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Abstract.
We consider the following nonlinear elliptic equations with real
parameter A:

(Py) Au+ f(u,A\)=0, u>0in; u=0 ondQ,

where © is a smooth bounded domain in R™ (n > 2) and f > 0
satisfies an inequality:

flu, ) < e+ cou?

( e1,¢2 > 0, p> 1 constants).

We suppose the existence of a family of solutions {(us, As)}o<s<1
of (Py) with the following properties: (us,As) € C(©2) x R is contin-
uous in s, As is bounded, and maxu, — oo (s | 0).

We investigate the asymptotic behavior of solutions near blowing-up
points.

§1. Introduction

In this paper we consider the following nonlinear elliptic equations
with real parameter :

(Py) { Au+ f(u,A)=0, u>0 in Q,

u=0 on Of1.

Here Q is a smooth bounded domain in R™ (n > 2) and a smooth
function f satisfies the following inequality:

0 < f(u,A) < ¢ +cou? (u>0)
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where c1,co > 0, and p > 1 are constants. Recently many works have
been done in the case that (P,) is Yamabe type problem, i.e., when
n > 3 and f has (nearly) critical Sobolev exponents such as

(1) f= = Au,
(i) f=us2r (A>0).

See, e.g., [1,3,4,6,8,10, and references therein]. We recall the results on
the asymptotic behavior of solutions of (Py) when f is (i) or (ii). There
are two types of results. The first one is on the behavior of solutions when
Q is a ball with center 0. In this case it is known that a family of solutions
{(us, As)}se(o,1) (C C%(2) X R) exists with the following properties:
(A1) (us, As) (C C(Q) x R) is continuous in s;
(A2) As is bounded ;
(A3) maxus — o0}
(A4) us(0) = 00, us(z) =0 (z€Qz#0)ass |0
(We call such a point as z = 0 a blowing-up point.) For more detailed
behavior see [1, 3,4, 10].

The second one is on the behavior of solutions of (Py) which satisfy
a minimizing sequence property for the (Sobolev) inequality:

Vu, |? dx
Mf——— — Sn as s |0,
Il s 541
where p = Z—fg orp= Z—fg — A respectively, and S,, is the best Sobolev

constant in R™. Under appropriate assumptions it is proved that a
blowing-up point is unique and that (A3) and similar behavior to (A4)
hold ([3, 4, 6,8,10]).

We would like to investigate the asymptotic behavior in a neigh-
borhood of a blowing-up point for more general domains and for more
general functions.

Throughout the paper we assume that there exists a family of solu-
tions {(us, As)}o<s<1 of (Py) with the properties (A1)—(A3).

Before proceeding to state our result, we give the definition of blow-
ing up points. From our assumption it follows that there exist a family
of points {z,;}(C Q) , a point zg € Q, s; € (0,1], and Ay such that
T — To,As; — Ao, Us,; (T;) — 00 as j T co. We call (o, Ao) or simply
To a blowing-up point with respect to {(us;, As;)}32;-

Our result is
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Theorem. = Under above hypotheses the following statement holds.
For each blowing-up point xo € Q there exists rog > 0 such that for each
fized r (0 < r < 1g) there exists s (0 < s < 1) such that

kyr~ 2P <y (z) < kpr~ 2/ (-1

(lz=—=zo|<T).
Here k1,ky > 0 are constants depending only on Q,c,c2, and p.

As a direct consequence of Theorem we have

Corollary. Letn >3 and letp = Z—fg Then for each blowing-up

point o € §2 there exists ro > 0 such that for each fized r (0 < r < 1p)
there exists s (0 < s < 1) such that

/ us(w)iz”—% dz > ks.
|lz—zo|<T

Here k3 > 0 is a constant depending only on §,cy,c2, and p.

In Section 2 we give the proof of Theorem in the case n = 2. In
Section 4 we sketch the proof of it in the case n > 3.

§2. Proof of Theorem (n = 2)

In this section we prove Theorem in the case n = 2. For the proof
of it we need the following two lemmas.

Lemma 1. Let n = 2. Suppose that a family of functions
{vs}o<s<1 C C%(Q) N C(Q) satisfies the following hypotheses :
(i) vs satisfies the following differential inequality

Avg + ke >0 in

where k > 0 is a constant.
(ii) vs € (C(R)) is continuous in s .
Let 7 > 0 be such that B(zo,r) ={z:|z — 2o |< 7} CQ, and

4
/ e @dg < =2
B(zo,T) k

Assume that for some 0 < sy < 1 the following inequality holds for all
51<s<1,
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1 (™ ore@2 g\
vl =4{ — vs(zo+zx 9
[e¥] {277./0 e d}

< k:_12~2-’ z(8) = r(cos 8, sin ).
Then for all s1 < s <1
(0 erle0) < ge),,
(i) / e @ g < AT
B(zo,r) k

Lemma 2. Letn =2. Let xg € 2 be a blowing-up point. Let r be
such that B(zo,r) C Q. Suppose that for some 0 < s1 < 1 a solution u,
of (Py) with A = A4 satisfies

1/(p—-1)
us(z) < <E> | & —zo |~¥/ -1 (z € B(zo,r))

for all s € [s1,1]. Then vs = (p—1)Inu, satisfies a differential inequal-
ity: '
Avs + ke’ >0 (z € B(zo,T))

for all s € [s1,1], where k is a constant independent of zo,r,s;.

For the proof of Lemma 1 see [7; Proposﬂnon] or [2]. In Section 3
we prove Lemma, 2.

Proof of Theorem. We set vy = (p—1)Ilnu,. Let £ > 0 be a
constant as in Lemma 2. Let rg be so small that B(zg,70) C 2,

1) / et @ gr « 22 il
B(:bo,ro) k

2
evr(@) < - | £ — @ |72 (z € B(zo,70)) -

Let 0 < r < rg be fixed. Suppose that for some s; > 0, v, satisfies

(2) e’ @ = uP~(z) < -]2; | z — x| 72 (x € B(zo,T))

for all s € [s1,1]. Then by lemma 2, v, satisfies

(3) Avg + ke >0 (x € B(zo,7)) .
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Let x5 € B(zo,r) be a maximal point of us in B(zo,):

us(zs) = Br(x}v%):) us(z) .

Then by (2)

2
e (%) < % | zs —z0 |72 .

We consider u, a solution of the following linear elliptic equation

Aug + Cs(x)us =0; ¢ (-'17) = ——-—————f(u;ffm)"))\s) .

Since zg is a blowing-up point, we may assume that wug(z) >1 for
x € B(zo,7). Then c,(x) satisfies

2c
cs(z) L ep + el Hz) < ey + Tz | 2, —xo |72

Hence by Harnack’s theorem there is a constant ¢’ such that
4) us(zs) < ¢ minu,(z)

for all z with | z — zg |<| s — 2o |. Here ¢’ depends only on p,c1,c2.
On the other hand, since (1),(2), and (3) hold, we have by Lemma 1

W™} (@o) = () < 4fe” @), s ey, 1),
Hence, by (2), (4)

us(xs) S C'Us(xo)
< 23/(p—1) o =1/ (p=1) =2/ (p—1)

Applying Harnack’s theorem again we get an inequality:

(5) us(zs) < ¢ min us(x).
Zo,T
Here c is a constant depending only on p,c;,c3. Since zg is a blowing-up
point, this implies that (2) does not hold for all s € (0, 1].
Set
s2 = inf{s’ : (2) holds for alls € [s’,1]}.

Then s; > 0, and (2) does not hold for s = sy, i.e., there exists 2’ €
B(zg,r) such that

uP

' 2 _
3;1(37')560”(“:79‘ |2’ —azo |72 .
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On the other hand, by Harnack’s inequality (5) we have
g, (7) < usy (2') < cug, () (z € B(zo, 7)) -
Hence we have

2 _ _ -
z7 2 <P (2') < max ul, '(z)

B(:z:o,'r)
2cP~1
<Pt min wPl(z) < r72,
B(zo,r) 2 k

Thus we obtain

klr—Z/(z’—l) < g, () < k2r—2/(p—1)’

1 1
L (2\ 7T 2\ 71
klzcl(E) , szC(E) .

Q.E.D.

§3. Proof of Lemma 2
Proof of Lemma 2. Since u, is a solution of (Py) with A = A, vs(z)

satisfies
f(u87 )\s) —
Us

1
Avg + pT]_ | V'Us |2 +(p — 1) 0.

On the other hand, by our assumption on f

—f&;’ ) <cp +couP™t (u=>1).

Hence we get a differential inequality
1
Avg + p—l ! Vo, |2 +(p - 1)038”8 >0
(03 =c1 + Cz).
Therefore if we can estimate the term | Vo, |? by e | i.e.,
| Vs [2< cdye” or | Vg |2< cqulPt?)
then we get a differential inequality

Avs + K'e? >0
(k' = (p—1)(cs + ca))-
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In the following we estimate the term | Vu, |? by wP+1,
Set
M, = max us(z), ms= min us(z),

B(zo,r) B(zo,r)
and choose Kj > Amd—; Then by the continuity of u, (C C(€)) in s, we
have for some s > 0
(6) M, < Kyus(z) (z € B(zo,T))
for s < s < 1. On the other hand, by Sperb’s lemma [9; Lemma 5.1]

_ | Vus(2) |2

us ()
Py(s)= T L +/0 FEA) A (x € B(zo,m))

attains its maximum at the point where Vu, = 0 or on dB(zg,7). Since
xg is a blowing-up point, we may assume that P; attains its maximum
where Vus(z) =0 . Hence we have

(7) | Vs 2< 2 <C1 + pcj 1) MP*' (z € B(zo, 7))

for s, < s <1. By (6) and (7)

| Vus 2 +1 c2 -
—;—— S 2Kf c1 + p———{——]_ ’U;g 1.

8

Therefore we get a differential inequality

Av, + Koe” >0 K, = (2K{’+1 (cl + p—cf—1> + 03) (p—1).

We may assume that
Ks > 1, K >k,

where k is the constant determined by (11) which is independent of
Zo,r,82. Note that Ky depends on zg,r,ss . In the following we improve
the above differential inequality and obtain:

Avs +ke¥s >0 (x € B(zo,7)).

If necessary, by choosing r > 0 sufficiently small we may assume that

2 _
(8) e?1(®) <« Er 2 (|z—zp L),
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Kg/ e'(®) dz < 4r.
B(Zo,T)

By the continuity of v, in s, it follows that for some s’ > 0, (8) holds for
all s’ < s < 1. Hence by Lemma 1 we have

(9) e+ (20) < 4e* (@], < 872

for all s’ < s < 1. On the other hand, by Harnack’s theorem there exists
a constant ¢’ such that

]zl—lﬁﬁr us(z) < dus(zo)-

Hence by (9) we have
ug(zs) < 93/(p—1) o/ n=2/(p—1)
Applying Harnack’s theorem again we get
us(zs) < cus{z) (z € B(zo,T))

for all s’ < s < 1. Here c is a constant depending only on p,c1,c2. Then
repeating the above arguments we get a differential inequality

(10) Avg + ke¥* >0 (z € B(zo,7)),

(11) k= (2&’“ (q + 1%) + 03> (p—1).

Since k < Ky, from the continuity of us(z) in s it follows that there
exists s” such that for all s/ <s<1

(12) ug ()Pt = () < %r_z z € B(zo,7),
(13) / e @dg < é7_r

B(zo,r) k
Set

s* = inf{s” : (10),(12) hold fors” < s < 1}

Suppose that s; < s*. Then repeating the above argument we conclude
that a differential inequality (10) holds for all s € [s*, 1]. This contradicts
the definition of s*. Thus we have s* = s;. Q.E.D.
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84. Proof of Theorem n >3

In this section we sketch the proof of Theorem when n > 3. We may
assume that 0 ¢ Q and introduce spherical coordinates:

r=rw (r=|z| wes* ).

Let xo € €2 be a blowing-up point. Let rg > 0 be such that B(zg,7¢) C
Q.

Suppose that
us(x) <| & — @ |77V (z € B(zo,70)) -
Then we have

| s |c2(B(wo,ro)) < €' (€1 + c2MP), M, = max us(z).
B(mo,’ro)

On the other hand, by Sperb’s lemma [9; Lemma 5.2] we get

C2
| V’Ll.s |2S 2 (ClMs + mMgH-l) .

Hence vs = (p— 1) Inwu, satisfies a differential inequality

MPHL
('vs)rr + (v_:‘)z +C_u$2—‘ >0,

t-3
where ¢ is a constant depending only on Q,c;1,c2, and p. We consider
vs(Tw) a function w; ,,(y) defined in R2 near | y |=| o |:

Wsw(y) =vs(rw), |yl|=r yeR.

Now we have a two-parameter family of functions {ws.w} s,w- Repeating
similar arguments as in Sections 2 and 3 we can conclude the assertion
in Theorem. Q.E.D.
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