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Non-Commutative Complex Projective Space 

Hideki Omori, Yoshiaki Maeda and Akira Yoshioka 

§0. Introduction 

The concept of quantized manifolds has much interest from a geo­
metrical point of view. In fact, quantum groups [6] and non-commutative 
tori [4] [12] are typical examples in this spirit. One approach to con­
structing quantized manifolds is based on the deformation quantization 
introduced by Bayen et al [1]. This is the deformation of the Poisson 
algebra of functions on a symplectic manifold via a star product. 

However, deformation quantization providing only an algebraic de­
scription does not seem to describe the "underlying space" adequately. 
From the geometric point of view, we want to construct something 
like non-commutative manifolds which just represent the quantum state 
space. 

For this purpose, we introduced the notion of Weyl manifolds [10], 
[11] as a prototype of non-commutative manifolds. A Weyl manifold 
WM is defined as a certain algebra bundle over a symplectic manifold 
M with the formal Weyl algebra as the fiber. The star product given by 
the deformation quantization is realized on a certain class of sections on 
WM, called Weyl functions. We present in this paper a non-commutative 
complex projective space Wpn(C) as an example of a Weyl manifold. 

There are two ways of constructing star products on Pn(C). The 
first is intrinsic, and was initiated by Berezin [2], who gave a covariant 
symbol calculus for certain operators acting on local holomorphic func­
tions on the 2-sphere and on the Lobachevskii plane, and defined the 
star product on these spaces by using the symbol calculus. Moreno [9] 
and Cahen-Gutt-Rawnsley [3] extended these ideas to Kaehler symmet­
ric spaces. 
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The second construction, which is in fact the aim of this paper, is 
extrinsic. We shall regard the ring of Weyl functions on Pn(C) as the 
subalgebra of all C*-invariant Weyl functions on cn+l -{O}, where one 
can define the star product and the Weyl manifold structure naturally. 
In a forthcoming paper, we shall show that the two star products are 
isomorphic by using the fact that dimH2 (Pn(C)) = 1. However, in this 
paper we shall concentrate our attention to the extrinsic construction of 
star products and Weyl manifolds. 

Throughout this paper, we use the following convention on multi­
indices, unless otherwise stated: a, (3, "( · · · E Nn+1; a = ( a 1 , · · ·, etn+d. 
Denote az; by ai and az; by ai, and for Q E Nn+l l set aa = 8f1 • • • a~+t1 

d a-a a-al a-an+l t an = 1 · · • n+l , e c. 

§1. Deformation quantization on Pn(C) 

1.1. Deformation quantization 

Let (M,w) be a symplectic manifold, where w is the symplectic 2-
form on M. Let v be a (formal) parameter and let C[[v]] denote the 
formal power series ring in v. Let c=(M; C[[v]]) be the set of the C[[v]]­
valued smooth functions on M. Any a E c=(M; C[[v]]) has a formal 
sum expansion 

= 
(1.1) a = L az (p )v1 

l=O 

where az E c=(M; C). a E c=(M; C[[v]]) of the form (1.1) will be 
denoted by a= a(p; v). vis called a deformation parameter. Following 
to Bayen et al [1], we introduce the star product *= 
(D 1) * is an associative product on c=(M; C[[v]]). 

(D2) a*b=ab+Ha,b} (modv2 ). 

where {, } is the Poisson bracket given by w. 

( M, w) is called to be deformation quantizable if there exists a star 
product on c=(M; C[[v]]). It is known that there exists a star product 
for any symplectic manifold (M, w) ( cf. [10] and [5]), i.e. it is deforma­
tion quantizable. 

1.2. The star product on cn+l 

Let wo = 2)=-1 I;~~} dzz I\ dzz be the canonical symplectic structure 



Non-Commutative Complex Projective Space 135 

on cn+l. To give a star product on cn+l, we introduce a following 
integral transformation involving a real parameter h > 0 acting on holo~ 
morphic functions s(z) of cn+l (cf. [2], [9]): 

(1.2) (Has)(z) = (_!_h)n+l 1 a(z, z')ea\:(z-zl)zl s(z')dµ(z', z'), 
47r Cn+l 

where dµ(z', z') is the volume element on cn+l' and a(z, z) E cw(cn+i) 
must be chosen so that (1.2) makes sense (e.g., a is a polynomial) and 
a(z, v) is the analytic continuation of a from the diagonal of cn+i X 
- n+l 
C . 

The operator in (1.2) has various expressions via non-holomorphic 
coordinate transformations. For instance, (1.2) can be rewritten as 

( 1 )n+ll _11 _ 1 

(Has)(z) = -h a(z,z')e">hzz s(z+z')dµ(z',z'). 
47r Cn+l 

To compute asymptotic expansions, the class of admissible symbol func­
tions a = a(z, z) should be enlarged to the so-called class of admissible 
symbols of the form a(z,z;h) = '"I:,az(z,z)h1 (formal sum). 

As in the computation of 1¥.D.Ops, we have the product formula: 

(1.3) HaH;, = He(a,b) 

where 

(1.4) 

- ( 1 ) n+l r - -l ' 2 
e(a, b) (z, z) = 41rh lcn+l a(z, z')b(z', z)e 2h lz-z I dµ(z', z'). 

Moreover, we may modify (1.2) to a so-called Weyl type integral trans­
formation of s ( z): 

(1.5) 

(Ht s)(z) = ( r-_1 ) n+l 1 a( z + z'' z')e ~l (z-z')zl s(z')dµ(z'' z'), 
47rl/ Cn+l 2 

where;;= J=lh. By a computation similar to (1.3), we have for suitable 
a, b E c 00 (cn+1; C[[v]]), 

(1.6) 
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where after a non-holomorphic coordinate transformation ( cf. Horman­
der [7], p.374), we have 

(1.7) ew(ii, b)(z, z) 

(
-j=l)2(n+l) 1 _ 

= --_ ii(z + u, z + v)b(z + v, z - u) 
21rv C2(n+l) 

v-1 - -
X e-,,-(uu+vv)dµ(u,u)dµ(v,v). 

Note that (1. 7) has the asymptotic expansion 

(1.8) ew(ii,b) ~ I:cz(ii,b)vZ, 
l 

where 

(1.9) 

so that ew(ii, b) can be viewed as an element of C 00 (cn+1; C[[ii]]). 

We now define a star product* on C 00 (cn+1; C[[ii]]) as follows: For 

ii, b E C 00 (cn+1; C[[ii]]), we put 

(1.10) 

where cz(ii, b) is given by (1.9). In fact, the formula (1.9) can be applied 

for any C 00 functions ii, b with the parameter ii viewed as a complex 
parameter. The restriction of* to C 00 (Cn+1 -{O}; C[[ii]]) is denoted by 
the same symbol. In the following, we denote by a[[ii]] the topological 
vector space C 00 (Cn+l - {O}; C[[ii]]) with the C 00 topology. It has two 
products; one is the natural commutative product, and the other is the 
star product given above. It is a remarkable fact that the former · can 
be expressed in terms of the star product: 

(1.ll) ii• b = f v1 L (~? (-a:)(a:)ii*(at)(a~)b. 
l=O lal+l,Bl=l 

By (1.7), the both products on cn+l are invariant under the parallel 
displacement and under the unitary group U(n + 1). 
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1.3. C* -action on a[[vl] 

For >. E C* = C - {O}, we define an action p(>.) on a[[v]] as follows: 

Definition 1.1. For >. E C*, and a E a[[v]], 

(1.12) (p(>.)a)(z, z; v) = a(>.z, :Xz; 1>-1 2 11). 

Set 

(1.13) a[[v]JP = {a E a[[v]] I p(>.)a = a for all>. EC*}. 

It is obvious that p( >.), >. E C*, commutes with any T E U ( n + l). 

By (1.7), we have 

Lemma 1.2. For any a, b E a[[ii]] and >. E C*, we have 

(1.14) p(>.)(a*b) = (p(>.)a)*(p(>.)b). 

1.4. A deformation quantization on Pn(C) 

In this section, using the product * in 1.2, we construct a star prod­
uct on Pn(C) with the deformation parameter replaced by v. 

Let Pn(C) be then-dimensional complex projective space equipped 
with the standard symplectic structure w (cf. [8], p. 160) and let 7r : 

cn+i -{O}--+ Pn(C) be the natural projection. Taking the deformation 
parameter v, we put a[[v]] =C00 (Pn(C); C[[v]]). For a E a[[v]], we define 
a lift of a, denoting by n*a as an element of a[[ii]] by 

(1.15) (n*a)(z, z; v) = a(p; lzl-2v), n(z) = p. 

From Definition 1.1, we easily see that n*a E a[[iil]P. 

For any a E a[[iil]P, we put 

(1.16) (la)(p; v) = a(z, z; lzl 2 v), n(z) = p. 

(1.16) is independent of the choice of z. 
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Lemma 1.3. 
i : ii[[v]JP __, a[[v]] 

is an isomorphism with l7r* = id. 

By this lemma, we can identify ii[[vl]P with a[[v]]. By Lemma 1.2 
and Lemma 1.3, we can project the product * onto Pn(C). Namely, for 
any a, b E a[[v]], we put 

(1.17) 

Consider the chart Un+ 1 = {p = 7r ( z) I Zn+ 1 =/- 0} and the coordinate 
map <l>n+l: Un+l---, <Pn+1(Un+1) = en, <l>n+1(P) = W = (w1, 00 •,wn), 
where w1· = ...!:J_ (j = 1, • • •, n). Using these coordinates, the symplec-

zn+1 

tic structure won Pn(C) becomes (cf. [8] p. 160): 

(1.18) 

1 n 

W lun+l = 2 2 ((1 + lwl 2 ) L dwz A dwz 
2H(l + lwl ) l=l 

n 

- L WzdWz A Wmdwm)-
l,m=l 

By (1.18), in these coordinates, the Poisson bracket {a,b} on Pn(C) is 

(1.19) 
{a, b}(w1, · · · ,wn) 

= 2H(l + lwl 2)[I::~=l (awl a. awlb- awl a. awlb) 

+ L(wkaWka. Wz8wlb - wkawka. w18w1b)] 
k,l 

On the other hand, since Wj = Wj(z1 , · · ·, Zn+i), we have 

(1.20) 

1 
aZrn = --aW,n (m = 1,' '' l n), 

Zn+l 

1 
azrn = -_-8wrn (m = 1, · · ·, n). 

Zn+l 

By a direct computation using (1.20) and (1.10) and putting Zn+l = 
1, zz = wz(l = 1, · · · ,n), we have 
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Proposition 1.4. (1.17) gives a star product * on Pn ( C), i.e. for 
any a, b E C00 (Pn(C)) we have 

(1.21) 

§2. A Weyl manifold over Pn(C) 

Using the notion of Weyl manifolds given in [10, 11], we describe 
the algebra a[[v]] more geometrically. 

2.1. The formal Weyl algebra 

- I 
Let W denote the algebra with 2n + 3 generators {v, Z1 , • • •, Zn+l, 

Z1, · · ·, Zn+d over C with the relations: 

[v,Zi] = o , [v,zi] = o, 

(2.1) 

- I 
where [, ] denotes the commutator [a, b]=ab - ba. For any a, b E W, 
the product is denoted by a* b; for any a, /3 E Nn+l) we denote Zf1 * 

· • • * z°'n+l * z 131 * • • • * z!3n+l by za * z!3 where Z°'i =Z· * ·" " * z. z!3i = n+l 1 n+l , i ~, i 

zi * ... * zi. ,.____,___...., 
/3i 

°'i 

Define the degree of the generators by d(v)=2, d(Zi) = d(Zi)=l 
(1 :Si :Sn+ 1). For l 2: 0, let W(l) be the set of polynomials of degree 

l and W(O) = C. Then 

(2.2) 
- I -

W = ffil2'.0 W(l), ( direct sum). 

- I -
Any element a E W can be written as a finite sum L az, az E W(l); az 
is called the l-th component of a. 

- I - -
Give W = EBz W(l) the direct product topology. Denote by W the 

- I -
completion of W; Wis called the formal Weyl algebra with generators 
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{v, Z1 ,- · ·, Zn+l, Z1, · · ·, Zn+1}. The formal Weyl algebra Wis isomor­
phic (as a vector space) to the formal power series ring C[[v,Z1 , · · · ,Zn+l, 
Z1 , · · ·, Zn+i]]. If we replace Zi, Zi by (Xi+ v-ni) and (Xi - v-lY;) 
respectively, then the algebra Wis exactly the same as in [10]. We also 
use the formal Weyl algebra W with 2n + 1 generators {v, Z 1 , ···,Zn, 
Z1,· ··,Zn}-

2.2. Symmetric product 

For a, b E W, define the symmetric product by 

The above product is not associative but (W, o) is a Jordan algebra. 
However, by the general formula 

(2.3) 
1 

(aob)oc-ao (boc) = 4[b,[a,c]], 

and the fact that [Zi, Zj] is in the center of W, we have 

(2.4) zi o (Zj o a)= zj o (Zi o a) (1 :s: i,j :s: n + 1), 

where Zi = Zi or Zi. Thus, we may set 

A l A A A 

(Zio) ·a= Zi o (Zi o · · · (Zi o a)•··), 

l times 

and 

(Zo)°'(Zo)/3 · a 

(2.5) =(Z10)°'1 • • • (Zn+1o)°'n+ 1 (Z10)/31 • • · (Zn+10}8n+I · a, 

where the right hand side of (2.5) is independent of the order of the Zio's, 
and Zio's. Obviously, {v1(Zo)°'(Zo)f3 • 1 ;a,/3 E Nn+l} forms a linear 

basis of W. W(k) is spanned by {v1(Zo)°'(Zo)f3 · 1: 2l + lal + 1/31 = k} 
(cf. [10], Lemma 1.2). 

By the above fact, we may introduce a new product 0 defined by 

(Zo)°' · 10 (Zo)/3 · 1 = (Zo)°'+/3 · 1, 

We denote zi O Zj and ( z O )°' . 1 by zi 0 Zj and ( z 0 )°' respectively. The 
following are easily seen: 
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(a) CW, 0) is a commutative, associative topological algebra over C. 

(b) CW, 0) is isomorphic to the algebra C[[zi,Z1, • · · ,Zn+1,Z1, · · · ,.Zn+1]]. 

2.3. Localization of the algebras ii[[v]] and a[[v]] 

Let U and U be open sets of cn+i - {O} and Pn(C) respectively. 
By formula (1.8) and Definition (1.17), the *(resp. * )-product can be 
restricted on U (resp. U) and then extended to C 00 (U; C[[v]]) (resp. 
C00 (U; C[[v]])). If 1r(U) = U, then 1r* and i given in (1.15) and (1.16) 
can be also restricted on u and u, wich are denoted by 'Tru, l(J respec­
tively. In particular, for any a, b E au[[v]], 

(2.6) 

The algebra (C00 (U; C[[v]]), *) (resp. (C00 (U; C[[v]]), *)) with the C00-

topology is denoted by iiu[[ii]] (resp. au[[v]]). 

Given an open set UC cn+i - {O}, we consider the trivial bundle 

Wu =U x W ~ U. Define 2n + 2 smooth sections (i, (i on Wu by: 

(2.7) (i(z,z)=zi+zi, (i(z,z)=zi+zi, (i=l,···,n+l). 

For f E iiu [[v]], we define a section J# ( (, () E r(W u) by 

J# is called the Weyl continuation of f E iiu [[ii]]. Let F(W u) be the 
algebra of J# for f E iiu [[v]] where the product is defined pointwisely 

onW. 

We have shown in [10]: 

Proposition 2.1. F(W u) is naturally isomorphic to iiu [[v]] as an 
algebra. 

2.4. Main results 

We now introduce systems of local generators: 

Definition 2.2. Let U and U = 1r(U) be open sets of cn+l - {O} 
and Pn(C) respectively. A (2n+3)-tuple {wo;w1,··•,w2n+2} ofiiu[[ii]] 
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(resp. (2n + 1)-tuple {w0 ; w1, · · ·, W2n} of au[[v]]) is called a system of 
local generators for cio-[[iil] (resp. au [[v]]) if they satisfy 

(L 1) wo (resp.w0 ) is in the center of cio-[[ii]l (resp. au[[v]]). 

(L 2) The closure of the algebra generated by { w0 ; w1, · · ·, w2n+2 } (resp. 
{w0 ; w1, · · ·, w2n}) coincides with cio-[[ii]] (resp. au[[v]]). 

We now consider this definition on each chart (Uz, ¢1) of Pn(C). 
Namely, for each l = 1, 2, · · ·, n + 1, let U1 = {z = (z1, · · ·, Zn+i) E 

cn+l - {O} I Z[ =J- O}, U1 = 1r(U1), and <pz : U1 ---+ </J1(U1) = en. Then, 

¢1 (p) = ( ~~, • • • , ~, • • • , z:;1 ) with p = n(z) gives the local coordinate 

of Pn(C). For simplicity, we set 7rz = nu, and ll = lu,· 

Definition 2.3. A collection of systems of local generators { W6l); 
ui1), • • ·, u~), Vil), · · ·, v~)} for au, [[v]] for each l = 1, · · ·, n + 1 is called 
a (system of) Weyl coordinates on Pn(C) associated with { (Uz, </Jz)} if for 
any l, m = 1, • • •, n + 1 

(C 1) 7rzW6l) = n;,,wt) on cio-,no-= [[ii]] if U1 n Um =J- 0 

(C 2) 

0 ' 'l, ' { 
[w(l) u(l)] = 0 [w(l) v(l)] = 0 [u(l) u(l)] = 0 

0 ' 'l, ' 1, ' J ' 

[v(l) v(l)] = 0 
1, ' J ' 

( ) rti (k) (k) (k) (k) C3 OneachUknU1(=/-1U),u1 , .. ·,Un ,vi , .. ·,Vn mod v are 
oo · (!) (l) (l) (l) R-valued C functions of ( u 1 , ···,Un , v1 , · · ·, Vn ). 

In §3-4, we shall prove the following: 

Theorem 2.4. There exists a system of Weyl coordinates on 
Pn(C) associated with {(Uz, cpz)}. (cf. Theorem 4.5.) 

By this theorem, we can construct an algebra bundle over Pn(C) 
with the formal Weyl algebra W of 2n + 1 generators as fiber. Namely, 
on each U1 we consider a trivial algebra bundle n1 : U1 x W---+ U1. Since 

{ W6l); ui1), · • · , u~), Vil), · · ·, v~),} can be viewed as C 00-sections of 
Wu, , this trivializes the bundle Wu, . Moreover, we can patch the W uj 
together. This gives a Weyl manifold over Pn(C) introduced in [9, 10]. 
Using the notation of [9, 10] on Weyl manifolds, we have 
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Theorem 2.5. The algebra (a[[v]], *) = (C00 (Pn(C); C[[v]]), *) 
gives a Weyl manifold WPn(C) over Pn(C). In particular, a[[v]] is iso­
morphic to F(WPn(C)), where F(WPn(C)) is the set of all Weylfunctions 
on Pn(C). 

§3. Properties for a[[iil]P 

3.1. Several operations on a[[ii]] 

Note that the natural product • can be defined on nu[[v]] for any 

open set U c cn+i - {O}. We use the notation (nu[[v]], ·) when we 
consider au [[ii]] as a commutative algebra. We can introduce a partial 
derivative 8,; on a[[v]] and nu[[ii]] as follows: for any element a E iiu[[v]] 
with the form a = I:, a1 ii1 where a1 = a1 ( z, z) is C 00 , 

We introduce the differential operators L0 and L 1 on iiu[[v]] by 

(3.2) 

and 

(3.3) 

for a E iiu[[iil]. 

Lemma 3.1. L 0 and L1 are derivations of (iiu [[ii]],·): i.e. for any 

a, b E (iiu[[v]], ·), 

(3.4) Lk(a. b) = Lk(a). b +a. Lk(b) (k = o, 1). 

Note that L1 can be rewritten as 

(3.5) 

h 1 I 12 1 '\""'n+l -w ere r = 2 z = 2 L.,i=l ZiZi. 
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Remark. In general, for a, b, c E iio-[[ii]], the equality 

[a, "b . c] = [a, "b] . c + "b - [a, c] 

does not hold. 

Let Ube a conic open set in cn+i - {0} and put iio-([iil]P =ii[[iil]P n 
iio-[[ii]]. A characterization of iio-[[iil]P by L0 and r is given as follows: 

Proposition 3.2. iio-[[iil]P = {a E iio-[[v]] I Loa= o, [r, a] = 0}. 

Proof. For a real parameter t and a E iio-[[iil], consider curves 

t f--, p( et)a, p( eV-1t)a. Taking the derivatives at t = 0, we get 

(3.6) 

(3.7) 

Since L 0 r = 2r and L 0 ii = 2ii, we have formally Lo(½r) = 0. This 
implies [Lo, L1] = 0, which gives Proposition 3.2. Q.E.D. 

Using Lemma 3.1 and Proposition 3.2, we have 

Corollary 3.3. Let U be a conic open set in cn+i - {O}. 

(1) iio-[[iil]P is closed under the ·-product. 

(2) For any TE U(n + 1), we have 

(a) T(r) = r, [T, Lo] = 0, 

(b) Tiiro-[[vW = iio-[[iil]P. 

3.2. Inverse of r 

Since r =/- 0 on cn+l - {0}, it has the inverse ~ for the •-product. 
To obtain the inverse r- 1 for the *-product, we first assume that r- 1 is 
a function J(r) of rand solve the equation r;j;f(r) = 1. By the product 
formulas (1.9) (1.10), we have 

_ _ n+l 1 
nf(r) = rf(r) + v2(-2-J'(r) + 2J"(r)r) = 1. 
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Setting f = I;;:'.0 fzv1, we have 

{ ( 1) 1 (d2 n+ld) 1 (1) 
(3.8) ~::::: 

0 
-2 ~' + -t-dt t ' 

By (3.8), r- 1 has the form 

_ 1 _1{ n-l(v)2 (n-1)3(n-3)(v)4 r --1+--- ---------
r 2 r 2 2 r 

(3.9) 

+ (n - 1) 3(n - 3) 5(n - 5) (~ )6 + .. ·}. 
2 2 2 r 

On the other hand, efr-i =I;!: (vr- 1 *)m, t E R, in the *-product, 
satisfies the differential equation 

(3.10) go(r) = l. 

Multiplying both sides of (3.10) by r, we have 

! {r · 9t(r) + v2t; l g;(r) + ~gr(r) · r)} = vgt(r). 

By setting gt=I:;:'.0 v1g?)(r), we can compute ei;:;r-i in the form 

I:;12k ak,ztk ( ~ )1, where akk = ff. Comparing coefficients of tk, we see 
that 

CX) ~ 

(3.11) (vr- 1*)m =~am z(~/ (m = 1, 2, · · •). ~ , r 
l=m 

Since (3.11) can be solved conversely with respect to (~)1, we see that 

~ is written as a function of vr- 1 . 

3.3. The center of n[[vl]P. 

Put v = ~ E n[[v]]. Then we have: 

Proposition 3.4. v = ~ satisfies the following: 
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(a) v E a[[zil]P, 

(b) [v, f] = 0 for any f E ci[[iil]P. 

Proof. Since [r, ci[[iil]P] = {O} by Proposition 3.2, we have [r- 1 , 

ci[[iil]P] = {O}. Thus [f(r-1 ), ci[[zil]P] = {O}. By Proposition 3.2, we 
obtain (b). Moreover, since[~, r] = 0 and L 0r = 2r, we have~ E ci[[iil]P. 

Q.E.D. 

By Proposition 3.4, we may use v = ~ as a deformation parameter 
of a[[v]]. However, note that there is no general rule for determining 
deformation parameters as one may replace ~ by iir- 1 . If we choose 
iir- 1 as a deformation parameter, then the expression of *-product on 
a[[v]] is changed. 

§4. Manifold structures on a[[v]] 

4.1. Local generators of a[[v]] 

It is impossible to find generators of a[[v]] with respect to which any 
element of a[[v]] has a unique expression. Instead, we can localize a[[v]] 
on open subsets to have convenient expressions for its elements. On the 
open set Un+l = {z E cn+l - {O} I Zn+l -=I- O}, consider 

( 4.1) au [[zil]P = {a E au- [[ii]] I p(>.)a =a,>. E C*}. 
n+I n+I 

Note that on Un+I, - 1- and -=-1--- are well-defined. Thus, setting 
Zn+l Zn+l 

(4.2) 
ii Zi 

ll = - , Wi = -. - , 
r Zn+l 

z· - i 
Wi = -_-

Zn+l 
(i=l,···,n), 

we have v, Wi, Wi E ciu- [[zil]P. By Lemma 1.3, we can identify v, Wi, Wi n+l 
with elements of aun+i [[v]]. 

For J E ciun+ 1 [[zil]P, we may write J = Lt°2_of1(z,z)ii1. Since J is 
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invariant under p(-1-), we have 
Zn+l 

(4.3) 

f (z,z;v) = (P (zn~J !) (z,z;v) 

=f (zn:l, Zn:l; lzn:11 2 ) 

= ~Jz (Znz+l' Zn:J CZn:11 2 Y ( ~y 
= Lf1(w,w)v1 

l 

where fz(w,w) = h(w,w)(½(l + lwl 2 ))1. This gives: 
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Theorem 4.1. J E iiu- [[vl]P if and only if there exists f E 
n+l 

C 00 (Un+li C[[v]]) such that l = 7run+J· 

4.2. Commutation relations for Weyl coordinates 

We compute the commutation relations for {v, w1, · · ·, Wn, 

ill1, · · ·, wn} on <Pn+1Wn+1)- Using (1.9) and Proposition 3.4 (b), we 
easily have 

Lemma 4.2. 

( 4.4) 

For any i, j = 1, · · ·, n, 

{ [v,wi] = [v,wi] = 0, 

[wi, wj] = [wi, wj] = 0. 

By Lemma 4.2 and the polynomial approximation theorem, the 
commutative algebra of the C [[vl]-valued holomorphic functions on 
<Pn+l (Un+i) (resp. anti-holomorphic functions on <Pn+l (Un+1) ) is iso­
morphic to the subalgebra of F(W¢n+i(Un+i)) whose element has the 

form f# = f(v, w1, · · ·, wn)# (resp. f# = f(v, w1, · · ·, wn)#). 

By Theorem 4.1, we may call {v, W1, · • ·, Wn, w1, • · ·, Wn} the homo­
geneous complex Weyl coordinates on W¢n+i(Un+il· By a careful compu­
tation, we have the following commutation relation: 
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Proposition 4.3. 

( 4.5) 
n 

[wi, wj] =v(l + L wzwz) · (8jk + WjWk) 
l=l 

n 

- (v(l + L wzwz))3 · (2!8jk + 3!wjwk) 
l=l 

n 

+ (v(l + L wzwz)) 5 (4!8Jk + 5!wJwk) - · · ·. 
l=l 

4.3. Local trivialization on aun+i [[v]]. 

As seen in 4.2, it seems not so simple to write the commutation 
relations for {v, w1 , · · ·, Wn, w1 , · · ·, wn}- By a change of generators, we 
can give a structure on aun+i [[v]] simpler than (4.5). However, we have 
to use a non-holomorphic transformation here. 

Let H = 1 E aun+i [[v]], where the square root is given 
J1+I:w1·w1 

in the ·-product. 

Lemma 4.4. For any j, k = l, • • •, n, 

(4.6) { 
[H · Wj,H ·wk]= [H · wj,H ·wk]= 0 (mod v2 ), 

[H · Wj, H ·wk]= 2\f-lv8ik (mod v2 ). 

Proof. By the product formula (1.9), 

Hence 

Thus 

H · Wj = H * Wj (mod v) 
iJ 

(v = -). 
r 

[H · Wj, H · wk] = [H * Wj, H * wk] (mod v2 ), etc. 

By these equalities and (1.11), we obtain the formulas (4.6). Q.E.D. 
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Setting 

// 1( - ) c_ =- H-w·+H·w· 
',,J 2 J J ' 

// 1 ( -) rJj = 2-j=l H · Wj - H · Wj 

and using the last lemma yields 

(4.7) 
= [rJJ, ryi] = 0 (mod v2 ) 

= -v8jk (mod v2 ). 
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(l~j~n), 

In particular, {~],tn= h?,rJD=O, and {t;',rJD=-bjk· The following 
theorem may be called a quantized Darboux theorem: 

Theorem 4.5. There exist 6, · · ·, tn, f/1, · · ·, rJn E aun+i [[vl] such 
that 

ii 
where v = -. 

r 

Proof (cf. [11], 3.4 Lemma) Set 

[ // "] _ 2 (2) 3 (3) 
'r/i , 7/j - V an+i,n+j + V an+i,n+j + · · · , 
[c" "] s: 2 (2) 
',,i ''r/j = -VVij + V ai,n+j + .... 

By the Jacobi identity, we have 

(4.8) { (2)} (i,ajk =0 (1 ~ i,j, k ~ 2n), 
( i ,j, k): cyclic 

where ((1, · · ·, (2n) =(tr,···, t~,rJr, · · ·, rJ~)- Define a 2-form w' on <Pun+l 
as 

w' = 1 L (a~2Ji,n+jdxi I\ dx1 - 2a~2Ji,jdxi I\ dyj + aiI)dyi I\ dyj), 
l:Si,j :Sn 

where tr =Xi+ O(v), rJr =Yi+ O(v) and X1, · · · ,xn, YI,···, Yn is a 
symplectic coordinate system on ¢n+i(Un+1). Then (4.8) implies dw'=O. 

Since <Pn+l (Un+1)= en is 2-connected, there exists 0' = 1::;=l (bsdXs + 
bn+sdYs) such that w'=d0'. 
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=er+ vbn+i 
= r,? - vbi, 

Replacing (er, .. ·, e~, r,r, .. ·, TJ~) by (e~, .. ·, e~, TJ~, · · ·, r,~), we see that 

= [r,~, T/j] = 0 mod v 3 

= -v8ij mod v3 • 

Repeating this procedure for v3 ,v4 , · • · finishes the proof. Q.E.D. 

Note that (w1 , • • •, wn) in 4.3 is a complex local coordinate system of 
Pn(C) and hence (er,···, e~,T/r, · · ·, TJ~) is a real local coordinate system 
of Pn(C). Since ei = er, T/i = r,? mod ll in the above proof, Theorem 
4.5 implies also Theorem 2.4. 

Using v,6,· · -,en r,1 ,· · ·,TJn obtained above, we may define the 0-
product on llUn+i [[v]] by the same manner as in 2.2. Let Bf.,'I be the clo­
sure of the space of all polynomials of the form I: ao:13e°' 0 rl, ao:/3 E R. 
It is a 0-subalgebra over R of (aun+i [[v]], 0), and (Bf,,,,, 0) is isomorphic 
to the algebra (C00 (Un+li R), ·). Via this isomorphism, we can regard 
6,· · •,en, T/1,· · ·,TJn as coordinate functions on Un+i· 

Since c/>n+1(Un+1)=Cn, we have 

Corollary 4.6. (nun+1 [[v]],*)~ .F(Wcn) 

Since Un+l can be replaced by any Uz, this result shows that n[[v]] is 
obtained by patching .F(W en) 's, and hence n[[v]] can be regarded as the 
space of certain sections of a Weyl algebra bundle Wpn(C) over Pn(C). 
The coordinate transformations are given by isomorphisms 

with 'Vk,z(v)=v, where en - {k}=Cn - {ek = 0}. 

Remark 1. The 0-product defined on aun+i may not equal the 
usual •-product. 

Remark 2. By Lemma 3.2 of [10], Wk,l are given as the pull back of 
pre-Weyldiffeomorphisms <T>k,l: Wcn-{l}--+ Wcn-{k}, where Wcn-{k} 
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=(Cn -{k}) x W. Thus, strictly speaking, we should call the obtained 
Weyl algebra bundle Wpn(C) a pre-Weyl manifold. 

It is, however, possible to correct W Pn(C) to a genuine Weyl manifold 
defined in [10] by the same procedure discussed in [10, §5]. This proves 
Theorem 2.5. 
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