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Abstract. 

The diameter of the set of poles on Riemannian manifolds of 
nonnegative sectional curvature is estimated by a constant defined 
by Maeda. We study the constant for elliptic paraboloids and show 
that our estimate is sharp. 

§1. Introduction 

Let M be a noncompact complete Riemannian manifold. In [2] 
M. Maeda defined a constant d0 (M) which describes how M expands at 
infinity. For a point p of M let St(P) = {q EM; d(p, q) = t} denote the 
metric sphere centered at p with radius t 2'. 0 and Dt(P) the diameter 
diam St (p) of St (p). He defined 

D (p)2 
d0 (M) = limsup-t -

f-H)O t 

and showed that d0 does not depend on the choice of p and the distance 
between two poles does not exceed d0 (M) if Mis of nonnegative sectional 
curvature, where a point q of M is said to be a pole if the exponential 
mapping expq : TqM -. M is a diffeomorphism. In this paper we shall 
improve his estimate as follows: 

Theorem 1.1. Let M be a noncompact and complete Riemannian 
manifold of nonnegative sectional curvature. Then the distance between 
two poles does not exceed d0 (M)/8. 
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The distance of two poles of an elliptic paraboloid defined by 

with O < a0 < a 1 goes towards d0 /8 as a0 ---, 0. Hence our estimate is 
sharp. 

We note that elliptic paraboloids are Liouville surfaces. So, by de­
forming elliptic paraboloids through Liouville surfaces, we can construct 
various surfaces of nonnegative curvature with two poles and d0 < oo. 

On the other hand, M. Tanaka [4] studied the poles on surfaces of 
revolution and showed that the center of revolution is the only pole if 
and only if d0 is finite. Hence we conjecture 

Conjecture 1.2. If the constant d0 (M) is finite for a Riemannian 
manifold M of nonnegative sectional curvature, then the number of poles 
of M is finite or at most two. 

In §2 we shall give a proof of Theorem 1. 1. In §3 we shall study the 
behavior of geodesics on elliptic paraboloids using the elliptic coordinates 
to show that two umbilic points are the poles. In §4 we shall give the 
exact value of do for an elliptic paraboloid and show that our estimate 
is sharp. 

§2. The proof of Theorem 1. 1 

In this section let M denote a Riemannian manifold of nonneg­
ative sectional curvature and all geodesics of M are assumed to be 
parametrized by arc length. 

Lemma 2.1. Let"( : [O, oo) ---, M be a ray emanating from p, i.e., 
'YI [0, t] is minimizing for any t > 0. Let a : [0, s] ---, M be a geodesic 
from "((t0 ) to q and 0 the angle -"y(t0 ) and a(O) make. Then 

t 0 - scos0 ~ d(p,q). 

Proof. First we assume that a is a minimizing geodesic. Topono­
gov's comparison theorem for a triangle D."((t0 )'Y(t)q with t > t0 implies 

d(q, 'Y(t)) 2 ~ d(q, 'Y(t0 )) 2 + d('Y(t), 'Y(t0 )) 2 

- 2d(q,"((to))d('Y(t),'Y(t0 ))cos(n - 0) 

= s 2 + (t - t0 ) 2 + 2s(t - t0 ) cos 0 

= ((t - to)+ scos0)2 + s2 (1- cos2 0). 
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Hence we get 

s2(1 - cos2 0) 
d(q,'Y(t))-((t-t0 )+scos0)::::; d( ( )) (( ) 0) = O(l/t). q, 'Y t + t - t0 + s cos 

If d(p, q) < to - s cos 0, then there is a positive constant E such that 
d(p, q) < t0 - s cos 0 - E. Hence we get 

t = d(p, 'Y(t)) ::::; d(p, q) + d(q, 'Y(t)) 

< (to - scos0 - E) + (t - to+ scos0) + 0(1/t) 

= t - E + 0(1/t) < t 

for large t, which contradicts the assumption that 'Y is a ray. 
If a is not minimizing, then we divide a into minimizing arcs al [ Si-l, 

si] (i = 1 ... k) with O = so < s1 < ... < sk = s. We consider a poly­
gon 'Y(t)a(so) ... a(sk) in the two-dimensional Euclidean space which 
corresponds to 'Y(t)a(s0 ) ... a(sk) with 

d("f(t), a(si)) = d('Y(t), a(si)) (i = 0 ... k) 

d(a(si_1), a(si)) = d(a(si- 1), a(si)) (i = 1 ... k). 

Then Toponogov's comparison theorem implies that the polygon is con­
vex. Therefore we easily get 

lim {t - to+ s cos0 - d(a(s), 'Y(t))} 
t-+OCJ 

= lim {t - t0 + scos0 - d(a(s),'Y(t))} ~ 0. 
t-+OCJ 

Hence the assertion is clear. 

Let Pl and P2 be poles of M and a = d(p1, P2). Let 'Yl, 'Y2 : [O, oo) -+ 

M be two rays with 'Y1 (0) = P1, 'Y1 (a) = P2, 'Y2(0) = P2 and 'Y2(a) = Pl· 
Let q1 = 'Y1(t), q2 = 'Y2(t + a) and v = d(q1,q2). Then v::::; Dv1 (t) 
because d(p1, q1) = d(p1, q2) = t. Let q be the middle point of a min­
imizing geodesic between q1 and q2. Let 0i = .i_p1qiq (i = 1, 2). Then 
Toponogov's comparison theorem for a triangle 6.p1q2q implies 

(2.1) d(p1 , q)2 ::::; t 2 + v2 /4 - tv cos 02. 

And from Lemma 2.1, we get 

(2.2) t-(v/2)cos01::::; d(p1,q) 

(t + a) - v cos 02 ::::; d(p2, q1) = t - a. 
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Hence we have 
2a::::; vcos02. 

Since lim sup v2 /t ::::; d0 < oo, we may assume the left side of (2.2) is 
positive. Therefore (2.1) combined with (2.2) yields 

(t - (v/2) cos01)2 ::::; t2 + v2 /4 - tvcos02, 

which is reduced to 

(2.3) v2 cos2 01 - 4tv cos 01 + 4tv cos02 - v2 ::::; 0. 

Toponogov's comparison theorem for a triangle tlp2q1 q gives 

(2.4) d(p2 , q)2 ::::; (t - a) 2 + v2 /4 - (t - a)v cos 01. 

And from Lemma 2.1 we get 

(2.5) (t+a)-(v/2)cos02 ::::; d(p2,q). 

Hence (2.4) combined with (2.5) yields 

((t + a) - (v/2) cos02 ) 2 ::::; (t - a) 2 + v2 /4- (t - a)vcos01, 

which is reduced to 

v2 cos2 02 - 4(t + a)v cos 02 + 4(t - a)v cos 01 + l6at - v2 ::::; 0. 

Deleting v2 cos2 02 , we get 

4(t-a)vcos01+16at-v2 0 
4(t+a) ::::;vcos 2-

We substitute this inequality to (2.3). Then (2.3) becomes 

2 2 0 8atv 0 16at2 - 2tv2 - av2 
V COS 1 - -- COS 1 + ------- ::::; 0. 

t+a t+a 

Deleting v2 cos2 01, we get 

(2.6) 
(2t + a)v2 

2t - Bat ::::; v cos 01. 

Applying Toponogov's comparison theorem to a triangle !:lp2 q1q2 , we 
get 

(t+a) 2 ::::; (t-a) 2 +v2 -2(t-a)vcos01 

4at::::; v2 - 2(t- a)vcos01. 
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Substituting (2.6) to this inequality, we get 

4at ~ v2 - 2(t - a) ( 2t - (2t ;a;)v2) 

4at + 4t(t - a) ~ v2 ( 1 + (t - a:~~t +a)) . 

Dividing both sides by t2 and letting t -+ oo, we get 

4 < do 
- 2a' 

i.e., 
do a<-. 

- 8 

§3. Geodesics on elliptic paraboloids 

325 

H. von Mangoldt studied the behavior of geodesics of hyperboloids 
in [3] and stated that his method could be applied to show that two 
umbilic points of an elliptic paraboloid are the only poles. In this section 
we study the behavior of geodesics of elliptic paraboloids and prove his 
assertion. Our argument mainly relies on [1, §3.5]. Let us consider an 
elliptic paraboloid 

M = {(xo,x1,x2) E R 3 ; x6/ao +xifa1 = 2x2} 

with O < ao < a 1 . 

We introduce the elliptic coordinates (u1,u2 ) E]ao,ai[x]a1,oo[: 

2 ao(ao - u1)(ao - u2) 
Xo = 

a1 - ao 
2 a1(a1 - u1)(a1 - u2) 

X1 = 
ao - a1 

Note that u 1 = u2 = a 1 corresponds to the umbilic points 

and the distance between two umbilic points of M is equal to 
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The first fundamental form is expressed in the elliptic coordinates as 
follows: 

where 
(-l)iui 

Ui = f(ui) ; f(ui) = 4(ao - ui)(a1 - ui)-

For a real number 1', a0 < 1' < a1 or a1 < 1', we consider a coordinate 
change 

(3.1) 

Then 
ds2 =du?+ (-u1 + 1')(u2 - 1')du;2. 

From this expression of the first fundamental form, we see that u~ -
parameter curves are geodesics. Hence we get 

Theorem 3.1 ([1, Theorem 3.5.5]). In the elliptic coordinates geo­
desics of M are characterized by 

together with the condition E(u, u) = const, where E = ds2 /2 is the 
energy function. Here 1' is a constant with value in ]ao, a1 [ or ]a1, oo[. 

The constant 1' is called the parameter of the geodesic. 

Corollary 3.2 ( cf. [1, Corollary 3.5.6]). Denote by (T1M)' the 
open and dense subset of the unit tangent bundle T1M formed by those 
unit tangent vectors which are tangent to a geodesic with parameter 1', 
1' E]a0 , a1 [ or 1' E]a1, oo[. Define F : (T1M)' -----+ R in elliptic tangent 
coordinates ( u, u) by 

F(u,u) = (-u1 +u2)(u2U1ili +u1U2u~). 

Then F is a first integral of the geodesic flow on T1M. And if u(t) = 
(u1 (t), u2 (t)) is a geodesic parametrized by arc length with parameter 1', 
then F(u(t), u(t)) = 1'· 

If we denote by µ(X) the angle between X E (T1M)' and the u 1 -

parameter line through TMX, then we may also write 
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where TM : T1 M --+ M denotes the canonical projection. 

We now go to the co..:geodesic flow c/>t on the cotangent bundle T* M. 
The cotangent coordinates ( u, v) are related to the tangent coordinates 
(u, u) by 

The functions E, F correspond to the following functions on (T* M)': 

Theorem 3.3 (cf. [1, Theorem 3.5.7]). For"( E]a0, a1[ or"( E 
]a1 , oo[ the c/>rinvariant set { F* = "(} in the total unit cotangent space 
T{ M consists of two embedded 2-dimensional cylinders which we denote 
byT;f. 

We distinguish the cases"( E]a1,oo[ or"( E]ao,ai[ as type I and II, 
respectively. 

The flow lines on the cylinder Tf of type I correspond, under the 
projection TM : Ti* M --+ M, to geodesics which monotonously wind Xr 

axis, while descending to tangent to a u 1 -parameter line { u2 = "(} then 
ascending to x 2 = oo. The cylinder of Type I corresponds, under TM, to 
{ ( u1, u2) ; ao ~ u1 ~ a1, "( ~ u2}. 

The flow lines on the cylinders of type II correspond, under TM, to 
geodesics which oscillate between the two Uz-parameter lines { u1 = "(}. 
The cylinder of type II corresponds, under TM, to { ( u1, u2) ; ao ~ u1 ~ 
"f, a1 ~ uz}. 

As "I goes towards a0 , the cylinders Tf become degenerate, i.e., we 
get two embedded curves given by the unit tangent vectors to the curve 
Mn {x1 = O}. 

Proof. 

(3.2) 

Let 

u1 = ao cos2 ¢1 + a1 sin2 ¢1 

Uz = a1 + 'lj;~ 

with ( ¢ 1 , ¢ 2 ) E R/21r x R. Then equations 2E* = 1 and F* = "( yield 
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For the cotangent coordinates (W1, W2) corresponding to ('1/J1, '1/J2) we get 

\[11 = v1 Bui = 2(a1 - ao)v1 sin '1/J1 cos'I/J1 
8'1/J1 

8u2 
W2 = v2 B'lj;2 = 2v2'1/J2. 

Hence 

wf = ('y- u1)u1 

\[I~= (u2 - "f)u2/(u2 - ao)-
(3.3) 

With ui = ui('l/Ji) as in (3.2), we get \[Ii= Wi('I/Ji)-
Consider now type I, i.e., a1 < "(. Then W2 = W2('1/J2) describes a 

simple non-closed curve in the ('1/J2, W2)-plane. W1 = W1('1/J1) yields two 
non-closed curves in the ('lj;1, W1)-plane, one with \[11 > 0, the other with 
\[11 < 0, since W1('1/J1) is always-:/- 0. However, in TiM, W1 = W1('1/J1), 
'1/J1 E S 1, describes two closed curves, since the ( u, v) are periodic in '1/J1. 
Thus, Ti M n { F* = "(} consists of two embedded cylinders. 

The discussion of type II, i.e., a0 < "( < a1, is similar. 

Let P(t,"f) = (-t)('y - t)(a0 - t)(a1 - t). For"( E]ao,a1[ define 
w2 = (w12,w22) with 

l 'Y -t('y - t) l'Y -t 
W12 = 4 ---- dt ; W22 = 4 ---- dt. 

a 0 JP(t,"() a 0 JP(t,"f) 

1a1 -t('y - t) . 1a1 -t 
W12 = 4 ---- dt ; W22 = 4 --- dt. 

a 0 JP(t,"f) a 0 JP(t,"f) 

In each case, put -w21: W22 = w('y). 

Theorem 3.4 ( cf. [1, Theorem 3.5.10]). The geodesic flow on each 
of the invariant cylinders T:;' in appropriate coordinates, is equivalent 
to the linear flow of slope w("f) on the fiat cylinder. 

Proof. Let "( E ]ao, a1 [. The differentials du~, du; in (3.1) determine 
functions u~(u1,u2),u~(u1,u2) on T:;', i.e., 
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Denote by Tw the flat cylinder R 2 /Zw2 . Then the functions u' = u'(u) 
give a transformation from T1 to Tw. The geodesic lines go into the 
u~ -parameter lines. 

The case I E]a1 , oo[ is treated in exactly the same manner. 

Theorem 3.5 (cf. [1, Theorem 3.5.16]). The flow-invariant set 
{ F* = ai} n Ti M is formed by those flow lines which, when projected 
into M, yield the geodesics which pass through the umbilic points. And 
the umbilic points are the only poles of M. 

Proof. Solve equations 

(3.4) E* = 1/2 ; F* = a1 

at a point p E M which does not lie on the x0xrplane. Since (3.4) is 
equivalent to 

we see that there are four solutions of the equation in Ti M. On the 
other hand there are at least four geodesics between p and the umbilic 
points even if we take the directions of geodesics in consideration. If 
1 =/- a 1 , the equations (3.3) and (3.5) have no common solutions. Hence 
each solution of (3.5) corresponds to a geodesic between p and an umbilic 
point and there is only one geodesic between p and each umbilic point. 
Therefore umbilic points are poles. From Theorem 3.3 we easily see any 
geodesic half-lines with F* =/- a 1 are not rays. 

§4. The constant d0 for an elliptic paraboloid 

In this section we give the exact value of the constant d0 for a 
paraboloid M in R 3 defined by an equation 

with O < ao < a1 in §3. 
Let M(t) = {(x0,x1,x2) EM; x2 = t} and let p = (0,0,0),qo(t) = 

( J2aot, 0, t) and q1 (t) = (0, y'2ait, t). Let £0(t) (resp. £1 (t)) denote the 
distance between p and q0 (t) (resp. q1 (t)) along Mn {x1 = O} (resp. 
{x0 = O}). Then 

Ci(t) = ~ + ai log I (2t + ✓2t + 1/ (i = 1,2). V i- -t- 2 2 V -;;; ai 
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And 
d(p, M(t)) = £o(t). 

Let £0 (t) = £1 (t'). Then the metric circle Sco(t)(P) is located between 
two planes {x2 = t} and {x2 = t'} and 

(4.1) !diamSco(t)(P) - diamM(t)I:::; 2(£1(t) - £1(t')). 

Lemma 4.1. 1. 2diamM(t) 
Im ---- = 1. 

t-+oo length M(t) 

Proof. Let c be a minimizing geodesic of M from q0 (t) to -q0 (t). 
Let t2 = min x2 and t1 = ✓2a1 t2. Let 

C 

C1 = {(xo,x1,x2) EM; x1 = t1 and x2:::; t} 

C2 = {(xo,x1,x2) EM; X2 = t2 and X1 2: O} 

Since c satisfies x1 o c :::; t1 and X2 o c 2: t2 ( cf. §3), 

length(c) 2: length Ci (i = 1, 2). 

We note 

{211" 
length M(t) =v2t Jo J a0 sin2 0 + a 1 cos2 0 d0, 

{½ {211" 
length C2 =y 2 }0 

J a0 sin2 0 + a1 cos2 0 d0. 

If lim sup t2/t = 1, then 

1 1. 2diamM(t) 1. 2length(c) > 1msup-----'----'- = 1msup---­
- t-+oo length M ( t) t->oo length M ( t) 

. 2lengthC2 
2: hmsup 1 hM() = 1. t-+oo engt t 

Suppose limsupt2/t < 1. Then 

1 
lengthC1 ~ const.t » const.v't ~ 2 lengthM(t). 
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as t - oo. Hence 

. 1 
d1amM(t)::::: length(c)::::: length Ci> 2 lengthM(t) 

1 
for large t, which contradicts diamM(t)::; 2 lengthM(t). 

Since £1 (t) - £1 (t') ~ const. logt and diamM(t) ~ const.Jt as t -
oo, the inequality (4.1) combined with Lemma 4.1 yields 

Lemma 4.2. 
. diamSeo(t)(P) 

hm d" M() = 1. t---->oo 1am t 

From Lemma 4.2 we easily get 

Proposition 4.3. d0 (M) = ~ (fo2
1r y a0 sin2 0 + a1 cos2 0 d0) 

2 

Hence the distance between two umbilic points goes towards 

a1 = lim do/8 
ao---->O 

as a0 - 0, so the estimate in Theorem 1.1 is sharp. 
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