Advanced Studies in Pure Mathematics 23, 1994
Spectral and Scattering Theory and Applications pp. 275-282

# Sufficient Condition for Non-uniqueness of the Positive Cauchy Problem for Parabolic Equations 

Minoru Murata

## Dedicated to Professor ShigeToshi Kuroda on the occasion of his 60th birthday

## §1. Introduction

The purpose of this paper is to give a sufficient condition for nonuniqueness of non-negative solutions of the Cauchy problem

$$
\begin{align*}
\left(\partial_{t}-\Delta+V(x)\right) u(x, t)=0 & \text { in } \quad R^{n} \times(0, \infty)  \tag{1}\\
u(x, 0)=0 & \text { on } \quad R^{n}, \tag{2}
\end{align*}
$$

where $V$ is a real-valued function in $L_{p, \text { loc }}\left(R^{n}\right), p>n / 2$ for $n \geq 2$ and $p=1$ for $n=1$. We mean by a solution of (1)-(2) a function which belongs to

$$
C^{0}\left(R^{n} \times[0, \infty)\right) \cap L_{2, \mathrm{loc}}\left([0, \infty) ; H_{\mathrm{loc}}^{1}\left(R_{x}^{n}\right)\right)
$$

and satisfies (1) and (2) in the weak sense and continuously, respectively (cf. [A]). We assume that

$$
\begin{equation*}
|V(x)-W(|x|)| \leq C \quad \text { on } \quad R^{n} \tag{3}
\end{equation*}
$$

for some constant $C \geq 0$ and a measurable function $W$ on $[0, \infty)$ with $\inf _{r \geq 0} W(r)>0$. Our main result is the following

Theorem. Suppose that

$$
\begin{equation*}
\int_{1}^{\infty} W(r)^{-1 / 2} d r<\infty \tag{4}
\end{equation*}
$$

Received December 28, 1992.

Then there exists a solution $u$ of (1)-(2) such that

$$
\begin{equation*}
u(x, t)>0 \quad \text { in } \quad R^{n} \times(0, \infty) \tag{5}
\end{equation*}
$$

The proof of this theorem is given in Section 2.
In [M1], among other things, we have shown that:
Under some additional conditions on $W$, nonnegative solutions of (1)-(2) are not unique if and only if (4) holds.

The aim of this paper is to establish a half of this result without the additional conditions on $W$.

## §2. Proof

In this section we prove the Theorem. A main idea of the proof is to exploit a relative version (see Lemmas $3 \sim 6$ below) of methods developed in connection with non-conservation of probability (cf. [D] and $[\mathrm{Kh}]$ ). The proof is divided into several lemmas.

First, without loss of generality, we may and will assume that $W \geq 1$. Consider the initial value problem

$$
\begin{align*}
-g^{\prime \prime}-[(n-1) / r] g^{\prime}+W(r) g & =0 & & \text { in } \quad(0, \infty)  \tag{6}\\
g(r) & =1+o\left(r^{\alpha}\right) & & \text { as } \quad r \rightarrow 0 \tag{7}
\end{align*}
$$

where $\alpha=1$ for $n=1$ and $\alpha=0$ for $n>1$. A solution of (6)-(7) means a function $g$ in $\quad C^{0}([0, \infty)) \cap C^{1}((0, \infty)) \quad$ such that its derivative $g^{\prime}$ is absolutely continuous on any compact subinterval of $(0, \infty)$, and $g$ satisfies (6) and (7). Let us see that (6)-(7) has a unique solution when $n>2$. (When $n=2$, it can be shown similarly; and it is clear if $n=1$.) Since $W \in L_{p, \text { loc }}\left(R^{n}\right), p>n / 2$, we have by Hölder's inequality

$$
\begin{equation*}
r^{2-n} \int_{0}^{r} s^{n-1} W(s) d s \leq C r^{2-n / p}\left(\int_{0}^{r} W(s)^{p} s^{n-1} d s\right)^{1 / p}<\infty \tag{8}
\end{equation*}
$$

for any $r>0$, where $C$ is a positive constant independent of $r$. Thus a solution $g$ of (6)-(7) satisfies

$$
\begin{align*}
\lim _{r \rightarrow 0} r g^{\prime}(r) & =0  \tag{9}\\
g^{\prime}(r) & =\int_{0}^{r}(s / r)^{n-1} W(s) g(s) d s, \quad r>0 \tag{10}
\end{align*}
$$

Putting

$$
\begin{equation*}
K(r, s)=\left[\left(s^{2-n}-r^{2-n}\right) /(n-2)\right] W(s) s^{n-1} \tag{11}
\end{equation*}
$$

we have

$$
\begin{equation*}
\int_{0}^{r} d t \int_{0}^{t}(s / t)^{n-1} W(s) d s=\int_{0}^{r} K(r, s) d s \tag{12}
\end{equation*}
$$

$$
\leq C r^{2-n / p}\left(\int_{0}^{r} W(s)^{p} s^{n-1} d s\right)^{1 / p}<\infty
$$

for any $r>0$, where $C$ is a positive constant independent of $r$. Thus $g$ satisfies the integral equation

$$
\begin{equation*}
g(r)=1+\int_{0}^{r} K(r, s) g(s) d s \tag{13}
\end{equation*}
$$

on $[0, \infty)$. Conversely, a solution of (13) in $C^{0}([0, \infty))$ is also a solution of the initial value problem (6)-(7). Now, in view of (12), the iteration method shows that (13) has a unique solution on $[0, \delta]$ for a sufficiently small positive number $\delta$. The obtained solution is also a unique solution of (6)-(7) with $(0, \infty)$ replaced by $(0, \delta)$. By extending it, we get a unique solution $g$ of (6)-(7). Furthermore, we see that $g>0$ and $g^{\prime}>0$ in $(0, \infty)$.

With $f(r)=r^{(n-1) / 2} g(r)$ and $w(r)=W(r)+(n-1)(n-3) / 4 r^{2}$, we have

$$
\begin{align*}
f^{\prime \prime} & =w(r) f & & \text { in } \quad(0, \infty)  \tag{14}\\
f(r) & =r^{(n-1) / 2}\left[1+o\left(r^{\alpha}\right)\right] & & \text { as } \quad r \rightarrow 0 \tag{15}
\end{align*}
$$

The following Lemmas 1 and 2 play a technically main part in removing the additional conditions on $W$ mentioned in the Introduction.

Lemma 1. $\quad f, f^{\prime}>0$ in $(0, \infty), \quad \inf _{r>1} f^{\prime}(r) / f(r)>0, \quad$ and

$$
\begin{equation*}
\int_{1}^{\infty}\left(f / f^{\prime}\right) d r<\infty \tag{16}
\end{equation*}
$$

Proof. We have only to show the second and third assertions. With $F=f^{\prime} / f$, we have from (14)

$$
\begin{equation*}
F^{\prime}+F^{2}=w \tag{17}
\end{equation*}
$$

Let $a(r)$ be the solution of the initial value problem

$$
a^{\prime \prime}=(1 / 4) a \quad \text { in } \quad(1, \infty), \quad a(1)=f(1), \quad a^{\prime}(1)=f^{\prime}(1)
$$

With $A=a^{\prime} / a$,

$$
\begin{aligned}
(F-A)^{\prime}+(F+A)(F-A) & =w-1 / 4 \geq 0 \quad \text { in } \quad(1, \infty) \\
(F-A)(1) & =0
\end{aligned}
$$

Thus $F \geq A$, and so $\quad \inf _{r>1} F(r)>0$. We next show (16) simplifying an argument in [KN, 4.2 and 4.3]. We claim that

$$
\begin{equation*}
1 / F+(1 / 2)\left(1 / F^{2}\right)^{\prime} \leq 2 / w^{1 / 2} \tag{18}
\end{equation*}
$$

in $(1, \infty)$. By (17),

$$
(1 / w)\left(F^{\prime} / F^{2}\right)+1 / w=1 / F^{2}
$$

If $F^{\prime} \geq 0$, then $F \leq w^{1 / 2}$; and so

$$
1 / F=F\left[1 / w+(1 / w)\left(F^{\prime} / F^{2}\right)\right] \leq 1 / w^{1 / 2}+F^{\prime} / F^{3}
$$

If $F^{\prime}<0$, then $1 / F \leq 1 / w^{1 / 2}$ and

$$
(1 / 2)\left(1 / F^{2}\right)^{\prime}=-F^{\prime} / F^{3}=1 / F-w / F^{3}<1 / w^{1 / 2}
$$

Thus we get (18). Hence

$$
\int_{1}^{R} F^{-1} d r+\frac{1}{2}\left[F(R)^{-2}-F(1)^{-2}\right] \leq \int_{1}^{R} 2 w^{-1 / 2} d r \leq \int_{1}^{\infty} 4 W^{-1 / 2} d r
$$

This together with (4) implies (16).

Let $f_{1}$ be the solution of (14)-(15) with $w$ replaced by $w+1$. Then we have

Lemma 2. The function $f_{1} / f$ is increasing and $0<\lim _{r \rightarrow \infty}\left(f_{1} / f\right)(r)$ $<\infty$.

Proof. With $v=f_{1} / f$, we have

$$
\begin{align*}
f^{-2}\left(f^{2} v^{\prime}\right)^{\prime} & =v & & \text { in } \quad(0, \infty)  \tag{19}\\
v(r) & =1+o\left(r^{\alpha}\right) & & \text { as } \quad r \rightarrow 0 . \tag{20}
\end{align*}
$$

From (19)-(20) we get along the line in deriving (13) the equation

$$
\begin{equation*}
v(r)=1+\int_{0}^{r}\left[\int_{s}^{r}(f(s) / f(t))^{2} d t\right] v(s) d s \tag{21}
\end{equation*}
$$

This implies that $v$ is strictly increasing. Next, let us show the second assertion along the line given in $[\mathrm{KN}, 2.5]$. With $u=\log \left(f_{1} / f\right)$ and $F=f^{\prime} / f$, we have

$$
\begin{equation*}
u^{\prime \prime}+(2 F) u^{\prime}+\left(u^{\prime}\right)^{2}=1 \tag{22}
\end{equation*}
$$

This implies that $2 u^{\prime} \leq 1 / F-u^{\prime \prime} / F$. Thus, for any $R>1$,

$$
\begin{aligned}
2 \int_{1}^{R} u^{\prime} d r \leq & \int_{1}^{R}(1 / F) d r \\
& -u^{\prime}(R) / F(R)+u^{\prime}(1) / F(1)+\int_{1}^{R}\left(-F^{\prime} / F^{2}\right) u^{\prime} d r
\end{aligned}
$$

Since $-F^{\prime} / F^{2}=1-w / F^{2}<1$ and $u^{\prime}>0$, we then have

$$
2 \int_{1}^{R} u^{\prime} d r \leq \int_{1}^{R}(1 / F) d r+u^{\prime}(1) / F(1)+\int_{1}^{R} u^{\prime} d r
$$

Hence

$$
u(R) \leq \int_{1}^{R}(1 / F) d r+u^{\prime}(1) / F(1)+u(1)
$$

This together with (16) implies that $\lim _{r \rightarrow \infty} f_{1}(r) / f(r)<\infty$.
Q.E.D.

Now put

$$
\begin{align*}
H(x) & =h(|x|)=\left(f_{1} / f\right)(|x|)\left[\lim _{s \rightarrow \infty}\left(f_{1} / f\right)(s)\right]^{-1}  \tag{23}\\
L & =-g(|x|)^{-2} \sum_{j=1}^{n}\left(\partial / \partial x_{j}\right)\left(g(|x|)^{2} \partial / \partial x_{j}\right) \tag{24}
\end{align*}
$$

where $g$ is the solution of (6)-(7). Then we can easily obtain the following lemma.

Lemma 3. $H$ is a solution of the equation

$$
\begin{equation*}
(L+1) H=0 \quad \text { in } \quad R^{n} \tag{25}
\end{equation*}
$$

such that $0<H<1$ and $\lim _{|x| \rightarrow \infty} H(x)=1$.
Let $G(x, y)$ be the minimal Green function for $\left(L+1, R^{n}\right)$ (cf. [M3]). Then we have

Lemma 4. $\quad 0<\int_{R^{n}} G(x, y) d y \leq 1-H(x) \quad$ on $\quad R^{n}$.
Proof. Recall that $G=\lim _{R \rightarrow \infty} G_{R}$, where $G_{R}$ is the Green function for $\left(L+1, B_{R}\right)$ with $B_{R}=\left\{x \in R^{n} ;|x|<R\right)$. Put $\quad U_{R}(x)=$ $\int_{|y|<R} G_{R}(x, y) d y$. Then

$$
(L+1) U_{R}=1 \quad \text { in } \quad B_{R}, \quad U_{R}=0 \quad \text { on } \quad \partial B_{R}
$$

On the other hand,

$$
(L+1)(1-H)=1 \quad \text { in } \quad B_{R}, \quad 1-H>0 \quad \text { on } \quad \partial B_{R}
$$

Thus the maximum principle shows that $\quad U_{R}<1-H \quad$ in $B_{R}$. But

$$
\lim _{R \rightarrow \infty} U_{R}(x)=\int_{R^{n}} G(x, y) d y
$$

This proves the lemma.
Q.E.D.

Since Lemma 4 implies that $\left[(L+1)^{-1} 1\right](x)<1$, we can now apply a criterion for non-conservation of probability (cf. [D, Lemma 2.1]), which goes back to Khas'minskii $[\mathrm{Kh}]$. Let $K(x, y, t)$ be the smallest fundamental solution for $\left(\partial_{t}+L, R^{n} \times(0, \infty)\right)(c f$. [M1, M2] $)$, and put

$$
\begin{equation*}
v(x, t)=\int_{R^{n}} K(x, y, t) d y \tag{26}
\end{equation*}
$$

Then we have
Lemma 5. $\quad v(x, 0)=1$, and

$$
\begin{equation*}
\left(\partial_{t}+L\right) v=0 \quad \text { and } \quad 0<v<1 \quad \text { in } \quad R^{n} \times(0, \infty) \tag{27}
\end{equation*}
$$

Proof. For self-containedness, we briefly show that $0<v<1$. The maximum principle for a parabolic equation on a cylinder together with the semigroup property of the smallest fundamental solution implies that either $v=1$ or $0<v<1$ in $R^{n} \times(0, \infty)$. On the other hand, by Lemma 4,

$$
\int_{0}^{\infty} e^{-t} v(x, t) d t=\int_{R^{n}} G(x, y) d y<1 \quad \text { on } \quad R^{n}
$$

Hence $0<v<1$.
Q.E.D.

The final step of the proof is the following
Lemma 6. There exists a solution $u$ having the desired properties of the Theorem.

Proof. With $v$ being the function given by (26), put

$$
\begin{equation*}
w(x, t)=g(x)(1-v(x, t)) \tag{28}
\end{equation*}
$$

Then we see that $w(x, 0)=0$, and

$$
\begin{array}{ccl}
\left(\partial_{t}-\Delta+W\right) w=0 \quad \text { and } & 0<w(x, t)<g(x)  \tag{29}\\
& \text { in } \quad R^{n} \times(0, \infty) .
\end{array}
$$

For $R>0$, let $u_{R}$ be the solution of the mixed problem

$$
\left(\partial_{t}-\Delta+V\right) u_{R}=0 \text { in } B_{R} \times(0, \infty), u_{R}=w \text { on } \partial\left(B_{R} \times(0, \infty)\right)
$$

(cf. [A]). Since $W-C \leq V \leq W+C$ by (3), the comparison theorem shows that

$$
e^{-C t} \leq u_{R}(x, t) / w(x, t) \leq e^{C t} \quad \text { in } \quad B_{R} \times(0, \infty)
$$

We see that for some sequence $R_{j} \rightarrow \infty, u_{R_{j}}$ converges uniformly on each compact subset of $R^{n} \times[0, \infty)$ to a solution $u$ of (1) satisfying

$$
\begin{equation*}
e^{-C t} \leq u(x, t) / w(x, t) \leq e^{C t} \quad \text { in } \quad R^{n} \times(0, \infty) \tag{30}
\end{equation*}
$$

This proves the lemma.
Q.E.D.

Remark. We can also prove the Theorem by using Theorem 5.5 of [M1] after establishing Lemma 2; because Lemma 2 and (21) imply that

$$
\int_{1}^{\infty} d s \int_{s}^{\infty}(s / t)^{n-1}(g(s) / g(t))^{2} d t<\infty
$$

But the proof given in this paper is more direct than the one based on Theorem 5.5 of [M1].

## References

[A] D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 607-694.
[D] E. B. Davies, $L^{1}$ properties of second order elliptic operators, Bull. London Math. Soc., 17 (1985), 417-436.
[Kh] R. Z. Khas'minskii, Ergodic properties of recurrent diffusion processes and stabilization of the solution to the Cauchy problem for parabolic equations, Theory of Prob. and Appl., 5 (1960), 179-196.
[KN] M. Kawamura and M. Nakai, A test of Picard principle for rotation free densities, II, J. Math. Soc. Japan, 28 (1976), 323-342.
[M1] M. Murata, Non-uniqueness of the positive Cauchy problem for parabolic equations, Preprint (Kumamoto Univ., August 1992).
[M2] —— Uniform restricted parabolic Harnack inequality, separation principle, and ultracontractivity for parabolic equations, in "Proc. Functional Analysis and Related Topics", Lecture Notes in Math., Vol. 1540 (H. Komatsu, ed.), Springer-Verlag, Berlin, Heidelberg, and New York, 1993, pp.277-288.
[M3] $\qquad$ On construction of Martin boundaries for second order elliptic equations, Publ. RIMS, Kyoto Univ., 26 (1990), 585-627.

Department of Mathematics
Faculty of Science
Kumamoto University
Kumamoto, 860 Japan

