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§1. Introduction 

In [F], A. Floer· introduced a new invariant for homology 3-spheres. 
In this paper we generalize his invariant to arbitrary closed and oriented 
3-manifolds. In the case when the first homology group of the manifold 
is torsion free and nonzero, we also define invariants If'. (M) for s < 
3, which, in the case s = O, is a generalization of Floer's one. The 
construction of this invariant is closely related also to the Donaldson's 
polynomial for closed 4-manifolds [D4]. The construction is based on 
the study of the moduli space of selfdual connections over M x R and 
its compactification. 
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In this section, we describe briefly the construction of our invariant. 
Throughout this paper, we let M be an oriented 3-manifold, er a Rie
mannian metric on it. It induces the Hodge *-operator, *er : Ak(M) ----> 

A3-k(M). We consider the trivial SU(2) bundle over M. Let 

.A(M) = { d + a I a E f(M, A 1 0 su(2))} 

be the set of all smooth connections of it. (In later sections, we work 
with Sobolev spaces but in this section we omit those details.) Put 

Q(M) = {g: M----> SU(2) I c=-maps}, 

g(M) = {g E Q(M) I degg = 0}, 

B(M) = .A(M)/Q(M), 

B(M) = .A(M)/g(M), 

where g ( M) acts on .A( M) by 

g*(d +a)= d + g- 1dg + g- 1ag. 

Following Taubes [T4] and Floer [Fl, we define a functional cs: B(M) ----> 

R by 

(1.1) 1 1 1 
cs(a)= Tr(-a/\da+-a/\a/\a) 

M 2 3 

(Here and hereafter, we shall write a in place of d + a.) It is well known 
that the right hand side is g(M)-invariant. The gradient flow of this 
functional is described by 

(1.2) 8at = * pa,. at CT 

The idea of Floer and Tau bes is to use this gradient flow in order to define 
the oo/2-dimensional homology group of B(M). It is not in general 
true that grad cs is a Morse-Smale flow, then in [T4], [F], they used a 
perturbation of it. In their case, where M is a homology sphere, the 
singular locus SB(M) and the set of critical points of the flow grad cs 
intersect at one point, the trivial connection. (Recall that the singular 
locus of B(M) is the set of reducible connections, and a critical point of 
the flow grad cs is a flat connection.) In our case the intersection is 

(1.3) Hom(1r1(M), U(l))/Z2. 
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which is b1 (M)-dimensional. In §2, using the sum of the traces of the 
holonomy along the generators of H1 (M; Z), we shall find a functional 
/: B(M)--+ R, such that the equation 

(1.4) 

has only a finite number of solutions, each of which is nondegenerate 
(see §2 for definition.) A connected component of elements of the set of 
elements SB(M), the reducible connections, satisfying (1.4) is identified 
to an element of 

(1.5.1) Hom(Tor H1 (M; Z), U(l))/Z2. 

And each connected component is identified to 

(1.5.2) ( H1(M; Z) ) 
Hom TorH1(M;Z)'z 2 

or its quotient by Z2 . Put 

(1.6.1) 

(1.6.2) 

Fl = { a E B(M) I a satisfy (1.4)}, 

Flo = { a E Fl I a is irreducible}. 

For a, b E Flo, we set 

-{ at: (-00,00)--+ B(M),at satisfies (1.7),} 
M(a, b) - at 1. b 1. . 

1m at = , 1m at = a 
t-+oo t-+-oo 

(The precise definition is in §3.) Here 

(1.7) 8at pa d / at= *a - gra a, . 

In a way similar to [Fl, we can find a map µ : Flo --+ Z such that 

dimM(a,b) = µ(a) - µ(b), 

for a,b E Flo (§5.) We can.also prove that M(a,b) is orientable (§6). 
Then, following Witten [Wl] and Floer [F], we put 

(1.8) cf= EB Z[a] 
aEFlo 
µ(a)=k 
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We define a boundary operator a : Cf ------> CL 1 as follows. (Again our 
construction is the same as Floer's.) The action ofR on M x R induces 
a free action of Ron M(a, b). We put, for a E Fl 0 , µ(a) = k, 

a([a]) = L (aa,b)[b], 
µ(b)=k-l 

where (aa, b) is the difference of the number of connected components 
of M(a, b) for which the direction of its orientation and the R action 
coincide and the number of connected components for which the orien-, 
tation is the opposite direction to the R-action. In a way similar to [F], 
we can prove aa = 0. Then we define 

0 Kera: Cf------> Cf_ 1 

Ik(M) = I a. co co ' m · k+l------> k 

which, we shall prove, is an invariant of M. (In fact, we need to fix a 
basis of H1 (M; Z).) 

As is pointed out by Donaldson, Atiyah [A] and Witten [W2], Floer 
homology is closely related to the Donaldson polynomial [D4]. In fact, 
in the case when M is a homology sphere and is a boundary of a 4-
manifold satisfying some additional assumptions, it is possible to define 
a relative Donaldson polynomial, which has a value in If(M). But in 
the case when the first Betti number of M is positive, it seems that the 
above boundary operator is not enough for such a purpose. Then we 
construct other boundary operators. To motivate our construction we 
recall the definition of relative Donaldson polynomial very briefly. (Our 
description is not precise since it is anounced that the precise description 
will appear in [DFK].) Let X be a 4 manifold such that its boundary 
ax= Mis a homology sphere. Let [~ 1], · · ·, [~c] E H2 (X), a E Fl 0 . By 
Mk(X; a), we denote the set of all gauge classes of self dual connections 
v' with c2 (v') = k, v'lax = a. Define a line bundle Lr.; on it by 

top top 

.Cr.;(v') = /\ ( Ker ov1EJ * ® /\ Coker ov'IE;, 

where ov1E, is a Dirac operator on ~i twisted by the restriction of v' to 
~i- We put 

Here we choose k, £ so that dimMk(X, a) = 2£. We regard 
Qc([~1l, ···,[~cl) as a cochain, an element of Hom(Cm, 0) with m = 
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µ(a). Under an appropriate assumtion this cochain is a cocycle and its 
cohomology class is an invariant of X. 

In case 8X1 = 8X2 = M, X = X1 IIM X2, :E1 · · · :Et1 C X2, 
:Ei · · · :E~2 C X2, one can prove, under appropriate assumption, that 

(1.9) 
Q£1 +£2 (:E1, •' •' :Et1 ,:Ei' •'', :E~2) 

= (Q£1 (:E1,''', :EtJ, Q£2 (:Ei,'' ', :E~J ), 

where ( , ) is a coupling between Floer cohomologies of Mand M-, 
(M with opposite orientation). Note that in case H1M = O, we have 
H2X = H2X1 E9 H2X2. 

Now we remove the assumption H1M = 0. Assume, for example 
H 1X 1 = H 1X 2 = 0. Then we have Mayer-Vietoris exact sequence: 

Fix a section s : H 1M -+ H 2X. This is equivalent to choose, for each 
h] E H 1M, surfaces :E(i)(-'Y) C Xi with 8:Ei(,) = 1 such that s(['y]) = 
[:E(1)(,) U :E(2)(,)] = [:E(,)]. To generalize (1.9) one needs to calculate 

in terms of invariants of X 1 ,X2 . So it is natural to consider cochains 
such as 

QH£' (:E(1), ···,:Et, :E(1) (,1), · · ·, :E1 ("Ye) )(a) 

= r .Cr:.1 u ... u .Cr:.£ u .Cr:.(1)(-y1) u ... u .Cr:.(1)(-w)· 
jMk(X1,a) 

But one finds that this cochain is not a cocycle in general. Hence in our 
situation, the relative Donaldson polynomial should not take a value on 
usual Floer cohomology but a generalization of it. Our purpose is to 
find such a generalization. 

We assume that H1 (M; Z) is torsion free. Choose a set of closed 
loops {, 1, ···,"Yd} representing a basis of H1(M; Z). Put :Ei = "Yi x RC 
M x R. Let at E M(a, b), a, b E Fl 0 . It induces a connection of a trivial 
SU(2) bundle over :Ei. Let oa, be the Dirac operator on :Ei twisted by 
the connection. We may assume that a(,i) =I-1 for each a E Flo, It 
implies that Oa, is Fredholm. Put 

top top 

Detoa, = f\ (Keroa,)* 0 /\ Cokeroa,· 
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By taking (Det Oa,) ®2 and moving at on M ( a, b), we obtain a complex 

line bundle on M(a, b), which is denoted by .c?). (The reason why we 
have to take the square will be explained in §7.) Now, let a, b E Flo with 
µ(a) - µ(b) = 2£ + 1. Put M(a, b) = M(a, b)/R. Then we can "define" 
the Chern number 

{_ c1 (£i~)) U · · · U c1 (£i:)) E Z. 
h..-t(a,b) 

This number is denoted by (8ii,···,iea, b). (Since M(a, b) has a boundary, 
the above number is, in fact, not well defined. This problem is discussed 
in §12.) We define 8i1 ,---,ie : Cf---+ CL2t-l by 

8i1 ,---,ie([a]) = L(8i 1 ,--·,iea,b)[b]. 
b 

Now we can state the main result of this paper. Let a E { 1, · · · , d}'-/St. 
(Here St stands for the symmetric group.) We put 8a. = 8a.1 , •. ·,a.e-

Theorem 1.10. IfUa < 3, and if H1(M; Z) is torsion free, then 

L aa.1 aa.2 = o. 
a.1 ua.2 =a. 

Remark 1.11. In case when a= (1, 1) the formula is: 

Remark 1.12. For "a > 2 the formula is not correct. We discuss 
the reason in §12. There we also discuss why the formula may not be 
correct for s > 0 if H1 (M; Z) has a torsion. 

Now let st H1 (M; Z) be the symmetric power. We put 

CZ = EB st H1 (M; z) ® cf+2R.· 
R.5,_s 

Define a: : CZ ---t ck-1 by 

8H1'a. ®[al)= L 1'a.1 ® 8a.2 [a], 
alLJa2=a 

where 1'a. = 1'a.1 ® · · · ® 1'a.e· Theorem 1.10 immediately implies 
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Corollary 1.13. Suppose that H 1 (M; Z) is torsion free. Fors < 3 
we have 

BL1 ak = o. 

We put 

Ik(M) = Ker~k . 
Im8k-i 

Theorem 1.14. Suppose that H1(M; Z) is torsion free. Ik(M) 
does not depend on the choices of the metrics, 'ri 's, etc, and is an in
variant of M, equipped with a basis of H1(M; Z). 

By construction we have an exact sequence of complexes 

0 - q - c:+1 - ss+1(H1(M; Z)) 0 cf+2s+2 - 0 

It follows that: 

Theorem 1.15. Suppose that H 1 (M; Z) is torsion free. There 
exists a long exact sequence 

for s = 0 or l. The exact sequence is also an invariant of M. 

The proof of these theorems is based on the detailed analysis of the 
end of the moduli space M(a, b). The results on it is in §7. In fact, we 
shall prove more general results than we need to construct our invariants. 
In the course, we develop various techniques, which might be useful in 
other situations. 

Using our invariant Ik(M), we can partially generalize the definition 
of relative Donaldson polynomial to the case when the boundary is not 
necessary a homology sphere. Those applications will appear elsewhere. 

The organization of this paper is as follows. 
In §2,3, we perturb the equation. 
In §4, we review the sum formula for the index of the elliptic oper

ators. We also discuss the sum formula of the family of indices. 
This result is used in §5 to define the degree µ. In §5 we study also 

neighborhoods of various reducible connections. 
In §6 we define the orientation of the moduli space. The fact that 

every oriented 3-manifolds bounds an oriented 4-manifold, is essentially 
used in the proof. 

§§7-11 are devoted to the study of the end of moduli space M(a, b). 
The results of these sections are stated in §7. 
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In §8, we prove that the patching procedure of selfdual connections 
as in [Tl] is possible in our situation, where various reducible connections 
must be dealt with. 

In §9, we shall prove that the selfdual connections constructed in §8, 
contains all the connections in the end of the moduli space, except the 
concentrated ones. For this purpose, we establish a decay estimate such 
as in [FU]. 

Combining the results of §§8,9 we obtain a chart for a neighborhood 
of each point at infinity. In order to patch those charts, we introduce, 
in §10, the local action of the groups. This notion is a generalization of 
one introduced in [CG] to study the end of Riemannian manifolds. We 
use it to study the end of the moduli space. 

The line bundle .c?l is constructed and is extended to the boundary 
in § 11. For this purpose we use the sum theorem for index bundles in 
§4 and the existence of the lift of the local action to the bundle. 

Using the results of §§7-11, we define the boundary operator in §12 
and prove Theorem 1. 10. As is remarked before, the Chern number 

of the bundle .c?l is not well defined. We shall prove in § 12 that the 
boundary operator is well defined modulo isomorphism. In §12, we also 
discuss the case when s = 3 and describe why Theorem 1.10 does not 
hold in that case. 

Finally we shall prove Theorems 1.14 and 1.15 in §13. 
As the reader can find easily, this paper heavily depends on the 

brilliant ideas due to Donaldson, Floer, Taubes e.t.c. in their papers. 
Before this work is completed the author is informed ( without the precise 
statement) that A. Floer generalized his invariant to homology 8 1 x 8 2 . 

§2. Perturbation 

Let Lf be the Sobolev space of the sections, namely the set of sec
tions LP-norms of whose £-th derivatives are finite. Put 

Af(M) = {d + a I a E Lf(M, /\1 0 su(2))} 

9e(M) = the set of maps : M-----+ 8U(2) of L;-class. 

A; is denoted by Ae. We choose sufficiently large£ and fix it throughout 
this paper. 9e+i acts on Ae. (See [FU].) Put 

Be(M) = Ae(M)/<Je+1(M). 

Let a E Ae ( M). Then the set 

(2.1) {u E L;(M, /\1 0 su(2)) I d:u = O} 
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is the orthonormal complement of TaQe+1a in TaAt(M). In the case 
when a is irreducible, the set (2.1) can be identified to T[a]Bt(M). (See 
[FU].) We let the set (2.1) be denoted by T[a]Bt(M) also in the case 
when a is reducible. In that case, [a] is a singular point of Bt(M). 

The purpose of this section is to perturb the functional C5 and the 
equation (1.2), so that (1.4) has only a finite number of solutions each 
of which is nondegenerate. We put 

H'(M·Z) = H1(M;Z) 
1 ' Torsion · 

First we deal with singular points on 

Hom(H~ (M; Z), SU(2))/conjugate c Bt(M). 

Choose a set of loops {£~, · · · ,.e~} representing a basis of Hi(M; Z). 
Extend .e? to an embedding .e? : S 1 x D 2 --. M. Choose a nonnegative 
function u on D 2 with compact support such that 

f u(x)dx = l. lv2 
For a loop .e : S 1 --. M and a E A(M), let ht(a) E SU(2) be the 
holonomy along .e. Define a functional Jo on Bt(M) by 

(2.2) 
d 

fo(a) =EL J Tr ( ht?(·,x)(a)) u(x)dx, 
i=l 

where E is a small positive number. Then by [F] lb.I, grada f 0 E 

TaBt(M) is well defined. Similarly we can define the hessian, Hessa Jo : 
T[a]Bt(M) - T[a]Bt(M). 

Here we examine the set, FR, of the fl.at reducible connections 
in Bt(M). The set of the conjugacy classes of the elements of 
Hom(TorH 1 (M,Z),U(l)) has a one to one correspondence to 1r0 (FR). 
For cp E Hom(Tor H 1 ( M, Z), U ( 1)), let F R'P be the corresponding com
ponent. F R'P is diffeomorphic to Td if Im ( cp) <t. { ± 1}, and is diffeomor
phic to Tdjz 2 iflm(cp) c {±1}. Let 1 E Hom(TorH 1 (M,Z),Z) be the 
trivial representation. 

Lemma 2.3. There exists a neighborhood U of F R 1 such that, for 
sufficiently small E, the set of elements of U satisfying 

(2.4) 
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is identified to Hom(Hf(M, Z), Z2) ~ {±l}d. 

Proof. By identifying F R 1 = {( ei 91 , · · · , ei9d)} /Z2 , we have 

(2.5) 

The lemma follows immediately. 

Lemma 2.6. Let a E Hom(Ht (M, Z), Z2). Then cs - Jo is non
degenerate at a. In other words 

is invertible. 

Remark 2.7. Hessa cs= *uda. See [F),[T4). 

Proof. We have 

On this space Hessa f O is given by -EI: x~. Hence the lemma follows 
from the invertibility of the matrix 

( A+EE EB) 
EC ED 

for small E and invertible A and D. 

We take E in (2.2) such that Lemma 2.6 holds and fix it. 
Next we use a method similar to [D3] and [F]. Let p0 E M and 

Vo E Tp0 M. Choose an embedding I: D 2 --+ M, such that J(0) = Po, 

and that I*(T 0D 2 ) is transversal to v0 • Let r 1 (p0 ,J,v) be the set of 
smooth embeddings such that £(1, 0) = p0 , ~/(1, 0) = v0 , £(0, x) = I(x). 
We put 

r"' = LJ (r1(po,vo,I))"'. 
(po,vo,I) 

Let Lrn = SU(2)"' / SU(2), where SU(2) acts by conjugation. Define a 
map 

by 

~'(a, (£1, · · · ,t'rn))(x) = (h£1 (-,x)(a), · · ·, h£,.,.(-,x)(a)). 
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ti?' induces a map 

<1?': Bc(M) x rm-+ Map(D 2 ,Lm)

Following [Fl, we choose (/Ji)iEZ+ (/Ji > 0). and put 

C13(Lm,R) = {'l/'J E C 00 (Lm,R) I ll'l/'Jll/3 < oo}, 

where 
00 

Fix a function u : D 2 -+ [0, oo) as before and define 

by 

<1?([a],(i!i,···,£m),'l/'J) = r 'l/'J(<1?1([a],(£1,···,£m)(x))u(x)dx. Jv2 

11 

For V Erm X c13(Lm, R), we put j v([a]) = <!?([a], V ). For A= (£1, · · ·, fm) 
E Lm and A' = (£~, · · · ,£~,) E Lm', we say A ---< A' if {£1, · · · ,£m} 
C { £~' ... ' £~,} 

Lemma 2.8. There exists Ao Er mo and 8 > 0 such that for each 
Ao---< A, the set of'l/'J E C13((Lm),R) satisfying the following conditions 
is of first category in {'l/'J I ll'l/'Jllf3 < 8}. 

(2.8.1) The set Fl('l/'J) of the solution of 

*apa = grada(fo + f(>.,,;,))-

is finite. 
(2.8.2) For each a E Fl('l/'J) the map 

*ad - HeSS[a] (Jo+ f(>.,,j;)) : TaBc(M) -+ TaBR-l (M) 

is invertible. 

Proof. As is well known, (2.8.2) implies (2.8.1). Hence the prob
lem is local on Be(M). The argument in a neighborhood of irreducible 
connections is the same as [F] 2c.l. Then we study the neighborhood of 
the set of reducible connections. Precisely, we first take a perturbation 
so that (2.8.2) holds in a neighborhood of the set of the reducible con
nections, next we perturb again so that (2.8.1) and (2.8.2) holds, in the 
set of irreducible connections, as well. 
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Let 'PE Hom(Tor H1 (M, Z), SU(2)). In the case when Imcp C {±1}, 
the proof of Lemma 2.6 works in a neighborhood of F R'P. Then we 
assume that Im(cp) (/_ {±1}. By the proof of Lemma 2.3, Jo is a Morse 
function on Fl'P and has exactly 2d singular points on it. The same 
holds for Jo + f>.,w if ll"Pll/3 is small. Hence it suffices to work at a 
neighborhood of each singular point ao-Choose a neighborhood U of a0 

with is of bounded L~ norm. 

Sublemma 2.9. The set of 'Ip such that *ada - Hessa(fo + f>,,,J;) 
is invertible for each a EU n Fl(-ip), is open. 

Proof. First we remark that the set 

is independent of£ because the equation is elliptic modulo gauge trans
formation. Hence we can find a bounded subset Lin L~+2 (M, A1 ®su(2)) 
such that if 

(2.10.1) 

(2.10.2) 

(2.10.3) 

ll-ip' - -ipll/3 < 8 

[a] E Fl(-ip) 

[a] EU 

then [a] = [ao + u] for some u E L. Now, if the sublemma is false, then, 
there exists "P,"Pi and ai such that 

(2.11.1) 
(2.11.2) 
(2.11.3) 
(2.11.4) 
(2.11.5) 

limi-+oo ll"Pi - -ipll/3 = 0, 
[ai] E Fl( "Pi), 
[ai] EU, 
*ada, - Hessa, (Jo + f>.,,J;,) is not invertible, 
*ada - Hessa(fo + f>.,,J;) is invertible for each a E Fl(-ip) n U. 

We can choose ui E L such that [a0 + ui] = [ai]- By Rellich's 
Theorem, we can find a subsequence such that Ui converges to u 00 in 
L~+l. Hence by (2.11.1),(2.11.2) and (2.11.3), we have [a0 + u 00 ] = 
[aoo] E Un Fl(-ip). Therefore *ada 00 - Hessa 00 (Jo+ f>.,,J;) is invertible. 
On the other hand, we remark that the map 

A£+1 (M) x L~(M, A 1 0 su(2)) -t LL1 (M, A 1 0 su2)) 

: (a, u) f--+ *adau - Hessa(fo + f>.,w)u 

is continuous. (See [FU]). It follows that *ada, - Hessa, (Jo + f>,,,J;;) is 
invertible for sufficiently large i. This contradicts (2.11.4). The proof of 
Sublemma 2.9 is now complete. 
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Hence it suffices to show that the set of 'I/; for which 

is surjective, is dense. We can choose a loop £0 so that cp(£0 ) (j. {±1} 
and assume {fo}-< >. = (£1, · · · ,fm)- Put 

~, ( ao, >.) (0) = (g1, · · · , gm)-

We have 

Hence [g1, ···,gm] is contained in U(lr/z2 c SU(2r/SU(2) and is a 
regular point of U(lr /Z2. Put 

B?d(M) = {[a] E B?d(M) I a is reducible.} 

It follows from (2.12) that [a0] is a regular point of Bled(M). Therefore, 
by a U(l) analogue of [F] 2c.1, we may assume that 

(2.13) *uda0 - Hessa0 (Jo + f>.,,t,): T[ao](B?d(M))-+ T[ao](B?d(M)) 

is invertible. Put 

By the invertibility of (2.13) we have 

(2.14) 

The group 

(2.15) U(l) = {g E 9t(M) I g*ao = ao} 

acts on K,t,. By (2.14) and the finite dimensionality of K,t,, we can 
identify K,t, '::::' Ck. Therefore by taking sufficiently large ). and m we 
may assume that 

is injective, where P is the differential at [a0] of the map : [a] f-, 

W'(a, >.)(O) At(M) -+ SU(2r. By (2.8), U(l) acts on 
T( 91 ,. .. ,9,,.)SU(2)m, which we can identify to cm EB Rm. The map P 
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is U(l) invariant. Hence we may assume that P(K,t,) C cm. We define 
a function'¢' in a neighborhood of (g1, ···,gm) by 

(2.16) 

and extend it to a SU(2) invariant function on SU(2r. We obtain a 
function on Lm, for which we use the same symbol. Now it is easy to 
see that 

*"da0 - Hessa 0 Uo + f>..,,t,+e,J,') 

is invertible for each sufficiently small E. The proof of Lemma 2. 7 is now 
completed. 

Note that a linear function is used in [F] for the perturbation in a 
neighborhood of an irreducible connection. Here we use quadratic func
tion to perturb the equation in a neighborhood of a reducible connection. 

Remark 2.17. We choose the perturbation so that the zero eigen
values of *ad - Hessa(fo + f(:>.,µ,)) is perturbed to positive one, if a is 
a reducible connection and if the corresponding eigenspace is identified 
to Ck with respect to the U(l) action. The set of such connections is a 
subset of first category in an open set. This choice is used in the proof 
of Theorem 5.6. (See Remark 5. 7.) 

Now we put f = Jo + f>..,,t, for generic '¢, and define Fl and Flo by 
(1.6.1) and (1.6.2). 

§3. Local structure of moduli space 

Let p: M x R-+ M be the projection, p*(Ai M) be the pull back 
of the vector bundles on M x R. Let 8 be a number sufficiently close 
to 0. Choose a 0 00 -map 1111 : R-+ [O, oo ), such that lltll = ltl outside a 
compact subset, put e0 (t) = e011t11. For a smooth section u of p*(AiM) ® 
su(2) with compact support, we put 

Let Lr 6 (M x R, su(2) ® p* (Ai M)) be the completion with respect to 
' this norm. We put 
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Define Lr 15(M x R, su(2) ® /\i(M x R)) in a similar way. Let L;,15(M x 
R, su(2)®/\~JMxR)) be the subspace of L;,15(MxR, su(2)®/\ 2 (MxR)) 
consisting of the elements u satisfying *aU = ±u, respectively. Here and 
hereafter *a denotes the Hodge * operator on M x R with respect to 
the product metric u EB dt2 . The Hodge operator on M induces *a 
p*(/\kM)--+ p*(/\ 3-kM). We define isomorphisms 

by 

Ii: L;,15(M x R,su(2) ®p*(/\ 1 M))--+ 

L;,15(M x R, su(2) ® Ai(M x R)) 

I 1 : L;,15(M x R, su(2) ® p*(/\ 0 M EB /\ 1 M))--+ 

L;,15(M x R, su(2) ® /\ 1 (M x R)) 

J0 : Lr 6 (M x R, su(2)) --+ Lr 15(M x R, su(2)) 

Ii(a) =a± (*aa) I\ dt 

I 1 (<p, a)= <pdt + a 

J0 = identify. 

We put 

St~,15 = LJ,15(M x R, su(2)) 

n},6 = Lr15(M X R, su(2) ® /\1(M X R)) 

St;,15 = L;,15(M x R, su(2) ® /\~(M x R)) 

and identify£~ 15,::,: S1~ 15, £~ 15 EB£} 15,::,: S1} 15, £} 15,::,: OJ 15, by Ji. 
' ' ' ' ' ' ' 

For a, b E Fl, choose a connection d + Aa,b of the trivial SU(2) 
bundle on M x R such that A a,b = b if t > I and that A a,b = a if 
t < -1. We put 

A£,15(a, b) = {d + Aa,b + a I a E nb}-

Clearly this space is independent of the choice of Aa,b_ Hereafter we 
write A in place of d + A. Let Qf 15(M x R) be the set of all locally 

' L1 map g : M x R--+ SU(2) such that there exists 1/.J E ££,15 satisfying 
exp 1/.J = g outside a compact subset. 

Lemma 3.1. Qf+l,15(M x R) acts on A£,15(a, b) by 

g* A= g- 1dg + g- 1 Ag. 
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The action is free if 15 is positive or a, b E Flo. 

We omit the proof. (See [FU],[T3],[F].) 
For a E Ae(M), A E Ae, 0 (a, b), we put 

Ga= {g E Ye+1(M) I g*a = a} 

GA= {g: M x R----. GI g is a locally L~+l map satisfying g* A= A.} 

Remark 3.2. GA C Gan Gb. 

Put 

B;,"/(a, b) = {[A] I A E Ae,o(a, b), GA-/- {±1}} 

T[A]Be,0 (a, b) = {a E 0},6 I eodAe 61a = 0}. 

GA acts on Be,0 (a,b) and T[AJBe(a,b). 

Lemma 3.3. The map T[A]Be,0 (a, b)----. Be,0 (a, b) : a 1--t [A+ a], 
induces a GA -invariant diffeomorphism from a neighborhood of O onto a 
neighborhood of A, if a, b E Flo, or if 15 > 0. 

The proof is in [FU], [T3], [F]. 

Lemma 3.4. Ga x Gb acts on Be,0 (a, b). The action is compatible 
with the diagonal inclusion: GA----. Ga x Gb. 

Proof. For each 91 E Ga and 92 E Gb choose a map g: M x R----> 
SU(2) such that 9t = g1 if t < -1 and that 9t = g2 if t > 1. For 
[A] E Be,0 (a, b) the element g* A is contained in Ae, 6 (a, b), and [g* A] 
depends only on [A] and g1 , g2 • Clearly this induces a desired action. 

Hereafter we put 

for A E Be,0 (a, b), 91 E Ga, 92 E Gb. Then Ga and Gb act from left and 
right on Be,0 (a, b), respectively. 

Remark 3.5. The action is trivial if /5 < 0. 

Now we consider a differential equation 

(3.6) A - A F - *aF - gradat f I\ dt + *a gradat f = 0, 
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for A E Ae, 0 (a, b). Here we put A= I1(at, cp). Let Me,o(a, b) be the set 
of all solutions of (3.6) in At, 0 (a, b). Since grad 9;a. f = g; 1 (grada. !)gt, 
it follows that 

F 9 * A - *upg* A - gradg*a f I\ dt + *u gradg*a f = 
t t t t 

g- 1 (FA - *uFA - gradat f I\ dt + *u gradat f) g. 

Therefore Mt_,0 (a, b) is gJ+1,o invariant. We put 

- 0 Mt,o(a, b) = Me,o(a, b)/9£+ 1,0 • 

By a standard elliptic regularity estimate, Me,o ( a, b) is independent of 
£. Then we omit£ and write M 0(a, b). 

Here we remark that the set Ga \M 0 (a, b)/Gb is identified to the set 
M ( a, b) in §1. In fact, the elements of the set M ( a, b) have a one to one 
correspondence to the set of at's satisfying (1.7) and limt-+-oo at = a, 
limt-, 00 [at] = [b]. Put limt-, 00 at = b'. There exists 900 such that 
g::X,b' = b. Choose 9t such that limt-+-oo 9t = 1, limt-+oo 9t = g00 • It is 
easy to see that g*(d+at) E M 0 (a, b). This element depends only on [at] 

and is independent of at. Conversely, if A E M 0 (a, b), we can find g such 
that g* A has no dt factor. Let (g* A)(·, t) = at. Then [at] E M(a, b). 

Remark 3.7. It is not in general true that the set of loops joining 
[a] and [b] in Bt(M) has one to one correspondence to Be,8 (a, b). This is 
valid if the loop is contained in Bt(M) - SBe(M) 

For A E Ae(a,b), we define VA: O} ---t OL 1 by 

'DAa = (dA - *udA)a - Hessa. f(ut), 

where a = I 1 ( Ut, cp ), d+ A = d+at+1/Jdt. If we identify 0},8 c::'. .C},8 EB.C~,8 , 

OL 1 8 c::'. .CL1 8 , we have ' , 

(3.8) 
au 

'D A(u, cp) = - at + ( *uda. - Hessa. f -1/Jt/\)u + da.'P· 

Recall that M(a, b) is a C 00 -manifold in a neighborhood of [A] if 'DA is 
surjective. 

Lemma 3.9. There exists Ao and m0 such that, for each Ao -< A, 
the set of 'ljJ E Cf3(Lm, R) satisfying the following is of first category in 
an open set. Let a, b E Fl, f = f>.,,t,· 

(3.9.1) Mo ( a, b) is a finite dimensional smooth manifold. 
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(3.9.2) For each [A] E M 0 (a,b), VA is surjective. 

Proof. We write Mt (a, b), V~ while proving Lemma 3.9. In the 
set of irreducible connections, the proof of [F] 2c.2 works. Hence we 

study Mt ( a, b) in the neighborhood of reducible connections. Put 

Bt~f(a, b) = {[A] E Bt,o(a, b) \GA= U(l)} 

M~ed,,t,(a,b) = Bt~f(a,b) nMt(a,b) 

Then by a U(l) analogue of the argument by Floer [F] 2c.2, we may 

assume that M~ed,,t, (a, b) is a 0 00 -manifold, and, for each [A] E 

M~7f,,t,(a, b), the map 

VAd: L1,0 (M x R,u(l)@ /\ 1 (M x R)) -

LL1 6 (M x R, u(l)@ /\~ (M x R)) 
. , 

is surjective. Let [A] E M~ed,,t,_ Choose a neighborhood U of [A] in 

Btp_(a, b), which is bounded in L~ norm. , 

Sublemma 3.10. The set of all 1// such that V~ 1 is surjective for 

all A EU n Mf (a, b), is open. 

The proof is similar to one for Sublemma 2.9 and is omited. 

Sublemma 3.11. For each E > 0 and 'lj;, there exists 'lj;' and a 

neighborhood U' of A, such that \\'lj;'\113 < E and that V~;,t,' is surjective 

for each [A'] EU' n Mt+,t,' (a, b). 

Proof. By an argument similar to the proof of Sublemma 2.9, it 

suffices to find 'lj;' such that \\'lj;'\\13 < E, and that v~+,t,' is surjective. We 
put 

Cok = Ker (D~)* c .C}.o, 
Ker= {u E .Cj,6 \ VAu = 0,d;.ut = 0} 

The group U(l) ~ GA acts on Ker and Cok. By the surjectivity of 
v~,red, we have Cok ~ Ck as U(l) module. By the index calculation in 
§5, we can find a U(l) invariant subspace K of Ker which is isomorphic 
to Ck as U(l) module. (See Remark 5.7.) Choose an isomorphism 
Q: Cok - K. For each t, let Kt, Cokt C T[a.]Bt(M) be the projection of 
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Kand Cok. By the unique continuation theorem ([Ar]), the projections 
K --+ Kt, Cok --+ Cokt are isomorphisms. Let Qt : Cokt --+ Kt be the 
projection of Q. We can choose sufficiently large m and A such that 

the curve t 1----+ W'(at,A)(O) = a~ is injective, and Pt: T[at](Bc(M))--+ 
Ta;SU(2)= is injective on Kt + Cokt for each t. Since the action of 

U(l) has no trivial component on Cokt, it follows that Pt(Kt + Cokt) is 
transversal to the tangent vector of the curve a~. Hence we can find a 
function 'lj;0 E Cf3(Lm, R) such that 

(Hessa; 'l/Jo) (Pt V, Pt W) = (Qt V, W), 

for each VE Cokt and WE Kt, It is easy to see that 'lj;' = 'lj; + 8'lj;0 has 
the required property. 

Lemma 3.9 follows easily from Sublemmas 3.10 and 3.11. 

§4. Sum formula for index bundles 

It seems that many parts of this section are well known to experts. 
But we include it here because of the lack of appropriate reference and 
because we need a part of the proof in §11. However we omit the detail 
of the proof since the results are essentially known. First we shall work 
in the following situation. 

Situation 4.1. Let xn+ 1 be an oriented complete Riemannian man
ifold, E, F be vector bundles on it, K a compact subset. Suppose that 
X - K is isometric to the direct product M x ( 0, oo). Let V be a vector 
bundle on Mand WE: E--+ p*V, and Wp: F--+ p*V be isomorphisms 
of vector bundles. (Here p : M x (0, oo) --+ Mis the projection.) Let 
v 0 : f(V) --+ f(V) and V : f(E) --+ f(F) be elliptic operators of first 
order. Suppose that V 0 is selfadjoint. Assume that M is decomposed 
to M+ 11 M_ such that 

respectively on M± x (0, oo ). Let {>.iii E Z} be the set of all eigenvalues 
of v 0 . Put Ao = miniEZ A7. 

Theorem 4.2. Suppose Ao > 0. Then V is Fredholm. Moreover, 
for A< Ao, there exists a finite dimensional subspace L>-. of L 2 (E), such 
that 

(4.2.1) If u E L-J: then IVul > v'>."iul .• Here L-}: is a orthonormal 
complement of L>-. 
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(4.2.2) L>. is generated by the vectors v satisfying V*Vv = >.'v with 
>.'::::;A. 

We omit the proof. See [LM],[T3]. Theorem 4.2 implies that 

Index V = dim Ker V - dim Ker V* 

is well defined. 

Situation 4.3. Let Xi, Mi, Ei, Fi,¼, Vi, V? be as in Situation 4.1. 
We assume that there are unions of connected components, say MP,+ 

and Mg_, of M 1,+ and M 2 ,- respectively, and an orientation reversing 
diffeomorphism from MP,+ to Mg,_, by which we can identity V1 , V~ 

and Vi, V~. We patch X 1 - MP,+ x (T, oo) and X 2 - Mg,- x (T, oo) by 

the diffeomorphism MP,+ x {T}-+ Mg,- x {T} to obtain X(T). (Figure 
1) 

X 1 - (Mf,+ x [T,oo} X 2 - (M~,- x [T,oo}) --
T T --

X 

Figure 1. 

Let E(T) (resp. F(T)) be a vector bundle on X(T) obtained by 
patching E1 and E2 (resp. Fi) by wE:wE1 (resp. Wp;Wp1 ). Define an 
operator V: r(E(T)) -+ r(F(T)) by 
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Theorem 4.4. If Ao > 0 then we have 

Index V = Index 'D1 + Index 'D2. 

Proof Let O <A< Ao, We may assume that A is not an eigenvalue 
of V*V or v;vi. Let L>. c L 2 (E) be the vector space generated by the 
vectors v such that V*Vv = >.'v with >.' < A. Define L! c L2 (F), Li, 
Li* in the same way. Note that an embedding X 1 - Mf.+ x [T, oo) - X 

can be extended to an embedding X 1 - Mf.+ x [2T,oo). Let Mf.+ x 
[O, 2T] - X be its restriction. Put d(t) = min(ltl, 12T - ti), 

Lemma 4.5. If u E L>. then 

IVkipl(I(x, t)) < Cke-v'>.o->.d(t) llullL2-

Proof. We may assume V*Vu = Nu, >.' < A. Let <p1 , · · · be the 
eigenvectors of V0V 0 • We put 

00 

u(I(x, t)) = L ui(t)<pi(x). 
i=l 

Since 

V*V = _ !f__ + ('Do)2 
8t 2 ' 

we have 

It follows that 

lui(t)I ~ ce--J>.o->.'d(t) max{lui(O)I, lui(T)I}, 

from which the lemma follows by the standard estimates for elliptic 
operators. 

Let x: [-1, 1] - [O, 1] be a nondecreasing C 00 function such that 

{ 
0 if t < -1 

x(t) = 1 if t > 1. 

We define Pf : L>. - r c(Xi, Ei) as follows. (Here r C stands for the set 
of smooth sections with compact support.) 

{ 
(P{u)(x, t) = (1 - xe7T))u(x, t) 

(P{u)(x, t) = 0 

(P{u)(z) = u(z) 

if (x, t) E Mf,+ x [O, 2T] 

if (x, t) E Mf,+ x [2T, oo) 

if z €J_ Mf.+ x [O, oo) 
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{ 
(P~u)(x, t) = x(t;T)u(x, t) 

(P{u)(x, t) = 0 

(P{u)(z) = u(z) 

if (x, t) E Mg,-x [0, 2T] 

if (x, t) E Mg,-x [2T, oo) 

if z (J_ Mg,-x [0, oo) 

Let Pi ( u) be the orthonormal projection of Pf ( u) to L \. Put A = 
(Pi, P2 ): L>.---+ L} EBL~. Then using Lemma 4.5 we can prove that P>. is 
an isomorphism for large T. Similarly we can construct an isomorphism 
P; : L';._ ---+ Li* EB L~*. On the other hand, V defines an isomorphism: 
L>. n (KerV)..L---+ L';._ n (KerV*)..L. Therefore 

IndexV = dimL>. - dimL';._. 

Similarly, we have 

IndexVi = dimL\ - dimL\*. 

The theorem follows immediately. (Recall that Index VT does not de
pend on T.) 

Remark 4.6. By the same method, we can prove that, if V 0 is 
invertible, then the ce-v>-o->-T/C_neighborhood of the set 

{ eigenvalues of VT* VT smaller than Ao} 

contains the set 

{ eigenvalues of V 1 v; smaller than Ao} 

U { eigenvalues of v 2v; smaller than Ao}-

Also the ce-v>-o->-T/C -neighborhood of the later set contains the former 
set. 

Moreover we can prove the following: 

Corollary 4. 7. In Situation 4.1, let Mi, M'2 be unions of com
ponents of M+, M_, respectively. Suppose that Mi, together with Vo,V 
on it, is diffeomorphic to M'2. Construct X(T), E(T), F(T), VT, e.t.c. 
as before. (Figure 2) Then we have 

Index VT = Index V. 

In §6 and §11, we need also a family version of Theorem 4.4. 
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Situation 4.8. Let Y be a manifold, Pi : Wi -+ Y, q : Z -+ Y 
be fibre bundles. Let Ei, Fi :-+ Wi, V -+ Z be vector bundles and 
f>i : r(Ei) - r(Fi), i5° : r(v) -+ r(v) be families of elliptic operators. 

Suppose that p-; 1 (y) = Xi(Y), q- 1 (y) = M(y), .Eil = Ei(Y), Fi(Y), 
X,(y) 

V(y), Vi(Y), V 0 (y) are as in Situation 4.3, for each y E Y. As before, 

we can construct, W(T) -+ Y, E(T), F(T) -+ W(T), V(T) : r(.E(T)) -+ 

r(F(T)). As in [AS], the index bundles 

Index'Di,Index'DT E K(Y), 

are well defined if v 0 (y) is invertible. 

Theorem 4.9. Suppose V 0 (y) is invertible for each y, then we 
have 

Index 'D1 + Index 'D2 = Index vT, 
in K(Y). 

Theorem 4.9 follows from the proof of Theorem 4.4, since P;,, and 
L>., e.t.c. there depend smoothly on operators. 
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Remark 4.10. The results of this section hold in the case when, 
for example, in Situation 4.1 the operator 'D is not exactly equal to 
WF1(±gt + 'D0)wE, but the difference is estimated by ce-ltl/C_ (See 
[T3].) 

§5. Dimension of moduli space 

We put M 0 (a, b) = Ga \M 0 (a, b)/Gb. Recall that the action of 
Ga x Cb is trivial if 8 < 0. We can prove that M 0 (a, b) is independent 
of 8. Hence we write M(a, b). 

Theorem 5.1. There exists a mapµ : Fl-+ Z such that µ(l) = 0 
and that 

(5.1) dimM(a, b) = µ(a) - µ(b) - dim Ga, 

except the component containing no irreducible connection. 

Proof. First we assume that a, b E Fl 0 • In this case dimM(a, b) = 
dimM 0 (a, b). We can use the perturbed Atiyah-Hitchin-Singer complex 

(5.2) 

( definitions of operators and spaces are in §3), to calculate the dimension 
as 

d . M ( b) d" Ker'DA 
1m O a, = 1m Im dA . 

Since a E Flo, it follows that dA is injective. By Lemma 3.9, 'DA is 
surjective. Hence dim M 0 ( a, b) is equal to the index of the complex 
(5.2). We put 

Then we have: 

dimM 0 (a, b) = Index('D A, dA.)-

We identify n} and n~ E9 n~ to C} 6 E9 £~ 6 as in §3. For a E At(M), 
define ' ' 

Da : L~(M, (I'? E9 t-2) 0 su(2))-+ L;(M, (t--1 E9 /\2 ) 0 su(2)) 

by 
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Then when t --+ oo the operator (VA, dAJ is asymptotic to -ft + Db and 

when t--+ -oo it is asymptotic to -ft+ Da. Since a, b E Flo it follows 
that 

is injective. Hence by (2.8.2), Da and Db are invertible. Therefore 
by Theorem 4.3, (VA, d;,,_) is Fredholm for each A E Bt,o(a, b). Since 
Bt,0 (a, b) is connected, it follows that its index is independent of A. 
Therefore, we can use Theorem 4.4 to show 

Index(Vc, de)= Index(VA, dA) + Index(VB, d'k), 

for A E M 0 (a, b), B E M 0 (b, c), CE M 0 (a, c), a, b, c E Fl 0 . In the case 
when bis reduced, way we can prove 

Index(Vc, eodce,51 ) = Index(V A, eodAet) + Index(VB, eod'ke,51 ) 

- dimGb, 

in a similar way, for 8 > 0. Therefore the theorem follows by putting 

for an element [A] E Bt,o(l, a). 

Next we study the neighborhood of a reducible connection 
A E M 0 (a, b). There are two cases: 

Case I. 
Case II. 

dim Ga= dimGb = 3, GA= U(l). 
dim Ga= dimGb = 1, GA= U(l). 

In case I, there exists cp : Tor H 1 (M, Z) --+ { ±1} C U(l) such that 
a, b E RF'P. (See §2.) Then we can renumber the loops£~,···,£~, which 
we choose at the beginning of §2, such that 

a(£?) = 1 <¢==} i -5:_ p 

b(£?) = 1 <¢==} i -5:_ p + k. 

(At this point, it is not yet clear that k > 0.) 
Replacing the element b by a gauge equivalent one, we may assume 

that there exists at E At(M) such that d + A = d + at. (Namely A 
has no dt component.) The group U(l) = GA acts on the complex 
(VA,e 0dAe61 ). It follows that its index is a U(l) module. 
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Lemma 5.3. 

if 8 > 0 

if 8 < 0. 

Proof. We replace the complex (VA, dA) by (VA,1 +E, dA +E), where 

OU 
VA,1(u,cp) = - 8t +*uda.u+da.'P· 

Index(VA,1 + E, dA + E) = cki E9 Rk2 • 

The trivial su(2) bundle together with (nontrivial) connection d + at on 
M x R splits into a real line bundle c,R and a complex line bundle c,c, 
since d+at is reducible. Note that the image of holonomy representation 
of a and b is contained in { ± 1}, the center of SU ( 2). Therefore the line 
bundles together with their connections, have canonical trivializations 

on their ends. Hence we can apply Corollary 4. 7 to obtain bundles CR 

and Cc on M x S1 such that 

Here 

k1 = dime Index ( (P _dA, dA) 0 cc) 

k2 = dimRindex ((P_dA, dA) 0 cR). 

cc~ i'..1(M X S 1) ®Cc~ /\~(M X S1) 0r, 

and similarly for CR. Therefore, as in Atiyah-Hichin-Singer [AHS], we 
have 

k1 = r (2 + pl ( M X 31)) (1 + cl (r) + cl (Cc) /\ cl (r)) 
1Mxsi 3 2 

=0, 

since 
p+k 

c1 (zC) = L [£?] U [S1]. 

i=p+l 

Similarly k2 = 0. 
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Next we compare the index of (D A,l + E, dA + E) to one of 

(DA, e"dA e.;-1). For this purpose, we use the notion of spectral flow 
due to Atiyah-Patodi-Singer [APS]. Put 

The spectral flow of the operator Da,,l + E gives the index of (DA+ 
E, dA + E). The operator Da,l has zero as eigenvalue. The eigenspace is 
identified to (CEBR)d+l-:::: (H 0 (M;R) EBH1 (M;R))®su(2). Replacing 
DA by DA + E is equivalent to push these eigenvalues a bit to positive 
direction. Next we examine the effect of the perturbation. We put 

We take the basis (z1, · · ·, Zd, ti,···, td) of H1(M; R) ® su(2) such that 
Zi and ti correspond to £?. Then, by (2.5) and our choice of a and b, 
replacement of Da,,l by Da,,2 is equivalent to push the zero eigenvalues 
corresponding z1 , · · · , Zp and t 1 , · · · , tp a bit to positive direction and 
the others to negative direction while t -----+ -oo, and to push the zero 
eigenvalue corresponding to z1 , · · · , Zp+k and t 1 , · · · , tp+k a bit to positive 
direction and the others to negative direction while t -----+ oo. It follows 
from k1 = k 2 = 0 that the index of the spectral flow Da,, 2 is Ck EB Rk. 

Finally we examine the effect replacing Da, by (Da,, e8dAe81 ). If 
8 > 0, this is equivalent to push the zero eigenvalues in H 0 (M; R)®su(2) 
to positive direction while t -----+ oo and push them to negative direction 
while t -----+ -oo. If 8 < 0 this is equivalent to the perturbation to the 
opposite direction. Lemma 5.3 follows. 

Lemma 5.3 implies k > 0. Using Lemma 5.3, we have a description 
of the moduli space in a neighborhood of reducible connections. First 
let k = 1, 8 > 0. The group SU(2) x SU(2) x R acts on M8(a, b). Here 
SU(2) x SU(2) -:::: Ga x Gb acts on M8(a, b) by Lemma 3.4, and the 
action of R is induced by its action on M x R. Since GA= U(l) there 
exists an embedding 

SU(2) x SU(2) R M ( b) 
U(l) x -----+ " a, . 

By Lemma 5.3, this map is a diffeomorphism onto a connected compo
nent containing [A]. It follows that all the connections on this component 
is reducible. In the case k 2'. 2 we can use a similar argument. Summing 
up we obtain 
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Theorem 5.4. Suppose dim Ga = dim Gb = 3, dim GA = 1, [A] E 
M 6 (a, b), 8 > 0. Then µ(a)= 3k + µ(b) for some k ~ d and that there 
exists a diffeomorphism from 

su(2) x ck- 1 x su(2) x Rk 
U(l) 

onto a neighborhood of the Ga x Gb x R orbit of[A]. The diffeomorphism 
is compatible with Ga x Gb x R :::-SU(2) x SU(2) x R action. 

Remark 5.5. In case k = 1 the formula (5.1) does not hold for this 
component. This is similar to the fact that the virtual dimension of the 
trivial connection on S 3 is -3. In case k > 1 the neighborhood of [A] 
in M(a,b) is diffeomorphic to the product of ccpk-l x Rk. Here C 
means the cone. (Compare [Dl].) 

By a similar but simpler argument we can examine the case when 
G0 = U(l) and obtain: 

Theorem 5.6. Let Ga = Gb = GA = U(l), A E M 0 (a, b) and 
8 > 0. Then µ(a) = µ(b) + k for some k ~ d. All the connections 
contained in the connected component of M 0 (a, b) containing [A] are 
reducible. 

Remark 5. 7. We used the above index calculation in the proof of 
Sublemma 3.10. The fact we used there is that the C-part of the index 
is always of nonnegative dimension. 

If we use different perturbation from one we gave in §§2,3, (for ex
ample if we change the sign in Formula (2.16) from point to point) then 
the above fact is no longer true. As the consequence, Lemma 3.9 does 
not necessary hold in that case, and we have an obstruction in second 
homology of Atiyah-Hitchin-Singer complex. 

Finally we remark: 

Lemma 5.8. Let [a], [b] E Fl, b = g*a, where g : M---. SU(2) and 
degg = k. Then, 

µ(b) = 8k + µ(a). 

For the proof see [F]. 

§6. Orientation of moduli space 

Lemma 6.1. M 0 (a, b) is orientable. 
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Proof. Let DET(a, b) = DET(D A, e,5dAe-;1) be the determinant 
bundle of the Atiyah-Hitchin-Singer complex (5.2). We can extend 
DET(a, b) to a real line bundle on Be,8 (a, b). On M 6(a, b), the bun
dle DET(a, b) is isomorphic to the bundle of dimM 6 (a, b)-forms. Hence 
it suffices to show : 

Lemma 6.2. The bundle DET(a, b) on Be,6(a, b) is trivial. 

Proof. Since Me, 0 (a, b) is not simply connected, the argument in 
[Dl],[F], can not be applied directly to our situation. Instead we shall 
proceed as follows. Since 3-dimensional oriented cobordism group is 
trivial, we can find oriented manifolds X± such that ax+= M, ax_= 
M-, where M- is the manifold M with opposite orientation. Let W 
be a closed oriented 4-manifold obtained by patching X+ and X_ along 
M. Take trivial SU(2) bundles on them. Let Ae(W) be the set of all L~ 
connection on W, and 9e(W) be the group of transformations. We put 

Be(W) = Ae(W)/Qe+i(W). Put a metric on X± = X± - ax±, such 
that X± - K± is isometric to M x (0, oo) for some compact subset K±. 
Let e6 be a function on X± such that e6(x, t) = e- 6 11t11 outside K±. For 
a E Fl choose a connection d + A a on X ± such that A a = a outside K ± · 
Put 

of /\ 1 ® su(2) 
L~ 6 (X±, /\ 1 ® su(2)) = u £ 1 

u is a locally L~ section l 
' L J e,5lv'kul < oo 

k=O X± 

Ae,,5(X±,a) = {d+Aa +u I u E Lt 6 (X±,/\ 1 ®su(2))}. 

Define QJ,6 as in §2. Put 

Let DET ±(a) be the determinant bundle of Atiyah-Hitchin-Singer com
plex on Be,6(X±, a). First we shall prove that DET ±(a) is trivial. For 
simplicity, we assume that a E Fl 0 • It suffices to show that DET ±(a) is 
trivial on each compact subset L± of Be,6(X±, a). We define a map Pat : 
L+ x L_ -+ Be,6 (W) as follows. Define a Riemannian manifold X (T) by 
patching X+ and X_ along Mas in Situation 4.3. Then M x [O, 2T] is 
embedded in X(T). Choose a C 00 function x: [-1, 1]-+ [O, 1] by 

{ 
0 if t < -1 

x(t) = 1 if t > 1. 
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For [d + A] EL+, [d + B] EL_ define Pat([A], [Bl) by 

{ 

Pat([A], [B])(z) = A(z) if z EX+ - M x (0, oo) 

Pat([A], [B])(x, t) = ( 1 - X ( t; T)) A(x, t) + x ( t; T) B(x, t) 

Pat([A], [B])(z) = B(z) if z EX_ - M x (0, oo) 

Let VET X(T) --, Bt(X(T)) be the determinant bundle of the Atiyah
Hitchin-Singer complex on X(T). By Theorem 4.9, we have 

Pat*(VET x(T)) ~ VET +(a)® VET_ (a). 

For sufficiently large T. By [D3], VET X(T) is trivial. It follows that 
VET± (a) is trivial. 

Next, Let LC Bt,o(a, b), L' C Bt,o(X+, a) be compact subsets. In a 
similar way, we define a map Pat: L x L'--, Bt,o(X+, b). By Theorem 
4.9, we have 

Pat*(VET +(b)) ~ VET(a, b) ® VET +(a). 

Therefore the trivializations of VET +(a) and VET +(b) induces a triv
ialization of VET(a, b), if a, b E Fl 0 . The case when a and/or b are 
reducible can be proved in a similar way, by using a perturbation of 
the complex around the boundaries. The proof of Lemma 6.2 is now 
complete. 

§7. Partial compactification of moduli space 

-I -
Let M~(a, b), M (a, b) be the quotients of M 0 (a, b) and M(a, b) by 

the R-action. The proof of the theorems in §1 is based on the following 

Theorems 7.1 and 7.3 on the structure of the ends of M 1 (a, b). Hereafter 
we fix sufficiently small positive number 15 and write M(a, b) e.t.c. in 
place of M 0 (a, b). 

of 
Theorem 7 .1. 

-I 
For a, b E Fl, let CM ( a, b) be the disjoint union 

k-1 

M 1(a,co) x IT M 1(c;,ci+1 ) x M 1(ck,b), 
i=O 

for co, .. ·, Ck E Fl, with µ(a) > µ(eo) > .. · > µ(ck) > µ(b). Put _, 
m = dimM (a,b). 



Floer Homology for Oriented 3-Manifolds 31 

-I 
Then we can define a smooth structure on CM (a, b) such that the 

following holds. 

(7.1.1) If 

k-1 
x E M 1(a,eo) x IJ M 1(ci,Ci+1) x M 1(ck,b), 

i=O 

with Ge;= {±1}. Then a neighborhood of x in CM 1(a,b) is diffeomor
phic to [O, oo)k+1 X Rm-k-l. 

(7.1.2) If x = ([A], [Bl) E M 1 (a, c) x M 1 (c, b), with Ge= U(l), GA= 
GB= {±1}. Then a neighborhood of xis diffeomorphic to Rm. 

(7.1.3) Ifx = ([A], [Bl) E M 1 (a,c) x M 1(c,b), with Ge = SU(2), 
GA= GB= {±1}. Then a neighborhood of xis diffeomorphic to 

c2 Rm-4 -x 
Z2 

(7.1.4) If x = (A,B,C) E M 1(a,c 1) x M 1(c1 ,c 2 ) x M 1(c2 ,b), with 
Gc1 = Gc2 = SU(2), GB= U(l), GA= Ge= {±1}, 3k = µ(c1)-µ(c2)
Then a neighborhood of x is diffeomorphic to 

( ( S0(3) X ck-l X S0(3) (0 i2) / rv) Rm-2k-5 
U(l) X , CX) X ' 

where ,.._, is defined by 

([gl, z, 92], ( OO, t)) rv [gig, z, 92], ( OO, t)) 

([gl, z, 92], (t, 00)) rv [g1, z, gg2], (t, 00) ). 
_, _, _, 

(7.1.5) If x = ([A], [B], [Cl) EM (a, c1) x M (c1, ~) x M (c2, b), with 
Gci = Gc2 =GB= U(l), GA= Ge= {±1}. Then a neighborhood of x 
is diffeomorphic to Rm. 
(7.1.6) Let A E R+- Then the set 

M 1(a,b;A) = {[A] E M 1(a,b) I suplFAI < A} 

is relatively compact in CM 1 
( a, b). 

(7.1.7) The orientations of M 1(Ci,Ci+i) are compatible in CM 1(a,b). 

Remark 7.2. (7.1.1) ... (7.1.5) above do not cover all the possible 
cases. The general case is the combination of them and the reader can 
easily supply it. 
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Next we construct the bundles in § 1. Choose a set of loops 
{'-y1, ···,'Yd} representing a basis of Hi(M; Z). Put :Ei = 'Yi xR C MxR. 
The surface :Ei has a canonical spin structure. For A E At,a(a, b), we let 

o~ : r c(:Ei, su(2) ® C) ---+ r c(:Ei, su(2) ® C) 

be the Dirac operator twisted by the connection A. For each a, b E Fl, 
a~ +1: is a Fredholm operator. (We add E since o~ is not Fredholm when 
a or b is reducible.) Then we obtain a complex line bundle 

Ci(a, b)---+ Bt,a(a, b) 

by 
top top 

Ci(a, b)l[AJ = /\ (Ker(o~ + 1:))* ® /\ Coker(o~ + 1:). 

(Note the action of Q£,6 is free on A,, 0 (a, b)). The action of Ga x Gb 
on B,,6 (a, b) is lifted to this line bundle. The group {±1} acts trivially 
on B,, 6 (a, b). The lift of the action of {±1} to Ci(a, b) is not necessary 
trivial. (Compare [D2], where the similar action is trivial because the 
numerical index of the Dirac operator on a closed surface is zero.) Then 
we consider the tensor product Ci(a, b) ® Ci(a, b). It induces a complex 

line bundle :z:?) ( a, b) on M: ( a, b), the set of irreducible connections in 

M 1 (a, b). (If we want to "define" the first Chern class c1 (.Ci(a, b)) itself, 
we have to invert 2.) 

Theorem 7 .3. Collection of line bundles 

_, 
can be patched together to give a complex line bundle on CM*(a, b). 

Here and hereafter M* stands for the set of irreducible connections. 
We can not extend the line bundle to the neighborhood of the connec
tions described in Theorems 5.4 and 5.6. This is the reason why Theorem 
1.10 does not hold for s > 2 when H 1 (M; Z) is torsion free and s > 0 
when H 1 (M; Z) has a torsion. (We shall explain this point a bit more 
detail in §12.) · 

The proofs of Theorems 7.1 and 7.3 occupy §§7-11. We include the 
analysis of the structure of moduli space and the line bundle on it in 
the neighborhood of the connection described in Theorems 5.4 and 5.6, 
though the author does not know how to use it to deduce a topological 
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information. In order to explain the outline of the proofs of Theorems 
7.1 and 7.3, we introduce the following notion. (Compare Donaldson 
[02].) 

Definition 7.4. Let K 0 C M 1 (a, eo), · · ·, Kk C M 1 (ck, b) be com-_, 
pact subsets and E, T, C > 0. We say that [A] EM (a, b) is a standard 
model of type (Ko,··· , Kk, T, E, C), if there exist [Ai] E Ki, Si+i > 
T + Si, and [A']= [A], with the following property. 

Let Ji : Mx [-T, T]----+ MxR be the embedding defined by Ii(x, t) = 
(x, t + Si)· Then we have 

(7.4.1) 

(7.4.2) 

\\It (A') - Ai \lei (x, t) < E, 

\A' -e;\ct(x,t) < 

C exp{- min{\Si + T /2 - t\, \Si+1 - T /2 - t\} /C}, 

ift E [Si+ T/2, Si+l -T/2]. 

S;_1 S; S;+1 

T T T 

R 

Figure 3. 

The proof of Theorem 7 .1 is based on the following two Theorems 
7.5 and 7.6. 

Theorem 7.5. There erists C such that, for each T, A, E > 0, we 
can find a compact subset Ka,b of M(a, b) for each a, b E Fl, with the 
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following property. If [A] E M(a, b), sup IFAI < A, and if [A] f'-Ka,b, 
then there exist c0 , ···,ck E Fl such that [A] is a standard model of type 
(Ka,c 0 , • • ·, Kck,b, T, E, C). 

-I 
Theorem 7.6. For each compact set K 0 C M (a, c0 ), • • ·, Kk _, 

C M (ck, b) and C, there exist E = E(K0 , · · ·, Kk, C) and T = 
T(K 0 , • • ·, Kk, C), such that the set of elements of M'(a, b) which is 
a standard form of type (Ko,···, Kk, E, T, C) is parametrized by 

Here Ki C M'(ci-1, ci) is the lift of Ki. 

Here Ko xa 0 K1 is the quotient of Ko xK 1 by the action g([A], [Bl)= 
([AJg- 1 , g[B]) of G0 • The proof of Theorem 7.6 is in §8. For the proof of 
Theorem 7.1, we need a bit more complicated version of Theorem 7.5. 

Theorem 7.5'. For each A> 0 we can find Ka,b C M(a,b) and 
Ck such that the conclusion of Theorem 7.5 holds for 

Ek= E(Ka,c0 , • • ·, Kq,b, Ck), 

Tk = T(Ka,co, ... , Kck,b, Ck) 

where E(· · ·), T(· · ·), and C(· · ·) are as in Theorem 7.6. 

The proof of Theorem 7.5' is in §9. Now we are ready to explain 
the outline of the proof of Theorem 7.1. Let a, b E Flo. Choose Kc,c' 
for µ(a) 2 µ(c) 2 µ(c') 2 µ(b), as in Theorem 7.5'. For c = (c0 , ···,ck), 
Let E(c) and T(c) be the number in Theorem 7.6. Define an equivalence 
relation rv on 

by 

- - k+l Ka,co X ... X Kck,b X (T(c), oo] 

{ 
(xo, ... , Xk+l, to,···, tk+l) rv (xo, • · ·, Xig, g-lXi+l, · · ·, tk+l) 

for each to,···, tk+1 
(xo, ... , Xk+l, to,.··, tk+l) rv (xo, · · ·, Xig, Xi+l, · · ·, tk+l) 

if ti= 00. 
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Put 

.X(c) = K~,co X · · · X Kck,b X (T(c), oo]k+l, 
,..., 

X(c) = Ga \X(c)/Gb, 

_io(c) = Ka,c0 X · · · X Kck,b X (T(c), oo)k+1, 
,..., 

0 -

X(c) = Ga \X 0 (c)/Gb. 

By Theorem 7.6, we have a diffeomorphism 

0 _, 

<1?, : X(c)--+ M (a, b). 

to its image. If c' C c, we have, by Theorem 7.6, 

<1?,,c': X(c)--+ Ga \M'(a, c~) Xa, · · · Xa, M'(c~,, b)/Gb x [T, oo]k'+l. 
co ck, 

We put 
0 

U(c, c') = {z E X(c) I <1?,,c'(z) E X(c')}. 

If <1?,,<l?c,c' = <1?, is true, then we are able to use these maps to define the 
smooth structure on CM'(a, b). But the above equality does not exactly 
hold but holds modulo some small difference. Hence we have to perturb 
them. The argument needed for it is in §10, where we define the notion 
of local action and construct it on the end of M'(a, b). To extend line 
bundle we use an argument similar to the proof of the theorems in §4 
and a lift of the local action to the line bundle. 

§8. Taubes construction 

We prove Theorem 7.6 in this section. Theorem 7.6 corresponds 
Donaldson [D2] §4. There Donaldson used the "alternating method" . 
His method might work in our situation, where we have to deal with var
ious types of reducible connections. But, since the organization needed 
for alternating method is a bit complicated, we use here more direct 
argument. (Maybe this is one Donaldson suggested in [D2] p 302.) 

For simplicity of notation, we shall prove a special (but the most 
difficult) case. Let a,c1,c2,b E Fl such that Ga= Gb = {±1}, Gc1 = 

Gc2 = SU(2), µ(c 1) = µ(c 2) + 3, and K C M'(c1, c2) be a component 
consisting of reducible connections. (We have, by Theorem 5.4, 

K- ,..., SU(2) x SU(2) ) 
- U(l) . 
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-I -I -
Let K1 C M (a, c1), K2 C M (c2, b) be compact subsets and K1 C 
M' ( a, ci), K2 C M' ( c2 , b) be their lifts. We shall construct a diffeomor

phism <I>K,K1,K2 : K1 Xcel I( Xac2 K2 X [T, oo) 2 X R--, M(a, b), whose 
image contains all standard model of type (K1, K, K 2 , T, E, C). 

Choose a finite open covering 

U[ U · ·· U UFJ-;;;! K1 

uf u ... u ut ;;2 K 2, 

and sections s; : UJ __, Ki. Let s} : UJ __, Ac,.s(a, c1 ), s; 
Ac,.s ( c2, b) be their lifts. Choose also an open covering 

Vi U · · · U VN = SU(2), 

such that Vk is contractible. We have maps 

such that 

JJ; : Vi x R __, SU(2) 

Jf : Vk x R __, SU(2) 

{ JJ;(g, t) = 1 if t < -1 

J{(g, t) = g if t>O 

{ Jf (g, t) = 1 if t > 1 

Jf(g, t) = g if t < 0. 

u2 -J 

Let d + af E Ac,.s(c1, c2) be a representative of Gc1 \K/Gc2 = one point. 
Choose a nonincreasing smooth function x: R __, [O, 1] such that 

Now, we define a map 

x(t) = { 1 if t < o 
0 if t>l. 
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as follows. Let Ai = s;, ([Ail), Si E [T, = ), SE R, 9i E Vk,. Then 

~J1 ,12,k1 ,kJ[A1l, 91, 92, [A2l, S1, S2, S) 

= (Jk1 (91, ·)* Ai)(x, t - S) for t < S + Si/3 

( t-S-Si/3) * = X Si/ 3 91A1(x, t - S) 

+ (1-X (t-~l~:i/ 3)) a~-S-S 1 

for t E [S + Si/3, S + 2Si/3] 
- ao 
- t-S-S1 for t E [S + 2Si/3, S + S1 + S2/3] 

37 

Here Ji(9, ·) is regarded as a map M x R-, SU(2) and a gauge trans
formation. 

s 

s+~ 
3 

s+ 2S1 
3 

S2 s+s1+ 3 . s+s1+s2 
2S2 

s+s1 s+s1+ 3 
R 

Figure 4 

() 

We remark that, by the compactness of K 1 , we have a constant C. 
such that 

(8.1) { 
l(d + Ai) - (d + a)I < Cetfc, 

l(d + A1) - (d + c1)I < ce-tfC, 
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for A 1 E K 1 . ( Compare the decay estimate in next section.) A similar 
estimate holds for K 2 and K. Using (8.1) we can prove the following: 

Lemma 8.2. If 

[A1] E U}1 n U}~, 
[A2] E U}2 n U];, 
g1 E vk 1 n v~ 2, 

g2 E vk 2 n v~ 2, 

then there exists a gauge transformation g, such that 

g*~j1 ,12,k 1 ,k 2 ([Ail, g1, g2, [A2], S1, S2, S)(t, x) = 

~ 1
1·1 1·1 k' k'([A1l,g1,g2,[A2l,S1,S2,S)(t,x), 

1' 2' 1' 2 

l?f*~11·11·2 k k2 - ~ 1'-, 1-, k' k' I < e(S1, S2). 
,,1,. 1'2'1'2 

Here and hereafter, we put 

Choose an embedding U(l) C SU(2) such that af is invariant by 
the image. By Lemma 8.2 and the construction, we can apply the par
tition of unity associated to the coverings {U}} and {UJ} to prove the 
following: 

Lemma 8.3. There exists 

~j1,h,k1,k2 : U}, X vk1 X vk2 X uJ2 X [T, oo)2 X R - Ae,o(a, b), 

such that 

(8.3.1) 

(8.3.2) the maps ~ 1'! 1- k k can be patched together to give a map 
1, 2, 1, 2 

, - SU(2) x SU(2) -
cI>K1 ,K,K 2 : K1 Xsu(2) U(l) Xsu(2) K2 x [T, oo)2 x R 

- Be,o(a, b). 

By (8.1) we have: 
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Lemma 8.4. Let [A] E Im <I>Ki,K,K 2 then 

IFA + *aFA - gradat f I\ dt - *a gradat flL~ < e(S1, S2). 

We put 

lule,s1,S2,S = lulL~(MxR) + lulL}(Mxs,s+s 1 +s 2 )· 

Then we have also 

Lemma 8.4'. Let [A] E Im 'PK K K then 1, , 2 
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We shall apply Taubes' method as in (FU], to deform <I>Ki,K,K 2 to 
a map to M(a, b). For this purpose, the following estimate is essential. 

Lemma 8.5. There exists >. > 0 independent of Si such that if 
A E Im q>K1 ,K,K2, U E n~ we have 

This lemma is an immediate consequence of Lemma 3.9 and Remark 
4.6. Furthermore since a ---+ grada f is a C 2 map with respect to the L~ 
norm for large £, it follows that 

grada.+ut f = gradat f + (Hessat f)(ut) + E(a,u) 

with 

IE(a, u)IL~ :S Clul~ 

IE(a, u)le,s1,S2,s :S Clulls 1 ,s2,s· 

Hence we can apply the argument of (FU] pp.132-139, and obtain 

Lemma 8.6. There exists To, and i?j1,h,k1,k2 : UJl X vk1 X vk2 X 

UJ2 x [To, oo) x R---+ M(a, b) such that 

(8.6.1) i?j 1,j,,k 1,k2 can be patched together to give a map 

- SU(2) x SU(2) - 2 
'PK1,K,K2 : K1 Xsu(2) U(l) XsU(2) K2 X [T, oo) X R 

---+ M( a, b ). 



40 K. Fukaya 

(8.6.2) I~'! · k k - ~ · · k k I < e(S1 S2) J1,J2, 1, 2 J1,J2, 1, 2 01 n S S S ' • ,-e., 1, 2, 

The definition of the norm in (8.6.2) is as follows. UJl X vk1 X vk2 X 

UJ2 x [To, oo) x R has a natural Riemannian metric. We define a norm 
on At,o(a, b) by using (£, S1, S2, S)-norm. Then the norm in (8.6.2) is 
the C 1-norm with respect to this metric and norm. 

Note that the linear equation solved in [FU] pp.132-139 is gauge 
invariant. (8.6.1) follows from this fact. 

We shall prove that the map <PK1 ,K,K 2 is an immersion, surjective 
to the set of standard model, and that injective. 

Let 91,92 E Vki, Vk2 , and II c T( 91,g2)(Vki, Vk2) be an orthonormal 
complement ofT(g 1,g2)(U(l) · (g1,Y2)). 

Lemma 8. 7. There exists C independent of S1 , S2 such that, for 
each v E II we have: 

J<1>j1,h,k1,k2*(v)JR,S1S2,S ~ Clvl, 

for sufficiently large Si. Here we choose [Ai] E ut, Si,S and regard 

II c Tc[A1J,g1,g2,[A2J,s1,s2,s)(UJ 1 x vk1 x vk2 x uJ2 x [T, 00)2 x R). 

Remark 8.8. The lemma does not hold ifwe replace the llt,s 1,s2,s
norm by £;-norm, since c1 and c2 are reducible. 

Proof. For simplicity, we put 91 = 92 = 1. Set 

A= ~J;,h,k 1,k2([A1l, 1, 1, [A2], S1, S2, S) 

v = (vi, v2) E su(2) EB su(2). 

Define Vi : R----. su(2), by 

d - I vi(t) = dJ't (1 + svi, t) . 
S s=O 

Then by definition 

Let the differential form in the above formula be denoted by w. Lemma 
8. 7 is a consequence of the following: 
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Lemma 8.10. There exists C such that 

for each u E n~+l and sufficiently large Si. 

(In the statement we omit 8, since a and b are irreducible.) 

Proof. We prove by construction. Then we assume that we have 
vf E su(2) with lvf I = 1, and Sf --+ oo, [Af],un such that 

Since [Af] and vf move on compact sets, we may assume that they are 
independent of n. Hence we have 

Sf--+ oo 

l
wn - dAn uni --+ 0. 

L,s1,s;:,s 

Here wn is as in (8.9) with Si = Sf, and 

(Since everything is invariant by the R action, we may assume that S 
is independent of n.) By construction, there exists a independent of n 
such that 

(8.11) 
Id+ An - dice < ce-!3i(t)/C if t Es+ a, [S + sr - a] 

Id+ An~ dice < ce-f3 2 (t)/C if t E [S + sr + a, s + sr + S:} - a], 

where 

/31(t) = d(t, 8[8 + a, s + sr - al) 

/32(t) = d(t, 8[8 + sr + a, S + sr + S:} - al). 

Hence, by (8.9), we have, for each a' > a, that 

Id nl +C -o//C 
U Li(S+a'.S+Sf+S;'-a') < En e , 
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where En ------, 0. Therefore there exists s1, s2 E su(2) such that 

lun - s~b, (x, t) < CEn + ce- 131(t)/C 

if t E [S + a/, S + Sf - a'] 

lun - s2lce (x, t) < CEn + ce- 132(t)/C 

if t E [ S + Sf + a', S + Sf + S;' - a']. 

(This is the step we can not work with L 2 norm.) 
Then patching u with s1 and s2, we have u1,u 2,u 3 E L1+1(M x 

R, su(2)) such that 

(8.12.1) ldA1 ( v1 - u~) Ice < CEn 

(8.12.2) ldA2 (v2 - u2)lce' < CEn 

(8.12.3) lda~u3lce' < CEn 

(8.12.4) luf(t, x) - s~lce' < Ce-t/C 

(8.12.5) lu2(t,x) - s2 lce' < Cet/C 

(8.12.6) lu~(t,x)- s2lce' < Ce-t/C 

(8.12. 7) lu~(t,x) - s~lce < Cet/C 

(u1 ,U2, and U3 are constructed from the restrictions of Un to (-oo, S + 
S1 /3], [S + S1 + 2S2 /3, oo), [S + 2S1 /3, S + S1 + S2 /3], respectively.) 

We may assume that lim s1 = s1 and lim s2 = s2. Therefore, by 
(8.12.3), (8.12.6),(8.12.7) and the fact Gao = U(l) imply that s1 = s2 E 

t 

u(l) C su(2). (u(l) is a Lie algebra of Gao = U(l).) Hence, using the 
y 

fact that (v1, v2 ) is perpendicular to u(l) C su(2) EB su(2), we can find 
t0 such that 

(8.13) lv1 - u1l(x, to)> C 

or 

lv2 - u2l(x, -to)> C, 

for some C independent of n. Suppose, for example (8.13) holds. By 
scaling, we can find (un)' such that 

oo > C2 > l(un)'l(x, to)> C1 > 0 

ldA1(un)'lce <En------, 0. 
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Therefore, by taking a subsequence, (un)' converges to u' such that 
dA 1 u' = 0, with respect to the compact uniform topology. This contra
dicts the irreducibility of A1 . The proof of Lemma 8.10 is now complete. 

An estimate similar to Lemma 8. 7 for T Ki direction and [T, oo )2 x R 
direction is easier. Then, combined with (8.6.2), they imply: 

Lemma 8.14. If V is a tangent vector of 

- SU(2) x SU(2) - 2 
K1 Xsu(2) U(l) Xsu(2) K2 x [T, oo) x R, 

Lemma 8.14 implies that cf?K1 ,K,K 2 is of maximal rank. 

Remark 8.15. By Holder's inequality, we have 

Hence, Lemma 8.14 implies 

It seems that this reflects the fact that the sectional curvature K of 
M(a, b) at cf?(A1,Y1,Y2, A2, S1, S2, S) is estimated as IKI < C(S1 +S2) 2. 

Lemma 8.16. For each C, there exist T,S,E, such that if [A] is a 
standard model of type (K1, K, K2, T, E, C), then 

Proof. The definition of the standard model implies that there exist 
[A1l,[A2l,g1,Y2,S1,S2,S such that 

lip~1 ,i 2 ,k 1 ,k2 ([Ail, 91, 92, [A2l, S1S2, S) - AIL; < e(S1, S2)-

Here A is a representative of A, and Aj E Uij, Yi E ¼j" Let f,: [O, 1] --+ 

Ae,8 (a, b) be the straight line connecting them. The length off, is smaller 
than e(S1, S2). By [FU] pp.132-139, we can deform this path to a path£' 

in M(a, b) connecting ipi1 .i2,k1 ,k2 ([A1], 91, 92, [A2], S1, S2, S) and A. The 
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length of£' is also estimated by e(S1, S2), By using Lemma 8.14, we can 

lift this path to£: [O, 1]-+ K1 Xcc, K Xcc 2 K2 X [T, oo)2 X R such that 

£(0) = ([Ail, 91, 92, [A2l, S1, S2, S). Therefore 

<l>K,,K,K 2 (£(1)) = [A], 

as required. 

Finally we shall prove that <l>K,,K,K 2 is injective. 

Lemma 8.17. If 

then 

<I> K1,K,K2 ([Ail, 91, 92, [A2l,S1, S2, S) = 
il>K,,K,K2 ([A~], 9~ l 9~, [A;], s~, s~, S') 

JAi - A~l£,s1 ,s2,s < e(S1, S2) 

JSi - SIi < e(S1,S2) 

JS - S'I < e(S1, S2), 

and there exists h E SU(2) such that 

Proof. The proof is similar to the proof of Lemma 8. 7. Suppose 
A 1 E Uij, A 1'. E Ui, , 91 E Vkj, 9 E Vk' .. The proof of the statement on Si 

J J 

and S is easy, then we assume that Si = s;, S = S', for simplicity. By 
assumption, there exists a gauge transformation g: M x R -+ SU(2) 
such that 

g*;j_;i,,i2,k,,k2 ([Ail, 91, 92,[A2], S1, S2, S) = 

;j_;i~ ,i;,k~ ,k; ([A~], 9~, 9~, [A;], S1, S2, S). 

Then 

Jg*;j_;~1 ,i2 ,k,,k 2 ([Ail, 91, 92, [A2l, S1, S2, S)-

;j_;~~ ,i;,k~ ,k; ([A~],9~,9;, [A;], S1, S2, S)J£,s,,s2,s < e(S1, S2). 

Therefore, we have 

{ 
Ce-fh(t)/C if t E [S + a, S + S1 - a] 

JdrJJce < ce-f3 2 (t)/C if t E [S + S1 + a, S + S1 + S2 - a]. 
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Here f3i is as in (8.11). Hence we have gf E SU(2) such that 

1§-gfl < Ce-fh(t)/C if t E [S + a, S + S1 - a] 

1§-ggl < Ce-f3d t )IC if t E [S + S1 + a, S + S1 + S2 - a]. 
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Hence as in the proof of Lemma 8.10, we obtain gi : M x R-----, SU(2), 
i = 1, 2, 3, such that 

(8.18.1) 

(8.18.2) 

(8.18.3) 

and 

(8.18.4) 

(8.18.5) 

(8.18.6) 

(8.18.7) 

1§1 (x, t) - gf Ice < ce-t/C 

l§2 (x, t) - gglce < Cet/C 

l§3(x, t) - gglce < Ce-t/C 

l§3(x, t) - gflc' < Cet/C 

(8.18.3),(8.18.6),(8.18.7) and Gao = U(l) implies that we have h E U(l) 
t 

such that 
lg? - hi < e(S1, S2). 

Hence (8.18.1),(8.18.2),(8.18.4),(8.18.5) and the irreducibility of Ai, A~ 
imply 

lgI - hgil < e(S1, S2) 

I Ai - A~IL2 < e(S1, S2). 
' 

The proof of Lemma 8.17 is now complete. 

Lemma 8.19. For sufficiently large T, the map <PK 1 ,K,K 2 is in
jective. 

Proof. Let Ai, A~, gi, g~, Si, SI, S, S' be as in the proof of Lemma 
8.17. Replacing gi by hgi, we may assume that lgi - g~I < e(S1,S2). 

Hence we can find a path£: [O, 1] -----, K1 Xcci K Xcc 2 K2 X [T, oo)2 x 

R connecting ([A1],g 1,g 2, [A2],S 1,S 2,S) and (A~,g~,g~,A~,S~,s;,s 1). 

The length of£ is smaller than e(S1, S2)- We may assume that Aj and 
AJ are in the same Uj,, and that gj and gj are in the same Vk;. Therefore 
the map 
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is well defined. Note £(0) = £(1) and the length of£ with respect to 
the ll.e,s1 ,s2 -norm is smaller than e(S1, S2)- Hence we can find H : 

D 2 --+ At,6(a, b) such that HlaD2 = £. By [FU] pp.132-139, we can 

deform H to H': D 2 --+ M.e,6(a,b) such that H = H' on 8D 2 . Since 
the diameter of H'(D 2 ) is smaller than e(S 1, S2), we can lift H' to 

K1 Xac 1 K Xac 2 K2 X [T, oo)2 X R, by Lemma 8.14. We conclude £(0) = 
£(1). The proof of Lemma 8.19 is complete. 

Thus, we have proved that the set of the standard model of type 
(K 1 , K, K 0 ,T, E, C) in M'(a, b) is parametrized by 

- SU(2) x SU(2) -
K1 Xsu(2) U(l) Xsu(2) K2. 

We divide it by Ga x Gb = {±1} x {±1} and obtain 

- S0(3) x S0(3) -
K1 Xsu(2) U(l) Xsu(2) K2. 

This proves Theorem 7.6, in our case. The proof of the general case is 
the same, but the notations will be more complicated. 

Remark 8.20. It seems that the proofs of Lemmas 8.17 and 

8.19 reflect the fact that the injectivity radius of M 1(a,b) at 

<PK1,K,K 2 ([Ail, 91, 92, [A2], S1, S2, S) is larger than C( 1811!1821 ). 

§9. Decay estimate 

In this section we shall prove Theorem 7.5 1• This theorem corre
sponds to [FU] §9. There Weitzenbeck formula was used for the proof. 
We can not use it here because, in our case, M is not S3 and because 
we perturbed the equation. 

Lemma 9.1. There exist E,A and C independent of T such that 
if d + at is a su(2) connection on M x [-T, T] without dt component, 
c E Fl and if 

(9.2.1) 

(9.2.2) 

(9.2.3) 

8at dt = *uFa• - grada, f 

d~ao = 0, 
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then we have 

(9.3) 

Here f3r(t) = inf{T - t, T + t}. 

Proof. We put u(t) = at - c. We have 

*o-Fe+u(t)_ grade f 

= *udeu(t) - Hesse f (u(t)) + E(u(t)), 

with 

(9.4) IE(u(t))IL~ S Clu(t)lf~, 

for sufficiently large£. Decompose u(t) = a(t) + {3(t) with 

{ 
d;a(t) = 0 

{3(t) E Imde 

Then we have 

(9.5.1) 

(9.5.2) 

(9.5.3) 

with 

(9.6) 

la(t)IL2 < CE, lf3IL2 < CE, 
£ £ 

aa(t) 
~ = *udea(t) -Hessef(a(t)) + E1(a(t),{3(t)) 

8{3(t) 
~ = E2(a(t),{3(t)), 

IEi(a(t),{3(t))IL2 < C (ia(t)IL2 + lf3(t)IL2)2 . 
£ £ £ 

We decompose 

a(t) = a+(t) + a_(t), 
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where a+, a_ belong to the spaces spanned by positive and negative 
eigenspaces of *ude - Hesse f, respectively. (Note that by Lemma 2.8, 
zero is not an eigenvalue of *ude -Hesse!-) We put g±(t) = la±(t)IL2, 
h(t) = lf3(t)IL2-By (9.2.2) and (9.4), we have 

IE1(a(t), {3(t))IL00 < C(g+(t) + g_(t) + h(t))2. 
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Therefore, we have 

(9.7.1) 

(9.7.2) 

(9.7.3) 

K. Fukaya 

dg+ ( )2 dt 2: >...g+ - Co g_ + h , 

dJ; ::; ->...g_ + Co(g+ + h)2 , 

ldhl · 2 dt ::; Co(g+ + g_ + h) . 

Hence, by elliptic regularity, it suffices to show the following: 

Sublemma 9.8. There exists a constant C and E depending only 
on C0 and>,. and is independent of T such that if g+,g- and h be non
negative functions satisfying (9.7.1)-(9.7.3) and 

(9. 7.4) 

(9.7.5) 

then 

(9.9) 

lg±(t)I < E, lh(t)I < E, 

h(O) = 0, 

lg±(t)I, lh(t)I < ce-AfjT(t)_ 

Proof. First we replace the assumption (9.7.5) by lh(O)I < 8, and 
prove 

lg±(t)I, lh(t)I < C(e->.fjT(t) + 8). 

when 82T < µ0 , ET< µ0 for some µ 0 depending only on Co and>.... For 
this purpose we prove 

(9.10.2n) 

(9.11.2n.±) 

lhl < Co(En + Ee->.fjT(t) + 8) 

lg±I < Co(En + Ee->.fjT(t) + 8) 

by an induction on n. (Here n is a half integer.) Assume (9.10.2n). Let 
to E [-T, T]. We put 

§+(t) = e->.(t-to)g+(t). 

Then, by (9.7.l),(9.7.4),(9.10.2n), and (9.ll.2n -1,±), we have: 

Ee->.(T-to) 2: §+(T) 

2: g+(to) -1T cge-)..(t-to)(En-1/2 + Ee-)..fjT(t) + 8)2dt. 
to 
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(9.ll.2n,+) follows. For the proof of (9.ll.2n,-), we use g_ 
e>-(t-to) g_ ( t) in a similar way. 
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It is easy to see that (9.10.2n) and (9.ll.2n) imply (9.10.2n+l). 
For general T, we proceed as follows. Apply the first step to To = 

µo/E, and 8 = 0. We have h(3T 0 /4) < C0e-To>../ 4 _ Then we apply the 
first step to 9±(t - 3T0 /4), h(t - 3T0 /4) and T = T0 • We obtain 

sup jg±(t)j < Coe-5Ta>../12 
0<t<4To/3 

sup jh(t)j < Coe-5Ta>../12, 
0<t<4To/3 

if 3To/2 < T. And similarly for -4T 0 /3 < t < 0. Hence we can apply 
the first step to T = 4T0 /3. Iterating this, we obtain the desired result. 
The proof of Lemma 9.1 is now complete. 

Lemma 9.12. For each 8, C, there exists E such that if a E 

Ae(M), 

I *"" pa - grada f IL2 < f 
£ 

jajL2 < C, 
£ 

then there exists c E Fl and g E 9e+i such that 

jg*a - cjL2 < 8. 
£ 

Proof. 

(9.13.1) 

(9.13.2) 

(9.13.3) 

If not, there exists ai E Ae(M) and 8 > 0, such that 

_lim 1 *"" Fai - grada· flL2 = o, 
i~oo ,. t. 

lailL2 < C, 
£ 

lg; ai - ciL2 > 8 
£ 

for each i, 9i E Ge+ 1, and c E Fl. (9.13.2) implies that, by taking 
a subsequence, ai converges to an element a= of Ae-1,8(a, b). Then, 
(9.13.1) implies that 

I *o-Fa= - grada f l£2 = 0. 
00 £ 

Hence there exists 9i E 9e+1(M) and c E Fl such that g;ai converges to 
c in Ae-i(M). By replacing 9i if necessary, we may assume that 

(9.14) d~(g;ai - c) = 0. 
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(See FU.) By (9.13.1) we have 

(9.15) 

By (9.14),(9.15), lim lg7ai -clL2 = 0, and an elliptic estimate, we have 
£-1 

(9.16) 

(9.16) contradicts (9.13.3). 

Using this lemma, we can improve Lemma 9.1 as follows. 

Lemma 9.17. There exists T0,E,A, and C, such that if d + at be 
a su(2)-connection on M x [-T, T] without dt component, and if 

(9.18.1) 

(9.18.2) 

(9.18.3) 

then there exists c E Fl and g E 9e+i (M) such that 

(9.19) 

Here g is regarded as a gauge transformation on M x R independent of 
the R factor. The constants C,E,A are independent of T. 

Proof. Let Eo be the number determined in Lemma 9.1, and S be 
a sufficiently large positive number determined later. Put 8 = Eo/2S. 
Then we obtain E by Lemma 9.12. We may assume that E < 8. By 
Lemma 9.12, we obtain c E Fl. Replacing at by gauge transformation 
independent of t, we may assume that 

(9.20.1) 

(9.20.2) 

By (9.20.1),(9.18.3), and 2BE < Eo, we can apply Lemma 9.1 to M x 
[-S, S], and obtain 

Hence by taking S sufficiently large, we have 

(9.21.1) 

(9.21.2) 

la3S/4 - clL; < Eo/ K 

ia-3S/4 - ciL; < Eo/ K. 
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Here K is a sufficiently large positive number determined later. There
fore there exists g E g e+ 1 ( M) such that 

d~(g*a3S/4 - c) = 0 

lg* a3s/4 - cl£; < CEo/ K. 

Here C depends only on M. Hence we can apply Lemma 9.1 to 
g*llt+3Sf4, on M x [-S, S]. By choosing S sufficiently large, we obtain 

fort E [0,4S/3], provided 3S/2 < T. By taking K sufficiently large, we 
have 

fort E [O, 4S/3]. By using (9.21.2) we have the same estimate for t E 
[-3S/4,0]. Hence we can apply Lemma 9.1 to M x [-4S/3,4S/3] if 
3S/2 < T. Repeating this we obtain the lemma. 

Lemma 9.22. There exists 0 > 0 such that, if [A} E M 0 (a, b) 
with µ(a) -:/-µ(b), and if g* A = d + at, where d + at is a connection 
without dt factor, then we have 

Proof. By [F] p122, the integral in the lemma is independent of A 
but depends only on a and b. Hence the lemma follows from (2.8.1). 

Proof of Theorem 7.5'. Fix a,b E Fl. Put k0 = µ(a) -µ(b). We 
shall prove that, for each µ(a)~ µ(c) ~ µ(c') ~ µ(b) there exists Kc,c', 
such that the conclusion of Theorem 7.5 holds for 

The proof is by induction on k. The first step is obvious, since M 1 (c, c') 
is a finite set if µ(c) = µ(c') + 1. Hence it is enough to show the last 
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step of the induction. We assume that the last step is false. Then we 

have A E M 1 (a, b), such that 

(9.23.1) 

(9.23.2) 

(9.23.3) 

sup!FA;I < A, 

[A;] is unbounded in M 1 (a, b), 

non of A; is a standard model. 

Let g; be a gauge transform such that g; A; = d+a~ has no dt component. 
We have 

If 

were true for each t, then Lemma 9.17 would imply that a~= c for some 
c E Fl. It would follow that a= b. This is a contradiction. Hence there 
exists t} such that 

10::11,, > ,. 

' 

2Ti 2Ti 

~~ ................. __lr(\LJN_ 
I I 

, ' I I I 

I ' ' ' ' ' ' ' ' ' \. / ' ' ' 

1 l l 
tl t; t!;-1 d· 

Figure 5. 

Lemnia 9.24. There exists L independent of i, and there exist T;, 
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l £; h h ti , ... ,ti , sue t at 

(9.24.1) 

(9.24.2) 

(9.24.3) 

(9.24.4) 

,f,i < L, 

limTi = oo, 

I aa! I < E 
at £2 

£ 

if It -t{I > Ti for each i, 

It{ - t{ I > r; if i =I= l. 
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Proof. The existence of the upperbound L of ,f,i independent of 
i is the essential part of the statement. Hence, if Lemma 9.24 is not 
true, then, by taking a subsequence, we may assume that there exist 
t}, · · ·, tf; E R, Ti such that (9.24.2),(9.24.4) and 

(9.24.5) 

(9.24.6) 

lim,f,i = oo 

aai. 
~ 

dt 
>E 

hold. By lat!< A, and by Uhlenbeck's theorem [FU] p117, we can find 

g{ E Yl+l (M) such that a subsequence of the connection 

converges to an element d+aft of M(cj, c1), for fixed j, (in C 2 topology 
on any compact set.) Here Cj, cj' E Fl. By (7 .24.6), we have Cj =/= Cj'. 

Hence by Lemma 9.22 

_____i_!_ dt > 0, 1 laa= 1
2 

MxR dt 

for each j. Therefore, Fatou's lemma implies 

_lim JI aa! 12 
dt 

i--+oo at 
00 r laa= 1

2 

2::;;;1MxR d~,tdt dt 

= 00. 
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This contradicts the fact that 

is independent of i but depends only on a and b. The proof of the lemma 
is complete. 

By Lemma 9.24 and IFa, I < A, we can take a subsequence such 

that the following holds : £i = £ is independent of i : let a!'j = ai j : 
t~t, 

there exists 9i,j such that limi----.oo 9i,ja!'j converges to an element a'f°'j 
of M(c_'.;, c'j) uniformly on every compact set, for some c_'.;, c'j. If£= 1, 
we can easily prove that Ai is bounded in M'(a, b). This contradicts 

(9.23.2). On the other hand, by induction hypothesis, a'f''j is either an 
element of Ke'.,e'!, or a standard model. Therefore, using Lemma 9.17 

J J 

and (9.24.3), we can prove that Ai is a standard model for large i. This 
contradicts (9.23.3). The proof of Theorem 7.5' is now complete. 

§10. Local action on the end of moduli space 

Using the results in §§8,9, we obtain charts <I>,: X(c)---+ M 1 (a, b) for 
each c. As we pointed out in §7 these charts are not compatible. Then 

we have to perturb them. Also, in order to extend bundles .c?) to the 
boundary, we have to examine its behaviour on the image of each chart. 
For these purposes, it is useful to use the notion, local action of groups, 
which is a generalization of one introduced by Cheeger-Gromov [CG]. 
They used the local action to study the end of Riemannian manifolds 
with bounded curvature. In their case, a special kind of local action, 
F-structure, (that is the local action of Torus,) arises, and the direction 
of the orbits is the collapsed one. In our case, the curvature is not 
bounded from above. (It might be bounded from below.) Hence the 
group acting on the end is not necessary Abelian. (The group SU(2) 
arises as well.) However the end is also collapsed and the collapsed 
direction is homogeneous. (For example, in the case we studied in §8, 
the collapsed direction is parametrized by S0(3) x S0(3) / S 1 . 

Before stating our result we shall discuss examples. First consider 
the case, when Ga = Gb = {±1}, Ge = Ge' = U(l), µ(a) > µ(c) > 
µ(c') > µ(b). Choose a compact subset Ke,e' of M 1 (c, c'), consisting 
of irreducible connections. Then, by Theorem 7.6, the intersection of 

M 1 (a, b) and a neighborhood of Ka,e X Ke,e' x Ke',b in CM 1 (a, b) is 
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diffeomorphic to 

On this set we can define an action of U(l) x U(l) = Ge x Ge, by 

(h,h')([x,y,z],t,s) = ([xh,y,h'z],t,s). 
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Note that Ka,e -. Ka,e is a principal U(l) bundle, hence U(l) acts on 

Ka,e· As in §7, we have a map 

- - - 2 
<T?(e,e'),(c') : Ga \Ka,c Xac Kc,c' Xac, Kc1 ,b/Gb X (T, oo) 

-> Ga\M'(a,c') Xa 0 , Ke,,b/Gb X (T,oo) 
- - - 2 

<J?(c,e'),(c): Ga\Ka,c Xac Kc,c' Xac, Kc,,b/Gb X (T,oo) 

-> Ga\M'(a,c) Xa 0 Kc,b/Gb X (T,oo) 

Let Z2, Z1 be inverse images of Ga \Ka,c' Xa 0 , Kc,,b/Gb x (T, oo) and 

Ga \Ka,c Xa 0 Kc,b/Gb X (T, oo) respectively. (See Figure 6.) 

Ga \Ka,e' Xa 0 , Kc,,b/Gb X (T, oo) has a U(l) action. This action is iden
tified to the action on the second factor of U(l) x U(l) on Z 2 • Similarly 

the U(l) action of Ga \Ka,c Xa 0 Kc,b/Gb X (T, oo) is identified to the ac
tion of the first factor of U(l) X U(l) on Z1 . This is exactly the situation 
of T-structure defined in [CG]. 

t . 
{1} x U(l)-action 

m'(a,b) 

m'(a,c) x m'(c,c') x m'(c',b) 

Figure 6 
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Next, consider the case, Ga = Gb = {±1}, Ge = SU(2). A neigh

borhood of Ka,e x Ke,b in CM 1 (a, b) is diffeomorphic to 

On this set SU(2) does not has a global action, but has a local ac
tion in the following sense. Consider the principal SU(2) bundle : 

Ka,e -. Ka,e/SU(2). Let SU(2) act on itself by conjugation, and 

P' -. Ka,e/ SU(2) be the associated bundle. P' has a structure of Lie 

group bundle. P' induces a bundle P _-. Ka,e/Ge X Ge \Ke,b· P has a 
fibrewise action to 

induced from the fibrewise action of P' to Ka,b from left. (Note SU(2) 

act globally on Ka.b from right.) This fibrewise action defines a local 
action. If µ(c) > µ(c') > µ(b), the local action of Ge = SU(2) can be 
made to be compatible with the local action of Ge x Ge'· 

Note that this action is not an action of a sheaf of groups in the 

sense of [CG], because the fibre bundle P -. Ka,c/Ge x Ge \Ke,b is not 
flat, in general. 

Take a principal bundle Ke,b -. SU(2)\Ke,b and construct a Lie 

group bundle Q -. Ka,e/Ge x Ge \Ke,b in a similar way. Q has also a 
fibrewise action on 

This action does not coincide to the action of P. But they have the 
same orbits. By convention, we use only the action of P. 

Definition 10.1. Let X be a 0 00 manifold. A local action on X 
is a collection (Ui, Gi, 'Pi,j) such that 

(10.1.1) Ui is an open covering of X. 
(10.1.2) · : Gi x ui-. ui is a smooth action of a Lie group Gi on Ui, 
(10.1.3) Ui n Ui is Gi and Gi invariant. 
(10.1.4) Let Em(Gi,Gj) be the set of all injective homomorphisms. 

For i < j, there exists a smooth map 'Pi,j : U;~;uj -. Em(Gi, Gj) such 
that 

g(x) = 'Pi,j([x])(g)(x) 
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holds for each XE ui n uj, g E Gi. 

Example 10.2. Let X -+ N be a principal G bundle. ( G acts on 
X from right.) Let P = X Xad G. P is a Lie group bundle and has a 
fibrewise left action on X. This gives a local action on X. 

Example 10.3. Let X0 (c) be as in §7. There exists a fibration 

the fibre of which is Ga X Geo X • · • X Gek X Gb. We have a Lie group 
bundle 

whose fibre is Ga X Geo x · · · x Gek x Gb. The bundle P has a fibrewise 

action to X 0 (c). This gives a local action on X0 (c). 

Theorem 10.4. There exist a local action on M 1 (a, b) and maps 

o -I w, : X(c)-+ M (a, b), 

'11,,,,: U(c, c')-+ X(c), 

such that 
0 

( 10.4.1) The restriction by '11 e of the local action on X ( c) of the local 
action coincides to one in Example 10.3. 
(10.4.2) w,,w,,,, = w,. (The subset U(c, c') C X(c) is as in §7.) 

Theorem 7.1 follows immediately from Theorem 10.4. We have also 

(10.5) 

Here IP, is the map constructed in §8, z = ([A1 , · · ·, Ak], S1 , · · ·, Sk) and 

To prove Theorem 10.4, we modify the maps W, inductively on c. 
First we take c which is maximal with respect to the inclusion and put 
'11, = IP,. We do not change '11,, while modifying 'Pc with c' :) c. For 
simplicity of the notation, we discuss one step of modifications. We 
consider the following case. Let µ(a) < µ(c) < µ(c') < µ(b), with 
Ga = {±1}, Ge = Ge' = Gb = U(l), and consider the component 
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of Ke,c' consisting of irreducible connections. Suppose, by induction 
hypothesis, we have 

- - - 2 
W(c,c') : Ka,e Xcc Ke,c' Xcc, Kc',b X (T, oo) 

-. M'(a,b) 
- - - 2 

W(c,c'),(c): Ka,c Xcc Kc,e' Xcc, Kc',b X (T, oo) 

-. M'(a, c) Xcc M'(c, b) X (T, oo) 
~ - - - 2 
W(c,c'),(c') : Ka,e Xcc Kc,c' Xcc, Ke',b X (T, oo) 

- M'(a, c') Xcc, M'(c', b) X (T, oo), 

and a local action on the image of W(c,e')· We shall define W(e) and W(e') 

such that 

on 

and 

W (c') iJi (e,e'),(c') = W (c,e') 

on 
-1 - -

W2 = w(c,c'),(c')(Ka,c' Xcc, Kc',b X [T, oo)). 

(See Figure 6.) By induction hypothesis, W(c,c'),(c) and W(c,c'),(c') pre
serves Ge x Gb and Ge, x Gb actions respectively. (In this case, those 
actions are defined globally since the groups are abelian.) The maps 
iJi (c) and iJi (c') we shall construct must be Gb invariant. Once we obtain 
such maps W(c) and W(c') we can define a local action on their images 
by pushing out one by those maps. These local actions can be patched 
together with one on the image of W (e,c') by the Ge X Gb and Ge, X Gb 
invariance of the maps W(e,c'),(e) and W(e,e'),(e')· 

We begin the construction of We· We choose an open coverings UJ, 

UJ, UJ, Uf, of Ka,e/Gc, Ke,c', Ge1 \Ke 1 ,b/Gb, Ka,c1 /Gc 1 , respectively. 
Let Vk be an open covering of U(l). Take maps Jl and ff as in §8. 
Choose sections s} : UJ -. At ( a, c) and s; ,s1-s3-As in §8, define a map 

by 
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= (Jk1 (g1, ·)* A1)(x, t - S) for t < S + Si/3 

( t-S-Si/3) * = X Si/ 3 g1A1(x, t - S) 

+ ( 1 - X ( t - ~ 1/:
1 / 3)) A2 ( t - S - S1) 

for t E [S + Si/3, S + 2Si/3] 

= A2 (t - S - S1) for t E [S + 2Si/3, S + S1 + S2/3] 

= X (t -S - S1 - S2/3) A2(t - S1 - S) 
S2/3 

+ (1 -X c-S -S:/ 3-
8213 )) g;A3(x, t- S - S1 - S2) 

for t E [S + S1 + S2/3, S + S1 + 2S2/3] 

= (Jf 2 (g2, ·)* A3)(s, t- S - S1 - S2) for t > S + S1 + 2S2/3. 

By perturbing this map as in §8, we obtain a map 
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- 1 2 3 -
<I>j1,J2,J3,k1,k2 : ujl X uh X uj3 X vk, X vk2 X (T, oo) X R--+ Mc,8(a, b) 

which is a lift of the map <I>(c,c') of Theorem 7.6. By construction in §8, 
we have 

l~.11,hh,k 1,k 2 - ~j1,hh,k,,k2 I < e(S1, S2). 

Similarly we have 

~~~~12,k1: UJ, X UJ2 X vk1 X (T,oo) X R--+ Ac(a,c 1
) 

~(l). k : U11 X U12 X vk1 X (T, oo) X R--+ Mc(a, c1), 
]l ,]2, 1 1 2 

-(1) 
such that <I> j, ,h, k, is a lift of 

<I>(c): Ga\I<a,c Xcc Kc,c'/Gc, X (T,oo) X R--+ M(a,c 1). 

Here ~(l)i is obtained by a similar patching procedure as i1,i2 ,k1 

~ 11- 1. 1. k k , and that 
1,2,3,1,2 

1~1(1) - ~(l) I < e(S ) 
J1,h,k1 J1,h,k1 1 • 

We may assume that for each j 1 ,j 2 with 
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there exists j = j (j1, h, k1) such that 

We have maps 

- ,(2) 4 3 ( ) A ( b) <I>j,j3,k2 : uj X uj3 X vk2 X T, 00 X R -t £ a, 
-(2) 4 3 -<I>.3. k :U3- xU 3- xVk 2 x(T,oo)xR-+Mt(a,b) J, 3, 1 3 

such that ~ 3(
2
3) k is a lift of 

, 3, 2 

Here ~ 3~
2
3~' k is obtained by a similar patching procedure as ~ 3'. 3- 3. k k , 

,3,2 1,2,3,1,2 

and that 

1~1(2) _ ~(2) I < (8 ) 
j,h,k2 i,h,k2 e 2 • 

By construction, we can choose lifts s3 e.t.c. so that 

~~~fi,h,k 1 ),h,k 2 (~~~~t,k 1 ([Ail, [A2], 91, 81, 8), [A3], 92, 82, 8') 

= ~ii,h,i 3 ,k1 ,k2 ([A1], [A2l, [A3}, 91, 92, 81, 82,8 11). 

(Here 8 11 is determined by 8,8',8 1 and 8 2 .) It follows that 

Using induction hypothesis (10.5), we obtain 

l<I>(c') W (c,c'),(c') - W (c,c') I < e(81, 82), 

- . -(1) 
Let wii,h,h,ki,k 2 and wii,h,ki be the lifts of Wc,c' and W"(c,c')(c'), respec-
tively. Then we have 

Therefore we can define 
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by 

BJ1 ,12,J3 ,k1 ,kJ[A1], [A2l, [A3], g1, g2, S1, S2, s) = 
-c2) (-Cll ') (1 - 8 ) • ~J(Ji,h,ki),h,k 2 iJ!J1 ,12,k1 ([Ail, [A2], g1, S1, S), [A3], g2, S2, S 

+ s · ~J 1 ,12,13,k1 ,k,([A1l, [A2l, [A3], g1, g2, S1, S2, S"). 

Since gauge transformation is an affine map (namely g*(sA+(l-s)B) = 
sg* A+ (1 - s )g* B holds for each connections A, B and gauge transfor
mation g), it follows from an argument similar to the proof of Lemma 

8.3 that we can perturb 31'. 1- 1. k k so that it defines a map 3' : 
1,2,3,1,2 

W1 x [0, 1] __., Bt(a, b), which is Gb invariant. Using Taubes' method 
as in §8, we can perturb this map and obtain 3: W 1 x [O, 1] __., M~(a, b). 
This map 3 is an isotopy between iJ!(c,c') and ~(c')iJ!(c,c'),(c')· Take a 
small open neighborhood W{ of W1 in 

M(a, c) Xcc M(c, c') Xcc, M(c', b) X (T, 00) 2 . 

3 can be extend to W{. Let <p: W{ __., [0, 1] be a Cb-invariant function 
such that 

{ <p(x) = 0 if XE 8W{, 

<p(x)=l if xEW1. 

and if iJ!(c,c'),(c')(x) E X(c) 

(See Figure 7.) Define iJ! (c') on iJ! (c,c'),(c') (W{) by 

iJ!(c') (iJ!(c,c'),(c')(x)) = 3(x, <p(x)). 

m'(a,c) x m'(c,b) 

m'(a,b) 

m'(a,c) x m'(c,c') x m'(c',b) 

Figure 7. 
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Since 
S(x, 0) = 'P(c') W (c,c'),(c') (x ), 

we can extend 'V(c'), by putting 'V(c') = 'P(c') outside 'V(c,c'),(c')(W{). 

Since 
S(x, 1) = 'V(c,c')(x), 

we have W(c')W(c,c'),(c') = 'V(c,c'), on W1, The inequality (10.5) holds 
by construction. Using Lemma 8.14, we can prove that 'V(c') is a dif
feomorphism to its image. Thus the patching argument for the proof of 
Theorem 10.2 is completed in our case. The proof of general case is the 
same, but the notation will be more complicated. 

Remark 10.6. If we can establish rigorously what we suggested in 
Remarks 8.15 and 8.20 we might be able to prove Theorem 10.2 using 
the center of mass technique in Riemannian geometry. (See [GK].) But 
the direct argument we gave above might be simpler. 

§11. Extension of the line bundle to the boundary 

In this section, we shall prove Theorem 7.3. First we consider the 
case when none of Ci are reducible. We put 

k-1 

u M 1(a,co) x II M 1(Ci,Ci+1) x M 1(ck,b). 
co, .. ·,ck,Gc; ={±1} i=O 

Lemma 11.1. Let c = (eo, ···,ck), µ(a) > µ(co) > · · · > µ(ck) > 
µ(b), Ge; = {±1}, and 

We: Ka,co XII Kc;,c;+i X Kck,b X (T,ool-+ M 1(a,b) 

be the map given in §10. Then there exists an isomorphism of line 
bundles 

i * (2) ( ) (2) ( ) (2) ( ) 'Pc : W c .Ci a, b -+ .Ci a, co © · · · © .Ci Ck, b . 

This lemma follows from Theorem 4.9 and the construction of 'IF,. 
Hereafter we write 

.c?) (c) = .C~2\a, co)©···© .c?\ck, b). 

Similarly, for c' C c, we have an isomorphism 

i ,T,* ,e(2) ( ') ,e(2) ( ) 'Pc,c' : 'J' c,c' i C -+ i C · 
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Lemma 11.2. On 

Ka,c0 X II Kc;,c;+i X Kck,b X {(S1, · • ·, Sk)} 

we have 
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This lemma follows from the construction of cp~. By Lemma 11.2, 
we can perturb cp~, 'P~,c' such that 

i i i 
'Pc,c' 0 'Pc1 = 'Pc· 

Using these isomorphisms, we can patch the bundles cf)(c) and obtain _, 
a line bundle over C1M (a, b). 

Next we consider the case when some c.; are reducible. The following 
three results are used for this purpose. 

Theorem 11.3. The local action on M 1 (a, b) constructed in §10, 

can be lifted to c?) ( a, b). 

Hence, for each c, the line bundle w~cf)(a, b) on Ka,co Xaco •.. Xack 

- k Kck,b X (T, oo) has a local Ga X Gc0 X • · • X Gck x Gb action. Therefore 

we obtain a bundle Wi c?) ( a, b) on 

Here Kc*· c· denotes the set of reducible connections. As before we put '!.' -i+l 

which is a line bundle on 

Lemma 11.4. There exist isomorphisms 

(/"Ji • W* d 2) (a b) -+ C~2) (c) 
YC " C i ' i 

i ,T,* cc2) ( ') cc2) ( ) 'Pc,c' : ~ c,c' i C -+ i C • 

Lemma 11.5. On 
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we have 

Using these results, we can prove Theorem 7.3 in a way similar to 
the case when none of Ci are reducible. The proof of Lemmas 11.4 and 
11.5 are similar to one of Lemma 11.1 and 11.2 respectively. In the rest 
of this section, we prove Theorem 11.3. 

First we lift the action on the image '1!c(.X0 (c)) c M'(a,b). We 
are studying the determinant bundle of the operator o~ + E defined on 
:Ei c::: 8 1 x R C M x R. On their ends, these operators are asymptotic 
to ft + o~ + E, for some a E Fl. Here the operator o~ is defined on 8 1 . 

We choose Ao such that the first eigenvalue of (o~ + E) * (o~ + E) is larger 
than Ao for each a. 

For simplicity, we shall consider the case where c = (c), Ge =f. {±1}. 
In this case, '1!, is a perturbation of the map <I> defined below. (See §8.) 

Choose an open covering 

U11 U···UUN 1 ~K _ a,c, 

U'f u · · · u U'j, :2 Ke,b, 

Vi U · · · U VN = Ge, 

and sections s} : UJ _____, At,.o(a, c), s; : UJ _____, At,o(c, b). Let Jk 
vk X R------, Ge be a map such that 

Then the map 

{
1 ift<-1 

Jk(g, t) = g 
if t > 0 

~.i1,12,k: uJl X vk X UJ2 X [T,oo) X R------, At,o(a,b) 

is defined by 

~.i 1 ,12,k([A1l, g, [A2], 8', 8) 

(Jk(g, ·)* A1)(x, t - 8) if t < 8 + 8 1 /3. 

( t-8-8'/3) * X 8 ,13 g A1(x,t-8) 

+ ( 1 -X ( t - 8;, 8' / 3)) A2 ( t - 8 - 8') 

if 8 + 8 1 /3 < t < 8 + 28' /3 

A2(t - 8 - 8 1) if t > 8 + 28' /3. 
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Here x is the cut function in §8. The maps ~ 1'. 1. k induce a map If> : 
1, 2, 

.X0 ((c))---+ Bc,15(a, c). They satisfy 

Therefore, there exists an isomorphism W-( e) .C?) (a, b) ---+ If>* :Z:;2) (a, b). 
- -

We shall lift the local action of Ge on Ka,e Xcc Ke,b, to a local action 

on If>* .c;2l (a, c). 
Replacing UJ1 and UJ2 by a smaller one if necessary, we can find 

positive numbers Aji,j 2 < >..0 , such that the following holds. 

(11.6.1) If [at] E UJl then Aj1,h is not an eigenvalue of (oa, +E)*(oa, + 
E) on ~i-

(11.6.2) If [at] E UJ2 then Aj1 ,h is not an eigenvalue of (oa, +E)*(o1,t+ 
E) on ~i-

Then, by Remark 4.6, Aj1,h is not an eigenvalue of (oA +E)*(oA +E) 
on ~i, if 

[A] E lf>(UJl X Ge X uJ2 X (T, oo) X R) 

for sufficiently large T. Let [A1] E UJ1 , [A2] E UJ2 , g E Vk C Ge, and 

A= ~Ji,k,h([A1],g, [A2l, S', S), we put 

L(A1,g,A2,S',S)= EB {ul(oA+E)*(oA+E)u=>..u}, 
>-<>-31,32 

L 1 (A1,g,A2,S',S)= EB {ul (oA+E)(oA+E)*u=>..u}, 
>-<>-31,32 

L= u L(A 1, g, A 2, S', S), 
A1 ,g,A2 ,S' ,S 

L'= u L'(A 1,g, A 2, S', S). 
A1,g,A2,S' ,S 

By (11.6.1) and (11.6.2), the dimensions of L and L' are constant. By 
definition, 

If>*(£?) (a, b))l([A1 ],g,[A2],S1,S) 

(~ ~ )~ 
~ f\ (L(A1, g, A2, S', S))* ® /\ L'(A1, g, A2, S', S) 
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Lemma 11.7. Lett E [S+S'/3,S+2S'/3], u E L(A1,g,A2,S',S). 
Then 

lu(x,t)lc, < ce-J.\o-.\h,h/3(t)llullL2 

Here (3(t) = d(t, 8[S + S' /3, S + 2S' /3]) 

The proof of the lemma is similar to one of Lemma 4.5. 
For u E L(A 1,g,A 2,S',S), g,h E Ge with g,hg E Vk, we put 

fi(h)(u)(t,x) = 
Jk(hg, t - S)Jk(g, t - S)- 1u(x, t) if t < S + S' /3. 

X c-~,1381 / 3 ) hu(x, t) + ( 1 - x c-~,1:' /3 )) u(x, t) 

if S + S' /3 < t < S + 2S' /3, 

u(x, t) if t > S + 2S' /3. 

Let fz(h)(u) is the orthonormal projection of I1(h)(u) to 
L(A1, hg.A2, S', S). Lemma 11.7 implies: 

Lemma 11.8. 

S'/C llfz(h)(u) - fi(h)(u)IIL 2 < Ce- llullL2 • 

Lemma 11.9. If g E Vk, hg E Vk and h'hg E Vk, then 

III2(h'h)(u) - I2(h 1)I2(h)(u)IIL2 < ce-S'/CllullL2· 

Next we extend Jz to h which is defined also for h such that g E Vk 
and hg r/:. Vk. Note that Ge = U(l) or = SU(2). Hence, in fact, we 
need only two charts V1 and V2 to cover Ge. (This fact is not essential 
for the proof but we use it to simplify the notation.) Choose go E 

Vin Vz. For g E Vi, hg E Vz, we take h 1 and h2 such that h1g = g0 and 
h2h1 = h. Then, for h E L(A1,g,A2,S',S), the element fz(h1)(u) E 

L(A1,g 0 ,A 2,S',S) is well defined. We put 

h(h)(u) = I2(h2)I2(h1)(u). 

Since h2(h 1g), h 1g E Vz, it follows that J2 (h2 ) in the above formula is 
well defined. Choose x: Ge----+ [O, 1] such that 

x(g) = { 1 if g E Vi - (Vin Vz). 
0 if g E Vz - (V1 n V2). 
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Put 

{ 

h(h)(u) if hg E Vi - (Vin V2), 

1 ( x(hg)I2(h)(u) + (1- x(hg))J3(h)(u) 
14 u) = 

if hg E Vi n V2, 

J3(h)(u) if hg E V2 - (V1 n V2). 

In the case when g E ½, we define JJ(h) in a similar way. Finally we 
put, for u E L(A 1,g,A2,S',S) 

! IJ(h)(u) if g E V1 - (Vin V2), 

15(h)(u) = x(g)Il~h)(u) + (1- x(g))IJ(h)(u) 
1f g E V1 n V2, 

JJ(h)(u) if g E V2 - (V1 n V2)-

Then J5 is defined for every hand g and depends smoothly on them. By 
perturbing h a bit we obtain I6 (h) which is a linear isometry 

L(A1,g,A2,S',S)---+ L(A1,hg,A2,S',S). 

By construction, we have 

(11.10) 

Next we use the center of mass technique, to perturb h and obtain 
J satisfying I(h)I(h') = I(hh'). Namely we use the following: 

Lemma 11.11. For each compact Lie group G and n, E > 0, there 
exists 8n(G, E) > 0, such that the following holds. 

Let 1r : L ---+ X be a hermitian vector bundle of rank n, G act on X, 
and <p : G x L ---+ L be a map. Suppose 

(11.12.1) 

(11.12.2) 

(11.12.3) 

1r(<p(g,v)) = g(1r(v)), 
<p is a linear isometry on each fibre, 

\<p(g1,g2,v) - <p(g1(cp(g2,v))\ < 8n(G,E). 

Then, there exists a lift of the action of G to L, such that 

\cp(g,v) - g ·vi< E. 

· In the case when Xis a point, Lemma 11.11 means that an almost 
homomorphism G---+ U(n) is approximated by a homomorphism. This 
case is proved in [GKR]. The proof of Lemma 11.11 is identical to that 
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case and hence is omitted. (See also [BK] p138.) Note that 8n(G, E) in 
the lemma is independent of X. 

Now, using Lemma 11.11, we can perturb h to obtain a lift I of 
the local action on UJ1 x Ge x UJ2 x (T, oo) x R to the vector bundle 
L(A 1 , g, A2 , S', S) on it. In a similar way, we can lift the action to 
L'(A 1 , g, A2 , S', S). Hence we obtain a lift of the action to the restriction 

-(2) -1 -2 ( ' ) 1 2 ( ) ofi[>*.Ca,b to uh Xac u)2 X T,oo X R= uh X Ge X u)2 X T,oo X R. 

(Here U"Ji and fJJ2 are the inverse images of UJ1 and UJ2 in Ka,e and 

Ke,b, respectively.) We denote the lift by Ij 1 ,12. By construction, we 

have, on (fJJl Xac fJJ2) n (UJ~ Xac fJJ) X (T, oo) X R, 

Hence using a partition of unity, we can patch them as an almost action. 
Therefore, using Lemma 11.11, we obtain a lift of the local action to 

i[>* .C~2\ a, b). 
In order to lift the local action on M(a, b), we have to patch those 

lifts we constructed above. By construction, they are compatible mod
ulo a difference estimated by e(S1 , · · ·, Sk) on · · · x {(S1 , · · ·, Sk)} x R. 
Hence we can apply a similar patching procedure as above. The proof 
of Theorem 11.3 is now complete. 

§12. Boundary operators 

In this section, we define the boundary operators 

8: C2 ---+ C2-1 

8, : c2 ---+ c2_3 
8,1 ,,2 : c2 ---+ cLs. 

The definition of 8 is the same as Floer's. Let a, b E Fl, with 

µ(a) = µ(b) + 1. Then, M 1 (a, b) consists of finitely many points each 
of which is given an orientation + or -. We let (8a, b) be the number 
of the points with + orientation minus the number of points with -
orientation. Put 

8[al = I)8a, b)[bJ. 

Next we define 8,. For a closed loop 'Yon M we obtain a line bundles 

.C~2) (c, c'), over M 1 (c, c'). We choose sections s,(c, c') to .C~2) (c, c'), such 
that the following holds. 
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(12.1.1) For each a, b E Fl, the collection of the sections 

s.,,(a, eo) © · · · © s.,,(ck, b) 

to 
.C~2l(a, co)©···© .C~2) (ck, b) 
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can be patched together to give a smooth section on CM 1 
( a, b). (We use 

the symbol s.,, ( a, b) also for this extension.) 
(12.1.2) The zeros of s.,,(c, c') are transversal and transversal to each 
other. 

Since we restrict ourselves to the case when s < 3 if H1 (M; Z) is 
torsion free, and when s = 0 otherwise, then we need only to study 
the case when µ(a) < µ(b) + 8, H1(M; Z) is torsion free and a and 
bare irreducible. In this case, if µ(a) 2: µ(c) 2: µ(c') 2: µ(b), and if 
M(a, c) 'I-0, M(c', b) 'I-0, then M(c, c') does not contain a reducible 
connection. Also in our case, Lemma 5.8 implies that bubbling off of 

instanton does not happen. Hence (7.1.6) implies that the set CM1 (a, b) 
is compact. The later fact is not really necessary for the argument. (We 
can discuss as in Donaldson [D4], in case when a and bare irreducible.) 
However the former point is essential. We discuss it at the end of this 
section. 

Now, let µ(a)= µ(b) + 3. Set 

E.,,(a, b) = { x E CM' (a, b)ls.,,(a, b)(x) = 0}. 
_, 

Dimension counting, the compactness of CM ( a, b) and the transversal-
ity (12.1.2) imply 

E.,,(a, b) n 8CM 1 (a, b) = 0 
ltE.,,(a, b) < oo. 

The orientation of M 1(a,b) induces an orientation of each point of Ei. 
We define (8.,,a, b) by 

{8.,,a, b) = ltE.,,. 

Here and hereafter It stands for the number of points with + orientation 
minus the number of points with - as orientation. We set 

a.,,[aJ = I)a.,,a,b)[bJ. 
b 
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For µ(b) =µ(a)+ 5, and loops ')'1 and ')'2, we put 

E,,1 ,,, 2 (a,b) = {x E CM 1(a,b)ls,,1(a,b)(x) = s,,2(a,b)(x) = 0.}, 

and define 

(8,,1 ,,, 2 a,b) = UE,,1 m(a,b) 

a,,1,1'2 [a] = 2)a,,1,')'2a, b)[b]. 
b 

Now we prove Theorem 1.10. For simplicity, we discuss the case 
a= {'Y}, and prove a,,a+aa,, = 0. Let a,b E Fl with µ(a)= µ(b) +4. 

The line bundle £~2)(a,b)-+ M 1 (a,b) can be extended to CM 1 (a,b) by 

Theorem 7.3. Since dimM (a, b) = 3, the set 

E,,(a, b) = {x E CM 1 (a, b)ls,,(a, b)(x) = O} 

is one dimensional oriented manifold. And 
_, 

8E,,(a, b) = E,,(a, b) n 8M (a, b). 

By transversality and dimension counting we have 

aE,,(a,b) = {(x,y) E M 1(a,b) X M 1(c,b)I 

s,,(a,c)(x) · s,,(c,b)(y) = 0,c is irreducible.}. 

= LI E,,(a, b) x M' (c, b) U 
µ,(c)=µ,(b)+l 

LI M 1(a,c') x E,,(c',b). 
µ,(c')=µ(b)+2 

The orientations are also compatible. Therefore we have 

2)a,,a, c)(ac, b) + I)aa, c')(a,,c', b) = o. 
C C1 

Hence a,,a + aa,, = 0, as required. 
The proof of 8,,1 m 8 + 8,,1 8,,2 + a,,2 8,,1 + aa,,1 m = 0 is similar. 

Now put 

c,. = EB s£ H1 (M, Z)@ cz_2£, 
£5,_s 
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and define a: q - ck_1 , by 

8( 'Ya ® [a]) = L "fal ® Oa2 [a]. 
a 1 Ua 2 =a 

(Here we fix a basis 'YI, · · · , 'Yd of the first homology group and put 

Ga= L IT ci,ji{)131 ""1jl 
j1,-··,jt, i 
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if a = (Lj 1 C1,j1 bi 1 ), • • ·, Ljt Ce,it bit]). Later, in Lemma 12.10, we 
shall prove that 81 are additive with respect to 'Y-) Theorem 1.10 implies 

88=0. 
As we pointed out in §1, the boundary operator 8 itself does depend 

on the choice of the sections s1 ( c, c'), because the spaces CM 1 
( c, c') have 

boundaries. Next we prove that the chain complex ( C~, 8) is independent 
of the choice of the section. 

Theorem 12.2. Suppose H 1 (M; Z) is torsion free ands < 3. Let 
s1 (a, b) and s;(a, b) are the sections satisfying (12.1.1) and (12.1.2). Let 

(cs, 8) and (cs, 8') be the corresponding chain complexes. Then there 
exist maps '¢, cp : cs -+ cs such that 

(12.2.1) 

(12.2.2) 

(12.2.3) 

8'cp = cp8 

8'¢ = '¢8' 

cp'lj; = 'lj;cp = identity. 

Proof. For each loop 'Y and c, c' E Fl, we choose a section s1 (c, c') 

to c\2l (c, c') x (0, 1] -+ M 1 (c, c') x (0, 1] such that 

s1 (c, c')(x, 0) = s1 (c, c')(x) 

s1 (c, c')(x, 1) = s~(c, c')(x) 
(12.3.1) 

(12.3.2) For each a, b E Fl, the collections of sections 

can be patched together to give a smooth section on CM' ( a, b) x [0, 1]. 
(12.3.3) The zeros of s1 i are transversal and are transversal to each 
other. 
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Now, let µ(a) = µ(b) + 3, and put 

- _, -
E7 (a, b) = {(x, t) E CM (a, b) x [O, l]ls 7 (a, b)(x, t) = O}. 

Then dimE 7 (a,b) = 1. Note that (12.3.2) implies that 

E7 (a, b) n (M 1 (a, c) x M 1 (c, b) x [O, 1])-/= 0 

only if c is irreducible and µ(c) = µ(b) + 1 or 2. Therefore 

(12.4) 

. 

8E7 (a,b) = 
{(x, O)ls7 (a, b)(x, 0) = O} U { (x, l)ls 7 (a, b)(x, 1) = O}U 

lJ{ (x1, X2, t)ls-y(c, b)(x1, t) • S-y(a, c)(x2, t) = O}. 
C 

R 

8' 
1 

m'(a,c') x m'(c',b) 

a, \ 
m'(a,c) x m'(c,c') x m'(c',b) 

m'(a,c) x m'(c,b) 

Figure 8. 
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For each a, c E Fl, with µ(a) = µ(c) + 2, we put 

(cp-ya, c) = tt{(x, t) E M 1 (a, c) x [O, l]ls-r(x, t) = O}. 

Note the set in the right hand side is a finite set, by (12.3.3) and dimen
sion counting. Define 'P-r : C~ -+ CL2 by 

Then (12.4) implies 

(12.5) 

Now define cp, 'i/J : C 1 -+ C 1 by 

cp(l ® [al) = 1 ® [a] 

cp(-y ®[al)= -y ®[a]+ 1 ® cp-y[a], 

'i/J(l ® [al) = 1 ® [a] 

'i/J('Y ® [al) = -y ® [a] - 1 ® 'P-r[a]. 

Then using (12.5), it is easy to verify (12.2.1),(12.2.2), and (12.2.3). 

Next we consider the cases= 2. Let µ(a)= µ(b) + 5. Put 

E-y1,'Y2 (a, b) = {(x, t) E CM 1 (a, b) X [O, 1] ls-r1 (x, t) = S-y2 (x, t) = O}. 
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We have 

(12.6) 

8~,,1 ,,, 2 (a, b) = 
{(x, 0)ls,,1 (a, b )(x) = s,,2 ( a, b )(x) = 0} 

U {(x, l)ls~1 (a, b)(x) = s~2 (a, b)(x) = 0} 

U LI {(x, y, t) E M 1 (a, c1) x M 1 (c1, b) x [O, l]I 
µ(c1)=µ(b)+l 

s,,1 (a, c1)(x, t) = s,,2 (a, c1)(x, t) = O}, 

U LI {(x,y,t) E M 1(a,c4) x M'(c4,b) x [0,l]I 

U LI { (x,y,t) I 
(x,y,t) E M 1(a,c2 ) x M 1(c2 ,b) x [0,1] 

s,,1 (a, c2)(x, t) = 0 = s,,2 (c2, b)(y, t) } 
or 

µ(c2)=µ(b)+2 s,,1 (c2, b)(x, t) = 0 = s,,2(a, c2)(y, t) 

U LI { (x,y,t) I 
(x,y,t) E M 1(a,c3) x M 1(c3,b) x [0,1] 

s,,1 (a,c3)(x,t) =0=s,, 2(c3,b)(y,t) }. 
or 

µ(ca)=µ(b)+3 s,,1 (c3, b )(x, t) = 0 = s,,2 ( a, c3)(y, t) 

Let A0 ,A5 ,A 1 ,A4 ,A2 ,A 3 be the sets in the above formula, respectively. 
We have 

(12.7.1) 

(12.7.2) 

~Ao= (8,,1 ,,, 2 a, b), 

ijA5 = -(8~ 1 ,,, 2 a, b). 

For a, c E Fl with µ(a) = µ(c) + 4, we put 

('-P,,1 ,')'2a, c) = H{(x, t) E M 1 (a, c) X [0, 1 l ls,,1 (x, t) = s,,2 (x, t) = 0}. 

Then we have 

(12.7.3) 

(12. 7.4) 
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To examine ttA2 and ttA3, we remark that the sections s,,(c, c') can be 
defined by an induction on µ(c) - µ(c'). Then, we can assume the 
following conditions (12.8). For c, c' E Fl with µ(c) = µ(c') + 2, we put 

T(c, c') = sup{tl::lx (x, t) E I;,,(c, c')}, 

S(c,c') = inf{tl::lx (x,t) E t,,(c,c')}. 

(12.8.1) If µ(c) = µ(c') + 3 = µ(c") + 5, and if t > T(c', c") then 

~(c, c')(x, t) = ~(c, c')(x, 1) 

(12.8.2) If µ(c) = µ(c') + 2 = µ(c") + 5, and if t < S(c, c'), then 

~( c', c") (x, t) = ~( c', c") (x, 0) 

Using (12.8.1), we can prove: 

Therefore 

(12.9.1) 

{(y, t) E M 1 (c2, b) x [0, 1] is,,2 (y, t) = 0} 

U lJ{x E M 1(a,c2)ls~,(x) = O}x 

{(y, t) E M 1 (c2, b) x [0, l]ls,,1 (y, t) = 0}. 

Similarly, using (12.8.2), we can prove: 

(12.9.2) 

By (12.6.1),(12.7),(12.9), we have 
(12.10) 
8,,1,')'2 + <p,,1 8,,2 + <p,,1 8,,2 + <p,,1,,,28 = 8~1 ,,,2 + 8~1 <p,,2 + 8~2 <p,,1 + 8' <p,,1 ,,,2 · 

Now we put 

<p('Yn2 0 [al) = 1'1"/2 0 [a] + ')'1 0 <p,,2 [a]+ 1'2 0 <p,,1 [a]+ 1 0 <p,,1,,,, [a] 

'!/i( ')'1 ')'2 0 [al) = ')'1 ')'2 0 [a] - ')'1 0 <p,,2 [a] - ')'2 0 <p,,1 [a] 

- 10 (<p,,1,1'2 + <p,,1 <p,,2 + <p,,2<p,,J[a]. 
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Formulas (12.2.1),(12.2.2),(12.2.3) follow immediately from (12.5) and 
(12.10). The proof of Theorem 12.2 is now complete. 

Next we shall prove the following: 

Lemma 12.11. Let "Yi,"'/2,"Y,"Y' be closed loops on M with ["'11] + 
["'/2] = ["Y] in H1(M;Z). Then we can find collections of sections 
s71 (c, c'),s 72 (c, d), s7 (c, c'),s 7 ,(c, d) with (12.1.1), (12.1.2) such that the 
corresponding boundary operators satisfy 

(12.11.1) 

(12.11.2) 

871 +8 72 = 87 

a"Y1,"Y' + a"Y2,"Y' = a"Y,"Y'· 

Proof. Let µ(a)= µ(b) + 3. Consider CM(a, b). (We do not divide 
it by the R action.) Let :E be a surface on M x R which is asymptotic 
to ("'11 U "'!2 ) x R as t ----+ -oo, and to "Y x R as t ----+ oo. Using the Dirac 

operator on :E, we can define a line bundle .ci> ( a, b) on CM ( a, b) = _, 
CM (a, b) x R. We put 

CCM(a, b) = CM(a, b) x [-oo, oo]. 

By construction and Theorem 4.9, the bundles .ci\a, b) on CM(a, b), 
(2) ( ) (2) ( ) _, ( ) { (2) ( ) and .C71 a, b © .C72 a, b on CM a, b x -oo }, and .C7 a, b on 

CM 1 (a, b) x { oo} can be patched together to give a line bundle over 
CCM ( a, b). We extend the sections s71 ( a, b) © s72 ( a, b) and s7 ( a, b) to 
a section on CCM(a, b). Then, by an argument similar to the proof of 
Theorem 12.2, we can find cp7 such that 

Using this map cp7 , we can modify the section s7 such that (12.11.1) is 
satisfied. The proof of (12.11.2) is similar. 

Finally, we discuss what happens whens 2: 1 in case H 1(M; Z) has 
a torsion, and when s 2: 3 in case H 1 ( M; Z) is torsion free. 

Suppose first that H 1 (M; Z) has a torsion, and µ(a) = µ(b) + 5. 
In this case, there may be reducible connections c and c' such that 
Ge= Gc1 = U(l) and that µ(c) = µ(c') + 1 = µ(b) + 2. Then 

dimM(a,c) = dimM 1(c,c') = dimM'(c',b) = 0. 
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The set M 1 (c, c') may have a O dimensional orbit M~eic, c') which 
consists only of reducible connections. (See Theorem 5.6.) A neighbor-

hood of each point of M 1(a,c) x M~eic,c') x M 1 (d,b), in CM 1(a,b) 
is identified to (0,oo] x (0,oo] x U(l)/ "', where (t,s,g 1 ) "' (t,s,g 2 ) 

if and only if t = oo ors= oo. Here {oo} x (0,oo) x U(l)/"' 
and (0,oo) x {oo} x U(l)/"' are identified to M 1(a,c) x M 1(c,b) and 

M 1 
( a, c') x M 1 

( d, b) respectively. The bundle £\2) ( a, b) is extended out
side oo x oo x U(l)/ "'= point. The neighborhood of this point is a cone 
of 8 2 • (It may be more natural to regard that this 8 2 has two singular 
points.) 

Using the basis [ii] of Hf (M; Z), chosen at the beginning of §2, we 
can find .eio such that 

(12.12.1) 

(12.12.2) 

c(fi) = c'(fi) if i =f. io. 

c( fio ) = 1, c' ( fio) = -1. 

In this case we can prove that the restriction of the line bundle d 2) ( a, b) 
G'Q 

to this 82 is nontrivial. (Its chern number is ±1.) (See the proof of 
Lemma 12.13 below.} Then the formula 

does not hold in general. 

Next suppose that H1 (M; Z) is torsion free. Let c and c' be reducible _, 
connections such that Ge= Gc1 = 8U(2), A EM (c,c'), GA= U(l), 
µ(c) = µ(c') + 3. Then, if a, b E Fl and if M(a, c) =f. 0, M(c', b) =f. 0, 
then µ(a) ~ µ(c) + 4,µ(b) ::; µ(c') - 1. Hence, the first case we are to 
examine is the case when µ(a)= µ(b) +8 = µ(d) +7 = µ(c) +4. In this 
case, 

-1( ) -I ( ') -1( I ) dimM a,c = dimMred c,c = dimM c ,b = 0. 

Here M~ed(c, c') is the component of [A], which consists of one point. 
By Theorem 7.1 a neighborhood of each point of 

_, _, ,-,, 
M (a,c) X Mreic,c) X M (c ,b) 

in CM 1 (a, b) is 

( 80(3) x 80(3) (0 ]2 ) / ,..._, 
U(l) X ,oo 
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where ~ is as in (7.1.4). In other words, it is a cone of CP 3 /Z2 = X. 
(See the proof of Lemma 12.13.) Here Z2 acts by 

The fixed points set of this action has two components. The fixed points 
correspond to the singular points of X. Those singular locus are identi
fied to 

( 80(3) x 80(3) { } ( )) / ~ 
U(l) X oo X 0,oo 

-I -I 

CM (a,c) x M (c,b), 

and 

( 80(3i~l;0(3) X (0, oo) X { oo}) / ~ 

C M 1 (a, c') x M(c', b), 

respectively. We can find Cio such that (12.12.1) and (12.12.2) are satis
fied. 

Lemma 12.13. 

Proof. Let a~ be a representative of M 1 
( c, c') = point, (used in §8.) 

On Cio x R, a~ converges to the trivial connection as t goes to -oo, and, 
as t goes to oo, it converges to a flat connection -1 whose holonomy, 
P-1: Z = 1r1(81)------, 8U(2) is given by P-1(1) = -1. 

Sublemma 12.14. 

Proof. We put 8 1 = R/21rZ. Let x be the coordinate of 8 1 . We 
have 

a . a 
Otrivial = at + i ax. 

We can perturb a~ so that it is a connection with holonomy 

( 
e"'it o . ) 

0 e-1rit . 
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( ag is a trivial connection and a~ = -1.) Then the spectral flow cor
responding to the operator oa~ + E is as in Figure 9. (Here we take 
E > 0.) 

eigenvalue 

2+e 
------------------------

----------------------

0 -----~-..,.,=---+--1-

-2 +• 
-l+e 

------------------

-2 + e ------ -------------

-1 

Figure 9. 

The sublemma follows. 

Remark 12.15. In our case, the half spin bundle @C2 together with 
connection af splits to th~ direct sum of two complex line bundles. The 
dotted lines in Figure 9 correspond to the second factor and the others 
to the first factor. 

The group U(l) = Iao acts on the eigenspaces, and the index in 
t . 

Sublemma 12.14 can be regarded as an element of the representation 
ring R(U(l)),..., Z[t,t- 1]. Here t be the representation corresponding to 
z f-+ z and r 1 to z-+ z-1, where we identify U(l) = {zllzl = 1}. By 
Figure 9, The index is equal to -r 1 . 

If we choose E < 0 then the index is t. 

Now we consider the map 1r : SU(2) x SU(2) -+ M'(c, c') con
structed in Theorem 5.4. Let .Ci(c, c') be the line bundle defined in §7. 
(We have not yet divided it by Ge x Ge,.) 1r* .Ci ( c, c') is trivial. 
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On SU(2) x SU(2), the group U(l) = Iao acts by 
t 

This action lifts to 1r* ( .Ci ( c, c')). The quotient is identified to the restric
tion of .Ci(c, c') to the image of 1r, which is diffeomorphic to SU(2) x 
SU(2)/U(l). By Sublemma 12.14 and Remark 12.15, the action of U(l) 
on 1r*(.Ci(c, c')) is given by 

(12.16) 

(in both cases E > 0 and E < 0.) 
We put 

where 

X = SU(2) x SU(2) x [O, 1)' 
,.._, 

(g1,Y2,0) = (g~,92,0), 

(g1,Y2, 1) = (g1,g~, 1). 

X is diffeomorphic to S7 • By Theorem 7.1, 

X= X 
U(l) X Z2 

Here h E U(l) and T = -l E Z2 acts on X by 

h((g1,Y2,t)) = [g1h,h- 1g2,t], 

r([g1,Y2,t)) = [-g1,Y2,t). 

Hence X/U(l) ~ CP 3 . By (12.16), the bundle .Ci(a,b) on X/U(l) C 

CM'(a, b) is isomorphic to the canonical bundle on CP 3 . Hence, its 
Chern class is equal to the generator, u. Therefore, 

The proof of Lemma 12.13 is now complete. 

Using Lemma 12.13, we can discuss as in the proof of Theorem 1.10, 
to show 

L 8-y"'1 8-y"'2 = 4 L UM' (a, c) · UM' (c', b), 
a:1 Ua2=a c,c' 
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in the case when a = ( £io, £io, £i0 ). 

It might be possible to define an invariant mod 4 using the above 
formula. But the author does not try to do it here, because he suspects 
if it is a correct way. 

From the above observation, it seems that we need to examine the 
reducible connections more seriously when we generalize the invariant 
for larger s. 

§13. Independence of the metrics and the perturbations 

The proof of Theorem 1.14 is based on an argument similar to one 
in §§7-12 and [F]. Let o-1 ,o-2 be two metrics on Mand fi,h be two 
perturbations as in §§2,3. Let Fli and Fh be the set of solutions of 

*a, pa - grada Ji = 0, 

and 
*a2 Fa - grada h = 0, 

respectively. Let ( C(l), 8 1 ) and ( CC2), 82 ) be corresponding complexes 

constructed in §12. Choose a family of metrics 9t such that 

(13.1.1) O"t = 0"1 fort< -1. 

(13.1.2) O"t = 0"2 fort> 1. 

Choose x such that 

x(t) = 1 fort> 1, 

x(t) = o fort< 0. 

Let O"t be the metric O"t EB dt2 on M x R. We consider the equation 

(13.2) pA - *-,,.,FA-x(-t) (grada, Ji A dt - *a, grada, Ji) 
- x(t) (grada, h A dt - *a, grad h) = 0, 

for A E Ae,6 (a, b). (Compare (3.6).) Here a E Fli and b E Fl2. The 
linearization of (13.2) is given by 

0 = VA ( u, cp) = 
au - ot + (*a,da, -'I/Jt - x(-t) Hessa, Ji - x(t) Hessa, h) Au+ da,'P 

Here u, cp e.t.c are the same as in (3.8). Let Vi and V71. be the operators 
in (3.8) for a= 0-1 EB dt 2 , 0-2 EB dt 2 and f = Ji, h, respectively. 
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Lemma 13.3. If A E At, 7 (a, b) with a E Fli b E Fl2, then 

dim Coker 'DA < oo. 

Proof. If not we have (ui, 'Pi) such that 

'D~ ( Ui, 'Pi) = 0, 

< (ui, 'Pi), (uJ, 'PJ) >= Di,j· 

Then, by elliptic regularity, we have lti I - oo such that 

l(ui(xo, ti), 'Pi(xo, ti))I >Co> 0. 

We may assume that ti - oo. Put u~(t,x) = ui(t - ti,x), cp~(t,x) = 
'Pi(t - ti, x). By taking a subsequence we may assume that (u~, 'PD 
converges to (u, (p) with respect to the C 00 topology on each compact 
set. Then we have 

This contradicts (2.6). 

,,.,(2)* (~ ~) - 0 vb u,cp -

(u, (15) -1= o. 

Using Lemma 13.3, we can apply the argument of [D3] to obtain a 
perturbation Q(·), such that the linearized operator 'D~ of 

(13.4) pA_*u,FA - x(-t)(grada, Ji I\ dt - *u, grada, Ji) 
- x(t)(grada, h I\ dt - *u, grada, h) + Q(A) = 0. 

is surjective. Here Q(A) depends only on a restriction of A to M x 
[-1, 1] and its support is also contained in it. Let M(a, b) be the set 

of solutions of (13.4) divided by gauge transformations. Let ~l) (a, b) 

and M~2)(a, b) be the set of solutions of (3.6) for <J" = <J"1 , f = Ji and 
<J" = <J"2, f = h, divided by the gauge transformations and R action, 
respectively. 

Theorem 13.5. For a E Fh and b E Fl2, let CM(a, b) be the 
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disjoint union of 

M(a, b), 
k-l 

M(a,eo) x II M~ 2)(Ci,Ci+i) x M~ 2)(ck,b), 
i=O 

k-l 
M~ 1)(a, Co) x II M~ 1)(ci, Ci+1) x M(ck, b), 

i=O 

ko-l 
M~ 1i(a,eo) x II M~1)(ci,ci+i) x M(ck 0 ,Ck0 +1) 

i=l 

k-l 
x II M~2)(ci,ci+1) X M~2)(ck,b). 

i=ko+l 

83 

Then CM(a, b) has a smooth structure with properties similar to (7.1.1) 
-(7.1.7). 

The proof is similar to the proof of Theorem 7.1 and is omitted. 
We remark here the reason why we need to fix a basis of Hi(M; Z). 

Let µ 1 ,µ2 be the maps defined in Theorem 5.1 for metrics a 1 ,a 2 and 
let Ji and h be functions we used in sections 2 and 3. If we use the 
same basis of Hf ( M; Z) ( or more precisely Hf ( M; Z) 0 Z2 ), then we have 
µ 1(c) = µ2(c) for each reducible connection c. This fact is essential for 
the argument of the rest of this section. In fact, suppose, for example, 
there exists reducible c such that 

Then for some a E Fli,b E Fl 2 with µ 1(a) = µ 2 (b)+l, the space M(a, b) 
may have an end described by 

And µ 1 (a)- µ 1 (c) can be greater than 7. Therefore, in the compactifica-_, 
tion of M(l) the end we discussed at the end of §12 can appear. These 
ends can cause serious problem for the argument of the well definedness. 
The point is that the virtual dimension of M(a, b) is -10 but we can 
not find perturbation to make it empty 

The author has no explicit example which shows that our invariant 
does depend on the choice of the basis of H1 (M;Z). But it seems quite 
unlikely that it is independent. 
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We return to the proof of invariance. For "Y -:::c S1 C M, we define 
bundles 

r(2) ( ') 
-'-',, 1 a, a 

,c,(2) (b b') 
,,2 ' 

.C~2l(a, b) 

on M(i)*(a, a'), 

on M( 2)*(b, b'), 

on M(a, b). 

Theorem 13.6. The tensor products of .C~~i,.C~t and £~2) can 

be patched together to give a line bundle on CM* ( a, b). 

The proof is the same as the proof of Theorem 7.3. 

Now we define cp: (Ccl),8 1)---+ (Cc2),8 2 ). We put 

< cp0 (a),b >= ijM(a,b) 

if µ(a)= µ(b). (Here ij is the same as in §12.) Set 

cp[a] = L < cp0 a, b > [b]. 
b 

This defines the map cp: Cfl) ---+ Cf2). 

Next we fix sections s,(a, b), s,, 1 (a, a'), s,, 2 (b, b') to .C~2)(a, b), 

£~~~ (a, a'), .C~~~(b, b') such that (12.1.2) holds and that they can be 
patched together to give a section of the line bundle obtained in Theorem 
13.6. Now, for µ(a) = µ(b) + 2, we put 

< cp,a, b >= ij{x E M(a, b)ls,(x) = O.}. 

For µ(a) = µ(b) + 4, we put 

Set 

< cp,1 ,, 2 a, b >= ij{x E M(a, b)ls, 1 (x) = s, 2 (x) = O}. 

cp,[a] = L < cp,a, b > [b], 
b 

cp,1 ,, 2 [a] = L < cp,1 ,, 2 a, b > [b]. 
b 

Lemma 13. 7. If lal < 3, then 
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(If lo:I > 0 we assume that H1(M; Z) is torsion free.) 

The proof is the same as the proof of Theorem 1. 10 in § 12. Put 

c.p('Ya ®a)= L 'Ya 1 ® 'Ya2 a. 
a1Ua2=a 

Lemma 13.7 implies that c.p: (Cfo,8 1 )--+ (0(2),82 ) is a chain map. 

Lemma 13.8. The chain map c.p modulo chain homotopy is inde
pendent to the choice of the homotopy <rt of the metrics and the pertur
bation Q in (13.4). 

, 

Proof. Let ul ,u; ,Q1 ,Q2 be the homotopies and perturbations and 
c.p1 , c.p2 be corresponding chain maps. Choose homotopies u;: and Qu _, 
among them. Let Mu(a, b) be the set of solutions of (13.4) for <Tt = u;: _, 
and Q = Qu- Let CMu(a, b) be the disjoint union of 

Mu(a,b) 
k-1 

Mu(a,co) X IT Mc2)(ci,Ci+1) X M(2)(ck,b), 
i=O 

k-1 

M(i)(a, co) X IT M(i)(Ci, CH1) X xMu(ck, b), 
i=O 

ko-1 

M(i)(a,co) X IT M(i)(ci,Ci+1) X Mu(Ck 0 ,Ck0 +1) 
i=O 

k-1 

x IT M(2)(Ci,Ci+1) x M( 2)(ck,b). 
i=ko+l 

(Here we do not assume that µ(a) > µ(eo) >···>µ(ck) > µ(b).) (Note 
that Mci)(a, b) =I-M1(a, b).) 

Put 

1-lM(a, b) = LJMu(a, b) X {u}, 
u 

C1-lM(a,b) = LJCMu(a,b) x {u}. 
u 

Theorem 13.9. We can take u;: and Qu such that C1-lM(a,b) 
has a smooth structure which has properties similar to (7.1.1)-(7.1.7). 
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The proof of Theorem 13.9 is a bit more difficult than that of The
orem 7.1. The reason is that we can not assume that the operator 

'D~) obtained by linearizing (13.4) is surjective for every u, (even if we 
choose af and Qu to be generic.) Then we have to use the Kuranishi 
map as in [T2], [D2]. For simplicity we prove the case µ(a)= µ(b). Here 
a E Fli,b E F[z. Then dim HM'(a, b) = 1. In this case, Theorem 13.9 
follows immediately from the following two lemmas. 

Lemma 13.10. Suppose that the sequence (Ai, ui) E HM(a, b) is 
unbounded. Then, by taking a subsequence if necessary, there exist either 

c E FZi, ti, BE Mu(a, c), CE M~2i(c, b) with µ(c) =µ(a)+ 1 or c' E 

Flz, t~, B' E M(l)(a, c'), C' E Mu(c', b) with µ(c') = µ(a)-1 such that 
the Conditions (13.10.1)-(13.10.3) or (13.10.1) -(13.10.3)' below hold. 

(13.10.1) 

(13.10.2) 

(13.10.3) 

(13.10.2)' 

(13.10.3)' 

Ui ---+ U 

IAi(x, t) - B(x, t)I---+ 0 

IAi(x, t - ti) - C(x, t)I ---+ 0 

IAi(x, t + ti) - B'(x, t)I ---+ 0 

IAi(x, t) - C'(x, t)I---+ 0, 

(See Figure 10.) Note that Mu(a, c) = 0 = Mu(c', b) for generic u. 
(The virtual dimension of them is -1.) But "1-parameter family of-1-
dimensional spaces is a finite set". Hence by a generic choice of af and 
Qu there exist a finite number of u's, for which Mu(a, c) or Mu(c', b) is 
nonempty. 

B C 
a C 

(MxR,IIr") 

Figure 10. 
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Lemma 13.11. Let BE Mu(a,c), CE M~ 2)(c,b). Then there 

exist u(v) : (0, oo) _, 0, 1, A(v) E Mu(v)(a, b) and t(v), t'(v) ER, such 
that 

(13.11.1) 

(13.11.2) 

(13.11.3) 

lim u(v) = u 
V----+00 

lim IA(v)(x, t - t(v)) - B(x, t)I = 0 
V----+00 

lim IA(v)(x, t + t'(v)) - C(x, t)I = 0. 
V----+00 

Moreover, if Ai satisfies (13.10.1) - (13.10.3) then [Ai] = [A(vi)] for 
large i. A similar statement holds for c'. 

The proof of Lemma 13.10 is similar to the proof in §9 and is omitted. 
Before proving Lemma 13.11 we complete the proof of Lemma 13.8 in 
the case when s = 0. 

In this case, Theorem 13.9 implies 

81iM(a, b) - M 1 (a, b) - M 2 (a, b) 

= LJMu(a, c) X M~ 2)(c, b) U LJ M~l)(a, c') X Mu(c', b). 
u,c 

We put 

and 

Then we have 

u,c' 

u 

' '"""'-(' < <I>c ,b >= D~Mu c ,b), 
u 

<I>[a] = L < <I>a, c > [c] 
C 

<I>[c'] = L < <I>c', b > [b]. 
b 

4'1 - 4'2 = 8<I> - <I>8. 

Here 4?1 and 4?2 are the chain maps constructed using O-f, Q1 and a-;, Q2, 
respectively. This proves Lemma 13.8 whens= 0. The case whens> 0 
can be proved by combining the methods of §§7 - 12 and Theorem 13.9. 
(In fact, the case s > 0 is simpler, because we do not have to use 
Kuranishi map in that case.) 
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Proof of Lemma 13.11. Let DA be the operator obtained by lin
earizing the equation (13.4) for O"t = a;: and Q = Qu. By the generic 
choice of a;: and Qu we have dimCokerD 13 = 1. We consider the set X 
of the connections which is a standard form of type ( {B}, {C}, E, T). By 
Remark 4.6, there exists a positive number Ao, such that, if A EX and if 
lu-u'I < E, then, there is exactly one eigenvalue ofD::{D::{* smaller than 
Ao. Let IIr be the orthonormal projection to this eigenspace, (which is 
isomorphic to R). Put IIn = identify- IT1 . For A E A(a, b), u' E [0, 1] 
we consider the equation 

(13.12) 

Iln(FA - * u,FA - Xu 1 (-t)(grada Ji A dt - * u' grada Ji) 
at t at t 

u 

- Xu 1 (t)(grada h I\ dt - * u' grada h) + Qu 1 (A)) = 0. 
t at t 

8B(a,b) x (0,1]:) B(a,c) x B(c,b) x (0,1] 

Zx{c}=CY~(-1,1) 

CHm(a,b) ~ [O, 1) 

B(a, b) x (0, 1] 

((B,u),C) = one point 

Figure 11. 

The set of solutions of (13.12) divided by gauge transformations 
consists a 2-dimensional family Y. Let Z be the set of solutions of (13.12) 
for A E A( a, c) and u' E [0, 1]. ( dim Z = 1.) Then, using the method of 
the proof of Theorem 7.1, we can compactify Y by adding Z x {C}. Put 
CY = Y U ( Z x { C}). A neighborhood of ( (B, u), C) in CY is identified 
to [0, 1) x (0, 1), where {0} x (0, 1) C Z x {C}. (See Figure 11.) For 
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(A, u'), we put 

We identify the image of IIJ to Rand regard fas a function. Using the 
decay estimate in §9 we can extend the function f to a smooth function 
on CY. The set of zero's off is identified to a neighborhood of ( (B, u), C) 
in C1iM(a, b). We consider the restriction off to {0} x (0, 1) C Z. If 
we choose gf and Qu generic, we may assume that the derivative of 
this restriction is nonzero at ((B, u), C) E {0} x (0, 1). It follows from 
implicit function theorem that the zero of f in CY is diffeomorphic to 
[0, 1) where 0 E [0, 1) corresponds to ((B, u), C). Lemma 13.11 follows 
immediately. 

The proof of Lemma 13.8 is now complete. 

Next we take another metric 173 and another perturbation h
Choose homotopies 17i' 2 and 17;' 3 from 171 to 172 and from 172 to 173 . 

Choose also perturbations Q1,2 and Q2,3. Let 'P1,2 and 'P2,3 be the chain 
maps obtained by them, respectively. 

Lemma 13.12. We can find homotopy of metric 17i' 3 from 171 to 
173 and a perturbation Q1,3 such that the chain map 'Pl,3 : Cfo ---+ C(3) 

satisfies 

'P3,2'Pl,2 = 'Pl,3· 

Proof. We put 

17f = x( -t - S )17ii2s + x( t - S )17;_'_32s. 

We shift the perturbation Q1,2 by 2s to the negative direction and shift 
Q2 ,3 by 2s to the positive direction. Let Q'i_,3 be the sum of them. We 
consider the equation 

(13.13) 

pA - *at pA - X( -t - s) (gradat fi /\ dt - *at gradat Ji) 

- x(t + s)x(s - t)(gradat fz I\ dt - *a: gradat fz) 

- x(t - s)(gradat h I\ dt - *at gradat h) + Q1,3(A) = 0 

Let M(s; a, e) be the set of solutions of (13.13) divided by gauge trans
formations. Let M 1 ,2 (a, b) and M 2 ,3 (b, e) be the moduli spaces used in 
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the definitions of cp1,2 and cp2 ,3 respectively. (Here a E Fli, b E Fl2, 
e E Fl3.) 

By using Remark 4.6, we can prove that the linearized equation for 
(13.13) is surjective for sufficiently large s. Consider the disjoint union 
of 

and 

CM(s;a,e) x {s} sE[so,oo) 

ko-1 

II M~l)(ci, Ci+1) X M1,2(Ck 0 , Ck0 +1) 
i=-1 

X 

k1 -1 

II 
i=ko+l 

k2 

-I -

Mc 2)(ci, ciH) x M2,3(ck 1, Ck1+1) 

x II M~ 3)(ci,ciH)x{oo}. 

i=k1 +1 

(Here we put a= c_ 1, e = ck 2 +1.) The later one is a compactification of 
UbM 1,2 (a, b) x M 2 ,3 (b, e). Let CCM(a, e) be the union. Using this mod
uli space, the proof of the lemma goes in a way similar to the argument 
of §§7 - 13. 

Now we are in the position to complete the proof of Theorem 1.14. 
Suppose a-1 = a-3 , in Lemma 13.12. Then we can take a trivial homotopy 
a-1,3 = a-1 and Q1,3 = 0. In this case, it is easy to see that the corre
sponding chain map is the identity map. Therefore by Lemma 13.12 
and Lemma 13.8, cp2 ,3 cp1 ,2 is chain homotopic to identity. (In this case 
tp2,3 = tp2,1-) Thus the chain map tp1,2 we constructed gives an iso
morphisms on the homology groups. Also the isomorphism is canonical 
because of Lemma 13.8. The proof of Theorem 1.14 is now complete. 
The proof of the independence of the exact sequence 1.15 is similar. 
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