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Abstract. 

Sufficient conditions are given for the boundedness of f(H), H = 
-!::::. + V, in £P(Rd), 1 :'.S p '.S oo. Optimal results with respect to 
the decay off are obtained for LP-boundedness of e-itH f(H) and 

the nearly-optimal norm-estimate lle-itH f(H)lls(LP) :'.S C(l + ltl)', 
t E R, 'Y > dll/2 - 1/pl is proved. Results are also obtained on the 
mapping properties of e-itH between certain Besov spaces. 

§1. Introduction 

In this paper we consider mapping properties of functions J(H) of 
a Schrodinger operator H = -,6,. + V between LP-spaces. Let f be a 
bounded Borel function on R. Then J(H) is defined using the functional 
calculus and is a bounded operator on L2 (Rd). For 1 :s; p < oo the 
operator J(H) is densely defined on LP(Rd) and one may ask whether it 
can be extended to a bounded operator on LP(Rd). Results for p =· oo 
are obtained from those for p = 1 via duality. If H = Ho = -6., then 
f(Ho) is a Fourier multiplier, and conditions for LP-boundedness are 
well-known. One of the goals of this paper is to extend to J(H) results 
from the theory of Fourier multipliers. 

The results in this paper extend and complement the results ob
tained in [JN]. The main new ingredient here is a scaling result. We also 
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obtain several results on mapping properties between Besov spaces. To 
state the results, we need some definitions. Our main assumption on the 
potential V is the following: 

Assumption A. V is real-valued function on Rd, and it is de
composed as V(x) = V+(x) - V_(x) such that V± ~ 0, V+ E K~oc and 
V_ E Kd, where Kd is the Kato class of potentials. 

For the sake of completeness, we recall the definitions of Kd and 
K~oc (cf. [S, Section A2] for details, discussion and examples): 

Definition 1.1. VE Kd, if: 

For d ~ 3, 

For d = 2, 

For d = 1, 

lim sup 1 IV(Y)I dy = O· 
r-+O xERd lx-yi::;r Ix - Yld-2 ' 

lim sup 1 log{lx - Yl- 1 }IV(Y)ldy = O; 
r-+O xERd lx-yi:e,;r 

sup 1 IV(Y)ldy < oo. 
xERd lx-yi:e,;I 

VE K~oc if X{ixl<R}(x)V(x) E Kd for any R > 0, where Xn denotes the 
characteristic function of fl. 

Let V satisfy Assumption A. Then H = - 6 + V is defined on 
L2 (Rd) using the quadratic form technique, see [S] for the details. 

We consider functions in the following symbol class, which may be 
denoted by sa = S( (>.t, d>.2 / (>.) 2 ) in the notation of Hormander's 
S(m,g)-class of pseudodifferential operators. Here(>.)= (1 + >.2 ) 112 as 
usual. 

Definition 1.2. Let a E R. / E sa if and only if f E C 00 (R) 
and for any k ~ 0, 

>.ER. 

We now describe our main results and the contents of the paper. In 
§2 we prove three main theorems. The following result is a variant of 
one of the results in [JN]. 

Theorem 1.3. Let c > 0. If f E s-c:, then f (H) is extended to a 
bounded operator in LP(Rd), 1::;; p::;; oo. 

The results in [JN] on the t-dependence of the norm of e-itH J(H) 
are extended in the following result: 
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Theorem 1.4. Let 1 S p S oo and let /3 > d I ½ - } I, 1 > 

di½- ii· If f E s-13, then e-itH J(H) is bounded in V'(Rd) and 

lle-itH f(H)II SC (t)"'' t ER. 

This result is optimal with respect to the decay of f in the sense 
that for H = Ho = -,6,. the LP-boundedness of e-itHo (Ho+ 1)--Y implies 

1 :? di½ - } I, see [Sj). For results with optimal t-estimates, see [JN) and 
the comments in §2. 

We prove the following resolvent estimate: 

Theorem 1.5. Let 1 Sp S oo and let /3 = d I~ -t I· Then there 

exists C > 0 such that 

-1 (z)~ 
II (H - z) IIB(LP) S CI Im zl~+l' z.f. R. 

This estimate was proved by Pang [P] with /3 = d. Computing the 
L1-norm of the explicit integral kernel of the free resolvent one finds that 
this estimate holds with /3 = (d -1)/2 (p = 1). Thus we have no reason 
to believe that our estimate is optimal. 

An alternate method for obtaining LP-boundedness of f(H) can 
be based on resolvent estimates as Theorem 1.5 and the representation 
formula ( cf. [HS]) 

J(H) = ~ f (8zf(z))(H - z)-1dzdz, 
2n}c 

where J is an almost analytic continuation of f. We discuss this ap
proach and give some results in §3 and in the Appendix. 

In §§4-5 we obtain results on mapping properties of e-itH between 
Besov spaces. We first introduce a class of generalized Besov spaces 
and then show that under certain regularity assumptions on V these 
spaces can be identified with ordinary Besov spaces. Generalized Besov 
spaces have previously been considered in [Pe) in a different context. 
For one particular case this approach was also used in [JP]. The ad
vantage of using the Besov spaces is that one obtains results for e-itH 
directly, avoiding the localization J(H). The main result is stated as 
Theorem 5.2. 
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§2. Scaling and LP-estimates 

In this section we show that estimates in [JN] are uniform with 
respect to the scaling: H - 0H, 0 < 0 ::; 1, and apply it to improve 
LP-estimates for f(H) and e-itH f(H). Throughout this section, we 
suppose V satisfies Assumption A and assume a(H) ~ [O, oo) without 
loss of generality. 

Theorem 2.1. Let l :'.S: p ::; oo, /3 > d I~ -~I, and let g E 

C0 (R). Then there exists C > 0 such that 

(2.1) tE R, 

uniformly in O < 0 ::; 1. In addition, the estimate is uniform with respect 
to g, if g runs in a bounded set G in C0 , i.e., if there is R > 0 such 
that suppg C [-R,R] and l8fgl :'.S: C0 for any a and any g E G. 

Proof. The scaling operator Up(0) on £P(Rd) is given by 

and Up(0) is an isometry in £P(Rd). Then we have 

where H0 = H 0 + V0 and V0(x) = 0V(v'0x). In particular, this holds for 
p = 2, and by the functional calculus we learn 

in L2 (Rd), which in turn holds in any LP(Rd) by a density argument. 
Thus it suffices to show 

(2.2) tER 

uniformly in O < 0 ::; 1. 
The idea of the proof is now to check all the computations in [JN] 

in order to conclude that the proof of (2.2) with 0 = l can be carried 
out with constants uniform in O < 0 ::; 1. It seems that two points in 
the argument require some comments. We discuss only these two points 
and omit other details. 

At first, the proof of [JN, Theorem 2.1] uses the Gaussian kernel 
estimate for e-tH_ We note that if Ton LP(Rd) has an integral kernel 
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T(x,y), then the scaled operator T(0) = Uv(v'0)TUp(v'0)- 1 has the 

integral kernel given by 0df2T( v'Ox, v'Oy). Thus 

e-tHo = Uv(v'0)e-t0HUp(v'0)-1 

has the integral kernel 

(2.3) 

On the other hand, under Assumption A, the integral kernel of e-tH 
satisfies the bound 

l e-tH(x y)I < C rdf2eLtexp (- Ix -yl2) 
' - c 4(1+c)t' 

for. some L > 0 and any c > 0 (see, e.g., [S, Theorem B.6.7] or [D]). 
Hence e-tOH satisfies 

(2.4) le-t0H(x y)I < C 0-d/2rdf2eL0t exp (- Ix - Yl 2 
) . 

' - c 4(l+c)0t 

Combining (2.3) and (2.4), we derive 

l e-tHo(x y)I < C rdf2eL0texp (- Ix -yl2) 
' - c 4(l+c)t 

< C rdf2eLt exp (- Ix - Yl 2 
) 

- c 4(1 +c)t ' 

which is uniform in O < 0 :::; 1. 
The second part is concerned with the commutator estimates in [JN, 

§3], where we need to have estimates for the operator norms on L2 (Rd) 
for ll(H0 + M)-1/ 2 11 and IIBx(H0 + M)-1/ 2 11 on L2 (Rd) (M > 0 is a 
sufficiently large constant). The former one is clear because it is bounded 
by M-1/ 2 . The latter follows once more from the scaling argument: 

11ax(H0 + M)-112 11 = 11axU2(v'0)(0H + M)-1l2U2(v'0)-111 

= II ( U2( v'0)-18xU2( v'0)) (0H + M)-1/211 

= llax(H + 0-1 M)-1/211 ::; llax(H + M)-1/211 · 

Remark 2.2. Under additional assumptions, e.g., if d:::; 3, we know 
that (2.1) holds with 0 = 1, /3 = d 11/2 - 1/pl (see [JN, Theorems 1.4, 
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5.2]). In these cases, the estimate also holds with (3 = d 11/2 - 1/pl 
uniformly in 0 < 0 ::; 1. The modifications needed are essentially the 
same as above, so we omit the details. 

Proof of Theorem 1.3. Without loss of generality, we may suppose 
supp/ C [-1,oo). We choose(() E ego(l/2,2) so that 

00 

E 1.p(2n .x) = 1, 
n=-oo 

We let 

'Pk(A) = 1.p(Tk A), .XER, k=l,2, ... , 

and let 'Po ( .X) E ego (R) such that 

00 

'Po(.X) + L 'Pk(.X) = 1, .X ~ -1. 
k=l 

We decompose fusing {'Pk(.X)} as follows: 

00 00 

f (.X) = L f(.X)1.pk(.X) = L !k(rk .X), 
k=O k=O 

where fk(µ) = 1.p(µ)f(2kµ) for k ~ 1. Then it is easy to see that 
supp fk C (1/2, 2) for k ~ 1, and 

µER, k ~ 0. 

Hence { 2ek fk (µ)} ;:0 is a bounded set in ego (R). By Theorem 2.1, we 
learn 

(2.5) k ~ 0. 

Thus we conclude 

00 00 

IIJ(H)IIB(LP)::; L llfk(rkH)IIB(LP)::; ez:=rek < 00. 

k=O k=O 
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Proof of Theorem 1.4. Let f E s-/3 with f3 > dll/2 - 1/pl and fix 
'Y so that d 11/2 - 1/pl < 'Y < /3. Let f.Pk and fk be chosen as in the 
proof of Theorem 1.3. Then by the above argument and Theorem 2.1, 
we learn 

lle-iteH fk(0H)IIB(LP)::;; crf3k (t)'Y, t ER, k ~ 0, 0 < 0::;; 1. 

Setting 0 = 2-k, t = 2ks, we have 

Summing over k we obtain 

00 

lle-isH f(H)IIB(LP)::;; L 11e-isH fk(rk H)IIB(LP) 
k=O 

00 

::;; C (s) 'Y L r(/3--y)k ::;; C (s) 'Y. 

k=O 

Lemma 2.3. Let m > d/2 be an integer. Then there exists C > 0 
such that for z E {z EC\ RI lzl::;; 2}, 

Moreover, the estimate holds uniformly in 0 E (0, 1], if we replace H by 
0H. 

Proof. The idea is to mimic the proof of [JN, Theorems 1.1, 1.3], 
so we give only a sketch. For the notation and the details, we refer to 
[JN]. 

By commutator computations as in the proof of [JN, Lemma 3.2], 
we have 

sup II(· - n) 1 (H - z)- 1 (· - n)-111::;; Czllmzl-l-l 
nEZd 

for z E {z ER\ RI lzl ::;; 2} with any l EN. This implies 

lll(H - z)-1 1111 = ll(H -z)-1 11 + :~rd II(· - n)1 (H - z)-1XC(n)II 
::;; CIImzl-1- 1 . 
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We let l > d/2 and apply (JN, Theorem 2.4] to obtain 

ll(H - z)-1 11B(l1(L2)) s C lll(H - z)-1111~121 ll(H - z)-1ll~ct;:1 

SC IImzl-(l+l)d/21 IImzl-(1-d/2!) 

= C IImzl-l-d/2 . 

On the other hand, (H + 1)-m is bounded from L1(Rd) to l1(L2) ([JN, 
Theorem 2.1]), hence 

ll(H - z)-l(H + 1)-mllB(L') 

S ll(H - z)-1IIB(!1(L2),L1) ll(H + l)-mllB(L1 ,!1(L2)) 

SC ll(H - z)-1IIB(l1(L2)) SC IImzl-1-d/2. 

The proof of the last statement is analogous to the proof of Theorem 2.1, 
so we omit the details. 

Proof of Theorem 1.5. It suffices to consider the case p = 1. Other 
cases follow by complex interpolation. We let {3 = d/2 and let m > d/2 
be an integer. We first consider the case lzl S 2. We write z = x + iy, 
and suppose O < y < 2. By iterations of the first resolvent equation 
(recall that we assume u(H) 5:;;; [O, oo)), we have 

m 

(2.7) (H-z)- 1 = :~:)z+1l-1(H +1)-k+(z+1r(H-z)-1(H+1)-m. 
k=l 

The first term is uniformly bounded, and we estimate the second term 
by Lemma 2.3 to obtain 

(2.8) lzl s 2. 

Now we use the scaling argument again. By the last statement in 
Lemma 2.3 we may replace H by 0H in (2.8) : 

lzl s 2, o < 0 s 1. 

For lzl > 1, we let z = lzl · z, lzl = 1, and let 0 = lz1-1. Then we obtain 

II (H - z)-1 IIB(Ll) = II (lzl-(lzl-l H - 2))-1 IIB(L') 

= lzl-1 ll(0H - z)-1 IIB(Ll) 

s c1z1-1 11m21-/3-l = Clzl131Imzl-/3-l_ 
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This completes the proof. 

Remark 2.4. We could have used Theorem 1.4 instead of Lemma 2.3 
to estimate the second term in the right hand side of (2.7). This gives, 
however, a slightly weaker result, namely, the estimate with fJ > dll/2-
1/pl, 

§3. The almost analytic continuation and LP-boundedness 

In this section we discuss an alternative approach to the proof of 
the LP-boundedness of functions of Schrodinger operators. The idea 
is to combine the almost analytic continuation method with resolvent 
estimates. 

We introduce the following definition concerning the almost analytic 
continuation. A construction is discussed in the Appendix, and it is used 
in the proof of Theorem 3.3. 

Definition 3.1. Let f E sa for some a ER. A function j on C 
is called an almost analytic continuation of f, if it satisfies 

(1) J is a smooth function on C and J(x) = f(x) for x ER. 
(2) For any N 2::: 0, 

(3.1) la,J(z)I ~ CN (zt-l-N IImzlN, 

where azi(x + iy) = (8., + i8y)i(x + iy). 

z EC, 

If f E s-e, c > O, and if A is a selfadjoint operator in a Hilbert 
space, then it is known that f (A) can be represented by the almost 
analytic continuation of f and the resolvent of A: 

(3.2) J(A) = ~ 1 (azf (z)) (A - z)-1dzdz 
21ri c 

(see [HS] and [G, Appendix]). 
In order to apply this formula to Schrodinger operators on V(Rd), 

we need a priori estimates for the resolvent. Since the discussion of 
this section is methodological in its nature, we start from the following 
hypothesis, which includes the result of Theorem 1.5 as a special case. 

Hypothesis (RE({J)). Let H be a Schrodinger operator on an 
V(Rd)-space. We say that H satisfies RE({J), if 

-1 (z/ li(H - z) IIB(LP) ~ C IImzi.B+l' z E C\R. 
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Theorem 3.2. Suppose H satisfies Hypothesis RE(/3) on LP(Rd) 
with f3 2:': 0, and suppose f E s-e with c > 0. Then f(H) is extended to 
a bounded operator in LP(Rd). 

Proof We take N > {3, construct the almost analytic continuation, 
and then apply (3.1) and (3.2) to obtain 

llf(H)IIB(LP) :5 2~ L cl~~l:+1 (z)-e-l-N IImzlNdzdz 

1 (z)-1-e-(N-/3) 
:5 C c IImzll-(N-/3) dzdz < oo. 

Theorem 1.3 follows easily from Theorem 3.2 and Theorem 1.5 (the 
proof of which is independent of Theorem 1.3) or a result by Pang [P]. 
We can also prove an analogue of Theorem 1.4 using the same idea. To 
simplify the argument, we consider only the case f .E Ccf(R). 

Theorem 3.3. Suppose H satisfies RE(/3) on LP (Rd) with f3 2:': 0 
and let f E Ccf(R). Then for any 'Y > f3 + 1, 

(3.3) tER. 

Proof. Let ft(x) = e-it::c f(x). Then it is easy to see that for any 
s > 0, ll!tllH• :5 Cs (t)8, t ER. Hence, by Lemma A.2 we learn 

C > o, t ER, 

where ft ( z) is the almost analytic continuation of ft as constructed in 
the Appendix. Now letting c = 'Y - {3- 1 > 0, we obtain from RE(/3) 

lle-itH f(H)lls(LP) :5 2~ j Ja.dt(z)J ll(H - z)-1lls(LP) dzdz 

J (zl J - J -:5 C IImzl/3+1 8zft(z) dzdz 

:5 CJ IImz1--r+e Jazft(z)J dzdz 

:5 C (t)-r, 
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since ft is compactly supported. 

Combining this result with Theorem 1.5, we obtain (3.3) with 'Y > 
1 + d/2 for p = 1. Thus this direct approach does not give the optimal 
result. Even if we had RE((d - 1)/2) (free case), we would only get 

(3.3) with 'Y > (d + 1)/2. We have lost at least order 0( (t}1/2) in 
this procedure. There is another possibility, however. In the proof of 
Theorem 2.1 (or Theorem 1 in [JN]), the representation 

f(H) = 1-: e-isRg(s)ds, R = (H +M)-1 , 

is used to obtain estimates for mf (HH,0 and llle-itH f (H) 111.e (see the 

proof of Lemma 2.3 for the definition of !l·lll,0)- An alternative is to use 
th() representation (3.2) instead, and then we obtain optimal estimates 
for the t-dependence. 

Remark 3.4. The almost analytic continuation technique was in
troduced by L. Hormander in a series of lectures on Fourier integral 
operators held in 1969, see also [Hl] and [H2, Chapter 3]. It was used 
extensively by A. Melin and J. Sjostrand in their work on Fourier in
tegral operators with complex phase functions. The representation for
mula (3.2) first appeared in [HS], and has recently been used extensively 
in the study of many-body Schrodinger operators. 

Remark 3.5. An axiomatic approach to the functional calculus 
based on (3.2) and RE(,B) has been given by Davies [D2]. 

§4. Generalized Besov spaces 

Throughout this section we consider a fixed selfadjoint operator H 
on the Hilbert space L2 (Rd). Our goal is to associate with Ha family 
of spaces in such a manner that this family becomes the usual Besov 
spaces for H = - 6.. We define the spaces for an arbitrary selfadjoint 
operator on L2 (Rd), under certain assumptions on this operator, which 
are verified for H = -6. + V by Theorem 2.1. 

Assumption 4.1. For any cp E C0 (R) let cp(H) denote the 
bounded operator on L2 (Rd) obtained via the functional calculus. As
sume that cp(H) extends to a bounded operator on £P(Rd), 1 :$ p :$ oo. 

REMARK. As mentioned in §1 the operator cp(H) on L00 (Rd) is ob
tained as the adjoint of the corresponding operator on L1 (Rd), hence is 
uniquely determined. 
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Assumption 4.2. Let H satisfy Assumption 4.1. Let cp E C0 (R). 
Assume that for any p, 1 :5 p :5 oo, llcp(0H)ll 8 (LP) :5 c for all 0 E [0, 1], 
with c independent of 0. 

If V satisfies Assumption A, then H = -/:.). + V satisfies Assump
tion 4.2 by Theorem 2.1 (with t = 0). Fix cp E C0 (R) with supp(cp) ~ 
{>, I 1/4 :5 i>.I :5 4} and 

00 

I: cp(4-j >.) = 1, 
j=-00 

Define 
00 

'I/Jo(>.)= 1 - I: cp(4-j >.), >.ER, 
j=l 

and 

j = 1,2, ... , >.ER. 

Definition 4.3. Let H satisfy Assumption 4.2. Let p, q, s satisfy 
1 :5 p :5 oo, 1 :5 q < oo, ands 2: 0. For v E .D'(Rd) define 

(4.1) llvlls;•'(H) - (t (2•; ll,P;(H)vllP)') l/, 

For q = oo the definition is modified in the obvious way. The generalized 
Besov space is defined by 

Lemma 4.4. Let H satisfy Assumption 4.1. Let u E .D'(Rd). 
Then 

00 

llullP :5 L 111/Ji(H)ullP, 
j=O 

where the sum may equal +oo. · 

Proof. Let 1 :5 p < oo. If u E LP(Rd) n L 2 (Rd), then we have 
u = ~;:0 1Pi(H)u, and the assertion is clear. It follows for general 
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u E LP(Rd) by the density argument. The case p = oo follows by the 
duality argument. 

Proposition 4.5. Fors> 0, 1·~ p,q ~ oo ands= 0, q = l, 
1 ~ p ~ oo, the space B;,q (H) is a Banach space with the norm given 

by (4.1). It is a subspace of £P(Rd). 

Proof. It is easy to see that (4.1) defines a norm on B;,q(H). Let 

(vk)kEN be a Cauchy sequence in B;,q(H). Consider first the case q = l. 
Then by Lemma 4.4 and s ~ 0 

00 00 

llullP ~ L 111f'j(H)ullP ~ L 2si 111f'j(H)ullP = llulls;, 1 (H) 
j=O j=O 

Let q > l. Let q' denote the exponent conjugate to q. Then q' < oo and 
for s > 0 we have 

In either case we conclude that B;,q ( H) is a subspace of £P (Rd) and 

that the given sequence (vk)kEN is a Cauchy sequence in £P(Rd), hence 
convergent in LP to a limit v E LP(Rd). Define 

~j = 2sj 11¥'j(H)vkllp 

~j = 2sj 11¥'j(H)vllp • 

Then ~j -+ ~j as k -+ oo for each j = 0, 1, 2, . . .. Furthermore, since 

llvklls;·q(H) ~ c for all k, we conclude that (~j)jEN E t'q(N). 

We have now proved v E B;,q(H). It remains to prove convergence 

of the sequence (k = (~j)jEN to { = (~j)jEN in fq(N). Since ({k)kEN is 
a Cauchy sequence in t'q (N) and the components converge, this result is 
straightforward to prove. Details are omitted. 

Now we prove a mapping property of e-itH between abstract Besov 
spaces associated with H. 

Theorem 4.6. Let V satisfy Assumption A and let H = -lo.+ V. 
Assumes~ 0, 1 ~ p, q ~ oo, and /3 > di½ - ii- Then 

(4.2) 
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with norm bounded by c (t/3. 

Remark 4.7. Note that the above result holds with /3 = d I~ -11 
under restrictions on d (e.g. d S 3) or under additional assumptions on 
V, see [JN, §5]. 

Proof. Fix X E Cg"(R) such that ip(.~) = x(>.)ip(>.) for all >, E R. 
For j ~ 1 and u E LP(Rd) we have from Theorem 2.1 

2sj llip(4-j H)e-itHullp = 2sj llx(4-j H)e-i(4it)4-iH<p(4-jH)ullp 

S c2j(s+2,8) (t/3 llip(4-j H)ullp • 

The estimate for j = 0 follows from Theorem 2.1. The result now follows 
from the definition of the norm (4.1) and the covering argument. 

We note the following results, which are useful in the next section. 

Proposition 4.8. Let V satisfy Assumption A. Assume 1 S p, q, q1 

S oo ands~ s1 > 0. If eithers > s1 ors= s1 andq S q1, thenB;•q(H) 
is continuously embedded in B;1 ,q1 (H). 

Proof The argument in the proof of (BTW, Theorem 2.2.1] carries 
over unchanged to our generalized Besov spaces. 

Lemma 4.9. Let V satisfy Assumption A and let s ~ 0, l S 
p, q S oo. Let MER. Then B;•q(H + M) = B;•q(H) with equivalent 
norms. 

Proof. A simple covering argument, which is omitted. 

§5. Identification with ordinary Besov spaces 

We have chosen the definition of B;•q(H) in such a manner that for 
H = -!::::. this space is identical with the usual Besov space, which we 
here denote B;,q. In applications it is of interest to know conditions on 
V which imply B;•q(H) = B;,q (with equivalent norms). 

Our result on this question is based on the real interpolation method 
and interpolation spaces defined via semigroups. We refer to [BL] for 
the results needed. We recall a few results from [BL, Section· 6. 7]. Let 
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G(t), t > 0, be a strongly continuous bounded semigroup on a Banach 
space X with infinitesimal generator A. For u E X define 

w(t, u) = sup IIG(s)u - ullx. 
s<t 

The real interpolation method constructs a family of Banach spaces 
between the domain 'D(A) of A (with the graph norm) and X, denoted 
(X, V(A))e,q, 0 < 0 < l, 1 ::; q :=; oo. In [BL, Theorem 6.7.3] it is shown 
that the norm llullcx,v{A))e,o is equivalent to the norm given by 

(5.1) ( r= )1/q 
llullx + Jo c 0q-1w(t, u)qdt 

The usual LP-type Sobolev space of order m EN is denoted W;'(Rd). 

Assumption B(p, m). Let 1 ::; p :=; oo and let m E N. Let V 
satisfy Assumption A, and let H = - L + V. Assume there exists M 2: 0 
such that (H + M)-"' is a bounded map from LP(Rd) to W;'(Rd) with 
a bounded inverse. 

Theorem 5.1. Let V satisfy Assumption B(p, m) for some m E 
N and l ::; p::; oo. Then for l ::; q::; oo, 0 < s < 2m, B;,q(H) = B;,q 
( with equivalent norms). 

Proof. Let V satisfy Assumption B(p,m). We first show that 
-(H + M)"' - L generates a strongly continuous bounded semigroup 
with M, L > 0 and the domain of the generator is W;' (Rd). Without 
loss of generality we may assume M = 0 and H > l. Then by Theo
rem 1.3, U(t) = e-tH"' is bounded in LP(Rd). Moreover, by Theorem 2.1 

U(t) = e-(t11"' H)"' is uniformly bounded with respect to t E (0, l]. 
Hence there is LE R such that IIU(t)ll 13(Lv) ::; CeLt for any t > 0. Thus 

-(H"' + L) generates a bounded C0 semigroup. The strong continu
ity follows from the fact that it is strongly continuous in L2 (Rd). The 
expression of the resolvent by the semigroup: 

(A+ K)- 1 = -1= e-Ktu(t)dt, K>L, 

where A is the generator of U(t), implies (H"' + K)- 1 = (A+ K)- 1 , 

and hence the domain of A is W;'(Rd). We assume L = 0 in the sequel 
in order to simplify the notation. 

Now we let A = -H"' and let G(t), t > 0, denote the semigroup 
generated by A. Let V = V(A) = W;'(Rd). Note that the usual Sobolev 
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norm and the graph norm of A are equivalent norms on V, as can be 
seen using the closed graph theorem. 

Fix q, 1 ~ q < oo (the case q = oo requires obvious modifications 

in the arguments below) ands, 0 < s < 2m. Define 0 = _!__ It follows 
2m 

from the real interpolation method (see [BL]) that 

B;,q = (LP, V)0,q-

Thus to prove the theorem it suffices to prove 

with equivalent norms. We follow essentially the arguments in [BL, p. 
160-1]. Let 'P, 'lfj denote the functions from §4 used in our definition of 
the generalized Besov spaces. 

Assume first u E (LP, V)0,q• Let <I>(,\)= cp(..\)(exp(-.,\m)-1)-1, .,\ E 

R. Note <I> E Co'(R). Using Theorem 2.1 we find ll<I>(4-j H)lla(LP) ~ c 

for j = 0, 1, 2, .... Therefore 

Using (4.1) we conclude 

Since w( t, u) is an increasing function of t and we have 

we get 

oo oo 2-2rn(j-1) 

~ 2sjqw(2-2mj' u)q = C ~ 1-2rnj c 0q-lw(T2mj' u)qdt 

00 2-2rn(j-1) 

~ C ~ 1-2rnj c 0q-lw(t, u)qdt 

~ c fo 00c 0q- 1w(t, u)qdt. 
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Using (5.1) we conclude 

(5.2) 

which proves the first half of the theorem. To prove the second half, 
assume u E B;•q(H). Theorem 2.1 implies 

j = o, 1,2, .... 

Using 

and 
IIG(s)u - ullp ~ 2 llullp 

we get (see also Lemma 4.4) 

00 

w(t, u) ~ c L min{l, t4mi} ll1P;(H)ullp. 
j=O 

We estimate the integral term in (5.1). The integral is split as 

00 00 00 4-mk 

(5.3) 1 ... dt = r ... dt + I: 1 ... dt. 
0 J 1 k=O 4 -,n(k+l) 

We introduce the notation a; = ll1P;(H)ullp• Fort E (4-m(k+l), 4-mk) 

we have min{l, t4mi} = 1, if j ~ k + 1, and min{l, t4mi} = t4mi., if 
j ~ k. This result is inserted in the sum in (5.3) to get 

Since u E B;•q(H), (49ima;);EN E £q(N), and in both cases above we 
have convolution by a sequence in £1 , so we use Young's inequality to 
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conclude 

The other term in (5.3) is estimated using Holder's inequality: 

(f c••-'w(t,u)'dtt ,-; (f ,-,,_, (ta} dt f 
- c ta,,-; c (t (40mja;)') >/, 

Combining these estimates we get 

(5.4) 

which proves the second half of the theorem. 

Theorem 5.1 combined with Theorem 4.6 implies the following map
ping property of e-itH between (usual) Besov spaces. 

Theorem 5.2. Let V satisfy Assumptions A and B(p, m), and let 

H = -!:::. + V. Assume 1 :S: p, q :S: oo, /3 > di½ - ¼I, "f > di½ - ¼I, and 
0 :S: s < 2(m - /3). Then 

(5.5) e-itH E B(Bs+2/3,q Bs,q) 
p ' p 

with norm bounded by c(t)'Y. 

Concerning the Assumption B(p, m) we note that form= 1 we can 
use standard perturbation results to show that if V is bounded relative 
to the Laplacian on V(Rd) with relative bound less than one, then the 
condition is satisfied. Several sufficient conditions for this to hold can be 
found in [Sc]. For m > 1 some regularity is needed. If V E C 00 (Rd) with 
all derivatives bounded, then Assumption B(p, m) holds for all m 2 1 
and all p, 1 :S: p :s; oo. 

Remark 5.3. Note that the proof of Theorem 5.2 also yields 
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under the same assumptions. In this form the result is a direct general
ization of the results on the free Schrodinger equation in [BTW]. 

Remark 5.4. In the proof of Theorem 5.1 we have shown that 
-(H + M)m - L generates a bounded C0 semigroup. This result has also 
been obtained by Davies [D2] in an abstract framework, cf. Remark 3.5. 

Appendix. A construction of an almost analytic continuation 

In this appendix we propose a construction of an almost analytic 
continuation, and · discuss its properties. We start by constructing an 
almost analytic continuation off E C;f (-2, 2). 

We fix x E C;f(R) such that O ~ x(x) ~ 1, 

x(x) = { 
1, 

o, 
if lxl ~ 1, 

if lxl 2: 2, 

and let p(x) =J; x(y)dy. For f E C;f(-2, 2), we define f(z), z EC by 

(A.1) i(x + iy) = (211')-112x(x/2)x(y) 1-: e-p(y{)ix{ !(e)d(, 

where/(() denotes the Fourier transform of f(x). 

Lemma A.1. f (z) is an almost analytic continuation of f(x). 

Proof. It is easy to see that J(z) E C;f(C) because J E S, and 
e-p(y{) is a smooth bounded function. It is also easy to see that J(x) = 
f(x) for x E R since p(O) = 0. It remains to show (3.1). By direct 
computation we have 

( Bzf) (x + iy) = (8., + i8y) J(x + iy) 

= (271')-1l2x(x/2)x(y) J i((l - p'(ye))e-p(y{)ix{j(()d( 

+ (211')-lf2Tlx'(x/2)x(y) J e-p(y{)eix{ i(()d( 

+ i(211')-lf2x(x/2)X'(y) J e-p(y{)eix{ /(e)d( 

(A.2) = I+ll+DI. 

To estimate the first term, we note that p'(y() = x(y() = 1 if IY(I ~ 1, 
hence 
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where xn denotes the characteristic function of n. Then we have 

(A.3) 

I I I ::; CI lelx{IYI 1e1~1}(Y, e)li(e)lde 

::; c J 1e1N+1IYINIJ(e)1~::; CIYIN 

since J E S. To estimate the second term, we note that f ( x) = 0 on 
suppx'(x/2). Hence 

We subtract this from (II) to obtain 

(A.4) 

I II I ::; c j I ( e-p(ye) - t. (-~~)k) i 1i(e)lde 

::; c J IYIN+11e1N+1lf(e)1~ 

::; CIYIN+l_ 

The estimate for (DI) is easy since it is supported away from the real 
axis. 

Once an almost analytic extension is constructed for a C[f-function, 
it is then standard procedure to extend it to f E S0 • We include the 
construction for the sake of completeness. Let cp E Crf (1/2, 2) as in the 
proof of Theorem 1.3, and let 'Pi(x) E Crf(R) defined by 

'P±k(x) = cp(±Tkx), k = 1, 2, ... , x ER, 

cpo(x) = 1- L 'Pk(x), x ER. 
kciO 

We decompose f E S0 as 

00 00 

f(x) = L f(x)cpj(x) = L /j(Tlilx), 
j=-oo j=-oo 

where fk(y) = cp(sign(k)y)/(21kly) for k =/:- 0 and fo(Y) = f(y)cpo(y). 
Now we can apply the above construction to each /j(x) to obtain fj(z). 
Note that we can modify the construction such that fj(z) is supported 
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in {z I Rez E [1/4, 4], llmzl::; 2} for j > 0 and in {z I Rez E [-4, -1/4], 
IImzl::; 2} for j < 0. Then f(z) = "'£,';__ 00 fj(2-iz) defines an almost 
analytic continuation off. Further details are omitted. 

Compared with the other known constructions of an almost analytic 
continuation, our method seems to have the advantage of being straight
forward, namely, we do not use asymptotic sums. On the other hand, we 
need no differentiability of f to define J ( z), and the proof of Lemma A.1 
shows that (3.1) with N = a ER+ follows from f E H0, s >a+ 3/2. 
In fact, it is known that f E cJ+a(R) is sufficient to construct f(z) 
satisfying (3.1) with N = a (E. B. Davies, private communication, see 
also [D2]). Our construction may be not as precise as Davies', but the 
next lemma is sufficient for our application in §3. 

Lemma A.2. Let R > 0 be fixed, and let f E H0([-R, R]) with 
s 2: 1. Then for any r:: > 0 there is C = C ( R, c) such that 

Proof. It suffices to consider the case R = 1, and we may assume 
}(z) is defined by (A.1). As in the proof of Lemma A.1, we decom

pose Bzf as Bzf = I+Il+fil. We start by estimating (I). As in the 
computation to derive (A.3), for each y we have 

Hence by Plancherel's theorem, we have 
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On the other hand, (A.4) implies 

I II(x + iy)I ::; CIYls-l IIJIIH•, 
0 

and the estimate for (II) follows from this. The estimate for (III) is easy 
and we omit it. 
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