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Abstract. 

We consider the following nonlinear elliptic equations with real 
parameter >..: 

(A) ~u+f(u,>..)=0, u>0inO; u=O on8O, 

where O is a smooth bounded domain in Rn (n 2: 2) and f 2: 0 
satisfies an inequality: 

( c1,c2 > 0, p > 1 constants). 

We suppose the existence of a family of solutions { (Us, As) }o<s9 
of (A) with the following properties: (Us, As) E C (fi) X R is contin­
uous ins,>... is bounded, and max us--+ oo (s l 0). 
We investigate the asymptotic behavior of solutions near blowing-up 
points. 

§1. Introduction 

In this paper we consider the following nonlinear elliptic equations 
with real parameter .X: 

(P>.) { 
~u+f(u,.X)=O, 

u=O 

u>O inn, 

on 80. 

Here O is a smooth bounded domain in Rn ( n 2: 2) and a smooth 
function f satisfies the following inequality: 

( u 2: 0) 
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where c1 , c2 > o; and p > I are constants. Recently many works have 
been done in the case that (P>.) is Yamabe type problem, i.e., when 
n;?: 3 and f has (nearly) critical Sobolev exponents such as 

(i) 

(ii) 

~ 
f = un-2 + AU, 

~->. f = un-2 (A > 0). 

See, e.g., [1, 3, 4, 6, 8, 10, and references therein]. We recall the results on 
the asymptotic behavior of solutions of (P>.) when f is (i) or (ii). There 
are two types of results. The first one is on the behavior of solutions when 
n is a ball with center 0. In this case it is known that a family of solutions 
{(us,As)}sE(0,1] (c C 2 (n) X R) exists with the following properties: 

(Al) (us,As) (c C(O) x R) is continuous ins; 
(A2) As is bounded; 
(A3) max us-+ oo; 
(A4) Us(0)-+ oo, Us(x)-+ 0 (x En, x =/ 0) ass 10. 
(We call such a point as x = 0 a blowing-up point.) For more detailed 
behavior see [1, 3, 4, 10]. 

The second one is on the behavior of solutions of (P>.) which satisfy 
a minimizing sequence property for the (Sobolev) inequality: 

fo I Vus 12 dx 
"-=-----=2-- -+ Sn 

II Us llp+1 
as s 1 0, 

where p = ::; or p = ::; - A respectively, and Sn is the best Sobolev 
constant in Rn. Under appropriate assumptions it is proved that a 
blowing-up point is unique and that (A3) and similar behavior to (A4) 
hold ([3, 4, 6, 8, 10]). 

We would like to investigate the asymptotic behavior in a neigh­
borhood of a blowing-up point for more general domains and for more 
general functions. 

Throughout the paper we assume that there exists a family of solu­
tions {(us, As)}O<s9 of (P>.) with the properties (Al)-(A3). 

Before proceeding to state our result, we give the definition of blow­
ing up points. From our assumption it follows that there exist a family 
of points {xj} (c n) , a point Xo E n, Sj E (0, 1], and Ao such that 
Xj -+ xo, As; -+ Ao, Us; (xj) -+ oo as j j oo. We call (xo, Ao) or simply 
xo a blowing-up point with respect to {(us3 ,As3 )}~1 • 

Our result is 
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Theorem. Under above hypotheses the following statement holds. 
For each blowing-up point x 0 E n there exists r0 > 0 such that for each 
fixed r (0 < r ~ r0 ) there exists s (0 < s < 1) such that 

(Ix - Xo I~ r ). 
Here k1 , k2 > 0 are constants depending only on O,c1 ,c2 , and p. 

As a direct consequence of Theorem we have 

Corollary. Let n 2:: 3 and let p = ~~;. Then for each blowing-up 
point x 0 E n there exists r0 > 0 such that for each fixed r (0 < r ~ r0 ) 

there exists s ( 0 < s < 1) such that 

Here k3 > 0 is a constant depending only on O,c1 ,c2 , and p. 

In Section 2 we give the proof of Theorem in the case n = 2. In 
Section 4 we sketch the proof of it in the case n 2:: 3. 

§2. Proof of Theorem (n = 2) 

In this section we prove Theorem in the case n = 2. For the proof 
of it we need the following two lemmas. 

Lemma 1. Let n = 2. Suppose that a family of functions 
{vs}O<s<l C C2(0) n C(D) satisfies the following hypotheses: 
(i) Vs satisfies the following differential inequality 

in n 
where k > 0 is a constant. 

(ii) Vs E ( C(D)) is continuous in s . 
Let r > 0 be such that B(xo,r) = {x :I x-xo I~ r} C n, and 

{ evi(xldx < 41r. 
}B(xo,r) k 

Assume that for some O < s1 < 1 the following inequality holds for all 
s1 ~ s ~ 1 , 
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[ev•]r = { 2~ 12.,, ev.(xo+x(8))/2 d()} 2 

2 
< kr2 , x(9) =r(cos9,sin9). 

Then for all s1 ::; s ::; 1 

(i) 

(ii) 

Lemma 2. Let n = 2. Let x0 En be a blowing-up point. Let r be 
such that B(x0 , r) C n. Suppose that for some O < s1 < 1 a solution Us 
of (P>.) with A = As satisfies 

(2) 1/(p-1) 
Us(x) < k Ix - xo 1-2/(p-l) (x E B(xo,r)) 

for alls E [s1, 1]. Then Vs= (p-1) ln Us satisfies a differential inequal­
ity: 

(x E B(xo,r)) 

for alls E [s1 , 1], where k is a constant independent of x 0 ,r,s1 • 

For the proof of Lemma 1 see [7; Proposition] or [2]. In Section 3 
we prove Lemma 2. 

Proof of Theorem. We set Vs = (p - 1) lnus. Let k > 0 be a 
constant as in Lemma 2. Let r0 be so small that B(x0 , r 0 ) C n, 

(1) 

(x E B(xo, ro)). 

Let O < r ::; ro be fixed. Suppose that for some s1 > 0, Vs satisfies 

(2) (x E B(xo,r)) 

for alls E [s1, l]. Then by lemma 2, Vs satisfies 

(3) (x E B(xo, r)). 
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Let Xs E B(xo,r) be a maximal point ofus in B(x0,r): 

Us(x 8 ) = max Us(x). 
B(xo,r) 

Then by (2) 
2 

ev,(x,) < k I Xs - Xo 1-2 • 

We consider Us a solution of the following linear elliptic equation 

( ) _ f(us(x), As) 
Cs X = ( ) . Us X 

Since xo is a blowing-up point, we may assume that us(x) ~ 1 for 
x E B(xo,r). Then c8 (x) satisfies 

Hence by Harnack's theorem there is a constant c' such that 

(4) 

for all x with Ix - xo 1::;1 X8 - xo I- Here c' depends only on p,c1,c2. 

On the other hand, since (1),(2), and (3) hold, we have by Lemma 1 

s E [s1, 1]. 

Hence, by (2), (4) 

U8 (xs)::; c'us(xo) 
::; 23/(p-l)c'k-1/(p-l)r-2/(p-1). 

Applying Harnack's theorem again we get an inequality: 

(5) 

Here c is a constant depending only on p,c1,c2 . Since x 0 is a blowing-up 
point, this implies that (2) does not hold for all s E (0, 1]. 
Set 

s2 = inf{s': (2) holds for alls E [s', 1]}. 

Then s2 > 0 , and (2) does not hold for s = s2 , i.e., there exists x' E 
B(x0 , r) such that 

u~;l(x') = ev•2(x') = ¾ Ix' - Xo 1-2 
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On the other hand, by Harnack's inequality (5) we have 

(x E B(xo,r)). 

Hence we have 

Thus we obtain 

Q.E.D. 

§3. Proof of Lemma 2 

Proof of Lemma 2. Since Us is a solution of (P>,,) with .X = As, Vs(x) 
satisfies 

/:!,,.vs+ _I_ I Vvs 12 +(p- 1/(us, >.s) = 0. 
p-1 Us 

On the other hand, by our assumption on f 

f(u, ).) ::; C1 + C2Up-l 

u 

Hence we get a differential inequality 

{u;?:1). 

(c3 = c1 + c2)­

Therefore if we can estimate the term I "vv8 12 by ev• , i.e., 

I v'vs 12::; c~ev• or I "vus 12::; C4ur+l)' 

then we get a differential inequality 

/:!,,.vs+ k'e~ 2:0 

(k' = (p - l){c3 + c4)). 
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In the following we estimate the term I Vus 12 by u~+l. 
Set 

Ms= max Us(x), ms= min Us(x), 
B(xo,r) B(xo,r) 

183 

and choose K1 > ~. Then by the continuity of Us ( C C(O)) in s, we 
have for some s2 > 0 

(6) (x E B(xo,r)) 

for s2 ~ s ~ 1. On the other hand, by Sperb's lemma [9; Lemma 5.1] 

I Vu (x) 12 1u.(x) 
P8 (x) = 8 + J(t, As) dt 

2 0 
(x E B(xo,r)) 

attains its maximum at the point where Vu 8 = 0 or on 8B(x0 , r). Since 
x 0 is a blowing-up point, we may assume that P8 attains its maximum 
where Vu 8 (x) = 0. Hence we have 

(7) I Vus 12~ 2 (c1 + P~ 1) Mf+l 

for s2 ~ s ~ 1. By (6) and (7) 

Therefore we get . a differential inequality 

We may assume that 

(x E B(xo, r)) 

where k is the constant determined by (11) which is independent of 
x 0 ,r,s2. Note that K2 depends on xo,r,s2 . In the following we improve 
the above differential inequality and obtain: 

(x E B(xo, r)). 

If necessary, by choosing r > 0 sufficiently small we may assume that 

(8) (I x - x0 I~ r), 
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K2 { ev1(x) dx < 41r. 
JB(xo,r) 

By the continuity of v8 ins, it follows that for some s' > 0, (8) holds for 
all s' S s S 1. Hence by Lemma 1 we have 

(9) 

for alls' S s S 1. On the other hand, by Harnack's theorem there exists 
a constant c' such that 

max U 8 (x) S c'us(xo)­
lx-xol::;r 

Hence by ( 9) we have 

u8 (x8 ) S 23/(p-l)c'r-2/(p-l)_ 

Applying Harnack's theorem again we get 

(x E B(xo,r)) 

for alls' S s S 1. Here c is a constant depending only on p,c1,c2. Then 
repeating the above arguments we get a differential inequality 

(10) (x E B(xo, r)), 

(11) 

Since k < K 2 , from the continuity of u8 (x) in s it follows that there 
exists s" such that for all s" S s S 1 

(12) x E B(xo, r), 

(13) 

Set 
s* = inf{ s" : (10),(12) hold fors" S s S 1} 

Suppose that s1 < s*. Then repeating the above argument we conclude 
that a differential inequality ( 10) holds for all s E [ s*, 1]. This contradicts 
the definition of s*. Thus we have s* = s1. Q.E.D. 
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§4. Proof of Theorem n 2'. 3 

In this section we sketch the proof of Theorem when n 2'. 3. We may 
assume that O ft n and introduce spherical coordinates: 

x=rw (r=lxl, wEsn-1). 

Let xo E n be a blowing-up point. Let ro > 0 be such that B(x0, r0) C 
n. 
Suppose that 

Us(x) ::;I x - xo 1-2/(p-l) (x E B(xo, ro)). 

Then we have 

Ms = max Us(x). 
B(xo,ro) 

On the other hand, by Sperb's lemma [9; Lemma 5.2] we get 

Hence Vs = (p - 1) ln Us satisfies a differential inequality 

where c is a constant depending only on n,c1 ,c2 , and p. We consider 
Vs(rw) a function Ws,w(Y) defined in R2 near I y l=I Xo I: 

Ws,w(Y) = Vs(rw), I y I= r, y E R2. 

Now we have a two-parameter family of functions { Ws.wh,w• Repeating 
similar arguments as in Sections 2 and 3 we can conclude the assertion 
in Theorem. Q.E.D. 
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