Advanced Studies in Pure Mathematics 23, 1994 Spectral and Scattering Theory and Applications pp. 275–282

Sufficient Condition for Non-uniqueness of the Positive Cauchy Problem for Parabolic Equations

Minoru Murata

Dedicated to Professor ShigeToshi Kuroda on the occasion of his 60th birthday

§1. Introduction

The purpose of this paper is to give a sufficient condition for nonuniqueness of non-negative solutions of the Cauchy problem

(1)
$$(\partial_t - \Delta + V(x))u(x,t) = 0$$
 in $R^n \times (0,\infty)$,

(2)
$$u(x,0) = 0 \quad \text{on} \quad R^n,$$

where V is a real-valued function in $L_{p,\text{loc}}(\mathbb{R}^n)$, p > n/2 for $n \ge 2$ and p = 1 for n = 1. We mean by a solution of (1)–(2) a function which belongs to

$$C^0(\mathbb{R}^n \times [0,\infty)) \cap L_{2,\mathrm{loc}}([0,\infty); H^1_{\mathrm{loc}}(\mathbb{R}^n_x))$$

and satisfies (1) and (2) in the weak sense and continuously, respectively (cf. [A]). We assume that

(3) $|V(x) - W(|x|)| \le C \qquad \text{on} \quad R^n$

for some constant $C \ge 0$ and a measurable function W on $[0,\infty)$ with $\inf_{r>0} W(r) > 0$. Our main result is the following

Theorem. Suppose that

(4)
$$\int_{1}^{\infty} W(r)^{-1/2} dr < \infty.$$

Received December 28, 1992.

Then there exists a solution u of (1)-(2) such that

(5) u(x,t) > 0 in $R^n \times (0,\infty)$.

The proof of this theorem is given in Section 2. In [M1], among other things, we have shown that:

Under some additional conditions on W, nonnegative solutions of (1)-(2) are not unique if and only if (4) holds.

The aim of this paper is to establish a half of this result without the additional conditions on W.

$\S 2.$ **Proof**

In this section we prove the Theorem. A main idea of the proof is to exploit a relative version (see Lemmas $3 \sim 6$ below) of methods developed in connection with non-conservation of probability (cf. [D] and [Kh]). The proof is divided into several lemmas.

First, without loss of generality, we may and will assume that $W \ge 1$. Consider the initial value problem

(6)
$$-g'' - [(n-1)/r]g' + W(r)g = 0$$
 in $(0,\infty),$

(7)
$$g(r) = 1 + o(r^{\alpha})$$
 as $r \to 0$,

where $\alpha = 1$ for n = 1 and $\alpha = 0$ for n > 1. A solution of (6)–(7) means a function g in $C^0([0,\infty)) \cap C^1((0,\infty))$ such that its derivative g'is absolutely continuous on any compact subinterval of $(0,\infty)$, and gsatisfies (6) and (7). Let us see that (6)–(7) has a unique solution when n > 2. (When n = 2, it can be shown similarly; and it is clear if n = 1.) Since $W \in L_{p,\text{loc}}(\mathbb{R}^n)$, p > n/2, we have by Hölder's inequality

(8)
$$r^{2-n} \int_0^r s^{n-1} W(s) ds \le Cr^{2-n/p} (\int_0^r W(s)^p s^{n-1} ds)^{1/p} < \infty$$

for any r > 0, where C is a positive constant independent of r. Thus a solution g of (6)–(7) satisfies

(9)
$$\lim_{r\to 0} rg'(r) = 0,$$

(10)
$$g'(r) = \int_0^r (s/r)^{n-1} W(s)g(s)ds, \quad r > 0$$

Putting

(11)
$$K(r,s) = [(s^{2-n} - r^{2-n})/(n-2)]W(s)s^{n-1}$$

we have

$$\int_{0}^{r} dt \int_{0}^{t} (s/t)^{n-1} W(s) ds = \int_{0}^{r} K(r,s) ds$$

(12)

$$\leq Cr^{2-n/p} (\int_0^r W(s)^p s^{n-1} ds)^{1/p} < \infty$$

for any r > 0, where C is a positive constant independent of r. Thus g satisfies the integral equation

(13)
$$g(r) = 1 + \int_0^r K(r,s)g(s)ds$$

on $[0,\infty)$. Conversely, a solution of (13) in $C^0([0,\infty))$ is also a solution of the initial value problem (6)–(7). Now, in view of (12), the iteration method shows that (13) has a unique solution on $[0,\delta]$ for a sufficiently small positive number δ . The obtained solution is also a unique solution of (6)–(7) with $(0,\infty)$ replaced by $(0,\delta)$. By extending it, we get a unique solution g of (6)–(7). Furthermore, we see that g > 0 and g' > 0in $(0,\infty)$.

With $f(r) = r^{(n-1)/2}g(r)$ and $w(r) = W(r) + (n-1)(n-3)/4r^2$, we have

(14)
$$f'' = w(r)f$$
 in $(0, \infty),$

(15)
$$f(r) = r^{(n-1)/2} [1 + o(r^{\alpha})]$$
 as $r \to 0$.

The following Lemmas 1 and 2 play a technically main part in removing the additional conditions on W mentioned in the Introduction.

Lemma 1.
$$f, f' > 0$$
 in $(0, \infty)$, $\inf_{r>1} f'(r)/f(r) > 0$, and
(16) $\int_{1}^{\infty} (f/f') dr < \infty.$

Proof. We have only to show the second and third assertions. With F = f'/f, we have from (14)

Let a(r) be the solution of the initial value problem

$$a'' = (1/4)a$$
 in $(1,\infty)$, $a(1) = f(1)$, $a'(1) = f'(1)$

With A = a'/a,

$$(F-A)' + (F+A)(F-A) = w - 1/4 \ge 0$$
 in $(1,\infty)$,
 $(F-A)(1) = 0$.

Thus $F \ge A$, and so $\inf_{r>1} F(r) > 0$. We next show (16) simplifying an argument in [KN, 4.2 and 4.3]. We claim that

(18)
$$1/F + (1/2)(1/F^2)' \le 2/w^{1/2}$$

in $(1, \infty)$. By (17),

$$(1/w)(F'/F^2) + 1/w = 1/F^2.$$

If $F' \ge 0$, then $F \le w^{1/2}$; and so

$$1/F = F[1/w + (1/w)(F'/F^2)] \le 1/w^{1/2} + F'/F^3.$$

If F' < 0, then $1/F \le 1/w^{1/2}$ and

$$(1/2)(1/F^2)' = -F'/F^3 = 1/F - w/F^3 < 1/w^{1/2}.$$

Thus we get (18). Hence

$$\int_{1}^{R} F^{-1} dr + \frac{1}{2} [F(R)^{-2} - F(1)^{-2}] \le \int_{1}^{R} 2w^{-1/2} dr \le \int_{1}^{\infty} 4W^{-1/2} dr.$$

This together with (4) implies (16).

Let f_1 be the solution of (14)–(15) with w replaced by w + 1. Then we have

Lemma 2. The function f_1/f is increasing and $0 < \lim_{r \to \infty} (f_1/f)(r) < \infty$.

Proof. With $v = f_1/f$, we have

(19)
$$f^{-2}(f^2v')' = v$$
 in $(0,\infty),$

(20)
$$v(r) = 1 + o(r^{\alpha})$$
 as $r \to 0$.

Q.E.D.

From (19)-(20) we get along the line in deriving (13) the equation

(21)
$$v(r) = 1 + \int_0^r \left[\int_s^r (f(s)/f(t))^2 dt\right] v(s) ds.$$

This implies that v is strictly increasing. Next, let us show the second assertion along the line given in [KN, 2.5]. With $u = \log(f_1/f)$ and F = f'/f, we have

(22)
$$u'' + (2F)u' + (u')^2 = 1.$$

This implies that $2u' \leq 1/F - u''/F$. Thus, for any R > 1,

$$\begin{split} & 2\int_{1}^{R}u'dr \leq \int_{1}^{R}(1/F)dr \\ & -u'(R)/F(R)+u'(1)/F(1)+\int_{1}^{R}(-F'/F^2)u'dr. \end{split}$$

Since $-F'/F^2 = 1 - w/F^2 < 1$ and u' > 0, we then have

$$2\int_{1}^{R} u'dr \leq \int_{1}^{R} (1/F)dr + u'(1)/F(1) + \int_{1}^{R} u'dr.$$

Hence

$$u(R) \leq \int_{1}^{R} (1/F) dr + u'(1)/F(1) + u(1).$$

This together with (16) implies that $\lim_{r\to\infty} f_1(r)/f(r) < \infty$. Q.E.D.

Now put

(23)
$$H(x) = h(|x|) = (f_1/f)(|x|) [\lim_{s \to \infty} (f_1/f)(s)]^{-1},$$

(24)
$$L = -g(|x|)^{-2} \sum_{j=1}^{n} (\partial/\partial x_j) (g(|x|)^2 \partial/\partial x_j),$$

where g is the solution of (6)–(7). Then we can easily obtain the following lemma.

Lemma 3. *H* is a solution of the equation

$$(25) (L+1)H = 0 in R^n$$

such that 0 < H < 1 and $\lim_{|x| \to \infty} H(x) = 1$.

Let G(x, y) be the minimal Green function for $(L+1, \mathbb{R}^n)$ (cf. [M3]). Then we have

Lemma 4.
$$0 < \int_{R^n} G(x,y) dy \le 1 - H(x)$$
 on R^n .

Proof. Recall that $G = \lim_{R \to \infty} G_R$, where G_R is the Green function for $(L+1, B_R)$ with $B_R = \{x \in R^n; |x| < R\}$. Put $U_R(x) = \int_{|y| < R} G_R(x, y) dy$. Then

$$(L+1)U_R = 1$$
 in B_R , $U_R = 0$ on ∂B_R .

On the other hand,

(L+1)(1-H) = 1 in B_R , 1-H > 0 on ∂B_R .

Thus the maximum principle shows that $U_R < 1 - H$ in B_R . But

$$\lim_{R\to\infty} U_R(x) = \int_{R^n} G(x,y) dy.$$

This proves the lemma.

Since Lemma 4 implies that $[(L+1)^{-1}1](x) < 1$, we can now apply a criterion for non-conservation of probability (cf. [D, Lemma 2.1]), which goes back to Khas'minskii [Kh]. Let K(x, y, t) be the smallest fundamental solution for $(\partial_t + L, R^n \times (0, \infty))$ (cf. [M1, M2]), and put

(26)
$$v(x,t) = \int_{\mathbb{R}^n} K(x,y,t) dy.$$

Then we have

Lemma 5. v(x,0) = 1, and

(27) $(\partial_t + L)v = 0$ and 0 < v < 1 in $\mathbb{R}^n \times (0, \infty)$.

Proof. For self-containedness, we briefly show that 0 < v < 1. The maximum principle for a parabolic equation on a cylinder together with the semigroup property of the smallest fundamental solution implies that either v = 1 or 0 < v < 1 in $\mathbb{R}^n \times (0, \infty)$. On the other hand, by Lemma 4,

$$\int_0^\infty e^{-t} v(x,t) dt = \int_{R^n} G(x,y) dy < 1 \quad \text{on} \quad R^n.$$

Hence 0 < v < 1.

Q.E.D.

Q.E.D.

The final step of the proof is the following

Lemma 6. There exists a solution u having the desired properties of the Theorem.

Proof. With v being the function given by (26), put

(28)
$$w(x,t) = g(x)(1 - v(x,t)).$$

Then we see that w(x,0) = 0, and

(29)
$$(\partial_t - \Delta + W)w = 0 \quad and \quad 0 < w(x,t) < g(x)$$

in $R^n \times (0,\infty).$

For R > 0, let u_R be the solution of the mixed problem

$$(\partial_t - \Delta + V)u_R = 0$$
 in $B_R \times (0, \infty)$, $u_R = w$ on $\partial(B_R \times (0, \infty))$

(cf. [A]). Since $W - C \leq V \leq W + C$ by (3), the comparison theorem shows that

$$e^{-Ct} \le u_R(x,t)/w(x,t) \le e^{Ct}$$
 in $B_R \times (0,\infty)$.

We see that for some sequence $R_j \to \infty$, u_{R_j} converges uniformly on each compact subset of $\mathbb{R}^n \times [0, \infty)$ to a solution u of (1) satisfying

(30)
$$e^{-Ct} \le u(x,t)/w(x,t) \le e^{Ct}$$
 in $R^n \times (0,\infty)$.

This proves the lemma.

Remark. We can also prove the Theorem by using Theorem 5.5 of [M1] after establishing Lemma 2; because Lemma 2 and (21) imply that

$$\int_1^\infty ds \int_s^\infty \left(s/t\right)^{n-1} (g(s)/g(t))^2 dt < \infty.$$

But the proof given in this paper is more direct than the one based on Theorem 5.5 of [M1].

Q.E.D.

M. Murata

References

- [A] D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 607–694.
- [D] E. B. Davies, L^1 properties of second order elliptic operators, Bull. London Math. Soc., **17** (1985), 417–436.
- [Kh] R. Z. Khas'minskii, Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equations, Theory of Prob. and Appl., 5 (1960), 179–196.
- [KN] M. Kawamura and M. Nakai, A test of Picard principle for rotation free densities, II, J. Math. Soc. Japan, 28 (1976), 323–342.
- [M1] M. Murata, Non-uniqueness of the positive Cauchy problem for parabolic equations, Preprint (Kumamoto Univ., August 1992).
- [M2] _____, Uniform restricted parabolic Harnack inequality, separation principle, and ultracontractivity for parabolic equations, in "Proc. Functional Analysis and Related Topics", Lecture Notes in Math., Vol. 1540 (H. Komatsu, ed.), Springer-Verlag, Berlin, Heidelberg, and New York, 1993, pp.277–288.
- [M3] _____, On construction of Martin boundaries for second order elliptic equations, Publ. RIMS, Kyoto Univ., 26 (1990), 585–627.

Department of Mathematics Faculty of Science Kumamoto University Kumamoto, 860 Japan