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Quantum Groups and Integrable Models 

L. A. Takhtajan 

The term "Quantum Group" and the algebraic constructions asso
ciated with it are rather popular nowadays. Different people however, 
endow this combination of words with different meaning. Here I will 
present some historical background and a systematic introduction into 
this rapidly developing theory 1>. 

§1. History of the subject 

The main source of motivation for quantum groups was the Quan
tum Inverse Scattering Method (QISM) initiated by L. Faddeev, E. 
Sklyanin and this author in [1-3]. Their initial aim was to formulate 
a quantum theory of solitons. Quantum Lie groups and quantum Lie 
algebras appeared afterwards as abstraction of concrete algebraic con
structions constituting the mathematical formalism of QISM. Let us first 
consider two characteristic examples. 

Example 1. In the paper [4] concerning the quantum Liouville 
model on the lattice, L. Faddeev and the author introduced the C
algebra Aq generated by the elements a, b, c, d with relations 

(1) 
ab = qba, ac = qca, 

bd = qdb, cd = qdc, 

q EC\ {O}. 

be= cb, 

ad- da = (q- q- 1 )bc, 

This algebra has the following remarkable property. Consider two com
muting copies (a', b', c', d') and (a", b", c", d") of generators of Aq and 
form two matrices 

/ (a' b') T= c' d'' 
11 ( a" b11

) 
T = c'' d" . 

Received December 20, 1988. 
l) This paper is an extended version of the lecture given in Taniguchi 

symposium at RIMS in October 1988. 
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Then the set ( a, b, c, d), where 

T = T'T" = (: : ) 

also generates Aq, i.e. satisfies relations (1). In other words, relations 
(1) are preserved under matrix multiplication. Another observation is 
that the element 

detqT = ad- qbc 

- the "quantum determinant"- belongs to the center of Aq, 
Setting 

we obtain 
TS(T) = S(T)T = detq T · I, 

where I is the unit matrix. Thus the quotient of the algebra Aq by the 
relation detq T = 1 could be called the "quantum group SL(2)" and 
denoted by SLq(2). The algebra SLq(2) with an additional *-structure 
was also introduced by S. Woronowicz [5-6] in his study of "compact 
matrix pseudogroups". This approach was based on the C* -algebra 
point of view. 

Example 2. P. Kulish and N. Reshetikhin [7] and E. Sklyanin 
[8] introduced in their study of concrete problems of QISM the following 
C-algebra Uh with generators H, x± and relations 

(2) 

Here the parameter h E C plays the role of Planck's constant. As h --t O, 
relations (2) tum into the commutation relations for the Lie algebra 
.sl(2). Therefore the algebra Uh could be considered as a deformation of 
the universal enveloping algebra U.sl(2) of the Lie algebra .sl(2). 

V. Drinfeld was the first to make an important observation that 
main algebraic constructions of QISM are nothing but very special ( and 
very meaningful) examples of bialgebras and Hopf algebras. Using this 
algebraic language, he gave in [9-10] a natural generalization of Example 
2. 

Remind (see, for instance, [11]) that a C-algebra A is called a Hopf 
algebra, if 
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i) there exists a C-algebra homomorphism 

.6.:A--+A®A 

called a coproduct, such that the following diagram is commutative: 

yA®A~ct 
A A@A@A 

~A@A~t:, 
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ii) there exist a C-algebra homomorphism e : A -> C, called a 
counit, and a C-algebra antihomomorphism S : A -> A, called an an
tipode, such that the following diagrams are commutative: 

id 
A - A 

t:, l 11 

ict®e A®C 
A®A- II 

~C®A 

id®S 
A ~A@A - A@A~ A -

~S®id~ 

C 

Here m is the usual product in the algebra: m( a ® b) = ab, a, b E A 
and i is the natural imbedding of C into A: i(c) = c · 1, c EC, where 1 
is the unit element in A. Ha C-algebra satisfies condition i) and has a 
counit e it is called a bialgebra. 

Let G be a Lie (topological) group. The commutative algebra 
Fun( G) of smooth (continuous) functions on G is a typical example of a 
Hopf algebra and any commutative Hopf algebra is of this form. A typ
ical example of a bialgebra is given by the algebra C(t,;] of polynomials 
in n 2 variables t,;, i, j = 1, · · · , n, with coproduct .6. 

n 

(3) .6.( t,;) = :1::>ik ® tk; 
k=l 
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and counit e 
e(ti;)=8i;, i,j=I,···,n, 

where 8i; is Kronecker's delta. Using the matrix T = ( ti; }f.;=i we can 
rewrite (3) in matrix form 

A(T) = T@T, 

where the symbol ® refers to the tensor product of algebras and usual 
product of matrices. In addition 

e(T) = I, 
where I is the n x n unit matrix. Thus the algebra C[ti;] can be in
terpreted as the algebra of polynomial functions on the matrix algebra 
Mn(C} so that the coproduct (3) is induced by the usual matrix product. 

In Example 1 we are dealing with the non-commutative deformation 
of the latter algebra for the case n = 2. The main observation shows that 
Aq is a bialgebra with the same coproduct (3) as in the commutative 
case. The algebra Uh of Example 2 is also a bialgebra. The coproduct 
A introduced by E. Sklyanin [12] has the form 

(4) 
.6.(H) = H ® 1 + 1 ® H, 

A(X±} = x± ® e-¥ + e¥ ® x±. 

Moreover, defining the antipode S by 

S(H) = -H, 

and the counit e by 

± h.H ± h.H S(X ) = -e-,- X e,-

e(l) = 1, e(H) = e(X±) = 0 

we make Uh a non-commutative and non-cocommutative Hopf algebra. 
It was this particular example that served as a starting point for the 

work of V. Drinfeld [9-10] and M. Jimbo [13-14] who have generalized 
the algebra Uh to the general case of simple Lie algebras. 

Let us now turn to the QISM. The basic algebraic formulas consti
tuting the essence of the method are 

(5) 

and 

(6) 
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Here RE Mn2(e) and T1 = T © I,T2 =I© T, where Tis an n x n
matrix with matrix elements belonging to some associative algebra A. 
The indices 12, 13 and 23 in (6) show the way of imbedding Mn2(C) 
into Mna(C) according to the choice of two factors in the triple tensor 
product en © en © en. 

Note that in the framework of QISM the matrices T and R depend 
on an additional complex parameter .X, called the spectral parameter. 
Hence in (5) one should replace T1 by T1(.X), T2 by T2(µ) and R by 
R(.X- µ). Respectively in (6) one should make the replacements R12 1-+ 

R12(.X - µ), Ru 1-t Ru(.\ - v), R23 1-t R23(µ - v). The matrix T(.X) 
plays the role of the monodromy matrix for the corresponding quantum 
linear problem: 

i.e. 

The main observation equivalent to the existence of a bialgebra struc
ture states that if local matrices Q1(.X), · · ·, QN(A) satisfy (5), then the 
monodromy matrix T(.X) also satisfies (5). In this context formula (6), 
which is nothing but the famous Yang-Baxter equation in QISM; (this 
name was given to it by Faddeev and myself in [2]) can be considered as 
a compatibility condition for (5). For certain classes of integrable quan
tum models there exists a special value of spectral parameter .X, say 
A = oo, where some simplifications occur. Setting R = Iim>.-+oo R(.X) 
and T = lim>.-+oo T(.X) we arrive to formulas (5) and (6). 

Examples 1 and 2 can be constructed by the above procedure us
ing the matrix Q(.X) for the quantum Sinh- and Sine-Gordon models 
(see [4],[7]). In this approach formulas (5) and (6) have been of great 
help. However Drinfeld [9-10] and Jimbo [13-14], who were general
izing Example 2, did not use the main formulas of QISM (5) and (6) 
to the full strength. This is why Faddeev, Reshetikhin and the author 
decided to develop a more systematic approach to quantum Lie groups 
and quantum Lie algebras based on the exclusive use of formulas (5) and 
(6). This natural suggestion materialized in our papers [15-16], and my 
lecture will mostly be based on them. 

Before passing to formal definitions I would like to explain the mean
ing of the word "quantum" in connection with quantum groups. His
torically, it points out to their birthplace, QISM. Mathematically it has 
the same meaning as the term "deformation" as applied to algebraic 
structures. We will apply this idea to the algebra Fun( G) of polynomial 
functions - "observables" - on the Lie group G. Its special non
commutative deformation will be called the "algebra of functions on the 
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quantum Lie group Gq'' and will be denoted by Fun(Gq)- The quan
tum group Gq itself should be interpreted as a would-be spectrum of the 
non-commutative algebra Fun(Gq) (if such an object exists). Thus the 
terminology will be as follows: when saying quantum group I will mean 
the corresponding non-commutative algebra. It is relevant to note that 
quantum groups should provide a meaningful example for the general 
program of non-commutative differential geometry of A. Connes [17]. 

§2. Quantum matrix algebras 

Denote by e(ti;) thee-algebra freely generated by ti;, i,j = 1, · · ·, 
n. Let RE GL(n 2 ) and consider the two-sided ideal IR in e(ti;) gener
ated by the relations 

RT1T2 = T2T1R. 

Here T1 = T®I,T2 = I®T E Mn2(e(ti;)), where T = (ti;)f.;=t E 

Mn(e(ti;)) is an n x n matrix with matrix elements belonging to e(ti;) 
and I is the unit matrix in Mn(e). 

Definition 1. The quotient algebra 

is called the algebra of functions on the quantum matrix algebra of rank 
n associated with the matrix R. 

When R =I® I, the algebra AR coincides with the commutative 
algebra of polynotnial functions on Mn(e). 

Proposition 1. The algebro AR is a bialgebro with coproduct A 

A(T) =T®T 

and counit e 
e(T) = I. 

The proof is evident. 
Thus we see that AR can be considered as a non-commutative 

deformation of the polynotnial algebra on Mn(e) with the same R
independent coproduct (3). 

Let now denote by e(:z:1, · · · ,:z:n) thee-algebra freely generated by 
:Z:1, • • • , Zn and let p be the permutation matrix in en ® en : p U ® V = 
v ® u for u,v E en. Set fl= PR and for any polynomial f(t) E e[t] 
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denote by lt,R the two-sided ideal in C(x 1 , .. ·,xn), generated by the 
relations 

f(R) x © x = 0. 

Here x©x = (xix;)f.j=l E Mn(C(x1,···,xn)). 

Definition 2. The quotient algebra 

Cf,R = C(x1,···,Xn)/lt,R 

is called the algebra of functions on the quantum n-dimensional vector 
space, associated with the polynomial f(t) and the matrix R. 

Proposition 2. The map 6 : c;,R - AR © c;,R defined by the 
formula 

(7) 

z.e. 

n 

6(xi) = Ltik © Xk, i = 1,· ·· ,n, 
k=l 

6(x) = T@x, 

is a C-algebra homomorphism and provide c;,R with the left Aw 
comodule structure with coaction 6. 

The latter means that the following diagrams are commutative 

The proof is clear. 
When R = P and /(1) = O, the algebra C1,R turns into the commu

tative algebra C[x1 , · • • , Xn] and the coaction 6 is induced by the usual 
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action of the matrix algebra Mn(e) on en. Thus formula (7) can be 
interpreted as an R-independent action of the quantum matrix algebra 
on the quantum vector space. 

Several remarks are now in order. The algebras AR and ef,R 
naturally inherit the structure of graded algebras from e(tii) and 
e(x 1 , · • ·, xn)- In this respect they are nothing but special types of 
finitely generated quadratic algebras. From the functorial point of view 
the category of quadratic algebras was studied by Y. Manin [18-19]. 
However from our point of view this approach is rather general. Even 
the properties of the algebras AR and ef,R for an arbitrary matrix R 
can differ drastically from the properties of their commutative analogs 
e[t;i] and e[x 1 , · · ·, xn]- For example they can have different Poincare 
series - the generating functions for the dimensions of their graded 
components. In particular, relations (5) for the graded components of 
degree two imply additional relations for the components of degree three. 
Equation (6) ensures that these additional relations must be satisfied 
identically. This is one possible way of incorporating (6) into this alge
braic scheme. From now on we will assume that the matrix R satisfies 
the Yang-Baxter equation (6). 

Now, everybody knows the crucial role played by the Yang-Baxter 
equation in QISM and in related subjects. I will remind here only that 
in terms of the matrix R it reads 

(R ® I)(I ® R)(R ® I) = (I® R)(R ® I)(I ® R) 

and its solutions correspond to the representations p: B 3 --t End(en © 
en ® en) of the braid group B3 satisfying certain locality conditions. 
By this I mean that 

p(81) = R®I, 

where 81 and 82 are generators of B3 satisfying a single relation 

I would like to emphasize here that the problem of complete classifica
tion of local representations of the braid group B3 is not solved even 
in the case of symmetric group S3 , where 8~ = 8~ = 1. An interesting 
connection between the Yang-Baxter equation, the braid groups and the 
monodromy representations was discovered by Kohno (see his lecture in 
this volume). 

However, V. Bazhanov [20] and M. Jimbo [13-14], motivated by 
QISM, constructed special solutions of the Yang-Baxter equation asso-
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dated with simple Lie algebras of classical type. The corresponding ma
trices R act in the tensor square of the vector representation and depend 
on a complex parameter q =/. 0 which is the parameter of deformation; 
when q = 1 R turns into the unit matrix. We will use quantum matrix 
algebras connected with these R-matrices in defining simple quantum 
Lie groups by passing to their natural quotient algebras admitting a 
Hopf structure. This procedure is parallel to the definition of classi
cal Lie groups as algebraic varieties in Mn(C) and was introduced by L. 
Faddeev, N. Reshetikhin and the author [15]. Contrary to the q = 1 case 
where all simple Lie groups are embedded into the "Universal Mn(C)", 
in the case q =/. 1 the algebras AR attached to the various series of simple 
Lie algebras are not isomorphic. This illustrates once more the general 
principle that "quantization removes degeneracy". 

§3. Quantum groups SLq(n) and GLq(n) 

The matrix R = Rq associated with the Lie algebra of type An-1, 
n 2:: 2, has the form 

n n 

Rq = q L eii ® eii + L eii ® e;; 
i=l i,j=l 

i"#j 

n 

+ (q - q- 1) L ei; ® e;i, 
i,j=l 

q EC\ {O}, 

i>j 

where ei; E Mn(C), i,j = 1, · · ·, n, are matrix units. The corresponding 
matrix R.q = P Rq enters in local representations of the Hecke-Iwahori 
algebra [13]. 

Set 

where 

" (-q) 1(a-)t1 •• •t· 1 t·+1 • • •t .L..,,,, 0-1 ,- O"i-1 , a,+1 nu,.., i,j = 1, ·· · ,n . 

Here l(u) is the length {minimal number of transpositions) of the sub
stitution u = u{l, · · ·, j -1,j + 1, · · ·, n) = (0-1, · · ·, O'i-1, O"i+1, · · ·, un). 

We have 

Proposition 3. Let S(T) = (S(ti;))~ ._1 • Then ,,,-

TS(T) = S(T)T = detq T · I, 
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where 

detq T = L (-q)'(o-)t1,,.1 • • • tna-., 
a-ES., 

is called the quantum determinant. 

The element detq T E Aq = AR. is central and group-like: 

Moreover, in the generic case, when q is not a root of 1, the center of Aq 
is generated by detq T. 

Definition 3. The quotient algebra of Aq by the relation detq T 
= 1 is called the algebra of functions on the quantum group SLq{n) and 
is denoted by Fun(SLq{n)). 

In a similar way, localizing the algebra Aq with respect to the ele
ment detqT we obtain the algebra Fun(GLq(n)). 

Theorem 1. The algebras Fun(SLq{n)) and Fun(GLq{n)) are 
Hopf algebras with the same coproduct A and counit e as in Aq and with 
antipodes defined by S(T) and ( detq T)- 1 S(T) respectively. In addition 

where 'D == diag(l, q2 , • • ·, q2(n-l)) E Mn(C). 

In the simplest case n = 2 we have 

(

q 0 
0 1 

Rq = O q-q-1 

0 0 

0 0) 0 0 
1 0 
0 q 

and the corresponding algebra Aq coincides with the algebra of Example 
1. 

Now specializing the matrix R in Definition 2 to be Rq and f ( t) = 
t - q we arrive at 

Definition 4. The algebra of "q-polynomials" - the algebra c; 
with generators :z:1, • • • , Zn and relations 
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is called the algebra of functions on the quantum n-dimensional vector 
space. 

The algebra Aq, Fun(SLq(n)) and Fun(GLq(n)) "act" on c; via 
formula (7). 

Now set R = Rq and f(t) = t + q- 1 . From Definition 2 we obtain 
for q2 i= -l 

Definition 5. The finite dimensional algebra /\ c; with gener-
ators x1,···,Xn and relations x; = 0, XiXj = -q- 1XjXi, l ~ i < j ~ n, 
is called the q-exterior algebra of the quantum vector space c;. 

The "action" o of Aq on /\ c; leads to the formula o(x1 • • • xn) = 
detq T © X1 • • • Xn and provides a direct proof of the relation~( detq T) = 
detq T © detq T. This interpretation of the quantum determinant was 
also given in [19]. 

In the case lql = 1, the algebra c; admits a natural completion to 

the algebra T; of formal Laurent series :E~,.--,k,,=-oo aki ···k,, x~ 1 • • • X~" 

with rapidly decreasing coefficients { aki ···k,,} E S(zn ). 
The algebra T; is called the algebra of functions on the quantum 

n-torus. When n = 2 it arises in the study of the Kronecker foliation on 
the 2-torus. The algebra T! was the main example in Connes's program 
of non-commutative differential geometry [17]. In particular he calcu
lates the Hochschild (co)homology groups H*(A,A) (H*(A,A*)) and 
the corresponding (co)homology groups H,!>R(A) (H0a(A)) of the non
commutative de Rham complex. These calculations can be generalized 
to the case A = T; and, in principle, to the cases A = Fun(SLq(n)), 
Fun(GLq(n)). It is clear that we will have the same dimensions for the 
de Rham ( co )homology groups as in the commutative case q = l. How
ever the spaces H*(A, A) and H*(A, A*) now play the role of the spaces 
of quantum differential forms and quantum de Rham currents, so a nice 
geometrical interpretation for them is needed. 

In the algebra Fun(SLq(n)) it is possible to define left coideals 
corresponding to the algebras of functions on the homogeneous spaces 
SL(n)/ SL(k) x SL(n - k), k = l, · · ·, n - l. For instance in the k = l 
case consider the subalgebra in Fun(SLq(n)) generated by tin, S(tni), i = 
1, · · ·, n. This is a left coideal in Fun(SLq(n)) and it can be interpreted 
as the algebra Fun(SLq(n)/ SLq(n - l)). 

Consider now real forms of the quantum group SLq(n). They are 
classified by *-involutions of the Hopf algebra Fun(SLq(n)). Here two 
possibilities occur. 
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1) Case jqj = 1 

The corresponding *-involution has the form T* = T and leads to 
the quantum group SLg{n, R). The analogous involution x; = Xi, i = 
1 · · · , n, turns c; into R; so that the quantum group S Lg{ n, R) "acts" 
on the quantum n-dimensional real space R;. One can also define a *-

subalgebra in Fun(SLq(n, R)) generated by :E;=1 tiktik, i,j = 1, · · ·, n. 
It is a left coideal and can be interpreted as the algebra of functions 
on the homogeneous space of rank n - 1. In the case n = 2 we simply 
obtain the quantum Lobachevsky plane. Natural question is to define 
quantum Fuchsian groups. 

2) Case q ER 

The corresponding *-involution has the form T* = US(T)tu- 1 , 

where U is a diagonal matrix satisfying U2 = I. Setting U = I we obtain 
the quantum group SUg{n) - a compact form of SL 9 (n). When n = 2 
the group SUq(2) was introduced by S. Woronowicz in [5-6]. In this case 
there is another choice of matrix U = diag(l, -1) leading to the quantum 
group SUq(l, 1). Note that for q-:/-±1 quantum groups SL 9 (2,R) and 
SUg{l, 1) are defined for different domains of q and are non isomorphic. 
This illustrates again how quantization removes degeneracy. 

§4. Quantum groups SO 9 (n) and Spg{n) 

The corresponding matrix R = R9 is of order N 2 x N 2 , where 
N = 2n + 1 for Bn type and N = 2n for Cn, Dn types and has the 
following form 

N N 

R9 = q"'"' eii © eii + el!.±!. 1!..±!. © el!.±!. .l!.±!. + "'"' eii © eii L...J 2'2 2'2 L..J 
i=l i,j=l 
i=;ei' i#i,i' 

N N 

+ q- 1 L ei'i' © eii + (q - q- 1 ) L eii © eii 
i=l 
i#i' 

N 

i,i=l 
i>j 

- (q- q- 1 ) L qP•-Pieiejei; © ei'i', 
i,j=l 
i>j 

q EC\ {O}, 

where the second term is present only for the type Bn. Here ei; E 
MN(C) are matrix units, i' = N + 1 ,- i, j' = N + 1 - j, ei = 1, i = 
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1, · · ·, N, for types Bn, Dn, Ci = 1, i = 1, ···,If-, Ci 

1, · · ·, N, for type Cn and 

(p1, " .. , p N) 
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-1, i 

{ 
(n - l n - ~ ... l O _! · · · l - n) for the type Bn, 

2' 2' '2' ' 2 1 '2 

= (n, n - 1, · · ·, 1, -1, · · ·, -n) for the type Cn, 

(n -1,n - 2,· · ·, 1,0,0,-1,· · ·, 1- n) for the type Dn. 

The matrix Rq = P Rq enters in local representations of the Birman
Wenzl-Murakami algebra [21]. 

The matrix Rq satisfies the relations 

where for the matrices in the tensor product cN ©CN the symbols t1 and 
t2 stand respectively for the transposition in the first and second factors. 
Here C1 = C ©I, C2 =I© C and C = qPC0 , where p = diag(p1, · · ·, PN) 
and {Co)i; = ei6i'i• i,j = 1, · · ·, N, so that C2 = el withe= 1 for types 
Bn,Dn and e = -1 for type Cn. 

These properties of the matrix Rq suggest the following 

Definition 6. The quotient algebra Fun{Gq) of the algebra Aq 
by the relations 

TCTtc- 1 = CTtc- 1T = J 

is called the algebra of functions either on the quantum group Gq = 
SOq(N) if the matrix Rq corresponds to types Bn, Dn or on the quantum 
group Gq = Spq{n) if the matrix Rq corresponds to type Cn. 

Theorem 2. The algebras Fun(SOq(N)) and Fun(Spq{n)) are 
Hopf algebras with the standard coproduct ll, counit c and with antipode 
S given by 

S(T) = CTtc- 1• 

It has the property 

The proof is clear. 
Consider now the orthogonal case and set in Definition 2 the matrix 

R to be Rq and f(t) = t2 - (q + q1-N)t + q2-N. We arrive at 
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Definition 7. 
and relations 

The algebra Of (C) with generators x1, · · ·, XN 

XiXj = qXjXi, 1 ::; i < j ::; N, i-/- j', 

N N-2 i'-l 
q - q '""' p-,-p· 

X;•Xi = X;X;, + l + N- 2 L..., q' 1 XjXj' 
q j=l 

2 1 N 
q - L p-,-p· - ---- q' 'X·X·, 

1 + qN-2 . . 1 1 ' 
1=i' 

1 ::; i < i' ::; N, 

is called the algebra of functions on the quantum n-dimensional Eu
clidean space. 

It is not difficult to see that the Poincare series for the algebra 
Of(C) are the same as for the commutative algebra C[x1,···,xN]
Moreover the element 

N N 

xtcx = L XiCijXj = L q-P; XjXj' 
i,j=l j=l 

is central and has the property 

6(xtcx) = 1 © xtcx. 

In other words, the "action" 6 preserves the quadratic form xtcx. 

In the symplectic case, setting j(t) = t - q we arrive at 

Definition 8. 
and relations 

The algebra Sp;n( C) with generators x 1 , • • ·, X2n 

i'-1 

x;,x; =x;x;, + (q2 -1) L c;•c;qp,,-P;x;xj', 1::; i < i'::; 2n, 
j=l 

is called the algebra of functions on the quantum 2n-dimensional sym
plectic space. 

In the algebra Sp;n(C) the following equality holds: 

2n 
xtcx = L q-P·c;X;X;, = 0 

i=l 
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and the "action" 8 preserves the bilinear form 

By this I mean that 

2n 

xt © Cx = L q-P,eiXi © Xi'· 

i=l 
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where m1a stands for the usual product of the factors with index 1 and 
3 in the quadruple tensor product of Sp!n(C). 

One can also define the quantum exterior algebras of the quantum 
Euclidean and symplectic spaces and introduce the algebras of functions 
on the quantum homogeneous spaces like Fun(SOq(N)/ SOq(N-2)) and 
Fun(Spq(n)/ Spq(n - 1)). Let us describe real forms of these algebras 
instead. 

1) Case lql = 1 

We have a *-involution T* = T defining the algebras Fun(Spq(n, R)) 
and Fun(SOq(n, n)),Fun(SOq(n,n + 1)). However no group of the 
type SO(3, 1) appears, so we are not able to define a quantum Lorentz 
group. For the case of quantum symplectic space Sp!n( C) the involution 
x-; = Xi, i = 1, · · ·, 2n, turns it into Sp!n(R) and the quantum group 
Spq(n, R) "acts" on it via 8. 

2) Case q ER 

We have T* = US(T)tu- 1 , where U = diag(c:1,···,cN),e~ = 
1, ci = Ci', i = 1, .. ·, N, and ei = 1 for i = i'. In particular setting 
U = I we obtain the quantum group SOq(N, R) - a compact form of 
SOq(N). The involution x-; = qP•xi, i = 1,···,N, turns Of(C) into 
Of (R) and SO q ( N, R) "acts" on it via 8. This "action" preserves the 

quadratic form xtcx = x*' x and the quotient algebra of Of (R) by the 

relation x*' x = 1 is called the quantum N - I -sphere sf- 1 • The algebra s: was introduced in [22]. 
One can in principle define in analogous manner the quantum groups 

connected with exceptional Lie groups Ga, F4, E6, E1 and Es. The main 
problem here is in constructing the corresponding matrices Rq. For the 
G2 case the matrix Rq was found by Reshetikhin [21]. 
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§5. Quantum simple Lie algebras 

In the classical case there is a nice way, due to Laurent Schwartz, 
of introducing the universal enveloping algebra U g of a Lie algebra g. 
Namely, let G be a corresponding Lie group, then 

ug = c;=(c) 

where c;=( G) stands for the space of distributions on G with support 
in the unit element e. We will introduce quantum universal enveloping 
algebras by a suitable generalization of this relation. 

Denote by A'.n = Hom(AR, C) the algebraic dual of a bialgebra AR. 
It naturally has the structure of bialgebra itself and can be considered 
as a quantum analog of the algebra c-=(G). In order to define an 

analog of c;= ( G) consider the subalgebra UR c AR generated by zi;> E 

A'.n, i,j = 1, · · ·, n. These elements are defined as follows. Let £(±) = 
(lit>n:i=l E Mn(AR) and define the matrices-functionals£(±) by their 
action on the graded elements of algebra AR of degree k given by the 
formula 

(8) 

Here Ti= I®···®~®···® IE Mnk(AR), i = 1,···,k, and the 
i 

matrices Ri±) E MnH1(C) act nontrivially only in the factors with 
indices O and i in the tensor product en ® · · · ® en and coincide there ____________.. 

k+l 
with the matrices 

R(+) = PRP, 

When k = 0 the RHS of {8) equals to I. Note that due to the Yang
Baxter equation, the action (8) is compatible with relations (5) in the 
algebra AR, The subalgebra UR ia called the algebra of regular function
als on AR. Thus we see that the Yang-Baxter equation is a necessary 
ingredient in defining the algebra of regular functionals. 

We have 

Proposition 4. 
place: 

(9) 

i) In the algebra UR the following relations take 
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and 

(10) 

where e = ±, L~e) = L(e) © I, L~e) =I© L(e) E Mn2(UR), 
ii) The algebra UR is a bialgebra with coproduct A 

The proof is clear. 
Consider now the case when the matrix R corresponds to the clas

sical types of simple Lie algebras and set R = cRq, where c = q-¼ 
for type An-l and c = 1 for types Bn, Cn, Dn. In this normalization 
det R = 1. Since the matrix Rq is lower-triangular it follows from {8) 
that the matrices £(+) and £(-) are respectively upper and lower tri-

1 M h l<+lz<-l z(-lz<+l 1 · 1 N d angu ar. oreover, we ave ii ii = ii ii = , i = , · · ·, , an 

from the condition det R = 1 it follows that z~tl · · -z~}.. = 1. Let G be 
a Lie group of classical type. Denote by Gq the corresponding quantum 
group constructed in Sec.3-4, and let Sq denote the antipode in the Hopf 
algebra Fun( G q ). It is not difficult to prove the following 

Proposition 5. In the case R = cRq the algebra UR is a Hopf 
subalgebra in Fun(Gq)* with the antipode S given by 

(11) 

The restrictions on elements zi;l and relations (9),(10) mentioned 
above completely determine the algebra UR for the case An-1 · In the 
case Bn, Cn and Dn one should also add the relations 

Thus in all cases the Hopf algebra UR has the same number of generators 
as Fun(Gq), 

Now let g be the simple Lie algebra of rank r, corresponding to the 

Lie group G, a:1, • .. , O:r be its simple roots and Ai; = 2 ~ :: ::: ~ , i, j = 
1, · · ·, r be its Cartan matrix, where ( , ) stands for the invariant scalar 
product. V. Drinfeld [9-10] and M. Jimbo [13-14] introduced the quan
tum enveloping algebra Uhg, h E C, of the Lie algebra gas the C[[h]]-
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algebra with generators Hi, x"f, i = 1, · · ·, r, and relations 

[Hi,H;] = O, [Hi, X[] = ±( o:i, o:; )X[, 
(12) 

i,j = 1, · · ·,r, 

and 

(13) f)-l)k (7) q-;,.<"'2_,.l (X°f)k X[(X°f)m-k = 0 
k=O q; 

if i =/: j, 

where m = 1 - Ai;, qi= eh(a;,a;) and 

(m) (qm -1) ... (qm-k+l -1) 
k q = ( qk - 1) · · · ( q - 1) 

When h -t 0, the algebra Uhg goes into the universal enveloping 
algebra U g of the Lie. algebra g. 

The generators Hi, X"f, i = 1, · · · , r, play the role of a quantum 
analog of the Chevalley basis. In the case g = .sl(2) the algebra Uhg 
coincides with the algebra Uh from Example 2. 

The algebra Uhg is a Hopf algebra with coproduct tJi. 

tJi.(Hi) = Hi ® 1 + 1 ® Hi, 
(14) 

tJi.(X"t-) = xt- ® e-~ + e~ ® xt-• . . 
and antipode S 

(15) S(Hi) = -H,, S(X°f) = -e-hp X"/'ehp, i = 1, · · ·, r. 

Here p = ½ :Eaea+ Ha, where tJi.+ is the set of positive roots and for 

o: = :E;=l n,o:, we set Ha = :Er=l n,H,. 

Theorem 3. Let R = cRq, where the matrix Rq is attached to the 
simple Lie algebra g, and set q = eh. Then for a certain completion UR 
of the algebra UR we have 

Thus we have managed to introduce quantum enveloping algebras 
of simple Lie algebras using exclusively formulas (5) and (6)1 In this ap
proach complicated relations (13) for the quantum Chevalley generators 
and formulas (14),(15) follow from the elementary formulas (9)-(11). 
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The isomorphism in Theorem 3 can be written down explicitly. For 
instance, in the simplest case n = 2 we have 

PH)' e 2 

where H and x± are generators of the algebra Uh from Example 2. 
Summing up we can say that our way of defining quantum universal 

enveloping algebras is more geometrical than the methods of [9,10,13,14]. 

In particular, the generators z~;> play the role of a quantum analog of the 
Cartan-Weyl basis. Often this basis is more useful than Chevalley basis. 
Thus for instance in its terms one can write rather simple formulas for 
the quantum Casimir operators - generators of the center of the algebra 
UR. Namely, we have 

Theorem 4. For generic q the center of the algebra UR is gener
ated by 

k = 1,···,r. 

At this point it is appropriate to end this introduction to quantum 
groups. Before posing some interesting {from my point of view) open 
problems I would like to mention other subjects which I was unable to 
cover in this lecture. 

a) One can play more with the algebras AR and UR for the general 
matrix R satisfying the Yang-Baxter equation. In particular, there exists 
a procedure of making them Hopf algebras (see [16]}. 

b} There exists a natural interpretation (see [16]} of the construc
tions of Sect.3-5 in terms of the quantum double, a concept introduced 
by V. Drinfeld [10]. 

c) In a similar manner one can define quantum loop groups and alge
bras (see [15]}. The problem of defining quantum Kac-Moody algebras 
is more complicated. V. Drinfeld introduced them in [10] by a rather 
complicated system of generators and relations. However, recently N. 
Reshetikhin and M. Semenov-Tian-Shansky found that it is possible to 
define quantum Kac-Moody algebras along the lines presented in this 
lecture. 

d} Here I have said nothing about the representation theory of 
quantum groups {by these one should understand corepresentations of 
Fun{Gq} or representations of Uh.Eli representations of Fun{Gq} corre
spond to the problem of classifying quantum Lax operators in the QISM 
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formalism). Surely this subject is very important and rapidly develop
ing. Now we know a lot about representations of quantum groups SUq(2) 
and SUq(l, 1) due to the work of S. Woronowicz [5], L. Vaksman and Ya. 
Soibelman [23], T. Masuda. K. Mimachi, Y. Nakagami, M. Noumi and 
K. Ueno [24-25], A. Kirillov and N. Reshetikhin [26]. In these papers 
q-analysis and q-special functions naturally enter the game. Finite di
mensional representations of Uhg were studied by G. Luztig [27] and M. 
Rosso [28]. It seems that general considerations presented in the lecture 
could be useful in the construction of realizations of representations of 
quantum groups and in treating quantum groups of higher rank. 

e) There exists by now well-known connection between quantum 
groups and braid representations on the one hand and invariants of links 
on the other hand. I will mention only the work of N. Reshetikhin [21,29] 
and references therein and Deguchi's talk at this conference. 

§6. Problems 

1) Intrinsic definition of quantum groups is needed. One can imag
ine the following analogy. Suppose that one knows nothing about Lie 
algebras and tries to find all solutions of the Jacobi identity written in 
terms of the structure constants ct;· Then he ( or she) eventually dis
covers intrinsic definition of Lie algebras and classification theorems for 
them. Since the Yang-Baxter equation plays the role of quantum Jacobi 
identity, intrinsic definition and classification of quantum groups will 
give us a list of all solutions of this equation. More seriously we need to 
define a proper category of quantum groups we are working with. 

2) Why do we have a one-parameter continuous family Gq of quan
tum groups starting from the simple Lie group G ? There should be 
some cohomology theory for Fun( G) describing these deformations and 
having the property that its H 2 group is one-dimensional. It seems 
there exists an analogy with the approach of A. Lichnerowicz, M. Flato, 
D. Sternheimer and others to quantization procedure as deformation of 
symplectic structure. This problem is under consideration now. 

3) There are several problems in representation theory. How can 
one construct models for representations of quantum groups ? What is 
a quantum method of orbits and a quantum analog of the Borel-Weil
Bott theorem ? 

4) Quantum differential geometry. At present we have here only 
problems. I will mention only one: how can one in addition to the quan
tum de Rham complex define quantum Dolbeaut complex and an analog 
of Hodge theory. Certainly this question is also interesting for the gen
eral approach of A. Connes to non-commutative differential geometry. 



Quantum Groups and Integrable Models 455 

5) Applications to the integrable models of quantum field theory and 
statistical mechanics. It should be stressed that quantum groups are a 
rather small selection from the rich structures of QISM. Certainly all 
constructions of QISM, even the most complicated technically, should 
have some quantum group meaning; what remains is to reveal it. An
other possible application is the "Virasoro puzzle" ( called so by J. Cardy 
in his lecture at Katata), where for certain models away from critical 
point Virasoro characters nevertheless do appear. Possible explanation 
is that in this case the model has some deformed Virasoro symmetry; 
since the characters are a kind of Poincare series they are not deformed 
and this is the reason of appearance of true Virasoro characters. Of 
course in realizing this program one should first define a quantum Vira
soro algebra. 

6) It seems that this list of problems has a tendency to be infi
nite. So I will end with the most fantastic possible applications to arith
metic algebraic geometry. Could it be an idea that quantum groups play 
an interpolations role in the geometry of varieties defined over number 
fields ? 
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