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Self-dual Einstein Hermitian Surfaces

Takashi Koda and Kouei Sekigawa

§1. Introduction

N. Hitchin [4] has proved that a 4-dimensional compact half confor-
mally flat Einstein space of positive scalar curvature is isometric to a
4-dimensional sphere or a complex projective surface with the respective
standard metric.

A 4-dimensional almost Hermitian manifold M = (M, J,g) with
integrable almost complex structure J is called a Hermitian surface. In
the present paper, concerning the above result by Hitchin, we shall prove
the following

Theorem A. Let M = (M, J,g) be a compact self-dual Einstein
Hermitian surface. Then M is a Kahler surface of constant holomorphic
sectional curvature, i.e., M is one of the following

(1) flat,
(2) P?(C) with its standard Fubini-Study metric and
(3) a compact quotient of unit disk D? with the Bergman metric.

Remark. C.P. Boyer [2] has asserted the above result without de-
tailed proof. In the present paper, we shall give another explicit proof.

In the sequel, unless otherwise stated, we assume the manifold under
consideration to be connected.

§2. Preliminaries

Let M = (M, J, g) be a Hermitian surface and  the Kéahler form of
M given by Q(X,Y) = g(X,JY), X,Y € X(M). (X(M) denotes the
Lie algebra of all differentiable vector fields on M). We assume that M
is oriented by the volume form dM = %Qz. We have

(2.1) dY=wAQ, w=462oJ
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The 1-form w = (w;) is called the Lee form of M. We denote by
V,R = (Rijt'),p = (pi;) and 7 the Riemannian connection, the Rie-
mannian curvature tensor, the Ricci tensor and the scalar curvature of
M, respectively. The Ricci *-tensor p* = (p*;;) and the *-scalar curva-
ture 7* are defined respectively by

* 1 S a
(2.2) Py =57 Risa® 1%,
(2.3) = g
The generalized Chern form v = (v;;) is given by
(2.4) 87myij = —4J*p* o — TV MV i

It is well-known that the 2-form + represents the first Chern class of M
in the de Rham cohomology group. The Lee form w = (w;) satisfies the
following:

(25) JijViwj =O,

(2.6) 2V, J;* =waJ; 068 — wa*gy;
— ijik + waij,

(2.7) T — 7% =26w + ||w||%,

(cf. [7], 9], [10)).

We denote by x(M),c1(M), co(M) and p; (M) the Euler class, the
first Chern class, the second Chern class and the first Pontrjagin class
of M, respectively. We note that co(M) is equal to x(M) when M is
compact. Now, we assume that M = (M, J, g) is of pointwise constant
holomorphic sectional curvature ¢ = ¢(p) (p € M). Then we have ([7])

1 c  |wif?
(2.8) Ry :Z”w”2cijkl + (Z ~ o

VHijk

+ g_lé{gikAjl = guAjk + gi1Aix — gk Al
+ JieBji — JuBji + JBik — J;xBa
+ 2J; Bry + 2JiBij},
where
Cijki =9i19jk — Jikdjl,
Hijri =gu95k — 9ir9j1
+ Judjk — Jiedji — 2Ji5 Ik,
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Ai; =21(Viw; + Vjw; + ww;)

- 3Jianb(Vawb + Viwg + waws),
By =T(J;%Viw, — J2V jw,)

— (J;*Vaw; — J;*Vawj)

+ 3(Jjawiwa - Jiaija).

By (2.7) and (2.8), we have

3 3 . 1

(2.9) pij ={5e+ (T =7)}gi — 7 Tij,
N 3 1 . 1

(2.10) P ij Z{EC - ‘1‘6(7' =7} + ZT*ij’
where
(2.11) Tij :Viwj + vjwi + wiw;

— Jianb(Vawb + Vyw, + wawb),
(212) T*ij =Viwj - iji - Jianb(VGWb - waa).
By (2.9), we get
(2.13) T+ 37% = 24c.

By (2.13), (2.9) and (2.10) are rewritten by

T 1
(2.9) pij =7 9ij — 7 5>
. T L
(2.10) Pij =y i + ZT ij-

We assume that the manifold M under consideration is compact. We
shall recall several integral formulas which will be needed in the proof
of Theorem A.

(2.14) / W' J;* J;PV qwpd M
M

1
= [ {8+ gl = 5 =Y
+ el = [},

1 1 1
1 2 - _*\2 Tk 2 dM
35,2 /M{ 26" = 16 (T =)+ 577wl M,

(215) x(M) =
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(216)  pa(M) =g [ 5= 30+ ol )b
@I M) =g [+l + ol
(see [7]). We define a tensor field S = (S;;) of type (0,2) by
(2.18) Sij =Viw; — Ji*J;"Vaws

+ 1(wiwj — Jianbwawb)'

2
Then we have

1) [ ISP = [ G - ellan.

We assume furthermore that the manifold M under consideration is
Einsteinian. Then, by (2.9)', we get T;; = 0. Thus, taking account of
(2.7), (2.13), (2.14) and (2.18), we get

0:/ Tijwiwde
M
= [ AP + ] = 20 TV}
M

= [ A8+ Gl + (7 = )
M

T4 37*
2

1 2 * *\2
= [ Gl =)+ =)

T+ 31*
2

= [ 4= —2relPyam
M

lwl® + 2|l dw|* b

lwll® + 2lldw||* }dM

+2/M || dw]||?dM
=2 /M (8] + [|dw2}M.

Thus, we have

Proposition 2.1. Let M = (M, J,g) be a compact Einstein Her-
miatian surface of pointwise constant holomorphic sectional curvature.
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Then M is a locally conformal Kdhler surface and the tensor field S
vanishes.

By (2.6), (2.18) and Proposition 2.1, we get
(220) 0 =2V1Viwj — 2(ViJi“)Jijawb
— 204V T;P)V 0wy — 2J:°J;PVIV w0
+ {(Viwi)wj' + wiviwj
— (Vi) J;waws — Ji*(VET;P)waws
- Ji“J]-ban"wb}
=2Viiji et 2(wiJi“)Jijawb
— Jia(wcjjcéf — wc-]bcgij - LUjJib + waij)Vawb
+ JOTP R we
1 .
+ {—(&u)wj + §V]||W||2 bt J”Jjbwaviwb}
= — 2V,6w + g-wj — 2w J;®) PV g
1 . 1
— g0 = SVl + 20 it 3 Vil
= —2V;bw — 2w;jbw + 2pjiwi + 2p*jiwi
— 2(WE )TV gy
Taking account of S = 0, we get
(2.21) (WeT2) TV aws
1
=w{V.w; + §(wcwj — JLb T wpwa)}
1 1
=5 Villwl® + Jwjllwl®
Thus, by (2.7), (2.19) and (2.20), we have

2V + T = Vjlel? - wyllwll? — 2560 =0,

and hence

(2.22) V(= 3r%) + S (r = 37 =0.
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83. Proof of Theorem A

First, we shall recall the following results by the first author of the
present paper.

Proposition 3.1 ([5]). Let M = (M, J,g) be a self-dual Einstein
almost Hermitian 4-manifold. Then M is of pointwise constant holo-
morphic sectional curvature.

Remark. Conversely, we may see that if M is an almost Hermitian
4-manifold of pointwise constant holomorphic sectional curvature, then
M is self-dual.

Proposition 3.2 ([5]). Let M = (M, J,g) be a compact Hermitian
surface. Then M is anti-self-dual if and only if M is a locally conformal
Kahler surface with T = 37*.

On one hand, the second author has proved the following.

Proposition 3.3 ([9]). Let M = (M,J,g) be a compact Einstein
Hermitian surface. If 7* < 0 on M, then M is a Kdhler surface.

Let M = (M, J,g) be a compact self-dual Einstein Hermitian sur-
face. Then by Proposition 3.1, M is of pointwise constant holomorphic
sectional curvature, say, c. Hence, by Proposition 2.1, M is also a locally
conformal Kéahler surface.

We suppose that 7 = 37* at some point of M. Then, taking account
of (2.22), we may observe that 7 = 37* holds everywhere on M. Thus,
by Proposition 3.2, M is anti-self-dual and hence conformally flat. Since
M is Einsteinian, M is thus a compact Hermitian surface of non-positive
constant sectional curvature. If M is of negative constant sectional cur-
vature ¢, then 7 = 12¢,7* = 4¢, and hence from Proposition 3.3, it
follows that M is a K&hler surface of negative constant curvature. But
this is impossible. If M is locally flat, then 7 = 7* = 0 and hence from
(2.7), it follows immediately that M is a locally flat Kahler surface.

Next, we assume that 7 — 37* # 0 at every point of M. Let M=
(M , J, ,g) be the universal Hermitian covering of M and = : M—M
be the covering projection. Then, by Proposition 2.1, Misa globally
conformal Kahler surface with @ = df, for some differentiable function
fon M , where @ is the Lee form of M. We denote by 7,7* the scalar

curvature, the *-scalar curvature of M, respectively. Then 7 = ror, 7* =
T om,w = w*w. Solving the system of partial differential equations
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corresponding to (2.22), we have
(3.1) F— 37 =ce %/,

¢ is a non-zero constant. By (3.1), we see that the function f is pro-
jectable, i.e., there exists a differentiable function f on M such that
f: fom Thus, = df: m*df and have 7*(w — df) = 0. Therefore,
M is a globally conformal Kéahler surface with w = df. Taking account
of (2.7), we have

(3.2) T— 7" = =2Af +||df|)?,

where A = —§d is the Laplace-Beltrami operator acting differentiable
functions on M.
First, we suppose that 7 > 37* on M. Let f(po) = mi}\r/} f(p). Then
pe

we have Af(pg) > 0. Thus, 7 — 7* < 0 at pg and hence 27* < 7 < 7*
at pg. Thus, 7* < 0 at pg (and hence 7 < 0). Since 7 > 37*, we see
therefore that 7* < 0 on M. Thus, by Proposition 3.3, M is a Kéhler
surface of negative constant holomorphic sectional curvature.

Next, we assume that 7 < 37* on M. Let f(po) = max f(p). Then

7 —71*> 0 at pg. Thus, 7" < 7 < 37* at pg and hence 7 > 0 at pg.
Thus, in this case, we see that 7 > 0 (and hence 7* > 0 on M). By
(2.17), ¢;(M)? > 0 and hence M is algebraic. Since 7 > 0 and 7* > 0
on M, taking account of the arguments in [8] and [12], we may see that
the plurigenera of M all vanish, that is, the Kodaira dimension of M is
equel to —1. Thus, the Noether’s formula ([6]) is of the form

(3.3) e1(M)? + co(M) = 12(1 — g),

where ¢ = q(M) is the irregularity of M. Since c;(M)? > 0,co(M) =
x{M) > 0, from (3.3), we have ¢ = 0. This reduces to

(3.4) c1(M)? + c2(M) = 12.

Referring to the well-known classification of compact complex surfaces
(see, e.g., [1] p.415), we may see that M is rational, equivalently, ob-
tained by successive blowing up’s from a complex projective plane P?(C)
or a (geometrically) ruled surface over a complex projective line P1(C).
Since ¢ (M) = x(M) > 0, Miyaoka’s inequality is of the form

(3.5) c1(M)? < 3ca(M).
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By (3.4) and (3.5), we have

(3.6) (M) = 3.
Furthermore, by Wu’s theorem and p; (M) > 0,
(3.7) c1(M)? > 2co(M).
By (3.4), (3.7) and (3.6), we have

(3.8) co(M) = 3 or 4.

We assume c3(M) = 4. Then by (3.4), we have ¢;(M)? = 8. Hence, by
Wu'’s theorem, p; (M) = 0. Thus, by (2.17) and Proposition 2.1, we have
7 = 37*. But, this is a contradiction. So, we see that ca(M) = 3. Then,
we have ¢1(M)? = 9 and p; (M) = 3. Thus, we may conclude that M is
biholomorphically equivalent to a complex projective plane P%(C).

The new metric § = e~ g on M is a self-dual Kihler metric. By the
classification of self-dual K&hler surfaces [3], we see that g is the Fubini-
Study metric on P?(C). Taking account of (3.2), the scalar curvature 7
of g is given by

7=l (7 +3Af — >lgrad f]?)
:ef{T - g(-—QAf + |lgrad f||2)}
=el {7 - g(T -7}

:ef (—T+37— >'
2

Here, by (2.22), we have

2
— 37\ 3

3.9 F- (T
(3.9) e (C) ,

where C is a negative constant. Hence

(r= 37‘*)% ‘
203

T =

Since 7 is constant, so is 7 — 37*. Hence, by (3.9), we see that f is
constant. Therefore, g is homothetic to the Fubini-Study metric. This
completes the proof of Theorem A.
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