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Formal Groups and Conformal Field Theory over Z 

Toshiyuki Katsura*, Yuji Shimizu and Kenji Uenot 

Abstract. 

We introduce a formal group naturally associated with algebraic 
curves. The formal group is isomorphic to the one obtained from 
the universal Witt scheme. The charge zero sector of the boson Foclc 
space is regarded as the coordinate ring of the formal group. Us
ing this structure, we can give tau functions. We also define new 
operators /n, Vn (n E Z, n > 0) on the fermion Fock space. 

§0. Introduction 

The conformal field theory of free fermions on compact Riemann 
surfaces has been investigated by many mathematicians and physicists 
{cf. [ABMNV], [AGR], [BMS], [BS],[EO], [IMO], and [KNTY]), and the 
bosonization rule ( cf. [DJKM] for instance) plays the central role in 
the theory. In our previous paper [KSU], we define the new bosoniza
tion over the ring Z of integers (similar treatment can be also found in 
[CKK]), and constructed the conformal field theory over Z. (In [KSU] 
we constructed the conformal field theory over Z [ ½] because of the com
plicated nature of spin bundles in characteristic 2, but our theory can 
be formulated over Z similarly.) In the theory, the coordinate ring of 
the universal Witt scheme plays an important role. In this paper, we 
introduce a formal group naturally associated with algebraic curves, in 
particular, Riemann surfaces. We show that the formal group is iso
morphic to the one obtained from the universal Witt ring, and that the 
coordinate ring of the formal group is regarded as the charge zero sector 
of the boson Fock space ( cf. Section 3). Then, using a theorem of Cartier 

Received February 13, 1989. 
*Partially supported by Max-Planclc-Institut fur Mathematik. 
tpartially supported by Max-Planclc-Institut fiir Mathematik and the 

Grand-in-aid for Scientific Research, the Ministry of Education, Science and 
Culture, Japan. 



348 T. Katsura, Y. Shimizu and K. Ueno 

( cf. Theorem 1.2), we define the tau function. The tau function coin
cides with the one in [KNTY], and gives its natural interpretation. On 
the universal Witt ring, we have two kinds of operators, i.e., Frobenius 
operators Fn and Verschiebungs Vn (n E Z, n > 0). Using them and 
the new bosonization introduced in [KSU], we introduce operators J; 
and v~ (n E Z, n > 0) on the fermion Fock space and the dual fermion 
Fock space. We show that the operator J; is adjoint to the operator v~ 
with respect to the natural pairing (cf. Theorem 4.1). The operators 
T(n) = f! o v~ (resp. S(n) = :Emln f~ o v:;. ) (n E Z, n > 0) satisfy the 
properties similar to the Hecke operators. Hence, we get systematically 
divisor functions (resp. the Riemann zeta function), using operators 
T(n) (resp. S(n)) (cf. Theorem 5.5 (resp. Theorem 5.8)). 

The authors would like to thank Y. Namikawa for useful discussions. 
The first and the third authors would like to thank Max-Planck-Institut 
fiir Mathematik for the warm hospitality during their stay in Bonn. 

§1. Formal groups 

In the former part of this section, we give a brief survey of formal 
groups (for details, see [Hz]). For the sake of simplicity, we will explain 
finite dimensional cases. But we can easily generalize them to the infinite 
dimensional case. In the latter part of this section, we summarize the 
results on the universal Witt ring. Let A be a unitary commutative 
ring. We denote by Gi(X, Y) (i = 1, 2, ... , n) a power series in 2n 
indeterminates X1, ... , Xn; Yi, ... , Yn with coefficients in A. Ann-tuple 
of power series 

G(X, Y) = (G1(X, Y), ... , Gn(X, Y)) 

is said to be an n-dimensional formal group law over a ring A, if it 
satisfies the following two conditions : 

(i) Gi(X, Y) =Xi+~ mod ( degree 2), i = 1, 2, ... , n , 

(ii) Gi(G(X,Y),Z) = Gi(X,G(Y,Z)), i = 1,2, ... ,n. 

Ann-dimensional formal group law G(X, Y) is said to be commu-
tative if it satisfies the following condition: 

(iii) Gi(X, Y) = Gi(Y, X), i = 1, 2, ... , n. 

In this paper, we consider only commutative formal group laws, 
and so we mean by a formal group law a commutative formal group 
law. Formal group law gives a co-addition of the ring A[[X1, ... , Xn]] of 
formal power series over A. Therefore, it gives an addition on the formal 
scheme Spf(A[[X 1, ... , Xn]]) over A. Conversely, if a formal scheme 
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Spf(A[[X1, ... ,Xnll) has a structure of abelian group, then this gives 
a formal group law (for details of formal schemes, see [Hz]). A formal 
scheme with addition is called a formal group. By abuse of language, 
we also call a formal group law a formal group. 

Example 1.1. We denote by Ga(A) (resp. Gm(A)) the additive 
group scheme (resp. the multiplicative group scheme) over A. Set
theoretically, we have Ga(A) = A (resp. Ga(A) = A* = the unit group 
of A) with addition 

AxA - A 
lU lU 

(a,b) I-+ a+b 

c~p. A* X A* - ~-) lU 

(a, b) I-+ ab 

Therefore, using this group law, we get a formal group law given by 

which is called the additive formal group law (resp. the multiplicative 
formal group law). 

An n-tuple of power series -y(() = ('Y1((),'Y2((), ... ,'Yn(()) in an 
indeterminate ( such that 'Yi(() = 0 mod (degree 1) is said to be a 
curve in the formal group G(X, Y). By C(G; A) we denote the set of 
curves in the formal group G(X, Y) over the ring A. For two curves 
/3((), -y(() of C(G;A), we define the addition +a as follows: 

/3( () +a 'Y( () = G(/3( (), 'Y( ()). 

Then, by this addition, C(G;A) becomes an abelian group. 
Let F(X, Y) (resp. G(X, Y)) be an m-dimensional formal group 

( resp. an n-di.mensional formal group) over A, and we let a( X) = 
(a 1(X), ... , an(X)) be an n-tuple of power series in m indeterminates 
such that ai(X) = 0 mod (degree 1) , i = 1, ... , n. Then a:(X) is said 
to be a homomorphism over A from F(X, Y) to G(X, Y), if 

a:(F(X, Y)) = G( a(X), a(Y)). 

A homomorphism a( X) is said to be an isomorphism, if there exists a 
homomorphism /3(X) from G(X, Y) to F(X, Y) such that a:(/3(X)) = X 
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and ,B(a(X)) = X. We denote by Hom(F, G) the set of all homomor
phisms from F(X, Y) to G(X, Y). It has naturally a structure of abelian 
group. A homomorphism a(X) induces a homomorphism 

C(F;A) a. 
-+ C(G;A) 

Now, let W(A) be the set of A-valued points of the universal Witt 
scheme WA over a ring A ( cf. [KSU] and [Hz]). In the following we 
sometimes use the notation W(A) as the meaning of the Witt scheme 
WA over A. For an indeterminate T, we set 

A(A) = {1 + a1T + a2T 2 +···I ai EA}. 

An addition on A(A) is defined by multiplication of power series. We 
have the following homomorphisms: 

(1.1) 
G::'(A) W(A) 

>. 
-+ A(A), 

(t1,t2, ... ) +--- (x1,x2, ... ) f-+ l+s1T+s2T 2 +···, 

where w and >. are defined by 

(1.2) 

00 

Il(l - x,Ti) = 1 + s1T + s2T 2 + · · ·. 
i=l 

respectively (cf. [KSU] and [Hz]). It is well known that >. is an isomor
phism. In case A contains the field Q of rational numbers, w is also 
an isomorphism. These homomorphisms induce the following homomor
phisms: 

{1.3) 

Using addition laws of abelian groups G:(A) , W(A) and A(A), we get 
the following formal group and homomorphisms : 

(1.4) 

G::'(A) 

II 

Spf(A[(t1, t2, ... ]]) 

w - W(A) 

II 

Spf(A[[x1,x2, ... ]]) 

A 
-+ A(A) 

II 

Spf(A[[s1, s2, ... ]]) 
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where W (resp. A) is the homomorphism (resp. the isomorphism) in
duced from w (resp. A). Here, A[[t1,t 2, ... ]] (resp. A[[x1,x 2, ... ]], resp. 
A[[s1,x 2, ... ]]) is the completion of the polynomial ring A[t1,t 2, ... ] 
(resp. A[x1,x2, ... ], resp. A[s1,s2, ... ]) of indeterminates t1, t2, .. . 
(resp. x 1 , x2, ... , resp. s1 , s2, ... ) with deg ti = i (resp. deg Xi = i, 
resp. deg Si= i ). The homomorphisms in (1.4) induce homomorphisms 
of coordinate rings defined by (1.2) and (1.3): 

(1.5) 
w• A• 

A[[t1,t2, ... ]] - A[[x1,x2, ... ]] +--A[[s1,s2,--·JJ. 

We sett= (t1,t2, ... ) and x = (x1,x2, ... ). 
Let us define Frobenius operators F! and Verschiebung operators 

VnA (n = I, 2, 3, ... ) on A(A). For this purpose, we prepare additional 
variables 6, ~2 , • • • such that 

00 

{1.6) 1 + s1T + s2T 2 + · · · = IT (I - ~iT) 
i=l 

Then, we define F! by 

00 

(1.7) Ff(I + s1T + s2T 2 + ... )=IT (I - CT), 
i=l 

where the coefficients of the right-hand side are expressed by s1, s2, ... 
by using (1.6). As for Vf 's, they are defined by 

(1.8) Vf (I+ s1T + s2T2 + ... ) = 1 + s1Tn + s2T 2n + · · · . 

Using the isomorphism A, we define Frobenius operators Fn and Ver
schiebung operators Vn (n = I, 2, 3, ... ) on W(A) by 

Fn=A- 1 oF!oA (n=l,2, ... ) 

and 
Vn = A- 1 o Vf o A (n = I, 2, ... ). 

These operators induce endomorphisms F; and v,: on the coordinate 
ring A[[x1,x2, ... ]]. In case A contains Q, we have operators F'n = 
w- 1 0 Fn OW and Vn = w- 1 0 Vn Ow. They induce endomorphisms 
ff'; and v,: on A[[t 1 , t 2 , ••• ]] which are given by 

(1.9) -*( ) { ti/n if nli vn ti = . 
0 otherwise 
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(for details, see [Hz] and [M]). We denote by ,w(() the curve((, 0, 0, ... ) 

of the formal group W(A). Finally, we quote here a theorem of 
P. Cartier. 

Theorem 1.2 [Cartier [C]]. Let G be a formal group over A. Then, 
there exists the following isomorphism of abelian groups: 

Hom(W(A), G)" C(G; A) 

o: I-+ o:.(,w(()). 

§2. Construction of a formal group 

Let A[[(]] be the ring of formal power series with coefficients in A. 
We denote by (i (i = 1, 2, ... ) and li (i = 1, 2, ... ) the copies of(. We 
have the following natural isomorphism: 

A[[(1, ···,(a, 6, · · ·, e13]] -t A[[(1, ···,(al] ®A A[[6, · · ·, e13]]. 

(2.1) 

Let Si (i = 1, ... , o:+,6) (resp. s~ (i = 1, ... , o:), resp. s~' (i = 1, ... ,/3)) be 
the elementary symmetric functions of (1, ... ' (a, 6, ... ' e/3 (resp. (1, ... ' 
(a, resp. l1, ... , e13) of degree i. The symmetric group Sa+/3 (resp. Sa, 
resp. 613) acts on A[[(1, ... , (a, 6, ... , l13]] (resp. A[[(1, ... , (all, resp. 
A[[6, ... ,e13]]) as the permutations of (1,---,(a,6, ... ,e13 (resp. 
(1, ... , (a, resp. 6, ... , l13). Taking the invariants of these rings of 
formal power series, we have the following homomorphism induced by 
the isomorphism (2.1): 

(2.2) 

A[[s1, S2, ••• , Sa+13J] A[[s~, ... , s~l] ®A A[[sr, ... , s¼l], 

Si 

(i = 1,2, ... ,o:+/3) 

where s~ = 0 (resp. Sill = 0) if i > o: (resp. i > /3). Now, consider the 
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projective system {A[[s1, s2, ... , sn]], f~-i,n} defined by 

f~-1,n : A[[s1, · .. , Sn]] -t A[[s1, ... , Sn-1]] · 

(2.3) 

Then, we have 

H Si for 1 ::;; i :s; n - 1, 
H 0 

A([s1,s2, ... ]] = limA[[s1, ... ,sn]] 
+-

353 

which is isomorphic to the completion of A[ s1, s2, ... ] with deg Si = i. 
The homomorphism (2.2) induces the co-addition 

(2.4) 
m*:A[[s1,s2, ... ]] -t 

This co-addition gives a formal group fJ of infinite dimension which 
coincides with A(A). We have the isomorphism 

(2.5) 

11 A(A) -+ A(A) 

1 + a1T + a2T2 + · · · 1--+ 1 + a1(-T) + a2(-T) 2 + · · · . 
Using (1.4) and (2.5), we have the following isomorphism 

(2.6) .-- A- ,,- -
fJ = TJ o A: W(A) -+ A(A) -t A(A) = U. 

By the construction of fJ and (1.3), fJ induces the homomorphism fJ. 
from C(W(A); A) to C(U; A) such that 

(2.7) fJ.(((,0,0, ... )) = ((,0,0, ... ). 

§3. Jacobian varieties and r-functions 

Let f : C -+ Spec(A) be a curve of genus g over A (cf. [KSU]). 
We assume that f : C -+ Spec(A) has a section u : Spec(A) -t C. We 
denote u(Spec(A)) by Q, and denote by IQ the ideal sheaf of Q. There 
is a canonical O A-algebra isomorphism 
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Assume that the conormal bundle Nq = IQ/ Ib of Q in C is a free 
GA-module. Then, as in [KSU, Lemma 4.1], we have 

Therefore, taking the completion of Oc with respect to the ideal sheaf 
IQ, we have 

(3.1) 

We denote by 8Q the left-hand side of (3.1). The global sections on 
Spec(A) of OA[[(]] are given by A[[(]]. We consider the triple{/ 
C -t Spec(A),Q,u: 8Q '.:::'. OA[[(]]}. We set 

en= C xspec(A) C X ••• xspec(A) C. 

n 

The symmetric group 6n of degree n acts on en over Spec( A) as per
mutations. We have a natural morphism defined by 

(3.2) 
ca X Spec(A) Cf3 

((P1, ... , Pa), (P{, ... , P'13)) 1--t (Pi, ... , Pa, P'1, ... , P'13). 

This induces the following morphism: 

We have a morphism 

ca-1 ca 

(P1,---,Pa_i) 1--t (Pi, ... ,Pa-1,Q). 

This induces the morphism 

(3.4) 

We consider the completion along Q in (3.3) and (3.4). Then, corre
sponding to (3.3), we have (2.2), and corresponding to (3.4), we have 
(2.3). Therefore, as in Section 2, taking the projective limit, we have 
the formal group fJ with co-addition (2.4). As we explained in Section 

2, fJ coincides with A(A). 
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Let J(C) be the Jacobian variety of Cover Spec(A). We denote by 
mJ the addition of J(C), and by J(C) the formal group over Spec(A) 
associated with J(C). We have a morphism over Spec(A): 

'Pa: ca /6a -+ J(C) 

(P1, ... , Pa) 1--t P1 +···+Pa - o.Q, 

and a commutative diagram 

(3.5) l 'Pa X 'P/3 

J(C) x J(C) 

By the commutative diagram 

(3.6) 

C '1,2 c2/62 -+ 

l 'Pl l 'P2 

J(C) J(C) 

fs,s+i 
C9+1/6g+l 

fg+l,g+2 
-+ -+ 

l 'Pg+l 

= J(C) = 

'2,a 
-+ 

and by (3.5), we have a homomorphism 

fn-1,n. 
-+ 

= 

cp: fj-+ J(C). 

l 'Pa+/3 

J(C). 

fs-1,g 
-+ 

cn/6n 

l 'Pn 

J(C) 

CY /6g 

l cpg 

J(C) 

fn,n+l 
-+ 

= 

Taking the completion along Q, we see that cp1 (resp. · · · o '2,3 o '1,2) 
induces a morphism 'Y J ( resp. 'YU) from Spf( A[[ ( ]] ) to J( C) ( resp. to U) 
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such that the following diagram is commutative: 

Spf{A[[ (]]) 'YU 
---+ 8 -U t-- W(A). 

,/ <p 

J(c) 

Here, we note that ,u gives the curve ( (, O, O, ... ) in fJ. Therefore, by 
(2.7), 0- 1 o 1u gives the curve{(, 0, O, ... ) in W(A). Hence, by Theorem 
1.2, we have the following characterization of rp. 

Theorem 3.1. The homomorphism <p constructed above is char
acterized as the homomorphism which transforms the curve((, O, 0, ... ) 

in fJ into the curve in J( C) given by 'Y J. 

Now, we assume A= C. Then, ( is a local parameter of Cat the 
point Q. We fix a symplectic basis { a:1 , a:2 , ••• , a:y, ,81 , ••• , ,By} of the 
first homology group H1 ( C, Z). By definition, we have ( O:i, a:;) = 0, 
(,Bi,,B;) = 0 and (a:i,,B;) = Di;, where Di; is Kronecker's delta. We take 
a basis { w1, ••• , wy} of the space H 0 ( C, Ob) of holomorphic one-forms 
on the curve C such that 

f w; = Di; and Jai 
Then, the g x 2g matrix (Di;, Ti;) gives a lattice L of CY, and J( C) is 
given by CY/ L. We have the universal covering 1r : CY ---+ J( C) and a 
commutative diagram 

C CY 

CY/L. 

The morphism ¢ is given by 

tp(() = <l' Wi). 

We consider the expansion of Wi (cf. [KNTY]): 
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Then, taking the completions, we have 

(3.7) 

Spf(C[[ (]]) 

""' 
l(C) 

where ;f corresponds to the curve of G! given by 

(3.8) 

By Theorem 1.2 and (1.4), we have the morphism 

(3.9) 

357 

such that r,o.(((, 0, ... )) = 1 , where I is the curve given by ;fin (3.7). 
On the other hand, by [KNTY], we have the homomorphism 

(3.10) 

I: G: = Spf(C[[t1,t2, ... ]])- G! = Spf(C[[z1, ... ,z 9 ]]), 

00 

I*(zi) = L I!tn. 
n=l 

Under the notations in {1.4), (2.6), (3.9) and (3.10) we have the following 
theorem. 

Theorem 3.2. The following diagram is commutative: 

W/ 

G"" a 

where t is the inversion of G!. 

W(C) 

GY a 
• -

Proof. By Theorem 1.2, it suffices to prove 

u 

a:, 

t. o r,o. o o.(((, o, o, ... )) = 1. ow.(((, o, o, ... )). 
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We can check this by direct calculation. q.e.d. 

Let {w~n)}n= 2,3,4, ... be the set of abelian differentials of the second 
kind on C such that 

1 W<n> - 21r Sri Q - V-1 n• 
{3; 

m>O 

(cf. [KNTY]). It is a basis of the vector space of abelian differen
tials of the second kind with pole only at the point Q. We denote 
by 0(z 1 , ... , z9 ) the Riemann theta function on C9 /L. We can regard 
0(z 1 , ••• ,z 9 ) as an element of C[[z1 , ••. ,z 9II-We define the tau function 
as follows. 

Definition 3.3. 

r(x,C)=W*{exp(½ L qm,ntmtn)}·(to<po0)*0(z1, ... ,z 9 ). 

n>O,m>O 

Theorem 3.4. Let r(t, C) be the tau function defined in [KNTY]. 
Then, we have 

r(x, C) = W*r(t, C). 

Proof. This theorem follows from Theorem 3.2. q.e.d. 

§4. Operators Fn and Vn 

Let Mo be the set of Maya diagrams of charge zero, and let 

:Fo(A) = IT AIM) ( resp. :Fo(A) = E9 A(MI) 
MEMo MEMo 

be the fermion Fock space (resp. the dual fermion Fock space) of charge 
zero over a commutative ring A. We have the canonical pairing 

:Fo(A) x :Fo(A) -t A 
(4.1) 

((~'I, I~)) 

( cf. (KNTY] and [KSU]). Let 

...... (~'I~) 

1iT,o(A) = A[[t1, t2, ... II (resp. 1iT,o(A) = A[ti, t2, ... ]) 
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be the charge zero sector of boson Fock space ( resp. the dual boson Foclc 
space). We have the pairing 

(4.2} 

defined by 

(4.3} 

where 

1-lT,o(A) x 1iT,o(A}----t A 

(g(t},h(t)) = g(8t}h(t)lt=O, 

8 18 18 18 
8t = ( 8t1 ' 2 8t2 ' 3 8t3 ' ... ' ;; 8tn ' ... ) . 

We denote by Jm (m E Z) the current operators. If A= Q, we have a 
bosonization 

( 4.4} 

defined by 

B : Fo(Q) ----t 1iT,o(Q) 

(resp. B : Fo(Q) ----t 1£T,o(Q)) 

(X) 

nEZ m=l 
(X) 

for l"iT} E Fo(Q) 

(resp. B("iT'I = L ("iT'I exp( L Jmtm)ln} for ("iT'I E Fo(Q)). 
nEZ m=l 

By (DJKM], B (resp. B} is an isomorphism as vector spaces. In 
(KSU], we introduced a new boson Foclc space of charge zero 

1to(A) = A[(z1, z2, ... ]] 

and a new bosonization 

(4.5} B : Fo(A) - 1to(A). 

We introduce a new dual boson Foclc space of charge zero 1t0 (A} = 
A(z1,z 2, ... ]. By the similar way to (KSU], we have a new bosonization 

(4.6} B' : Fo(A} - 1to(A). 

B (resp. B'} is an isomorphism as A-modules. HA= Q, we have 

(4.7) B=W*oB 
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( 4.8) (resp. ii'= W* o B), 

where W* is defined by (1.3). The Frobenius operators F;; and the 

Verschiebung operators v; act on the coordinate ring of W(A) (resp. 
on the coordinate ring of the Witt scheme W(A)) as in Section 1. Using 
the isomorphism (4.5) (resp. (4.6)), we set 

(4.9) f * = ii- 1 o F* o ii n n 

(resp. f * = ii'- 1 o F* o ii' n n 

and 

and 

v* = ii- 1 o V* o ii n n 

We denote by Pi(t) (i = 0, 1, 2, ... ) the Schur polynomials. For a 
Young diagram Y 

I 
I 

( 4.10) 

trn I 

the Schur function corresponding to Y is defined by 

(4.11) Xy(t) = det (PJ;-i+;(t))1 :$i,j:$m • 

The Young diagram Yin (4.10) is called the Young diagram of signature 
(Ji, Ji,·••, fm)• 

Theorem 4.1. Let IW) (resp. (W'I) be any element of .ro(A) (resp . 
.ro(A)). Then, with respect to the pairing (4.1), we have 

( 4.12) 
( (W'lf:)IW) = (W'I( v~IW)) 

( (W'lv~)IW) = (W'l(f~IW)) 

for (W'I E .ro(A) and IW) E .ro(A). 

Proof. First, we consider the case A= Q. Then, we have 

( 4.13) (B(W'I, BIW)) = (W'IW) 

for (W'I E .ro(Q) and IW) E .ro(Q) (cf. [SN]). Let i1, .. ,,ik,it,- .. ,it 
be positive integers such that i1 < i2 < · · · < ik and it < h < · · · < it-
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By (1.9), (4.13) and (4.3), we have 

(F*t"1 t"• t"r. t"'1 t" 2 t"'l) n i1 i2 · · · ir, ' i1 i, · · · iL 

= ( ( ntni1 )" 1 ( nti, )112 • • • (tnir, )"• l tJ~l tJ~· ... tJ~l) 
. l 2 l 

= n"1+v2+·+vr.(-¾--8-r(-¾--8-)"· ... 
ni1 8tni 1 ni2 8tni 2 

• · · (-¾- ~ . tr.t'Jtt'J2
2 

• • • t'Jlllt=O 
nik vin,,. 

ii i2 • • • it ni1,J1 ni1.,Jt v1,1-'1 l ( _!_ )"1( _!_ r ( ~ )"L(5 • · • • • 0 · · • 0 

= ···Dvl,/-'l·V1!···Vt! ifk=l 

0 ifk/l 

_ { ( ~ BBt· )111 · · · ( ;- BBt· )"L{Vn(t'J11 ... t'JLL)}lt=O if k = l 
- 11 •1 Zt •L 

0 ~k#l 
= (t~1 t'~· ... t~·, v·t~ 1 t~· ... t~l) . 

•1 •2 •r. n J1 J2 Jl 

Therefore, for the Schur functions XY(t), XY•(t), we have 

Therefore, by [KSU, Definition 2.1 and Lemma 3.3], we have 

for ('iJ!'I E .ro(Z) and l'iJ!) E .ro{Z). Hence, over any ring A, we get 
the equality in the former part of (4.12). Since (MIN) = (NIM) for 
M,N E Mo, the latter part of (4.12) follows from the former part. 

q.e.d. 

For a positive integer n and the Young diagram Y in: (4.10), we 
denote by a (resp. b) the integral part of m/n (resp. m - na), and we 
set 

We denote by O:i the number of elements of Si. We consider the following 
condition for o:/s: 

Condition {a:) : 0:1 = 0:2 = · · · = O:b =a+ 1, 
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Theorem 4.2. 1) If {o:ih=1, ... ,n does not satisfy Condition (0:)1 

then the following holds: 

v:(xy(t)) = o. 

2) Assume that { o:i}i=l, ... ,n satisfies Condition {o:). For Si = {/;1 , ••• , 

/;. •. }(ji < h < · · · < ia,) let Y. be the Young diagram of signature . 
{(/;i - ii +i)/n, {(/; 2 - i2 +i)/n} + 1, ... , {(/;a, - ia, +i)/n} +o:i -1). 
Then, the following equality holds. 

v:(xy(t)) = ±xy 1 (t) · XY2 (t) · · .. · XY,.(t). 

Proof. By {1.9} and the definition of the Schur polynomials, we 
have 

v:(p-(t)) = { P;;n(t) if n I j,. 
' 0 otherwise. 

Therefore, by ( 4.11 }, we can calculate the action of v,:. We omit the 
details. q.e.d. 

§5. Zeta functions 

In this section, we assume A = Q. By {1.9}, we have 

Therefore, by {4.4}, v! of: is the endomorphism of F 0(Q) (resp. F 0{Q)) 
corresponding to the multiplication by n on G~. Now, we set 

(5.1} T(n) = f: ov! (n = 1,2, ... ). 

Proposition 5.1. The operators T(n) 's (n = 1, 2, ... J satisfy the 
following properties: 

(i) ( (w'IT(n))lw) = (w'l(T(n)lw)) for (w'I E Fo(Q), jw) E Fo(Q}, 
(ii) T(m)T(n) = T(n)T(m), 

(iii} If m is prime to n, then T(mn} = T(m)T(n}, 
(iv) If the greatest common divisor of m and n is equal to d, then 

mn 
T(m)T(n) = dT( d). 

Proof. These properties follow from (1.9}, (4.12} and isomorphisms 
{4.4). q.e.d. 
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Definition 5.2. We formally set 

(5.2) z(s) = LT(n)n-•. 
n2'.1 

Using (4.4), we set 

(53) ( . ·. )-B-l(tv1tv2 tVt) . e z1, .. ,,ze,v1, .. ,,ve - i 1 i 2 ... it, 

where i1, ... , ie, v1, ... , Ve are positive integers. We denote by µ the 
greatest common divisor ·of i 1 , ... , ie, and we set v = v1 + · · · + ve, 

Definition 5.3. z;(s) = Lnv-•. 
n!µ 

Remark 5.4. The functions z;(s) are called divisor functions (cf. 
[Al). z;(s) satisfies the following properties. 

(i) Let µ = pf1 •• • p~· be the factorization into prime numbers. 
Then, we have an Euler product expansion 

z;(s) = (l + Piv-•) + ... + p:1(v-s)) ... (l + p:-• + ... + p;•<v-s)). 

(ii) We have a functional equation 

z;(-s) = µ-v+• z;(s). 

(iii) If µ1 is prime to µ2, we have the multiplicativity 

z;1 (s)z; 2 (s) = z;1 ,. 2 (s). 

Theorem 5.5. Under the above notations, we have 

z(s)e(i1, ... , ie; v1, ... , ve) = z;(s)e(i1, ... , it; v1, ... , Vt), 

Proof. Since by (1.9) we have 

(5.4) 
f ~ 0 v: e( i1,, .. , itj V1,, .. , Vt) 

= { te(i1, ... , it; v1, ... , ve) if n Iµ, 
otherwise. 

Hence, the theorem follows from (4.4) and the definition of z(s). 
q.e.d. 
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Now, we set 

(5.5) S(n) = L f,';, o v:;. (n = 1, 2, ... ). 
min 

Proposition 5.6. S( n) 's {n = 1, 2, ... ) satisfy the following prop
erties: 

(i) ((w'IS{n))l'1T) = ('1T'l{S(n)l'1T)) for ('1''1 E Fo(Q), 1'1') E Fo(Q), 
(ii) S(m)S(n) = S(n)S(m), 

{iii) S(m)S(n) = S(mn1 if mis prime ton. 

Proof. This proposition follows from Proposition 5.1. q.e.d. 

Definition 5.7. We formally set 

00 

Z(s) = L S(n)n-s. 
n=l 

We denote by ({s) the Riemann zeta function. 

Theorem 5.8. Under the above notations, _we have 

Z( S )e(i1, ... , it; V1, ... , Vt) = (( S )z;( S )e( i1, ... , it; V1, ... , Vt)-

Proof. By (5.4), we have 

S(n)e(i1, ... , it; v1, ... , vi)= ( L mv) e(i1, ... , it; v1, ... , lit), 
ml(n,µ) 

where ( n, µ) is the greatest common divisor of n and µ. Therefore, we 
have 

Z(s)e(i1, ... , it;v1, ... , Vt) 

= {f ( L mv) n-s} e(i1, ... ,it;V1, ... ,vl)· 
n=l ml(n,µ) 

By direct calculation, we have 

((s)z;(s) = f ( L mv) n-s. 
n=l mJ(n,µ) 

q.e.d. 
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Remark 5.9. By the property in Theorem 5.1 (iii) (resp. Theorem 
5.6 (iii)), we see that the eigen-values of the operator z(s) (resp. Z(s)) 
have Euler product expansions as in the case of the zeta functions asso
ciated with Hecke operators (cf. [S]). 

References 

[A] Apostol, T.M., "Introduction to Analytic Number Theory", 
Springer-Verlag, Berlin-Heidelberg-New York, 1976. 

[ABMNV] Alvarez-Gaume, L., J.-B. Bost, G. Moore, P. Nelson and C. Vafa, 
Bosonization of higher genus Riemann surfaces, Comm. Math. 
Phys., 112 {1987), 503-552. 

[AGR] Alvarez-Gaume, L., C. Gomez and C. Reina, Loop groups, grass-
manianns and string theory, Phys. Lett., 190 B (1987), 55-62. 

[BMS] Beilinson, A.A., Yu.I. Manin and V.V. Shechtman, Localization 
of the Virasoro and Neveu-Schwartz algebra, preprint Moscow 
(1986). 

[BS] Beilinson, A.A. and V.V. Shechtman, Determinant bundles and 
Virasoro algebra, Comm. Math. Phys., 118 (1988), 651-701. 

[C] Cartier, P., Groupes formels associes aux anneaux de Witt 
generalises, C.R. Acad. Sci. Paris, 265 A {1967), 49-52. 

[CKK] De Concini, C., V.G. Kac and D.A. Kazhdan, Boson-fermion cor-
respondence over Z, preprint (1988). 

[DJKM] Date, E., M. Jimbo, M. Kashiwara and T. Miwa, Transformation 
groups for soliton equations, "Proc. of RIMS Symp. on Non 
-linear Integrable Systems - Classical Theory and Quantum 
Theory, Kyoto, Japan (M.Jimbo and T.Miwa, eds.)", World 
Scientific Puhl. Co., Singapore, 1983, pp. 39-11"9. 

[EO] Eguchi, T. and H. Ooguri, Chiral bosonization on a Riemann 
surface, Phys. Letter, 187 B (1987), 127-134. 

[Hr] Hartshorne, R., "Algebraic Geometry", Springer-Verlag, New 
York Heidelberg-Berlin, 1977. 

[Hz] Hazewinkel, M., "Formal Groups and Applications", Academic 
Press, New York-San Francisco-London, 1978. 

[IMO] Ishibashi, N., Y. Matsuo and H. Ooguri, Soliton equation and free 
fermions on Riemann surfaces, Mod. Phys. Lett., A2 (1987), 
119-131. 

[KNTY] Kawamoto, N., Y. Namikawa, A. Tsuchiya and Y. Yamada, Ge-
ometric realization of conformal field theory on Riemann sur
faces, Comm. Math. Phys., 116 (1988), 247-308. 

[KSU] Katsura, T., Y. Shimizu and K. Ueno, New bosonization and 
conformal field theory over Z, Comm. Math. Phys., 121 (1988), 
603-622. 



366 T. Katsura, Y. Shimizu and K. Ueno 

[M] Mumford, D., "Lectures on Curves on an Algebraic Surface", 
Princeton Univ. Press, Princeton, New Jersey, 1966. 

[Sa] Sato, M. and M. Noumi, "Soliton Equation and Universal Grass-
mann Manifold", 1984. 

[SJ Shimura, G., "Introduction to the Arithmetic Theory of Auto-
morphic Functions", Iwanami Shoten Publishers and Princeton 
Univ. Press, 1971. 

Toshiyuki Katsura 
Department of Mathematics 
Faculty of Science 
Ochanomizu University 
Tokyo, 112 
Japan 

Yuji Shimizu 
Mathematical Institute 
Faculty of Science 
Tohoku University 
Sendai, 980 
Japan 
and 
Japan-U.S. Mathematical Institute (JAMI) 
Department of Mathematics 
The Johns Hopkins University 
Baltimore, Maryland 21218 
U.S.A. 

Kenji Ueno 
Department of Mathematics 
Faculty of Science 
Kyoto University 
Kyoto, 606 
Japan 




