m, where m is odd, by Section 2.3 we obtain 
an orthogonal spread E in GF( q)2m+2 , and hence a Kerdock set. This 
latter Kerdock set is the one first discovered by Kerdock [Ke] when q = 2 
(cf. [Di] and [MS, Ch. 15 §5], among many other references). 

Each orthogonal spread appears to produce large numbers of sym
plectic spreads Ez. This leads us to the isomorphism question: when 
are two planes A(Ez) obtained in this manner isomorphic? If there is a 
symplectic transformation sending one spread to the other, the planes 
are certainly isomorphic. It seems surprising that the converse is ( essen
tially) true: 

Theorem 3.3. Fori = 1, 2, let Ei be a symplectic spread in a 2m
dimensional symplectic space¼ over GF(q). Let g: A(E 1 )---+ A(E2 ) be 
an isomorphism that sends the point O to the point 0. Then there is an 
invertible semilinear transformation h: Vi ---+ Vi such that the following 
hold: 

(i) (E1 )h = E2, 
(ii) There is a field automorphism T, and a nonzero scalar a, such 

that (uh, vh) = a(u, v)7 Vu, v E V1 , and 
(iii) g-1 h fixes every member of E2. 

The elementary proof is in [Kal, I (3.5)]. The set of all nonsingular 
linear transformations fixing every member of E 2 (as in (iii)), together 
with 0, is a field, the kernel of the translation plane. It is the largest 
field over which the spread consists of subspaces. 

The preceding theorem implies that isomorphic planes can only arise 
from equivalent orthogonal spreads (Definition 2.2). Moreover: 

Corollary 3.4. Two translation planes A(Ez1 ) and A(Ez2 ) aris
ing from the same orthogonal spread E are isomorphic if and only if z1 

and z2 are in the same orbit of the group G(E) of all elements of fO(V) 
that preserve E. 

Theorem 3.3 also permits the determination of the full automor
phism groups of many of these planes. The construction techniques for 
planes, using Kerdock sets and orthogonal and symplectic spreads, are 
very flexible. They have produced planes with relatively large collinea
tion groups (Sections 3.5-3. 7) as well as planes with unexpectedly small 
collineation groups (Section 3.8). 
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3.3. Prequasifields 

A translation plane is usually coordinatized by an algebraic system 
called a quasifield [De]. Here it will be convenient to consider a weaker, 
but geometrically equivalent system, called a prequasifield. 

Definition 3.5. Consider a binary operation * on F = GF(qm) 
related to field addition by the following conditions (for all x, y, z E F): 

• (x + y) * Z = X * Z + y * Z. 

• x * y = x * z ===} x = 0 or y = z. 
• x * y = 0 ~ x = 0 or y = 0. 

Then ( F, +, *) will be called a prequasifield. It is a quasifield if it has 
an identity element; in order to be able to state (3.6), it is preferable to 
delete this condition even though an identity element is readily intro
duced. (F, +, *) is a presemifield if both distributive laws hold, and a 
semifield if, in addition, there is an identity element. 

A translation plane is obtained by using F EB F as point-set and 
letting the lines have the familiar appearance 

"x = c" and "y = x * s + b" Vb, c, s E F. 

If we view F and FEB Fas vector spaces over K = GF(q), then the 
spread I:(*) of FEB F associated with (F, +, *) consists of the lines "y = 
x * s" through 0. We will always assume that our quasifield associates 
with K in the following manner: 

(kx) * s = k(x * s) \/k EK; x, s E F, 

so that x r--+ x * s is a K-linear map for each s E F. Thus, K is 
contained in the kernel of the plane, since (x, y) r--+ (kx, ky) fixes each 
member "y = x * s" of I: ( *) whenever k E K*. 

In order to consider symplectic translation planes, we use a substi
tute for the dot product. The trace map T: F -+ K determines an inner 
product T(xy) on F having an orthonormal basis that lets us identify 
F, equipped with this inner product, and Km, equipped with its usual 
dot product. 

Finally, we assume in addition that m is odd and that * satisfies the 
following condition: 

(3.6) T(x(x*y))=T(xy) 2 \/x,yEF. 

One example of such a binary operation is X*Y = xy2; the corresponding 
plane is desarguesian. Soon we will present many more examples. Note 
that, if we had required that our prequasifield have an identity element, 
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then we would have had to use a more complicated version of the inner 
product. Thus, for example, it is more convenient in the present context 
to use the preceding inconvenient-looking modification xy2 of ordinary 
multiplication in F. 

Replacing x in turn by x, z, x + z in (3.6) and subtracting, we find 
that 

(3.7) T(x(z*y))=T(z(x*y)) 'vx,y,zEF. 

By a simple calculation: 

Proposition 3.8. Equip FEB F with the alternating bilinear form 

(3.9) 

Then the spread I: ( *) of F EB F associated with a prequasifield ( F, +, *) 
is symplectic if and only if(F,+,*) satisfies (3.7). 

In view of this result, it may seem as if condition (3.6) is unneces
sarily restrictive. When searching for examples, this may be so, but in 
fact it is no serious restriction at all: 

Proposition 3.10. If (F, +, *) is a symplectic prequasifield, then 
there is a permutation µ of F such that x o y := x * yµ defines a pre
quasifield (F, +, o) that is symplectic with respect to the same form (3.9), 
defines the same plane, and behaves as in (3.6). 

Namely, by (3.7) for each y E F the map x f---+ T(x(x * y)) 112 is K
linear, so T(x(x*y)) = T(xy1r) 2 for some map 1r: F---+ F with 01r = 0. If 
1r is bijective, letµ denote its inverse and note that T(x(x*yµ)) = T(xy) 2 

for all x, y, in which case x o y := x * yµ behaves as required. 
Suppose that 1r is not bijective, and let y, z E F, y-/= z, with y1r = z1r. 

If g denotes the K-linear map x f---+ x * y - x * z, then T(xx9 ) = T(x(x * 
y))-T(x(x * z)) = 0 "Ix E F. Then the K-bilinear map (u, v) := T(uv9 ) 

on F satisfies (u, u) = 0 Vu E F, and hence is an alternating bilinear 
form. It is nonsingular since g is (i.e., T(Fy9 ) = 0 ==} y9 = 0 ==} y = 
0). Since [F : K] =mis odd, this is impossible. 

3.4. Up to Kerdock sets and orthogonal spreads, and down 
again 

Now equip FEB K with the inner product 

((x, a), (y, b)) := T(xy) + ab. 
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Proposition 3.11. The linear maps 

Ms: (x, a) f-t (x * s + sT(sx) + as, T(sx)), s E F, 

form a Kerdock set of (m+l) x (m+l) skew-symmetric matrices over K. 
If the above inner product is used, then every Kerdock set is equivalent 
to one arising in this manner. 

The proof is straightforward. Corresponding to this Kerdock set is 
the orthogonal spread E[ *] in F ffi K ffi F ffi K consisting of O ffi O ffi F ffi K 
together with the subspaces 

(3.12) { (x, k, x * s + T(xs)s + ks, T(xs) I x E F, k E K} for s E F; 

here, the quadratic form is Q(x, a, y, b) = T(xy) + ab. 
For some choices of a nonsingular point z it is easy to write down the 

symplectic spread E[*]z. Namely, if z = ((0, a,(, 1)) with a EK*, ( E F, 
then a straightforward calculation shows that the following symplectic 
prequasifield multiplication o gives rise to an equivalent copy of E[*]z 
lying inside F ffi F, where the alternating form is (3.9): 

(3.13) x o s = [x * s + (1 + a)T(xs)s + T(xs)( + T(x()s] /a. 

(Division by a in (3.13) is only included so that (3.6) will hold for o. 
Namely, T(x[x * s + (1 + a)T(xs)s + T(xs)( + T(x()s]) = T(xs) 2 + (1 + 
a)T(xs)T(xs) + T(xs)T(x() + T(x()T(xs) = aT(xs)2.) 

3.5. Semifield planes 

Let F and K be as before, with K:::) GF(2), and let T1 denote the 
trace map F --+ K. The presemifield 

was introduced and studied in [Kal, II]. The corresponding spread arises 
by starting with the desarguesian spread, going up and down once ( cf. 
Section 2.5) while preserving the group of IFI elations with axis O ffi F. 
This produces a nondesarguesian semifield plane. 

This approach was greatly generalized in [Wi]. The presemifields 
studied there arise by the up and down process (Section 3.4), carefully 
retaining elations having a finite axis. In fact, by iterating (3.13) but 
always using a = l, these presemifields can be described explicitly as 
follows. Let F = F0 :::) F1 :::) · • · :::) Fn = K be a sequence of fields with 
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n 2: 3, let Ti : F -+ Fi be the trace map, and choose (i E F for each 
i 2: 1. Then 

(3.14) 
n 

x * y = xy2 + L ( Ti((ix)y + (iTi(xy)) 
1 

defines a 2-sided distributive binary operation on F that produces a sym
plectic semifield plane. 

Theorem 3.15 ([Wi]). Assume that a sequence F = Fo ::i Fi ::i 

· · · ::i Fn = K is given as above with [Fo : F1] 2: 7 and [F: K] odd. If 
((i) and ((I) are sequences as above, then they define isomorphic planes 
if and only if (I = a([ for some a E F*, some T E Aut F, and all i. 

When all (i are 0, the plane is desarguesian. The theorem implies, 
for example, that there are at least IFln-2/(IFI - l}log2 IFI pairwise 
nonisomorphic symplectic semifield planes defined by (3.14)-provided 
that m = [F : K] has at least n 2: 3 (not necessarily distinct) prime 
factors, at least one of which is 2: 7. Stronger versions of this result 
appear in [Wi]. 

3.6. Nearly flag-transitive planes 

If F and Kare as before, and if a E K-GF(2), then the prequasifield 

x * y := xy2 + aT(xy)y 

was introduced and studied in [Kal, II]. As in Section 3.5, this spread 
(and those in Section 3.7 below) arises by starting with the desarguesian 
spread, going up to the orthogonal spread in Example 3.2, and then 
coming down in a different manner (cf. Section 2.2). This time the 
group preserved is isomorphic to F*: it has the form (x,y) f--+ (xa,y/a) 
with a E F*, fixes two members of the symplectic spread, and cyclically 
permutes the remaining ones. 

This approach was again generalized in [Wi] by iterating (3.13) but 
this time always using ( = 0. Let F = F0 ::i F1 ::i · · · ::i Fn = K ::i 

GF(2) be a sequence of fields, where [F : K] is odd. For each i, let 
Ti: F -+ Fi be the trace map, where Tn = T in our earlier notation; and 
choose Ci E F* such that Co= 1 and Ci/Ci-l E Fi for each i. Then 

n 

x * y := xy2 + L ( ci-iYTi(ci-ixy) + ciyTi(cixy)) 
1 

defines a prequasifield, the corresponding plane is nondesarguesian, and 
the maps ( x, y) f-+ ( xa, y /a), where a E F*, form a cyclic collineation 
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group of order IFI -1. Isomorphisms among these planes are determined 
in [Wi]. 

This construction suggests the following general approach, for any 
characteristic and unrelated to symplectic spreads. Suppose that F is 
a finite field and g: F --+ F is an additive map such that x 1--+ xg( x) is 
bijective. Then (F, +, *) is a prequasifield, where 

X * y := g(xy)y. 

(Namely, left distributivity is clear, and x * y = x * z =} xg(xy)y = 
xg(xz)z =} xy = xz, as required.) Once again the maps (x, y) 1--+ 

(ax, y /a) with a E F* form a cyclic collineation group fixing the x- and 
y-axes and transitively permuting the remaining lines through the origin. 
(Namely, (x,x * s) is sent to (ax,g(axs/a)s/a) = (ax, (ax)* (s/a)).) 

Soon after I mentioned to Y. Hiramine this condition on a map g, 
he produced the following example: if w E GF(26 ) and w6 = w + 1, 
let g(x) = x + wx4 + w47 x16 . However, the proof that this satisfies the 
required condition, and hence produces a plane of order 64, involves a 
long and ingenious case argument. 

In the examples given earlier, g(x) = x + L; ( Ci-1Ti(Ci-1X) + 
ciTi(cix)) (or, somewhat more precisely, g(x/cn) is the preceding right 

hand side in order to make (3.6) hold). That the resulting spread is 
symplectic comes from fact that g has following additional property: 

T(xg(z)) = T(zg(x)) 'ix, z E F 

( cf. (3. 7)). 

3. 7. Flag-transitive planes 

There is one further way to obtain planes from a desarguesian spread, 
while retaining a large collineation group [KW]. In the previous sections 
we preserved a group of order IFI or IFI - 1, this time the group will 
have order IFI + 1. Once again, the planes are obtained by starting 
with the desarguesian spread and using the up and down process (Sec
tion 3.4). This time, in order to describe these planes we need to use the 
field E = GF(q2m) (where mis odd), and its multiplicative subgroup 
of order qm + 1. 

Let E = Eo :::> • • • :::> En be a sequence of fields, where [E : En] 
is odd and IEI is a square; let "overbar" denote the involutory field 
automorphism of E. For each i let Fi be the subfield of Ei over which 
Ei has degree 2, let Ti: F0 --+ Fi be the trace map, and write Wi := 

kerTi+llp, Pick any (i E Ei, where (i(i = 1 and (o = 1, and write 
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'Yi := Ilh(z. Then 

n-1 

(3.16) { 0( L Wni + Fn,n) I 00 = 1} 
0 

is a symplectic spread in E, and {z ~ 0z + w I 0,w E F, 00 = 1} is a 
sharply flag-transitive collineation group. 

This produces exponential numbers of flag-transitive affine planes 
of order q'"'. In [KW] there is a complete determination of when two 
of them are isomorphic, as well as a discussion of the iteration involved 
in the construction. Once again, the simplest of these planes were first 
studied in [Kal, II]. 

3.8. Orthogonal spreads and boring planes 

The group G(E) has been determined for various orthogonal spreads 
E [Kal; Ka2; Ka4; KW; Wi]. For many of the ones in Sections 3.5-3.7, 
G(E) is generated by the group preserved in the specific section (of order 
IFI or IFl±l) together with scalar transformations and some elements of 
Aut F. It is then possible to find nonsingular points z such that G(E)z 
consists only of scalars. In view of Theorem 3.3, this means that the 
collineation group of A(Ez) consists entirely of perspectivities. Showing 
that the stabilizer of O is (isomorphic to) K* can be messy (as in [Ka4]) 
or partly pleasant ( as in [Wi]), depending on the specific circumstances. 

The most interesting case is that arising in Section 3.5. There, the 
orthogonal spread E occurs at the end of an iterative process. The last 
step of the iteration starts with an orthogonal spread E in a smaller
dimensional space over a field properly between F and K, forms a sym
plectic semifield spread E:z, and identifies this with a symplectic semifield 
spread Ez arising from our orthogonal spread E over the smaller field K 
(so E:z = Ez. In [Wi], Williams proceeds as follows: he identifies all of 
the nonsingular points z' such that Ez' is a semifield spread, and then 
shows that z is the only such z' for which the kernel of A(Ez') is larger 
than K. It follows that G(E) must fix z, and hence is determined by 
Aut A(Ez) = Aut A(E:z). Then G(E) is determined by G(E) ( cf. The
orem 3.3), and induction can be used. This outline is the pleasant part 
of the argument. The difficult part is in the implementation: calculating 
the kernels of planes defined using the formula (3.14). 

Boring planes. A boring plane is a translation plane A of order 
q'"' with kernel GF(q) such that I Aut Al = q2'"'(q - 1) is as small as 
possible. The reason for this name "boring" is that such planes are 
contrary to those usually studied in finite geometry, in which collineation 
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groups are assumed to be in some sense "big". The only examples known 
in odd characteristic are two planes of order 172 [Ch]. By contrast, 
there are too many boring planes when the characteristic is 2 [Ka4; Wi]. 
These planes arise as follows: as already indicated, G(E) is known for 
many orthogonal spreads E. For most of these there are nonsingular 
points z such that G(E)z = 1. In view of Theorem 3.3, this means that 
Aut A(Ez) consists of perspectivities. All that then remains is to show 
that the kernel of this plane is just K. This step involves calculations 
that are very different in the proofs for q = 2 [Ka4] or q > 2 [Wi]. 
(Neither proof extends to the situation in the other part of the theorem.) 
Clearly this theorem still leaves open the case of other values of m, as 
well as the entirely different case in which m is even-and of course, the 
case q odd also needs to be investigated. It is very likely that there large 
numbers of boring planes in all of these cases as well. 

Similarly, a boring semifield plane is a semifield plane of order qm 
with kernel GF(q) such that I AutAI = q3m(q - 1), which again is as 
small as possible. Once again large numbers of these are obtained in 
[Wi] using (3.14) and G(E) for the corresponding orthogonal spread E. 

3.9. The number of Kerdock sets and orthogonal spreads 

In view of Proposition 2.3 and Theorem 3.3, the planes we have been 
discussing produce exponential numbers of inequivalent Kerdock sets 
and orthogonal spreads. We refer to [Wi] for estimates of the numbers 
of these, which significantly improve previous estimates in [Kal; Ka2]. 

§4. Additional uses of Kerdock sets 

Symplectic and orthogonal spreads are also important for reasons 
quite different than the construction of planes. The basic constructions 
of the objects discussed presently depend on planes, which are involved 
in all present descriptions - with the exception of the original approach 
used in the construction of Kerdock codes [Ke] (and we have seen that 
this can be viewed as dealing with desarguesian spreads, albeit in a 
somewhat indirect manner). 

The recent resurgence of interest in Kerdock codes ( and hence of or
thogonal spreads) stems from their versions over Z4 (Section 4.2) [CCKS; 
Wi]. 

4.1. Kerdock codes 

Assume that the underlying field is Z2. Fix an ordering of the vectors 
in Z2, where n is even. 
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Each Kerdock set K, determines a K erdock code 

where QB denotes any quadratic form whose associated bilinear form 
is uBvt. The code C(K) has length 2n, consists of 2n-12n2 = 22n 
codewords (i.e., vectors), and has minimum distance 2n-l - 2(n-2)/2 . 

The resulting codes have interesting combinatorial properties, and 
were investigated starting in [Ke] and continuing in [Di; Kal; Ka2; Wi]. 
See [MS, Ch. 15 §5; Li; CL] for further background concerning these 
codes. 

Quasi-equivalence of codes Two binary codes of the same length 
will be called quasi-equivalent if there is an isometry of the underlying 
Hamming space sending one to the other. This means: permute the 
coordinates of the first code and then add a constant vector to all code
words in order to get the second code. The codes are called equivalent if 
only a permutation of coordinates is used. The latter is the more stan
dard notion. However, we need the broader notion of quasi-equivalence 
in view of the following elementary fact: Two Kerdock codes are quasi
equivalent if and only if they arise from equivalent Kerdock sets. 

Since we already know that there are large numbers of inequivalent 
Kerdock sets, it follows that the same is true for Kerdock codes. 

4.2. :l:4-codes 

Each code C(K) is nonlinear. In [CHKSS], unexpected relationships 
were discovered between codes over Z4 and binary codes, allowing the 
original Kerdock codes [Ke] to be viewed as codes over Z4 that are Zr 
linear. This was generalized in [CCKS]: with each (binary) Kerdock 
code C(K) of length 2m+l is associated a Z4-code C4 (K) of length 2m 
that is isometric to C(K), where a suitable natural metric is used on zr·: the Lee metric dL. (This is defined by dL((ai), (bi)) = L /ai - bi/, 
where /ai - bi/ is reduced mod 4 so as to be in {O, 1, 2} and the sum is 
taken in Z.) 

We will define C4 (K) using a binary operation as in Sections 3.3-
3.4. By (3. 7), for each r E F the map Pr: x ~ x * r is self-adjoint with 
respect to the inner product T(xy) on F. We fix an orthonormal basis 
for F, and view Pr as a matrix Pr with entries O and 1 in Z4 rather 
than Z2. Similarly, we view each x E F as a row vector x with entries 
O, 1 E Z4 . If K denotes the Kerdock set given in Proposition 3.11, then 

C4(K,) := {xPrxt + 2s• x+e)xEF / r E F,s E F,e E 1'.;4} 

is a ZcKerdock code. The similarity of this definition to (4.1) is evident. 
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Moreover, C4(K) is Z::4 -linear if and only if* is 2-sided distributive. 
Part of this is easy to see: suppose that * is 2-sided distributive. Then, 
for any s, s' E F, Ps+s' - Ps - P8 , is twice a symmetric matrix, and 
hence x r-+ x[Ps+s' - F's - f>s,]xt is additive from F to 2Z4: it looks 
like x r-+ 2r · x for some r E F. Thus, semifields enter coding theory. 
These results, and a thorough discussion of equivalences among these 
Zccodes, can be found in [CCKS; Wi]. 

If P is a symmetric binary m x m matrix then the map x r-+ xf>xt is 
called a Z4 -valued quadratic farm [Br]. In view of the above connection, 
it appears that the Zcmodule of all of these needs to be investigated 
from a combinatorial point of view (cf. [Wo]). 

4.3. Further topics 

[CCKS] and [Wi] discuss relationships between Kerdock sets, ex
traspecial 2-groups, and extremal line-sets in real and complex vector 
spaces. 

Symplectic and orthogonal spreads produce other types of combi
natorial objects: partial geometries [DDT] or strongly regular graphs 
[Ka3]. 

Relationships of symplectic and orthogonal spreads with Lie alge
bras are surveyed in [Ka5]. 

Finally, Kerdock codes over Z2 and Z::4 have suggested natural vari
ations: codes over the quaternion group of order 8 [Ka6]. 
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