Formal Groups and Conformal Field Theory over Z

Toshiyuki Katsura*, Yuji Shimizu and Kenji Ueno ${ }^{\dagger}$

Abstract

. We introduce a formal group naturally associated with algebraic curves. The formal group is isomorphic to the one obtained from the universal Witt scheme. The charge zero sector of the boson Fock space is regarded as the coordinate ring of the formal group. Using this structure, we can give tau functions. We also define new operators $f_{n}, v_{n}(n \in \mathbf{Z}, n>0)$ on the fermion Fock space.

§0. Introduction

The conformal field theory of free fermions on compact Riemann surfaces has been investigated by many mathematicians and physicists (cf. [ABMNV], [AGR], [BMS], [BS],[EO], [IMO], and [KNTY]), and the bosonization rule (cf. [DJKM] for instance) plays the central role in the theory. In our previous paper [KSU], we define the new bosonization over the ring \mathbf{Z} of integers (similar treatment can be also found in [CKK]), and constructed the conformal field theory over Z. (In [KSU] we constructed the conformal field theory over $\mathbf{Z}\left[\frac{1}{2}\right]$ because of the complicated nature of spin bundles in characteristic 2 , but our theory can be formulated over \mathbf{Z} similarly.) In the theory, the coordinate ring of the universal Witt scheme plays an important role. In this paper, we introduce a formal group naturally associated with algebraic curves, in particular, Riemann surfaces. We show that the formal group is isomorphic to the one obtained from the universal Witt ring, and that the coordinate ring of the formal group is regarded as the charge zero sector of the boson Fock space (cf. Section 3). Then, using a theorem of Cartier

[^0](cf. Theorem 1.2), we define the tau function. The tau function coincides with the one in [KNTY], and gives its natural interpretation. On the universal Witt ring, we have two kinds of operators, i.e., Frobenius operators F_{n} and Verschiebungs $V_{n}(n \in \mathbf{Z}, n>0)$. Using them and the new bosonization introduced in [KSU], we introduce operators f_{n}^{*} and $v_{n}^{*}(n \in \mathbf{Z}, n>0)$ on the fermion Fock space and the dual fermion Fock space. We show that the operator f_{n}^{*} is adjoint to the operator v_{n}^{*} with respect to the natural pairing (cf. Theorem 4.1). The operators $T(n)=f_{n}^{*} \circ v_{n}^{*}\left(\operatorname{resp} . S(n)=\sum_{m \mid n} f_{m}^{*} \circ v_{m}^{*}\right)(n \in \mathbf{Z}, n>0)$ satisfy the properties similar to the Hecke operators. Hence, we get systematically divisor functions (resp. the Riemann zeta function), using operators $T(n)$ (resp. $S(n)$) (cf. Theorem 5.5 (resp. Theorem 5.8)).

The authors would like to thank Y. Namikawa for useful discussions. The first and the third authors would like to thank Max-Planck-Institut für Mathematik for the warm hospitality during their stay in Bonn.

§1. Formal groups

In the former part of this section, we give a brief survey of formal groups (for details, see $[\mathrm{Hz}]$). For the sake of simplicity, we will explain finite dimensional cases. But we can easily generalize them to the infinite dimensional case. In the latter part of this section, we summarize the results on the universal Witt ring. Let A be a unitary commutative ring. We denote by $G_{i}(X, Y)(i=1,2, \ldots, n)$ a power series in $2 n$ indeterminates $X_{1}, \ldots, X_{n} ; Y_{1}, \ldots, Y_{n}$ with coefficients in A. An n-tuple of power series

$$
G(X, Y)=\left(G_{1}(X, Y), \ldots, G_{n}(X, Y)\right)
$$

is said to be an n-dimensional formal group law over a ring A, if it satisfies the following two conditions :

$$
\begin{array}{lll}
\text { (i) } & G_{i}(X, Y) \equiv X_{i}+Y_{i} \bmod (\text { degree } 2), & i=1,2, \ldots, n \tag{i}\\
\text { (ii) } & G_{i}(G(X, Y), Z)=G_{i}(X, G(Y, Z)), & i=1,2, \ldots, n
\end{array}
$$

An n-dimensional formal group law $G(X, Y)$ is said to be commutative if it satisfies the following condition:

$$
\begin{equation*}
G_{i}(X, Y)=G_{i}(Y, X), \quad i=1,2, \ldots, n \tag{iii}
\end{equation*}
$$

In this paper, we consider only commutative formal group laws, and so we mean by a formal group law a commutative formal group law. Formal group law gives a co-addition of the ring $A\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ of formal power series over A. Therefore, it gives an addition on the formal scheme $\operatorname{Spf}\left(A\left[\left[X_{1}, \ldots, X_{n}\right]\right]\right)$ over A. Conversely, if a formal scheme
$\operatorname{Spf}\left(A\left[\left[X_{1}, \ldots, X_{n}\right]\right]\right)$ has a structure of abelian group, then this gives a formal group law (for details of formal schemes, see $[\mathrm{Hz}]$). A formal scheme with addition is called a formal group. By abuse of language, we also call a formal group law a formal group.

Example 1.1. We denote by $G_{a}(A)$ (resp. $\left.G_{m}(A)\right)$ the additive group scheme (resp. the multiplicative group scheme) over A. Settheoretically, we have $G_{a}(A)=A\left(\operatorname{resp} . G_{a}(A)=A^{*}=\right.$ the unit group of A) with addition

$$
\begin{array}{rlll}
A \times A & \rightarrow & A \\
\Psi & & \Psi \\
& (a, b) & \mapsto & a+b \\
& \left.\begin{array}{cccc}
\text { resp. } & A^{*} \times A^{*} & & A^{*} \\
& (a, b) & \mapsto & a b
\end{array}\right) .
\end{array}
$$

Therefore, using this group law, we get a formal group law given by

$$
\left.\widehat{\mathbf{G}}_{a}\left(X_{1}, Y_{1}\right)=X_{1}+Y_{1} \quad \text { (resp. } \widehat{\mathbf{G}}_{m}\left(X_{1}, Y_{1}\right)=X_{1}+Y_{1}+X_{1} Y_{1}\right)
$$

which is called the additive formal group law (resp. the multiplicative formal group law).

An n-tuple of power series $\gamma(\zeta)=\left(\gamma_{1}(\zeta), \gamma_{2}(\zeta), \ldots, \gamma_{n}(\zeta)\right)$ in an indeterminate ζ such that $\gamma_{i}(\zeta) \equiv 0 \bmod ($ degree 1$)$ is said to be a curve in the formal group $G(X, Y)$. By $C(G ; A)$ we denote the set of curves in the formal group $G(X, Y)$ over the ring A. For two curves $\beta(\zeta), \gamma(\zeta)$ of $C(G ; A)$, we define the addition $+_{G}$ as follows:

$$
\beta(\zeta)+{ }_{G} \gamma(\zeta)=G(\beta(\zeta), \gamma(\zeta))
$$

Then, by this addition, $C(G ; A)$ becomes an abelian group.
Let $F(X, Y)$ (resp. $G(X, Y)$) be an m-dimensional formal group (resp. an n-dimensional formal group) over A, and we let $\alpha(X)=$ ($\left.\alpha_{1}(X), \ldots, \alpha_{n}(X)\right)$ be an n-tuple of power series in m indeterminates such that $\alpha_{i}(X) \equiv 0 \bmod ($ degree 1$), i=1, \ldots, n$. Then $\alpha(X)$ is said to be a homomorphism over A from $F(X, Y)$ to $G(X, Y)$, if

$$
\alpha(F(X, Y))=G(\alpha(X), \alpha(Y))
$$

A homomorphism $\alpha(X)$ is said to be an isomorphism, if there exists a homomorphism $\beta(X)$ from $G(X, Y)$ to $F(X, Y)$ such that $\alpha(\beta(X))=X$
and $\beta(\alpha(X))=X$. We denote by $\operatorname{Hom}(F, G)$ the set of all homomorphisms from $F(X, Y)$ to $G(X, Y)$. It has naturally a structure of abelian group. A homomorphism $\alpha(X)$ induces a homomorphism

$$
\begin{array}{ccc}
C(F ; A) & \stackrel{\alpha_{*}}{\rightarrow} & C(G ; A) \\
\left(\gamma_{1}(\zeta), . ., \gamma_{m}(\zeta)\right) & \mapsto & \left(\alpha_{1}\left(\gamma_{1}(\zeta), . ., \gamma_{m}(\zeta)\right), . ., \alpha_{n}\left(\gamma_{1}(\zeta), . ., \gamma_{m}(\zeta)\right)\right) .
\end{array}
$$

Now, let $W(A)$ be the set of A-valued points of the universal Witt scheme W_{A} over a ring A (cf. [KSU] and [Hz]). In the following we sometimes use the notation $W(A)$ as the meaning of the Witt scheme W_{A} over A. For an indeterminate T, we set

$$
\Lambda(A)=\left\{1+a_{1} T+a_{2} T^{2}+\cdots \mid a_{i} \in A\right\} .
$$

An addition on $\Lambda(A)$ is defined by multiplication of power series. We have the following homomorphisms:

$$
\begin{array}{ccccc}
\mathbf{G}_{a}^{\infty}(A) & \stackrel{w}{\leftarrow} & W(A) & \stackrel{\lambda}{\rightarrow} & \Lambda(A), \tag{1.1}\\
\left(t_{1}, t_{2}, \ldots\right) & \leftarrow & \left(x_{1}, x_{2}, \ldots\right) & \mapsto & 1+s_{1} T+s_{2} T^{2}+\cdots,
\end{array}
$$

where w and λ are defined by

$$
\begin{align*}
& n t_{n}=\sum_{d \mid n} d x_{d}^{n / d} \tag{1.2}\\
& \prod_{i=1}^{\infty}\left(1-x_{i} T^{i}\right)=1+s_{1} T+s_{2} T^{2}+\cdots
\end{align*}
$$

respectively (cf. [KSU] and $[\mathrm{Hz}]$). It is well known that λ is an isomorphism. In case A contains the field \mathbf{Q} of rational numbers, w is also an isomorphism. These homomorphisms induce the following homomorphisms:

$$
\begin{equation*}
A\left[t_{1}, t_{2}, \ldots\right] \xrightarrow{w^{*}} A\left[x_{1}, x_{2}, \ldots\right]{ }^{\lambda^{*}} \leftarrow A\left[s_{1}, s_{2}, \ldots\right] . \tag{1.3}
\end{equation*}
$$

Using addition laws of abelian groups $\mathbf{G}_{a}^{\infty}(A), W(A)$ and $\Lambda(A)$, we get the following formal group and homomorphisms :

$\operatorname{Spf}\left(A\left[\left[t_{1}, t_{2}, \ldots\right]\right]\right) \quad \operatorname{Spf}\left(A\left[\left[x_{1}, x_{2}, \ldots\right]\right]\right) \quad \operatorname{Spf}\left(A\left[\left[s_{1}, s_{2}, \ldots\right]\right]\right)$
where W (resp. Λ) is the homomorphism (resp. the isomorphism) induced from w (resp. λ). Here, $A\left[\left[t_{1}, t_{2}, \ldots\right]\right]$ (resp. $A\left[\left[x_{1}, x_{2}, \ldots\right]\right]$, resp. $\left.A\left[\left[s_{1}, x_{2}, \ldots\right]\right]\right)$ is the completion of the polynomial ring $A\left[t_{1}, t_{2}, \ldots\right]$ (resp. $A\left[x_{1}, x_{2}, \ldots\right]$, resp. $A\left[s_{1}, s_{2}, \ldots\right]$) of indeterminates t_{1}, t_{2}, \ldots (resp. x_{1}, x_{2}, \ldots, resp. s_{1}, s_{2}, \ldots) with $\operatorname{deg} t_{i}=i$ (resp. $\operatorname{deg} x_{i}=i$, resp. deg $s_{i}=i$). The homomorphisms in (1.4) induce homomorphisms of coordinate rings defined by (1.2) and (1.3):

$$
\begin{equation*}
A\left[\left[t_{1}, t_{2}, \ldots\right]\right] \xrightarrow{W^{*}} A\left[\left[x_{1}, x_{2}, \ldots\right]\right] \Lambda^{\Lambda^{*}} A\left[\left[s_{1}, s_{2}, \ldots\right]\right] . \tag{1.5}
\end{equation*}
$$

We set $\mathbf{t}=\left(t_{1}, t_{2}, \ldots\right)$ and $\mathbf{x}=\left(x_{1}, x_{2}, \ldots\right)$.
Let us define Frobenius operators F_{n}^{Λ} and Verschiebung operators $V_{n}^{\Lambda}(n=1,2,3, \ldots)$ on $\Lambda(A)$. For this purpose, we prepare additional variables ξ_{1}, ξ_{2}, \ldots such that

$$
\begin{equation*}
1+s_{1} T+s_{2} T^{2}+\cdots=\prod_{i=1}^{\infty}\left(1-\xi_{i} T\right) \tag{1.6}
\end{equation*}
$$

Then, we define F_{n}^{Λ} by

$$
\begin{equation*}
F_{n}^{\Lambda}\left(1+s_{1} T+s_{2} T^{2}+\ldots\right)=\prod_{i=1}^{\infty}\left(1-\xi_{i}^{n} T\right) \tag{1.7}
\end{equation*}
$$

where the coefficients of the right-hand side are expressed by s_{1}, s_{2}, \ldots by using (1.6). As for V_{n}^{Λ} 's, they are defined by

$$
\begin{equation*}
V_{n}^{\Lambda}\left(1+s_{1} T+s_{2} T^{2}+\ldots\right)=1+s_{1} T^{n}+s_{2} T^{2 n}+\cdots \tag{1.8}
\end{equation*}
$$

Using the isomorphism Λ, we define Frobenius operators F_{n} and Verschiebung operators $V_{n}(n=1,2,3, \ldots)$ on $\widehat{W}(A)$ by

$$
F_{n}=\Lambda^{-1} \circ F_{n}^{\Lambda} \circ \Lambda \quad(n=1,2, \ldots)
$$

and

$$
V_{n}=\Lambda^{-1} \circ V_{n}^{\Lambda} \circ \Lambda \quad(n=1,2, \ldots)
$$

These operators induce endomorphisms F_{n}^{*} and V_{n}^{*} on the coordinate ring $A\left[\left[x_{1}, x_{2}, \ldots\right]\right]$. In case A contains \mathbf{Q}, we have operators $\widetilde{F}_{n}=$ $W^{-1} \circ F_{n} \circ W$ and $\tilde{V}_{n}=W^{-1} \circ V_{n} \circ W$. They induce endomorphisms \widetilde{F}_{n}^{*} and \widetilde{V}_{n}^{*} on $A\left[\left[t_{1}, t_{2}, \ldots\right]\right]$ which are given by

$$
\tilde{F}_{n}^{*}\left(t_{i}\right)=n t_{n i}, \quad \tilde{V}_{n}^{*}\left(t_{i}\right)= \begin{cases}t_{i / n} & \text { if } n \mid i \tag{1.9}\\ 0 & \text { otherwise }\end{cases}
$$

(for details, see $[\mathrm{Hz}]$ and $[\mathrm{M}]$). We denote by $\gamma_{W}(\zeta)$ the curve ($\zeta, 0,0, \ldots$) of the formal group $\widehat{W}(A)$. Finally, we quote here a theorem of P. Cartier.

Theorem 1.2 [Cartier [C]]. Let G be a formal group over A. Then, there exists the following isomorphism of abelian groups:

$$
\begin{array}{cl}
\operatorname{Hom}(\widehat{W}(A), G) & \simeq C(G ; A) \\
\alpha & \mapsto \alpha_{*}\left(\gamma_{W}(\zeta)\right)
\end{array}
$$

§2. Construction of a formal group

Let $A[[\zeta]]$ be the ring of formal power series with coefficients in A. We denote by $\zeta_{i}(i=1,2, \ldots)$ and $\xi_{i}(i=1,2, \ldots)$ the copies of ζ. We have the following natural isomorphism:

$$
\begin{array}{ccc}
A\left[\left[\zeta_{1}, \ldots, \zeta_{\alpha}, \xi_{1}, \ldots, \xi_{\beta}\right]\right] & \rightarrow & A\left[\left[\zeta_{1}, \ldots, \zeta_{\alpha}\right]\right] \otimes_{A} A\left[\left[\xi_{1}, \ldots, \xi_{\beta}\right]\right] \\
\zeta_{i} & \mapsto & \zeta_{i} \otimes 1 \tag{2.1}\\
\xi_{j} & \mapsto & 1 \otimes \xi_{j}
\end{array}
$$

Let $s_{i}(i=1, \ldots, \alpha+\beta)\left(\right.$ resp. $s_{i}^{\prime}(i=1, \ldots, \alpha)$, resp. $\left.s_{i}^{\prime \prime}(i=1, \ldots, \beta)\right)$ be the elementary symmetric functions of $\zeta_{1}, \ldots, \zeta_{\alpha}, \xi_{1}, \ldots, \xi_{\beta}$ (resp. ζ_{1}, \ldots, ζ_{α}, resp. $\xi_{1}, \ldots, \xi_{\beta}$) of degree i. The symmetric group $\mathfrak{S}_{\alpha+\beta}$ (resp. \mathfrak{S}_{α}, resp. \mathfrak{S}_{β}) acts on $A\left[\left[\zeta_{1}, \ldots, \zeta_{\alpha}, \xi_{1}, \ldots, \xi_{\beta}\right]\right]$ (resp. $A\left[\left[\zeta_{1}, \ldots, \zeta_{\alpha}\right]\right]$, resp. $A\left[\left[\xi_{1}, \ldots, \xi_{\beta}\right]\right]$) as the permutations of $\zeta_{1}, \ldots, \zeta_{\alpha}, \xi_{1}, \ldots, \xi_{\beta}$ (resp. $\zeta_{1}, \ldots, \zeta_{\alpha}$, resp. $\xi_{1}, \ldots, \xi_{\beta}$). Taking the invariants of these rings of formal power series, we have the following homomorphism induced by the isomorphism (2.1):

$$
\begin{array}{ccc}
A\left[\left[s_{1}, s_{2}, \ldots, s_{\alpha+\beta}\right]\right] & \stackrel{m_{\alpha, \beta}^{*}}{\rightarrow} & A\left[\left[s_{1}^{\prime}, \ldots, s_{\alpha}^{\prime}\right]\right] \otimes_{A} A\left[\left[s_{1}^{\prime \prime}, \ldots, s_{\beta}^{\prime \prime}\right]\right] \tag{2.2}\\
s_{i} & \mapsto & s_{i}^{\prime} \otimes 1+s_{i-1}^{\prime} \otimes s_{1}^{\prime \prime}+\cdots+s_{1}^{\prime} \otimes s_{i-1}^{\prime \prime}+1 \otimes s_{i}^{\prime \prime} \\
(i=1,2, \ldots, \alpha+\beta)
\end{array}
$$

where $s_{i}^{\prime}=0$ (resp. $s_{i} \prime \prime=0$) if $i>\alpha$ (resp. $i>\beta$). Now, consider the
projective system $\left\{A\left[\left[s_{1}, s_{2}, \ldots, s_{n}\right]\right], f_{n-1, n}^{*}\right\}$ defined by

$$
\begin{align*}
& f_{n-1, n}^{*}: A\left[\left[s_{1}, \ldots, s_{n}\right]\right] \rightarrow A\left[\left[s_{1}, \ldots, s_{n-1}\right]\right] . \\
& \begin{array}{lll}
s_{i} & \mapsto & s_{i} \\
s_{n} & \text { for } 1 \leq i \leq n-1,
\end{array} \tag{2.3}
\end{align*}
$$

Then, we have

$$
A\left[\left[s_{1}, s_{2}, \ldots\right]\right]=\underset{\leftarrow}{\lim } A\left[\left[s_{1}, \ldots, s_{n}\right]\right]
$$

which is isomorphic to the completion of $A\left[s_{1}, s_{2}, \ldots\right]$ with $\operatorname{deg} s_{i}=i$. The homomorphism (2.2) induces the co-addition

$$
\begin{align*}
m^{*}: A\left[\left[s_{1}, s_{2}, \ldots\right]\right] & \rightarrow & A\left[\left[s_{1}, s_{2}, \ldots\right]\right] \otimes_{A} A\left[\left[s_{1}, s_{2}, \ldots\right]\right] \tag{2.4}\\
s_{i} & \mapsto & s_{i} \otimes 1+s_{i-1} \otimes s_{1}+\cdots+s_{1} \otimes s_{i-1}+1 \otimes s_{i}
\end{align*}
$$

This co-addition gives a formal group \widehat{U} of infinite dimension which coincides with $\widehat{\Lambda}(A)$. We have the isomorphism

$$
\begin{array}{cccc}
\eta: & \widehat{\Lambda}(A) & \rightarrow & \widehat{\Lambda}(A) \tag{2.5}\\
& 1+a_{1} T+a_{2} T^{2}+\cdots & \mapsto & 1+a_{1}(-T)+a_{2}(-T)^{2}+\cdots
\end{array}
$$

Using (1.4) and (2.5), we have the following isomorphism

$$
\begin{equation*}
\theta=\eta \circ \Lambda: \widehat{W}(A) \xrightarrow{\Lambda} \widehat{\Lambda}(A) \xrightarrow{\eta} \widehat{\Lambda}(A)=\widehat{U} \tag{2.6}
\end{equation*}
$$

By the construction of \widehat{U} and (1.3), θ induces the homomorphism θ_{*} from $C(\widehat{W}(A) ; A)$ to $C(\widehat{U} ; A)$ such that

$$
\begin{equation*}
\theta_{*}((\zeta, 0,0, \ldots))=(\zeta, 0,0, \ldots) \tag{2.7}
\end{equation*}
$$

§3. Jacobian varieties and $\boldsymbol{\tau}$-functions

Let $f: C \rightarrow \operatorname{Spec}(A)$ be a curve of genus g over A (cf. [KSU]). We assume that $f: C \rightarrow \operatorname{Spec}(A)$ has a section $\sigma: \operatorname{Spec}(A) \rightarrow C$. We denote $\sigma(\operatorname{Spec}(A))$ by Q, and denote by I_{Q} the ideal sheaf of Q. There is a canonical \mathcal{O}_{A}-algebra isomorphism

$$
u_{0}: \mathcal{O}_{C} / I_{Q} \simeq \mathcal{O}_{A}
$$

Assume that the conormal bundle $N_{Q}^{*}=I_{Q} / I_{Q}^{2}$ of Q in C is a free \mathcal{O}_{A}-module. Then, as in [KSU, Lemma 4.1], we have

$$
\mathcal{O}_{C} / I_{Q}^{n+1} \simeq \mathcal{O}_{A}[\zeta] /\left(\zeta^{n+1}\right)
$$

Therefore, taking the completion of \mathcal{O}_{C} with respect to the ideal sheaf I_{Q}, we have

$$
\begin{equation*}
\lim _{\leftrightarrows} \mathcal{O}_{C} / I_{Q}^{n+1}=\mathcal{O}_{A}[[\zeta]] . \tag{3.1}
\end{equation*}
$$

We denote by $\widehat{\mathcal{O}}_{Q}$ the left-hand side of (3.1). The global sections on $\operatorname{Spec}(A)$ of $\mathcal{O}_{A}[[\zeta]]$ are given by $A[[\zeta]]$. We consider the triple $\{f:$ $\left.C \rightarrow \operatorname{Spec}(A), Q, u: \widehat{\mathcal{O}}_{Q} \simeq \mathcal{O}_{A}[[\zeta]]\right\}$. We set

$$
C^{n}=\underbrace{C \times{ }_{\operatorname{Spec}(A)} C \times \cdots \times_{\operatorname{Spec}(A)} C}_{n} .
$$

The symmetric group \mathfrak{S}_{n} of degree n acts on C^{n} over $\operatorname{Spec}(A)$ as permutations. We have a natural morphism defined by

$$
\begin{array}{ccc}
C^{\alpha}{ }^{\operatorname{Spec}(A)} C^{\beta} & \rightarrow & C^{\alpha+\beta} \tag{3.2}\\
\left(\left(P_{1}, \ldots, P_{\alpha}\right),\left(P_{1}^{\prime}, \ldots, P_{\beta}^{\prime}\right)\right) & \mapsto & \left(P_{1}, \ldots, P_{\alpha}, P_{1}^{\prime}, \ldots, P_{\beta}^{\prime}\right) .
\end{array}
$$

This induces the following morphism:

$$
\begin{equation*}
m_{\alpha, \beta}: C^{\alpha} / \mathfrak{S}_{\alpha} \times \operatorname{Spec}(A) C^{\beta} / \mathfrak{S}_{\beta} \rightarrow C^{\alpha+\beta} / \mathfrak{S}_{\alpha+\beta} \tag{3.3}
\end{equation*}
$$

We have a morphism

$$
\begin{array}{ccc}
C^{\alpha-1} & \rightarrow & C^{\alpha} \\
\left(P_{1}, \ldots, P_{\alpha-1}\right) & \mapsto & \left(P_{1}, \ldots, P_{\alpha-1}, Q\right) .
\end{array}
$$

This induces the morphism

$$
\begin{equation*}
f_{\alpha, \alpha-1}: C^{\alpha-1} / \mathfrak{S}_{\alpha-1} \rightarrow C^{\alpha} / \mathfrak{S}_{\alpha} \tag{3.4}
\end{equation*}
$$

We consider the completion along Q in (3.3) and (3.4). Then, corresponding to (3.3), we have (2.2), and corresponding to (3.4), we have (2.3). Therefore, as in Section 2, taking the projective limit, we have the formal group \widehat{U} with co-addition (2.4). As we explained in Section $2, \widehat{U}$ coincides with $\widehat{\Lambda}(A)$.

Let $J(C)$ be the Jacobian variety of C over $\operatorname{Spec}(A)$. We denote by m_{J} the addition of $J(C)$, and by $\widehat{J}(C)$ the formal group over $\operatorname{Spec}(A)$ associated with $J(C)$. We have a morphism over $\operatorname{Spec}(A)$:

$$
\begin{array}{lllc}
\varphi_{\alpha}: C^{\alpha} / \mathfrak{S}_{\alpha} & \rightarrow & J(C) \\
\left(P_{1}, \ldots, P_{\alpha}\right) & \mapsto & P_{1}+\cdots+P_{\alpha}-\alpha Q
\end{array}
$$

and a commutative diagram

$$
\begin{array}{rlrr}
C^{\alpha} / \mathbb{S}_{\alpha} & \times C^{\beta} / \mathfrak{S}_{\beta} & \xrightarrow{m_{\alpha \beta}} & C^{(\alpha+\beta)} / \mathbb{S}_{\alpha+\beta} \\
\downarrow \varphi_{\alpha} \times \varphi_{\beta} & & \downarrow \varphi_{\alpha+\beta} \tag{3.5}\\
J(C) \times J(C) & \xrightarrow{m_{J}} & J(C) .
\end{array}
$$

By the commutative diagram

$$
\begin{align*}
& C \quad \xrightarrow{f_{1,2}} \quad C^{2} / \mathfrak{S}_{2} \xrightarrow{f_{2,3}} \cdots \quad \xrightarrow{f_{g-1, g}} \quad C^{g} / \mathfrak{S}_{g} \tag{3.6}\\
& \downarrow \varphi_{1} \quad \downarrow \varphi_{2} \quad \downarrow \varphi_{g} \\
& J(C)=J(C)=\cdots \quad=\quad J(C) \\
& \xrightarrow{f_{g, g+1}} \quad C^{g+1} / \mathbb{S}_{g+1} \xrightarrow{f_{g+1, g+2}} \quad \ldots \quad \stackrel{f_{n-1, n}}{\longrightarrow} \quad C^{n} / \mathscr{S}_{n} \xrightarrow{f_{n, n+1}} \ldots \\
& \downarrow \varphi_{g+1} \quad \downarrow \varphi_{n} \\
& =J(C)=\cdots \quad=\quad=\quad=
\end{align*}
$$

and by (3.5), we have a homomorphism

$$
\varphi: \widehat{U} \rightarrow \widehat{J}(C)
$$

Taking the completion along Q, we see that φ_{1} (resp. $\cdots \circ f_{2,3} \circ f_{1,2}$) induces a morphism $\gamma_{J}\left(\right.$ resp. $\left.\gamma_{U}\right)$ from $\operatorname{Spf}(A[[\zeta]])$ to $\widehat{J}(C)$ (resp. to $\left.\widehat{U}\right)$
such that the following diagram is commutative:

$$
\begin{array}{cccc}
\operatorname{Spf}(A[[\zeta]]) & \stackrel{\gamma_{U}}{\longrightarrow} & \widehat{U} & \stackrel{\theta}{\leftarrow} \widehat{W}(A) . \\
\gamma_{J} \searrow & & \swarrow \varphi \\
& \widehat{J}(C) &
\end{array}
$$

Here, we note that γ_{U} gives the curve $(\zeta, 0,0, \ldots)$ in \widehat{U}. Therefore, by (2.7), $\theta^{-1} \circ \gamma_{U}$ gives the curve $(\zeta, 0,0, \ldots)$ in $\widehat{W}(A)$. Hence, by Theorem 1.2 , we have the following characterization of φ.

Theorem 3.1. The homomorphism φ constructed above is characterized as the homomorphism which transforms the curve $(\zeta, 0,0, \ldots)$ in \widehat{U} into the curve in $\widehat{J}(C)$ given by γ_{J}.

Now, we assume $A=\mathbf{C}$. Then, ζ is a local parameter of C at the point Q. We fix a symplectic basis $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{g}, \beta_{1}, \ldots, \beta_{g}\right\}$ of the first homology group $H_{1}(C, Z)$. By definition, we have $\left(\alpha_{i}, \alpha_{j}\right)=0$, $\left(\beta_{i}, \beta_{j}\right)=0$ and $\left(\alpha_{i}, \beta_{j}\right)=\delta_{i j}$, where $\delta_{i j}$ is Kronecker's delta. We take a basis $\left\{\omega_{1}, \ldots, \omega_{g}\right\}$ of the space $H^{0}\left(C, \Omega_{C}^{1}\right)$ of holomorphic one-forms on the curve C such that

$$
\int_{\alpha_{i}} \omega_{j}=\delta_{i j} \text { and } \int_{\beta_{i}} \omega_{j}=\tau_{i j}
$$

Then, the $g \times 2 g$ matrix $\left(\delta_{i j}, \tau_{i j}\right)$ gives a lattice L of \mathbf{C}^{g}, and $J(C)$ is given by \mathbf{C}^{g} / L. We have the universal covering $\pi: \mathbf{C}^{g} \rightarrow J(C)$ and a commutative diagram

$$
C \quad \xrightarrow{\psi} \quad \mathbf{C}^{g}
$$

$$
\mathbf{C}^{g} / L
$$

The morphism ψ is given by

$$
\psi(\zeta)=\left(\int_{Q}^{\zeta} \omega_{i}\right)
$$

We consider the expansion of ω_{i} (cf. [KNTY]):

$$
\omega_{i}=-d\left(\sum_{n=1}^{\infty} I_{n}^{i} \frac{\zeta^{n}}{n}\right)
$$

Then, taking the completions, we have

$$
\operatorname{Spf}(\mathbf{C}[[\zeta]]) \quad \xrightarrow{\widehat{\psi}} \quad \widehat{\mathbf{G}}_{a}^{g}
$$

$$
\begin{equation*}
\swarrow \widehat{\pi} \tag{3.7}
\end{equation*}
$$

$$
\hat{J}(C)
$$

where $\widehat{\psi}$ corresponds to the curve of $\widehat{\mathbf{G}}_{a}^{g}$ given by

$$
\begin{equation*}
\gamma=\left(-\sum_{n=1}^{\infty} I_{n}^{1} \frac{\zeta^{n}}{n}, \ldots,-\sum_{n=1}^{\infty} I_{n}^{g} \frac{\zeta^{n}}{n}\right) \tag{3.8}
\end{equation*}
$$

By Theorem 1.2 and (1.4), we have the morphism

$$
\begin{equation*}
\tilde{\varphi}: \widehat{U} \rightarrow \widehat{\mathbf{G}}_{a}^{g} \tag{3.9}
\end{equation*}
$$

such that $\tilde{\varphi}_{*}((\zeta, 0, \ldots))=\gamma$, where γ is the curve given by $\widehat{\psi}$ in (3.7). On the other hand, by [KNTY], we have the homomorphism

$$
\begin{gather*}
I: \widehat{\mathbf{G}}_{a}^{\infty}=\operatorname{Spf}\left(\mathbf{C}\left[\left[t_{1}, t_{2}, \ldots\right]\right]\right) \rightarrow \widehat{\mathbf{G}}_{a}^{g}=\operatorname{Spf}\left(\mathbf{C}\left[\left[z_{1}, \ldots, z_{g}\right]\right]\right) \tag{3.10}\\
I^{*}\left(z_{i}\right)=\sum_{n=1}^{\infty} I_{n}^{i} t_{n}
\end{gather*}
$$

Under the notations in (1.4), (2.6), (3.9) and (3.10) we have the following theorem.

Theorem 3.2. The following diagram is commutative:

$$
\begin{array}{lllll}
& & & \widehat{W}(\mathbf{C}) & \stackrel{\theta=\eta \circ \Lambda}{\longrightarrow}
\end{array} \begin{array}{ll}
\\
& \\
\widehat{\mathbf{G}}_{a}^{\infty} & \\
& \\
& I \searrow \\
& \\
& \widehat{\mathbf{G}}_{a}^{g} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
\mathbf{G}_{a}^{g},
\end{array}
$$

where ι is the inversion of $\widehat{\mathbf{G}}_{a}^{g}$.
Proof. By Theorem 1.2, it suffices to prove

$$
\iota_{*} \circ \tilde{\varphi}_{*} \circ \theta_{*}((\zeta, 0,0, \ldots))=I_{*} \circ W_{*}((\zeta, 0,0, \ldots))
$$

We can check this by direct calculation. q.e.d.

Let $\left\{\omega_{Q}^{(n)}\right\}_{n=2,3,4, \ldots}$ be the set of abelian differentials of the second kind on C such that

$$
\begin{gathered}
\int_{\alpha_{i}} \omega_{Q}^{(n)}=0, \quad \int_{\beta_{i}} \omega_{Q}^{(n)}=2 \pi \sqrt{-1} I_{n}^{i} \\
\omega_{Q}^{(n)}=d\left(\zeta^{-n}-\sum_{m>0} q_{m n}\left(\zeta^{m} / m\right)\right)
\end{gathered}
$$

(cf. [KNTY]). It is a basis of the vector space of abelian differentials of the second kind with pole only at the point Q. We denote by $\Theta\left(z_{1}, \ldots, z_{g}\right)$ the Riemann theta function on \mathbf{C}^{g} / L. We can regard $\Theta\left(z_{1}, \ldots, z_{g}\right)$ as an element of $\mathbf{C}\left[\left[z_{1}, \ldots, z_{g}\right]\right]$. We define the tau function as follows.

Definition 3.3.

$$
\tau(\mathbf{x}, C)=W^{*}\left\{\exp \left(\frac{1}{2} \sum_{n>0, m>0} q_{m, n} t_{m} t_{n}\right)\right\} \cdot(\iota \circ \tilde{\varphi} \circ \theta)^{*} \Theta\left(z_{1}, \ldots, z_{g}\right)
$$

Theorem 3.4. Let $\tau(\mathbf{t}, C)$ be the tau function defined in [KNTY]. Then, we have

$$
\tau(\mathbf{x}, C)=W^{*} \tau(\mathbf{t}, C)
$$

Proof. This theorem follows from Theorem 3.2.
§4. Operators F_{n} and V_{n}
Let \mathcal{M}_{0} be the set of Maya diagrams of charge zero, and let

$$
\mathcal{F}_{0}(A)=\prod_{M \in \mathcal{M}_{0}} A|M\rangle \quad\left(\text { resp. } \overline{\mathcal{F}}_{0}(A)=\bigoplus_{M \in \mathcal{M}_{0}} A\langle M|\right)
$$

be the fermion Fock space (resp. the dual fermion Fock space) of charge zero over a commutative ring A. We have the canonical pairing

$$
\begin{equation*}
\overline{\mathcal{F}}_{0}(A) \times \mathcal{F}_{0}(A) \quad \rightarrow \quad A \tag{4.1}
\end{equation*}
$$

$$
\left(\left\langle\Psi^{\prime}\right|,|\Psi\rangle\right) \quad \mapsto \quad\left\langle\Psi^{\prime} \mid \Psi\right\rangle
$$

(cf. [KNTY] and [KSU]). Let

$$
\mathcal{H}_{T, 0}(A)=A\left[\left[t_{1}, t_{2}, \ldots\right]\right] \quad\left(\operatorname{resp} . \overline{\mathcal{H}}_{T, 0}(A)=A\left[t_{1}, t_{2}, \ldots\right]\right)
$$

be the charge zero sector of boson Fock space (resp. the dual boson Fock space). We have the pairing

$$
\begin{equation*}
\overline{\mathcal{H}}_{T, 0}(A) \times \mathcal{H}_{T, 0}(A) \rightarrow A \tag{4.2}
\end{equation*}
$$

defined by

$$
\begin{equation*}
(g(\mathbf{t}), h(\mathbf{t}))=\left.g\left(\partial_{t}\right) h(\mathbf{t})\right|_{\mathbf{t}=0}, \tag{4.3}
\end{equation*}
$$

where

$$
\partial_{t}=\left(\frac{\partial}{\partial t_{1}}, \frac{1}{2} \frac{\partial}{\partial t_{2}}, \frac{1}{3} \frac{\partial}{\partial t_{3}}, \ldots, \frac{1}{n} \frac{\partial}{\partial t_{n}}, \ldots\right)
$$

We denote by $J_{m}(m \in \mathbf{Z})$ the current operators. If $A=\mathbf{Q}$, we have a bosonization

$$
B: \mathcal{F}_{0}(\mathbf{Q}) \rightarrow \mathcal{H}_{T, 0}(\mathbf{Q})
$$

$$
\begin{equation*}
\text { (resp. } \left.\quad \bar{B}: \overline{\mathcal{F}}_{0}(\mathbf{Q}) \rightarrow \overline{\mathcal{H}}_{T, 0}(\mathbf{Q})\right) \tag{4.4}
\end{equation*}
$$

defined by

$$
\begin{aligned}
B|\Psi\rangle & =\sum_{n \in \mathbf{Z}}\langle n| \exp \left(\sum_{m=1}^{\infty} J_{m} t_{m}\right)|\Psi\rangle \quad \text { for }|\Psi\rangle \in \mathcal{F}_{0}(\mathbf{Q}) \\
\text { (resp. } \bar{B}\left\langle\Psi^{\prime}\right| & \left.=\sum_{n \in \mathbf{Z}}\left\langle\Psi^{\prime}\right| \exp \left(\sum_{m=1}^{\infty} J_{m} t_{m}\right)|n\rangle \quad \text { for }\left\langle\Psi^{\prime}\right| \in \overline{\mathcal{F}}_{0}(\mathbf{Q})\right) .
\end{aligned}
$$

By [DJKM], B (resp. \bar{B}) is an isomorphism as vector spaces. In [KSU], we introduced a new boson Fock space of charge zero

$$
\mathcal{H}_{0}(A)=A\left[\left[x_{1}, x_{2}, \ldots\right]\right]
$$

and a new bosonization

$$
\begin{equation*}
\widetilde{B}: \mathcal{F}_{0}(A) \rightarrow \mathcal{H}_{0}(A) \tag{4.5}
\end{equation*}
$$

We introduce a new dual boson Fock space of charge zero $\overline{\mathcal{H}}_{0}(A)=$ $A\left[x_{1}, x_{2}, \ldots\right]$. By the similar way to [KSU], we have a new bosonization

$$
\begin{equation*}
\widetilde{B}^{\prime}: \overline{\mathcal{F}}_{0}(A) \rightarrow \overline{\mathcal{H}}_{0}(A) \tag{4.6}
\end{equation*}
$$

\widetilde{B} (resp. \widetilde{B}^{\prime}) is an isomorphism as A-modules. If $A=\mathbf{Q}$, we have

$$
\begin{equation*}
\widetilde{\boldsymbol{B}}=W^{*} \circ B \tag{4.7}
\end{equation*}
$$

$$
\begin{equation*}
\text { (resp. } \left.\quad \widetilde{B}^{\prime}=W^{*} \circ \bar{B}\right), \tag{4.8}
\end{equation*}
$$

where W^{*} is defined by (1.3). The Frobenius operators F_{n}^{*} and the Verschiebung operators V_{n}^{*} act on the coordinate ring of $\widehat{W}(A)$ (resp. on the coordinate ring of the Witt scheme $\mathrm{W}(\mathrm{A})$) as in Section 1. Using the isomorphism (4.5) (resp. (4.6)), we set

$$
\begin{array}{rll}
f_{n}^{*} & =\widetilde{B}^{-1} \circ F_{n}^{*} \circ \widetilde{B} & \text { and } \quad v_{n}^{*}=\widetilde{B}^{-1} \circ V_{n}^{*} \circ \widetilde{B} \tag{4.9}\\
\text { (resp. } & f_{n}^{*} & =\widetilde{B}^{\prime-1} \circ F_{n}^{*} \circ \widetilde{B}^{\prime} \\
\text { and } & \left.v_{n}^{*}=\widetilde{B}^{\prime-1} \circ V_{n}^{*} \circ \widetilde{B}^{\prime}\right) .
\end{array}
$$

We denote by $p_{i}(t)(i=0,1,2, \ldots)$ the Schur polynomials. For a Young diagram Y

the Schur function corresponding to Y is defined by

$$
\begin{equation*}
\chi_{Y}(t)=\operatorname{det}\left(p_{f_{i}-i+j}(t)\right)_{1 \leq i, j \leq m} \tag{4.11}
\end{equation*}
$$

The Young diagram Y in (4.10) is called the Young diagram of signature $\left(f_{1}, f_{2}, \ldots, f_{m}\right)$.

Theorem 4.1. Let $|\Psi\rangle$ (resp. $\left.\left\langle\Psi^{\prime}\right|\right)$ be any element of $\mathcal{F}_{0}(A)$ (resp. $\left.\overline{\mathcal{F}}_{0}(A)\right)$. Then, with respect to the pairing (4.1), we have

$$
\begin{align*}
& \left(\left\langle\Psi^{\prime}\right| f_{n}^{*}\right)|\Psi\rangle=\left\langle\Psi^{\prime}\right|\left(v_{n}^{*}|\Psi\rangle\right) \tag{4.12}\\
& \left(\left\langle\Psi^{\prime}\right| v_{n}^{*}\right)|\Psi\rangle=\left\langle\Psi^{\prime}\right|\left(f_{n}^{*}|\Psi\rangle\right)
\end{align*}
$$

for $\left\langle\Psi^{\prime}\right| \in \overline{\mathcal{F}}_{0}(A)$ and $|\Psi\rangle \in \mathcal{F}_{0}(A)$.
Proof. First, we consider the case $A=\mathbf{Q}$. Then, we have

$$
\begin{equation*}
\left(\bar{B}\left\langle\Psi^{\prime}\right|, B|\Psi\rangle\right)=\left\langle\Psi^{\prime} \mid \Psi\right\rangle \tag{4.13}
\end{equation*}
$$

for $\left\langle\Psi^{\prime}\right| \in \overline{\mathcal{F}}_{0}(\mathbf{Q})$ and $|\Psi\rangle \in \mathcal{F}_{0}(\mathbf{Q})$ (cf. [SN]). Let $i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{\ell}$ be positive integers such that $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{\ell}$.

By (1.9), (4.13) and (4.3), we have

$$
\begin{aligned}
& \left(F_{n}^{*} t_{i_{1}}^{\nu_{1}} t_{i_{2}}^{\nu_{2}} \ldots t_{i_{k}}^{\nu_{k}}, t_{j_{1}}^{\mu_{1}} t_{j_{2}}^{\mu_{2}} \ldots t_{j_{\ell}}^{\mu_{\ell}}\right) \\
& =\left(\left(n t_{n i_{1}}\right)^{\nu_{1}}\left(n t_{i_{2}}\right)^{\nu_{2}} \ldots\left(t_{n i_{k}}\right)^{\nu_{k}}, t_{j_{1}}^{\mu_{1}} t_{j_{2}}^{\mu_{2}} \ldots t_{j_{\ell}}^{\mu_{\ell}}\right) \\
& =n^{\nu_{1}+\nu_{2}+\cdots+\nu_{k}}\left(\frac{1}{n i_{1}} \frac{\partial}{\partial t_{n i_{1}}}\right)^{\nu_{1}}\left(\frac{1}{n i_{2}} \frac{\partial}{\partial t_{n i_{2}}}\right)^{\nu_{2}} \cdots \\
& \left.\cdots\left(\frac{1}{n i_{k}} \frac{\partial}{\partial t_{n i_{k}}}\right)^{\nu_{h}} t_{j_{1}}^{\mu_{1}} t_{j_{2}}^{\mu_{2}} \ldots t_{j_{\ell}}^{\mu_{\ell}}\right|_{t=0} \\
& \cdots \delta_{\nu_{\ell}, \mu_{\ell}} \cdot \nu_{1}!\cdots \nu_{\ell}! \\
& \quad \text { if } k=\ell \\
& = \begin{cases}\left(\frac{1}{i_{1}}\right)^{\nu_{1}}\left(\frac{1}{i_{2}}\right)^{\nu_{2}} \ldots\left(\frac{1}{i_{\ell}}\right)^{\nu_{\ell}} \delta_{n i_{1}, j_{1}} \cdots \delta_{n i_{\ell}, j_{\ell}} \cdot \delta_{\nu_{1}, \mu_{1}} & \text { if } k \neq \ell \\
0 & \text { if } k=\ell\end{cases} \\
& = \begin{cases}\left.\left(\frac{1}{i_{1}} \frac{\partial}{\partial t_{i_{1}}}\right)^{\nu_{1}} \cdots\left(\frac{1}{i_{\ell}} \frac{\partial}{\partial t_{i_{\ell}}}\right)^{\nu_{\ell}}\left\{V_{n}\left(t_{j_{1}}^{\mu_{1}} \ldots t_{j_{\ell}}^{\mu_{\ell}}\right)\right\}\right|_{t=0} \\
0 & \left(t_{i_{1}}^{\nu_{1}} t_{i_{2}}^{\nu_{2}} \ldots t_{i_{k}}^{\nu_{k}}, V_{n}^{*} t_{j_{1}}^{\mu_{1}} t_{j_{2}}^{\mu_{2}} \ldots t_{j_{\ell}}^{\mu_{\ell}}\right) .\end{cases}
\end{aligned}
$$

Therefore, for the Schur functions $\chi_{Y}(t), \chi_{Y^{\prime}}(t)$, we have

$$
\left(F_{n}^{*} \chi_{Y}(t), \chi_{Y^{\prime}}(t)\right)=\left(\chi_{Y}(t), V_{n}^{*} \chi_{Y^{\prime}}(t)\right)
$$

Therefore, by [KSU, Definition 2.1 and Lemma 3.3], we have

$$
\left(\left\langle\Psi^{\prime}\right| f_{n}^{*}\right)|\Psi\rangle=\left\langle\Psi^{\prime}\right|\left(v_{n}^{*}|\Psi\rangle\right)
$$

for $\left\langle\Psi^{\prime}\right| \in \overline{\mathcal{F}}_{0}(\mathbf{Z})$ and $|\Psi\rangle \in \mathcal{F}_{0}(\mathbf{Z})$. Hence, over any ring A, we get the equality in the former part of (4.12). Since $\langle M \mid N\rangle=\langle N \mid M\rangle$ for $M, N \in \mathcal{M}_{0}$, the latter part of (4.12) follows from the former part.
q.e.d.

For a positive integer n and the Young diagram Y in (4.10), we denote by a (resp. b) the integral part of m / n (resp. $m-n a$), and we set

$$
S_{i}=\left\{f_{j} \mid f_{j}-j+i \equiv 0 \quad \bmod n\right\} \quad(1 \leq i \leq n)
$$

We denote by α_{i} the number of elements of S_{i}. We consider the following condition for α_{i} 's:

$$
\begin{array}{r}
\text { Condition }(\alpha) \quad: \alpha_{1}=\alpha_{2}=\cdots=\alpha_{b}=a+1 \\
\alpha_{b+1}=\alpha_{b+2}=\cdots=\alpha_{n}=a .
\end{array}
$$

Theorem 4.2. 1) If $\left\{\alpha_{i}\right\}_{i=1, \ldots, n}$ does not satisfy Condition (α), then the following holds:

$$
V_{n}^{*}\left(\chi_{Y}(t)\right)=0 .
$$

2) Assume that $\left\{\alpha_{i}\right\}_{i=1, \ldots, n}$ satisfies Condition (α). For $S_{i}=\left\{f_{j_{1}}, \ldots\right.$, $\left.f_{j_{\alpha_{i}}}\right\}\left(j_{1}<j_{2}<\cdots<j_{\alpha_{i}}\right)$ let Y_{i} be the Young diagram of signature $\left(\left(f_{j_{1}}-j_{1}+i\right) / n,\left\{\left(f_{j_{2}}-j_{2}+i\right) / n\right\}+1, \ldots,\left\{\left(f_{j_{\alpha_{i}}}-j_{\alpha_{i}}+i\right) / n\right\}+\alpha_{i}-1\right)$. Then, the following equality holds.

$$
V_{n}^{*}\left(\chi_{Y}(t)\right)= \pm \chi_{Y_{1}}(t) \cdot \chi_{Y_{2}}(t) \cdot \ldots \cdot \chi_{Y_{n}}(t) .
$$

Proof. By (1.9) and the definition of the Schur polynomials, we have

$$
V_{n}^{*}\left(p_{j}(t)\right)= \begin{cases}p_{j / n}(t) & \text { if } n \mid j \\ 0 & \text { otherwise }\end{cases}
$$

Therefore, by (4.11), we can calculate the action of V_{n}^{*}. We omit the details.
q.e.d.

§5. Zeta functions

In this section, we assume $A=\mathbf{Q}$. By (1.9), we have

$$
\widetilde{V}_{n}^{*} \circ \widetilde{F}_{n}^{*}: t_{i} \mapsto n t_{i} .
$$

Therefore, by (4.4), $v_{n}^{*} \circ f_{n}^{*}$ is the endomorphism of $\mathcal{F}_{0}(\mathbf{Q})\left(\right.$ resp. $\overline{\mathcal{F}}_{0}(\mathbf{Q})$) corresponding to the multiplication by n on \mathbf{G}_{a}^{∞}. Now, we set

$$
\begin{equation*}
T(n)=f_{n}^{*} \circ v_{n}^{*} \quad(n=1,2, \ldots) . \tag{5.1}
\end{equation*}
$$

Proposition 5.1. The operators $T(n)$'s ($n=1,2, \ldots$) satisfy the following properties:
(i) $\left(\left\langle\Psi^{\prime}\right| T(n)\right)|\Psi\rangle=\left\langle\Psi^{\prime}\right|(T(n)|\Psi\rangle)$ for $\left\langle\Psi^{\prime}\right| \in \overline{\mathcal{F}}_{0}(\mathbf{Q}),|\Psi\rangle \in \mathcal{F}_{0}(\mathbf{Q})$,
(ii) $T(m) T(n)=T(n) T(m)$,
(iii) If m is prime to n, then $T(m n)=T(m) T(n)$,
(iv) If the greatest common divisor of m and n is equal to d, then

$$
T(m) T(n)=d T\left(\frac{m n}{d}\right) .
$$

Proof. These properties follow from (1.9), (4.12) and isomorphisms (4.4).

Definition 5.2. We formally set

$$
\begin{equation*}
z(s)=\sum_{n \geq 1} T(n) n^{-s} \tag{5.2}
\end{equation*}
$$

Using (4.4), we set

$$
\begin{equation*}
e\left(i_{1}, \ldots, i_{\ell} ; \nu_{1}, \ldots, \nu_{\ell}\right)=B^{-1}\left(t_{i_{1}}^{\nu_{1}} t_{i_{2}}^{\nu_{2}} \ldots t_{i_{\ell} \ell}^{\nu_{\ell}}\right) \tag{5.3}
\end{equation*}
$$

where $i_{1}, \ldots, i_{\ell}, \nu_{1}, \ldots, \nu_{\ell}$ are positive integers. We denote by μ the greatest common divisor of i_{1}, \ldots, i_{ℓ}, and we set $\nu=\nu_{1}+\cdots+\nu_{\ell}$.

Definition 5.3. $\quad Z_{\mu}^{\nu}(s)=\sum_{n \mid \mu} n^{\nu-s}$.
Remark 5.4. The functions $Z_{\mu}^{\nu}(s)$ are called divisor functions (cf. [A]). $Z_{\mu}^{\nu}(s)$ satisfies the following properties.
(i) Let $\mu=p_{1}^{n_{1}} \ldots p_{r}^{n_{r}}$ be the factorization into prime numbers. Then, we have an Euler product expansion

$$
Z_{\mu}^{\nu}(s)=\left(1+p_{1}^{(\nu-s)}+\cdots+p_{1}^{n_{1}(\nu-s)}\right) \cdots\left(1+p_{r}^{\nu-s}+\cdots+p_{r}^{n_{r}(\nu-s)}\right)
$$

(ii) We have a functional equation

$$
Z_{\mu}^{\nu}(-s)=\mu^{-\nu+s} Z_{\mu}^{\nu}(s)
$$

(iii) If μ_{1} is prime to μ_{2}, we have the multiplicativity

$$
Z_{\mu_{1}}^{\nu}(s) Z_{\mu_{2}}^{\nu}(s)=Z_{\mu_{1} \mu_{2}}^{\nu}(s) .
$$

Theorem 5.5. Under the above notations, we have

$$
z(s) e\left(i_{1}, \ldots, i_{\ell} ; \nu_{1}, \ldots, \nu_{\ell}\right)=Z_{\mu}^{\nu}(s) e\left(i_{1}, \ldots, i_{\ell} ; \nu_{1}, \ldots, \nu_{\ell}\right)
$$

Proof. Since by (1.9) we have

$$
\begin{align*}
& f_{n}^{*} \circ v_{n}^{*} e\left(i_{1}, \ldots, i_{\ell} ; \nu_{1}, \ldots, \nu_{\ell}\right) \tag{5.4}\\
&= \begin{cases}n^{\nu} e\left(i_{1}, \ldots, i_{\ell} ; \nu_{1}, \ldots, \nu_{\ell}\right) & \text { if } n \mid \mu \\
0 & \text { otherwise }\end{cases}
\end{align*}
$$

Hence, the theorem follows from (4.4) and the definition of $z(s)$.

Now, we set

$$
\begin{equation*}
S(n)=\sum_{m \mid n} f_{m}^{*} \circ v_{m}^{*} \quad(n=1,2, \ldots) \tag{5.5}
\end{equation*}
$$

Proposition 5.6. $S(n)$'s $(n=1,2, \ldots)$ satisfy the following properties:
(i) $\quad\left(\left\langle\Psi^{\prime}\right| S(n)\right)|\Psi\rangle=\left\langle\Psi^{\prime}\right|(S(n)|\Psi\rangle)$ for $\left\langle\Psi^{\prime}\right| \in \overline{\mathcal{F}}_{0}(\mathbf{Q}),|\Psi\rangle \in \mathcal{F}_{0}(\mathbf{Q})$,
(ii) $\quad S(m) S(n)=S(n) S(m)$,
(iii) $S(m) S(n)=S(m n)$ if m is prime to n.

Proof. This proposition follows from Proposition 5.1.
 q.e.d.

Definition 5.7. We formally set

$$
Z(s)=\sum_{n=1}^{\infty} S(n) n^{-s}
$$

We denote by $\zeta(s)$ the Riemann zeta function.
Theorem 5.8. Under the above notations, we have

$$
Z(s) e\left(i_{1}, \ldots, i_{\ell} ; \nu_{1}, \ldots, \nu_{\ell}\right)=\zeta(s) Z_{\mu}^{\nu}(s) e\left(i_{1}, \ldots, i_{\ell} ; \nu_{1}, \ldots, \nu_{\ell}\right)
$$

Proof. By (5.4), we have

$$
S(n) e\left(i_{1}, \ldots, i_{\ell} ; \nu_{1}, \ldots, \nu_{\ell}\right)=\left(\sum_{m \mid(n, \mu)} m^{\nu}\right) e\left(i_{1}, \ldots, i_{\ell} ; \nu_{1}, \ldots, \nu_{\ell}\right)
$$

where (n, μ) is the greatest common divisor of n and μ. Therefore, we have

$$
\begin{aligned}
& Z(s) e\left(i_{1}, \ldots, i_{\ell} ; \nu_{1}, \ldots, \nu_{\ell}\right) \\
& \qquad=\left\{\sum_{n=1}^{\infty}\left(\sum_{m \mid(n, \mu)} m^{\nu}\right) n^{-s}\right\} e\left(i_{1}, \ldots, i_{\ell} ; \nu_{1}, \ldots, \nu_{\ell}\right)
\end{aligned}
$$

By direct calculation, we have

$$
\zeta(s) Z_{\mu}^{\nu}(s)=\sum_{n=1}^{\infty}\left(\sum_{m \mid(n, \mu)} m^{\nu}\right) n^{-s}
$$

Remark 5.9. By the property in Theorem 5.1 (iii) (resp. Theorem 5.6 (iii)), we see that the eigen-values of the operator $z(s)$ (resp. $Z(s)$) have Euler product expansions as in the case of the zeta functions associated with Hecke operators (cf. [S]).

References

[A] Apostol, T.M., "Introduction to Analytic Number Theory", Springer-Verlag, Berlin-Heidelberg-New York, 1976.
[ABMNV] Alvarez-Gaumé, L., J.-B. Bost, G. Moore, P. Nelson and C. Vafa, Bosonization of higher genus Riemann surfaces, Comm. Math. Phys., 112 (1987), 503-552.
[AGR] Alvarez-Gaumé, L., C. Gomez and C. Reina, Loop groups, grassmanianns and string theory, Phys. Lett., 190 B (1987), 55-62.
[BMS] Beilinson, A.A., Yu.I. Manin and V.V. Shechtman, Localization of the Virasoro and Neveu-Schwartz algebra, preprint Moscow (1986).
[BS] Beilinson, A.A. and V.V. Shechtman, Determinant bundles and Virasoro algebra, Comm. Math. Phys., 118 (1988), 651-701.
[C] Cartier, P., Groupes formels associés aux anneaux de Witt généralisés, C.R. Acad. Sci. Paris, 265 A (1967), 49-52.
[CKK] De Concini, C., V.G. Kac and D.A. Kazhdan, Boson-fermion correspondence over Z, preprint (1988).
[DJKM] Date, E., M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations, "Proc. of RIMS Symp. on Non -linear Integrable Systems - Classical Theory and Quantum Theory, Kyoto, Japan (M.Jimbo and T.Miwa, eds.)", World Scientific Publ. Co., Singapore, 1983, pp. 39-119.
[EO] Eguchi, T. and H. Ooguri, Chiral bosonization on a Riemann surface, Phys. Letter, 187 B (1987), 127-134.
[Hr] Hartshorne, R., "Algebraic Geometry", Springer-Verlag, New York Heidelberg-Berlin, 1977.
[Hz] Hazewinkel, M., "Formal Groups and Applications", Academic Press, New York-San Francisco-London, 1978.
[IMO] Ishibashi, N., Y. Matsuo and H. Ooguri, Soliton equation and free fermions on Riemann surfaces, Mod. Phys. Lett., A2 (1987), 119-131.
[KNTY] Kawamoto, N., Y. Namikawa, A. Tsuchiya and Y. Yamada, Geometric realization of conformal field theory on Riemann surfaces, Comm. Math. Phys., 116 (1988), 247-308.
[KSU] Katsura, T., Y. Shimizu and K. Ueno, New bosonization and conformal field theory over Z, Comm. Math. Phys., 121 (1988), 603-622.
[M] Mumford, D., "Lectures on Curves on an Algebraic Surface", Princeton Univ. Press, Princeton, New Jersey, 1966.
[Sa] Sato, M. and M. Noumi, "Soliton Equation and Universal Grassmann Manifold", 1984.
[S] Shimura, G., "Introduction to the Arithmetic Theory of Automorphic Functions", Iwanami Shoten Publishers and Princeton Univ. Press, 1971.

Toshiyuki Katsura
Department of Mathematics
Faculty of Science
Ochanomizu University
Tokyo, 112
Japan
Yuji Shimizu
Mathematical Institute
Faculty of Science
Tohoku University
Sendai, 980
Japan
and
Japan-U.S. Mathematical Institute (JAMI)
Department of Mathematics
The Johns Hopkins University
Baltimore, Maryland 21218
U.S.A.

Kenji Ueno
Department of Mathematics
Faculty of Science
Kyoto University
Kyoto, 606
Japan

[^0]: Received February 13, 1989.
 *Partially supported by Max-Planck-Institut für Mathematik.
 ${ }^{\dagger}$ Partially supported by Max-Planck-Institut für Mathematik and the Grand-in-aid for Scientific Research, the Ministry of Education, Science and Culture, Japan.

