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On Scattering by Two Degenerate Convex Bodies 

Mitsuru lkawa 

§1. Introduction 

Let n be an odd integer ~ 3, and let CJ be a bounded open set in 
!Rn such that 

(1.1) n = !Rn - 0 is connected. 

We assume that 

r = 80 is smooth. 

Denote by S(z) the scattering matrix for CJ. The scattering matrix 
S(z) is an .C(L2 (sn-1))-valued holomorphic function defined in {z E 
C; Rez < O}, where we denote by .C(E) the space of all the bounded 
operators from E into itself. As a fundamental property of the scattering 
matrix, it is shown in Lax-Phillips [7]: 

Theorem 5.1 of Chapter V. The scattering matrixS(z) is holo­
morphic on the real axis and meromorphic in the whole plane, having a 
pole at exactly those points z for which there is a nontrivial z-outgoing 
local solution of 

{ 
(6 + z2 ) u = 0 

u=O 

inn 

on r. 

In the study of scattering by obstacles, the problem to know re­
lationships between the geometry of obstacles and the distribution of 
poles of scattering matrices .is one of the most interesting and important 
problems. It is conjectured that the more rays of geometric optics are 
trapped by CJ the more solutions of the wave equation are trapped by 
0, and that the more solutions of the wave equation are trapped, the 
nearer to the real axis it appears the poles of the scattering matrix. 
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Concerning this problem, Melrose [9] proved that, if O is nontrap­
ping in the sense of geometric optics, for any a > 0 the logarithmic 
domain 

{z; Imz $ a log(lzl + 1)} has at most a finite number of poles of S(z). 

For trapping obstacles, Bardos-Guillot-Ralston [1] considered the 
following example: 

where 

01, l = 1, 2 are strictly convex and 01 n 01 = ¢. 

They showed that, for any c > 0, the logarithmic domain 

{z; Imz $ dog(lzl + 1)} has an infinite number of poles of S(z). 

Next Ikawa [3] considered the same example and showed the follow­
ing result: Set d = distance(01, 0 2 ), and let Ai, l = 1, 2, be the point 
on r1 = 801 such that 

Then, there is a positive constant Co determined by d and the geometry 
ofr1 near A1 (l = 1,2) such that, in the strip {z; 0 < Imz < ~co} the 

poles of S(z) distribute asymptotically at the points ~j + Aeo, j = 
o, ±1, ±2, · · ·. 

After that, Gerard [2] proved that, for any a> 0, the poles of S(z) 
in the strip { z; 0 < Im z < a} distribute asymptotically on the points 

~j + v'-lcm, j = 0, ±1, ±2, · · ·, m = 0, 2, ···,mo 

where 
0 < Co $ C1 $ ~ $ · · · $ Cm0 < a. 

The constants Cm, m ~ 1 are also determined by d and the geometry of 
r1 near Ai, l = 1, 2. 

The formula which gives Cm indicates that, when all the principal 
curvatures of ri at Ai, l = 1, 2, become small, the constants Cm become 
also small, and when all the principal curvatures vanish at Ai (l = 1, 2), 
all the Cm determined by the formula are equal to 0. 

This fact indicates us that, if all the principal curvatures vanish at 
Ai, S(z) may have a sequence of of poles converging to the real axis. 
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But the methods used in [3] and [2] are no more valid in the case where 
all the principal curvatures vanish. We considered in [4] an example of 
0 = 0 1 U 0 2 in ~ 3 such that the principal curvatures of r 1 vanish only 
at Az of finite order, and showed that there exist an infinite number of 
poles in a domain {z; Imz ::; IRezl--Y} for some positive constant 7. 
The proof of this result is based on the trace formula due to Bardos­
Guillot-Ralston [1]. On the other hand, as to the position of poles near 
to the real axis, by taking account ofthe results of [3] and [2], it seems 
very likely that the poles of S(z) in the domain {z; Imz ::; IRezl--Y} 

exist only near the points ~j, j = ±1, ±2, · · ·. But it seems very difficult 

to get more information on the distribution of poles by the means of the 
trace formula. 

In this paper we shall consider an example of obstacle in ~ 2 consist­
ing of two convex bodies, whose curvature vanishes of finite order at Az. 
Precisely, let 01 be a bounded open set in ~ 2 with smooth boundary r 1 

such that 

(1) 01 C {x = (x1,x2) E ~ 2 ;x2 < 0}, 
(2) A1 = {0, 0) E r1, 
(3) r 1 is represented near A1 as 

where mis a positive integer:2:: 2, 
(4) the curvature of r1 does not vanish on r1 - {A1}. 

Let 0 2 be a bounded open set in ~ 2 with smooth boundary r2 such 
that 

(1) 0 2 C {x = (x1 , x2) E ~ 2 ; x2 > d} where dis a positive constant, 
(2) A2 = (0, d) E r2, 
(3) r 2 is represented near A2 as 

X2 = d+x1 2m, 

(4) the curvature of r 2 does not vanish on r 2 - {A2 }. 

We set 

and 

n=~2 -o. 
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Consider the following boundary value problem with parameter µ E 

<C 

(1.2) { 
(L. + µ 2 )u(x) = 0 

u(x) = g(x) 

inn 

in r 

for g(x) E C00 (r). For Imµ< 0, (1.1) has a unique solution in £ 2 (0). 
Denote the solution u(x) as 

u(x) = (U(µ)g)(x). 

Then by using the regularity theorem for elliptic operators, U (µ) can be 
regarded as a continuous operator from C00 (r) into C 00 (0) for eachµ 
such that Imµ < 0. Thus, U(µ) becomes an .C(C00 (r), C 00 (0))-valued 
holomorphic function in {µ; Imµ < O}, where .C(E, F) denotes the set 
of all the continuous operators from E into F. 

We would like to consider the analytic continuation of U(µ) into 
{µ;Imµ 2: 0}. The result that I will show is the following theorem: 

Theorem 1. Assume that 

(1.3) m 2: 4, 

and set 
1 

a--­- m-1· 

Then, for any c:1, c:2 > 0, there exists a positive constant C,:1 .,:2 such 
that U(µ) can be continued analytically into 

(1.4) 
{µ;Imµ~ IReµ1-(1+ 2a)-l-c1, IReµI 2: cc1,c2} 

7r 
- U~_00 {µ; Imµ 2: 0 and Id r - Reµj < c:2}-

Recall that the poles of S(z) coincide with those of U(µ). Therefore, 
even though Theorem 1 is of the analytic continuation of U(µ) for an 
obstacle in IR.2 , it gives us a partial answer to the above question. 

§2. Geometric optics near the periodic ray a 1a2 

In order to consider the solution of the reduced wave equation (1.2) 
for high frequency, that is, for !Re µj large, the geometric optics in n 
plays an important role. Especially, it is essential to know the asymptotic 
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behavior of rays trapped by O, which are the ones approaching to the 
periodic rays when t - oo. In our case, the periodic ray in O is only 
the one going and returning between A1 and A2 • Thus we consider the 
behavior ofrays in the domain 0(8) (8 > 0) surrounded by the following 
four curves 

X1 = 8, X1 = -8, X2 = -X1 2m, X2 = d + X1 2m 

and set 

S1(8) = 0(8) n r1, z = 1, 2. 

From now on, in this section we shall denote the point in JR2 as 

Q = (x,y), x,y E IR. 
Let 

Q = (x, -x2m) E 81(8) and S = (,E, ~) E S1, 

and denote by X(Q, S) the ray starting from Qin the direction S, that 
is, 

X(Q,S) = {Q+sS;s ~ O}. 

Denote by Q' and S' the first fitting point of X ( Q, S) at r 2 and the 
direction of the reflected ray respectively. Setting Q' = (x', d + x'2m), 
we have 

S' = S- 2(3, N(Q'))N(Q') 

where N(Q') denotes the unit outer (with respect to 0 2 ) normal of r 2 , 

that is, 

N(Q') = (1 + (2mx'2m-1)2)-1/2 (2mx'2m-1, -1). 

Set S' = (,E',-~). Then we have a mapping 

T: (x,,E) - (x',,E'). 

It is obvious that, when the both X and e tend to zero, x' and e also 
tend to zero. As an approximation of the mapping T we shall consider 
the following mapping 'I', which maps (x,,E) to T(x,,E) = (x',e') given 
by 

(2.1) {
x' =x+e 
,E' = ,E + 4mx'2m-l = ,E + 4m(x + e)2m-l. 
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Let f(s) be a smooth function defined for s near to 0, and let 
{mj}~0 be an increasing sequence such that mi ---+ oo as j ---+ oo. 
We say that f(s} has an asymptotic expansion for s---+ 0 

f(s) ~ ao sm0 + a1 sm1 + · · · + aj smi + • • • 

when, for any M > 0, there are j 0 and CM such that 

io 
lf(s) - L aj sm;I ~ CM lslM. 

j=O 

Lemma 2.1. Suppose that m ~ 2. Then, there is a one parameter 
family of a pair of functions g( s) and h( s) defined for small s having 
asymptitic expansions 

(2.2) { 
g( s) ~ ao s°' + a1 s°'+l + · • • + ai sa+i + • • • 

h(s) ~ bo s°'+l + b1 s°'+2 +•••+bi so:+Hl + ... 

and satisfying 

(2.3) 
- s s 
T(g(s), h(s)) - (g(-), h(-)) ~ 0. 

· s+l s+l 

In the asymptotic expansion (2.2), a1 is a free parameter, a0 = ±(a/2)°' 
and bo = =faa0 are independent of a 1 , and b1 is given by 

a(a + 1) 
b1 = ao 2 - (a+ l)a1, 

and aj and bi (j ~ 2) depend on a1 . 

Proof. 

(2.4) 

We look for formal series 

{ 
g(s) ~ aos7 + a1s7 +1 + · · · 
h(s) ~ bos13 + b1 s13+1 + • • • 

as they satisfy (2.3), which can be written as 

(2.5) 

(2.6) 

s 
g(-) - g(s) ~ h(s), 

l+s 

h(-s-) - h(s) ~ 4m(g(s) + h(s))2m-l_ 
l+s 

We choose aj, bj (j = 0, 1, · • •) so that (2.5) and (2.6) hold. Note that 
for p E JR we have 

( s )p +1 1 +2 -.- ~ sP -psP + -p(p+ l)sP - .... 
s+l 2 . 
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Substitute (2.4) and the above expansion into (2.5) and (2.6). Equating 
the leading terms of the both sides of (2.5) we have 

-ao-ys-r+I = bos13 , 

which implies that /3 = ')' + 1 and bo = --yao. Substituting the just 
obtained relations into (2.6) and equating the leading terms of the both 
sides of (2.6) we have 

-/3bos13+1 = 4m (aos'Y)2m-l. 

Therefore it follows that 

-y(2m - 1) = /3 + l = -y + 2,. 

4ma02m-l = -bo/3 = ao')'/3 = ao-y('Y + 1). 

Thus we have 

')' = (m - 1)-1 = a, 

1 m 
4mao2m-2 = -- --. = ma2. 

m-1 m-1 

Now, substitute these')', /3, a0 and b0 and equate the second terms 
of the both sides of (2.5). The we have 

{ao a(a 2+ l) - a1 (a+ 1)} s°'+2 = b1s°'+2. 

Choose arbitrary a1 and take b1 as 

a(a + 1) 
b1 = ao 2 - a1 ( a + l). 

Then the second term of the left hand side of (2.6) is 

On the other hand, the second term of the right hand side of (2.6) is 

4m(2m - l)aa2m-l(a1 + bo)s<2m-2)a+a+1_ 

Evidently it holds that (2m - 2)a + a + l = /3 + 2, and we can check 
easily by a direct calculus that 

bo /3(/3 2+ l) - b1 (/3 + 1) = 4m(2m - l)ao2m-1(a1 + bo)-
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For j ~ 2, the (j + 1)-th term of the left hand side of (2.5) is 

{-(a+ j)a1 + linear combination of a0, a 1 , · · ·, a1_ 1 } s°'+Hl. 

Thus, b1 should satisfy 

-(a+ j)a1 + linear combination of a0 , a 1 , · · · ,a1_ 1 = b1. 

Similarly, (j + 1)-th term of the left hand side of (2.6) is 

{-(,8 + j)b1 + linear combination of bo, bi,···, b1-1} s 13+1+1. 

The (j + 1)-th term of the right hand side of (2.6) is 

4m { (2m - l)alm-2a1 + terms determined by bo, bi,···, b1_1 and 

ao, a1,··•,a1_ 1, a1}s/3+1+1. 

Now consider a linear equation in unknown (a1, b1): 

{ 
( a + j)a1 + b1 = F1 

(a+ l)(a + 2)a1 + ((3 + j)b1 = G1. 

Since (a+ j)(/3 + j) - (a+ l)(a + 2) # 0 for all j ~ 2, the above 
equation has a unique solution for any given (F1, G1). Thus for j ~ 2, 
we can choose the coefficients a1, b1 successively in such a way that the 
asymptotic expansions of the both sides of (2.3) are equal. Q.E.D. 

Lemma 2.1 gives us an asymptotic behavior of broken rays in n. 
Choose j 0 and set 

and 

g(jo) = ao s°' + a1 s°'+1 + · · · + a10 s°'+Jo, 

h(jo) = bo s°'+1 + bi s°'+2 + · · · + b10 s°'+l+jo 

s 
Since -- = (n + 1)-1 for s = n-1 , we have 

l+s 
-1 

o _ (jo)( n ) 
Xn+l - g 1 + n-1 , 

-1 
co _ h(jo)( n ) 
'>n+l - l + n-1 · 

Then, for any M fixed, if we choose j 0 sufficiently large, we have the 
following estimate 

IT(x~,,~)- (x~+i,,~+1)1::; CMn-M for all n. 
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This gives us an approximate behavior of broken ray in fl which con­
verges to the periodic ray a 1a 2 . 

Let us denote as 

T(x~ + s, ~~ + t) = (x~+l + s'J~+l + t'), 

where we set (x~+i,f~+1 ) = T(x~, ~~). Define mapping Tn by 

Tn: (s,t)-; (s',t'), 

which maps a neighborhood of (0, 0) E IR.2 in to a neighborhood of 
(0, 0) E IR.2 . Then we have 

An = ~,---,'-8(s', t') I 
8( s, t) s=t=O 

( 1 = o 2m-2 2m(2m - 1) (xnH) 

Substituting the expansion of x~, we have 

( 1 
An~ -2 -3 d0n +d1n + · ·· 

where d0 = (a+ l)(a + 2). Set 

S'J(s, t) = Tn o Tn-1 o · · · o Tj(s, t) = (X'J(s, t), B'J(s, t)), 

and 

Dn(s t) = 8Sf(s,t) = (g''J,11(s,t) 91J,12(s,t)) 
3 ' 8(s,t) gf,21 (s,t) gf,22 (s,t) · 

Evidently we have 

Df (0, 0) = An O An-1 0 ••• 0 A1. 

Lemma 2.2. Suppose that m ~ 4. Then, we have an asymptotic 
expansion of Df(0, 0) inn-a of the form 

D'J(0, 0) Dj ~ 
( n°+2 + a111n°'+1 + · · · 

(a+ 2)n°'H + a21,1n°' + · · · 
n-a-1 + a12,1n-a-2 +... ) 

-a-2 -a-3 , -(a+l)n +a22,1n +··· 
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where Di is a nonsingular 2 x 2-matrix. 

Proof. In this proof, we write D7(0, 0) as Dn for the simplicity. 
Suppose that vn has an asymptotic expansion of the form 

where 9ii ( s) are functions with asymptotic expansion for s ---+ 0 

( ) ,..,. · ,..,. ·+a ,..,. ·+2a g .. s ~a··os"' +a··1s"3 +a··2s••3 +···. '1,J 1,3, 1,3, 1,3, 

Since 

1 )}nn -2 -3 , don +din + ··· 
we have 

Thus, it suffices to look for 2 x 2-valued function G(s) satisfying 

By the same argument as of Lemma 2.1 we get an aymptotic expansion 
of G(s) for s---+ 0, and nn = G(n-1 ) satisfies the required properties. 
Here we use essentially the assumption m 2:: 4 for the purpose of the 
possibility of successive determination of the coefficients of G(s). 

Lemma 2.3. For any multi-index 'Y we have 

1 a-:,t Xi(s, t)ls=t=O' ::; cl'YI n-°'(n2+2a)l'YI, 

l a"( sn(s t)I I< cl'YI n-0<-l(n2+2a)l"fl s,t 1 , s=t=O - , 

where C > 0 is a constant independent of 'Y. 

Take other functions 

-c ) - a - a+l g s ~ aos + a1 s + · · · , 
h(s) ~ bos°' + b1sa+1 + • • • 
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with the properties of Lemma 2.1 of the type (2.3), that is, 

Set 

- - s - s 
T(g(s), h(s)) - (g(-), h(-)) ~ 0. 

l+s l+s 

y~ =ii.on-a+ a1n-(a+l) + ... 
'f/~ = bon-(a+l) + b1n-(a+2) + ... 

and define Sn by 
Sn(s,t) = (s',t'), 

163 

where (s, t) and (s', t') are combined by the relation T(y~ + s, 'f/~ + t) = 
W~+1 + s', 'IJ~+1 + t'). We set similarly 

S"J = Sn O Sn-1 0 • • • 0 Sj. 

Now by using Lemmas 2.2 and 2.3 we have 

Proposition 2.4. Let Jo,l (l = 1, 2) be fixed. Then there are func­
tions k1(s), (l = 1, 2) with asymptotic expansion for s--, 0 

k ( ) a+2 + a+3 + 1 s ~ ci,os c1,1s • · · 

satisfying 

§3. Construction of asymptotic solutions 

From now on we shall use again the notation x = ( x1 , x2) to denote 
a point of JR.2 • Let us construct an asymptotic solution of (1.2) for 
an oscillatory data. Since the curvature of the boundary f1 is positive 
except at Ai, the behavior of asymptotic solutions going out from 0(8) 
is same as in the case that the bodies are strictly convex. Therefore 
it is essential to consider asymptotic solutions in 0( 8) for oscillatory 
data given on S1(8). Let w E S1 = {w E lR.2 ; lwl = 1}, and let f(x) E 
C0 (S1 (8)), and set 

(3.1) g(x, µ) = e-iµ,x·w f(x). 

We shall use a standard method for construction, but as remarked in 
Section 2 it is crucial to know the behavior of the phase functions when 
the number of reflections increases to the infinity. 

With aid of Proposition 2.4 we have the following 
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Proposition 3.1. Let w be an element of S 1 near (0, 1), and set 

cp1(x) = X • W. 

For any positive integer N, there is a sequence of real valued smooth 
functions defined in a neighborhood of 0( 8) with the following expansions 
inn-a: 

8cpn ( ) .b ( ) -1-0.+b ( ) -1-20. -a x=oxn 1xn 
X2 

+ ... + bM(x)n-1-(M+l)o., 

'P2n(x) = co(x) + 2nd+c1(x)n-1- 20. 

+ ... + CM(x)n-1-(MH)o., 

'P2n+1(x) = eo(x) + (2n + l)d + c1 (x)n-1- 20. + c2(x)n-1- 30. 

+ ... + CM(x)n-1-(MH)o., 

where M is a positive integer and bj(x), cj(x), cj(x), j = 1, 2, • • •, M, 
are smooth functions. 

Moreover, cp j ( x), j = 1, 2, · · · , satisfy the eikonal equation 

and the difference 'Pi+l - 'Pi on the boundary satisfies 

(cp2n - 'P2n-1)(x) = eo(x) + eN-1(x)n-l-Na + eN(x)n-l-(NH)o. 

+ · · · + eM(x)n-l-(MH)o. for all x E S1(8), 

(cp2n+1 - 'P2n)(x) = eo(x) + eN-1(x)n-l-Ncr. + eN(x)n-l-(N+l)o. 

+ • • • + eM(x)n-l-(M+l)o. for all x E S2(8), 

where eo ( x) and e0 ( x) satisfy the following estimate 

Now we construct a sequence of asymptotic solutions by using the 
sequence {cpj}~1 of phase functions in the above proposition. First let 
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µ = k + ia with a < 0 and set 

uj(x, µ) = exp(-iµcpj(x)) vj(x, µ), 
p 

Vj(x, µ)=I: Vjp(x)(iµ)-P, 
p=O 

and we shall construct Vjp successively by the following procedure: 
Set 

Tj = 2 'v r.pj · 'v + 6.r.pj. 

Let v00 (x) be solution of 

{ 
Tovoo = 0 

Voo(x) = f(x) 

in 0(8), 

on S1 (8) 

and vop(x), p = 1, 2, · • •, P be the successive solutions of 

{ 
To vop = -6. vo,p-1 

Vop(x) = 0 

in 0(8), 

on S1(8). 
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Let j ~ 1 and suppose that Vj-I,p(x) are defined. Define Vjp as the 
solutions of 

{ 
Tj Vjp = D. Vj,p-1 

Vjp(x) = Vj-1,p 

where we take Vj,-l = 0 and 

in 0(8), 

on SE(j)(8) 

for j even, 

for j odd. 

About the asymptotic behavior of Vnp for n ----+ oo, we have the 
following lemma which is a direct consequence of the properties of 'Pn ( x) 
in Proposition 3.1. 

Lemma 3.2. For each p fixed, we get the following asymptotic 
expansion of Vnp ( x) in n -a: 

and 

V2n,p(x) ~ wp0(x)nP+wp1(x)np-a + Wp2(x)np- 2a 

+ · · · + WpK(x)np-Ka, 

V2n+1,p(x) ~ Wpo(x)nP+wp1(x)np-a + wp2(x)nP-2°' 
+ ... + 'WpK(x)np-Ka, 
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where Wpj(x) and Wpj(x) are smooth. 

Now define u(x,µ) for Imµ= a< 0 by 

00 

(3.2) u(x,µ) = L (-l)nun(x,µ). 
n=O 

It is evident that u(x, µ) converges absolutely, and we see from the con­
struction of Uj that the following relations hold: 

00 

(3.3) (6 + µ2) u(x, µ) = (iµ)-P L exp(-iµcpn(x)) 6vnp(x), 
n=O 

[u(x, µ) - exp(-iµcpo(x)) f(x)]s1 (o) 

(3.4) 00 

= L {exp(-iµcp2n(x)) - exp(-iµcp2n-1(x))} V2n(x, µ) 
n=l 

and 

(3.5) 
00 

u(x, µ)ls2 (o) = L { exp(-iµcp2n+1 (x)) - exp(-iµcp2n(x))} V2n+1 (x, µ). 
n=O 

Let rJ and co be an arbtrary positive constant. With the aid of 
Lemma 3.2 we have from (3.3) 

(3.6) 1(6 + µ2) u(x, µ)j $ CN,,,,,e0 lµi-P 

for all Imµ$ -co, x E 0(8). 

Similarly we have from (3.4) 

(3.7) ju(x, µ)-g(x, µ)j $ CN,,,,,e:0 jµj_,,,N 

for all x E S1(jµj-"') and Imµ$ -co 

and from (3.5) 

(3.8) ju(x, µ)j $ CN,'f/,eo jµj_,,,N 

for all x E S2(lµI-"') and Imµ$ -co. 

Now, note that for any broken ray starting from a point in 0(8) and 
for any a > 0 it holds the either of the following two cases: 

(i) the broken ray fits S1 (a) within [a-2<m-l)]-times reflections. 
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(ii) the broken ray goes out from 0(8) within [a-2Cm-1)]-times re­
flections. 

Then, by using the techniques in Ikawa [4] and that of Vainberg [10] 
jointly, we can easily construct u(x, µ) by an explicit procedure from 
u(x, µ) satisfying the following estimates, which show that u(x, µ) an 
good approximate solution to (1.2) for an oscillatry data g(x, µ) defined 
(3.1): 

For any N > 0 and co > 0 we have for all Imµ :S -co 

(i) u(•, µ) is C00 (0)-valued holomorphic function, 

(ii) (L + µ2 )u(x, µ) = o inn, 

(iii) lu(x,µ) - YI :'.S CN,eo lµI-N for all XE r1, 

(iv) lu(x,µ)I :'.S CN,eo lµI-N for all XE r2. 

When we want to extend the above results beyond the real axis, 
there is a difficulty that the convergence of un(x, µ) is not exponential 
with respect to n --+ oo. But the summation (3.2) is of a similar form to 
the zeta functions. Thus, we shall use the technique of analytic contin­
uation of the zeta functions. We shall consider in the next section the 
analytic continuation and estimates of the zeta function so that we may 
use it for the analytic extension of u(x, µ) beyond the real axis. 

§4. Analytic continuation of the zeta function and its gener­
alization 

In order to consider the analytic continuation of u(x, µ) defined by 
(3.2), we express u(x, µ) as a sum of zeta functions. 

Even though the analytic continuation of the zeta function is well 
known (see for example Veech [11]), we shall give a proof because the one 
used here is modified a little and we need estimates of the dependency 
of the functions on parameters. 

In this section, several notations will be used in different meanings 
from the ones in the previous sections, except a. 

Let m be a positive integer and let z and s be complex numbers. 
For lzl < 1 we define the function F(z, s : m) by 

(4.1) F(z,s: m) = L znn- 8 • 

n:2'.m 

Obviously, the right hand side of (4.1) converges absolutely for lzl < 1, 
which implies that the function F(z, s: m) is holomorphic in {z; lzl < 1} 
for any s EC. 
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We consider the analytic continuation of F. First assume Res > 0, 
and set 100 zm e-mx xs-1 

I(z,s: m) = 0 1 _ ze-"' dx. 

We see that, for each Res> O, I(z,s: m) is holomorphic in z ED= 
C - [1, oo). As it is well known, F( z, s : m) has the following integral 
representation: 

(4.2) 
1 

F(z, s: m) = r(s) I(z, s: m) for lzl < 1. 

On the other hand, the definition (4.1) gives us 

8F 
z az (z, s : m) = F(z, s - 1 : m) for all lzl < 1. 

Let a be a positive integer. Then we have for Res > 0 and lzl < 1 the 
expression 

1 ( a )a (4.3) F(z, s - a: m) = r(s) z az I(z, s: m). 

By means of the above integral representation we shall show the following 
lemma: 

Lemma 4.1. For any s EC and m positive integer, F(z, s : m) 
as a function in z variable can be continued holomorphically into the 
domain D = C - [1, oo). Moreover, we have the following estimate: 

(4.4) IF(. )I C r(Res + a) -Res I Im ( I l)a 
z, s : m ~ K,a lr(s + a)I m z 1 + z 

for all Res> -a and z EK, 

where K is an arbitrary compact subset of D, a is an arbitrary positive 
integer and CK,a is a constant independent of m. 

Proof By using the fact that I(z, s : m) is holomorphic in z ED 
for any Res > 0, the expression (4.3) proves Lemma 4.1 except the 
estimate (4.4). It is easy to show by the induction that 

mazm 
(l - ze-"')a+l {1 + Ca,1(m) ze-"'+ 

+ Ca,2(m)(ze-"')2 + · · · + Ca,~(m)(ze-"')°}, 
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where the coefficients Ca,z(m), l = I, 2, ... , a are polynomials of m-1 of 
order less than a, and they satisfy 

for all m. 

Thus, if we set 
max II - ze-xl = CK, 
x>O 
zEK 

we have for all Res > 0 

I (z :z) a I(z,s: m)I 

sma lzlm (cK)-(a+l) Ca(I + lzlr 100 e-mx1xs-l1 dx 

sma lzlm (cK )-(a+l) Ca(I + lzlr m-Res f(Re s). 

Substituting this estimate into ( 4.3) we get immediately for all Re s > 0 

Denoting s-a in the above inequality bys anew, we get (4.4). Q.E.D. 

In order to consider the analytic continuation of u(x, µ) beyond the 
real axis, we have to consider the analytic continuation of the following 
function originally defined for Imµ < 0: 

(4.5) R(3(µ: q) = L exp ( - iµ(n + eon- 1- 20: 

n:2'.lkl/3 

Let us set 

Dr,(3,e: = {µ = ik + a; 2r1r + c S lkl S 2(r + l)1r - c:, a S r-f3}. 

For a < 0, as remarked in the above, the right hand side converges 
absolutely. Now consider the holomorphic extension of R(3(µ : q) into 
a> 0. 

Lemma 4.2. Let f3 > (I+ 2a)-1 and let c: > 0. For any positive 
integer r, R(3(µ: q) can be prolonged analytically into Dr,(3,e:· Moreover, 
we have the following estimates: 

(4.6) for all µ E Dr,(3,e: 
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and 

IR,a(µ: q) - F(e-iµ, -q: [r.B])I -5:_C,a,e c1 rq,B-7 

for allµ E Dr,,B,e, 

where 1 = (1 + a)/3 - 1 > 0. 

Proof. First suppose that Cj = 0 for all j ~ 1. For each n ~ 0 we 
have 

(4.8) exp ( - iµ(n + eon-1- 2°')) nq 

00 ( • )! = Zn ~ -iµ rn l n-(l+2a)l nq 
L...J l! ~ ' 
l=O 

where we set z = exp(-iµ). Suppose that µ E Dr,,B,e (r > 0) and set 
m = [r.B]. Note that 

L zn n-<1+2a)l nq = F(z, (1 + 2a)l - q: m). 
n~m 

Let lzl < 1 and take the summation inn~ m of the both sides of (4.8). 
Since the both summations converges absolutely we have a relation 

oo ( . )l 
~ -iµ l 

R13(µ: q) = L...J -z,- Co F(z, (1 + 2a)l - q: m), 
l=O 

which implies 

(4.9) R13(µ: q) - F(e-iµ, -q: m) 

oo ( . )l 
= L -;~ eo1 F(e-iµ, (1 + 2a)l - q: m). 

l=l 

We see easily that { z = exp( -iµ); µ E Dr,,B,e} is contained in a compact 
subset K of D = <C- [1, oo) for all r. Then by Lemma 4.1, each term of 
the right hand side of (4.9) can be extended holomorphically into Dr,/3,e• 
Therefore, if we show that the right hand side of (4.9) converges abso­
lutely in Dr,/3,e, it follows that. R,a(µ : q) can be extended analytically 
into Dr,/3,e• 

Thus, by applying the previous lemma we have for all µ E Dr,/3,e 

(-iµ)l l 1-z,-Co F(z,(1+2a)l-q,m)I 

-5:.CK,qlzlm(l + lzl)q l~r leol! m-(l+2a)l+q. 



Sc,attering by Two Bodies 171 

Here we applied Lemma 4.1 by talcing s = (1 + 2a)l - q, and used the 
fact that r(Res +a)= lr(s + a)I- Note that 

lzml = 1e-ikm+mu1 =emu::; cer-(3-r(3 = C, 

m-(1+2a)! lkl!::; (lkl-(1+2a),B+l)l = Clkl--yl 

where we set 'Y = (1 + 2a)f3 - 1 > 0, and 

Then we have 

IR,a(µ) - F(e-iµ,, -q: m)I 
CX) 1 

::;cK,q lklq,B L l!(cok--y)l ::; CK,q colklq,B--y_ 
l=l 

Thus the desired properties of R,a (µ : q) are proved for the special case. 

Next consider the general case, that is, the case that Cj, (j ~ 1) are 
not necessarily zero. We introduce some notations. Set 

l = (lo, li, · · · ,lM) E {0, 1, · · ·}M+1, 
c=(c0,c1,··•,cM) and A=(0,1,··•,M), 

and denote as 

Ill== lo+ li + · · · + lM, A- l = li + 2l2 + · · · + M lM, 
M M 

l IT l· C = cj, l' = IT l·' • 3"" 

j=O j=O 

Now we have the following expansion 

Thus, by replacing the expansion ( 4.8) by the above one, we can achieve 
the same argument as the special case, and get Lemma 4.2. Q.E.D. 
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§5. Proof of Theorem 1 

First we shall show that the function u(x, µ) defined by (3.2) can be 
extended analytically into the domain 

where Cr,,e is a positive integer depending on (3 and e. Secondly, we 
shall show that u(x, µ) is a good approximation of the solution of (1.2) 
for all µ E Dr,,e 

Let µ E Dr,f,,e and set mr = lrlf3. We express the function u(x, µ) 
defined by (3.2) as follows: 

mr 

(5.1) u(x, µ) = L U2n(x, µ) + L u2n(x, µ) 
n=O 

m,, 

- L U2n+1(x,µ) - L U2n+1(x,µ) 

Recall Proposition 3.1 and Lemma 3.2. Then we have 

p 

u£2)(x, µ) = L (-iµ)-P L exp(-iµ(eo(x) +2nd+ c1 (x)n-1- 20 

p=O n~mr 

+ · · · + CM(x)n-l-(M+l)a)) {wpo(x)nP + · · · + WpKnp-Ka}. · 

Thus, for each x E 0(8) fixed, ui2\x, µ) can be expressed by a summa­
tion of following terms: 

(-iµ)-P Rr,(µ: p - ja), p = O, · · ·, P, j = 0, · · ·, K, 

from which we see that u£2) (x, µ) can be extended analytically into Dr,{3,e 
beyond the real axis. Moreover, applying the estimate in Lemma 4.2 we 
have 

p 

(5.2) lu£2) (x, µ)I :$ CN,{3,e L lµl-p lrlr,p :SC' N,{3,e 
p=O 

for all µ E Dr,{3,e 



Scattering by Two Bodies 173 

(Recall that the constants P, K, M are determined by N through Propo­

sition 3.1). Similarly we see that ui2> (x, µ) also can be extended analyt~ 
ically into Dr,{j,e and 

p 

(5.3) lui2>(x,µ)I $ CN,{j,e L jµl-p lrl{jp $ C'N,{j,e 
p=O 

for all µ E Dr,{j,e 

holds. 

Consider ui1>(x,µ). Since it is a finite sum of entire functions, it 
is also an entire function. But it is important to get an estimate for 
µ E Dr,{j,e• For all n $ mr we have 

where so is independent of r. Therefore we have for all µ E Dr,{j,e 

p 

lu2n(x, µ)I $ e80 L mf lµl-p $ Gp, 
p=O 

from which it follows that 

(5.4) 

Evidently the same estimate holds for ui1>(x,µ). Thus we have the 
following 

Lemma 5.1. Thefunctionu(x,µ) defined by (3.1) can be extended 
analytically into Dp,e and the following estimate holds: 

(5.5) lu(x, µ)I $ CN,{j,e lµIP for all x E 0(8), µ E Dp,e-

Next consider (.6. + µ 2)u(x,µ). By applying the above argument to 
the expression (3.3), we get easily 

(5.6) 1(.6. + µ 2)u(x, µ)I $CN,{j,e lµI-P lrlPP 

for all x E 0(8), µ E Dr,f3,e• 

For the estimate of boundary value, we can use the same argument as 
above. 

An in Section 3, by using the techniques in [4] and that of [10] jointly, 
we can easily construct by an explicit procedure (:rom u(x, µ) a function 
u(x, µ) with the following properties: 
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Proposition 5.2. Let N > 0, c:0 > 0 and f3 > (l + 2a )-1 be fixed. 
For the oscillatory data g(x, µ) of the form (3.1) we can construct a 
function u(x,µ), which is C00 (0.)-valued holomorphic function in Dr3,,s, 
satisfying for all µ E D {3,e 

(i) 

(ii) 

(iii) 

(,6. + µ,2)u(x, µ) = 0 inn, 

lu(x,µ) - gl ~ CN,{3,eo lµI-N for all XE f1, 

lu(x, µ)I ~ CN,{3,eo lµI-N for all XE f2. 

Theorem 1 in Introduction can be derived from the above proposi­
tion by a standard arugument. 
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