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KdV-Type Equations and W-Algebras 

A. A. Belavin 

There exists a remarkable connection between the conformal field 
theory and the theory of KdV-type equations. In this talk I would like 
to remind you about and to attract your attention to this connection. 

The symmetry generators in conformal field theory ( CFT) form 
an associative infinite-dimensional algebra which always contains the 
Virasoro algebra as a subalgebra. Generators of the Virasoro algebra 
Ln are Fourier components of the Energy-momentum tensor T(z) = 
~ Ln/ zn+2 with well-known commutation relations: 

However the Virasoro algebra is only a part of the conformal algebra 
(that is the algebra of symmetries of CFT) in the general case. We 
know many examples of more general algebras. I mean for example 
the Neveu-Schwarz algebra, WZW-algebra, parafermionic algebra of F­
z and so on. 

Classification of all possible kinds of conformal algebras is the first 
step to classification of all possible types of CFT. This problem is a very 
important one and its total investigation is not obtained yet. 
A very interesting class of such algebras was considered firstly by 
A. B. Zamolodchikov. It is the so called W-algebras. 

The first example of a W-algebra is the Virasoro algebra itself. The 
next one is formed from the generators Ln and the set of new generators 
WA3) which are components of a spin 3 field w<3)(z) = ~ WA3) / zn+3 • 
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Commutation relations in this case have the following form: 

[Ln,Lm] = (n - m)Ln+m + 1c2(n3 - n)6n+m,O, 

[Ln, W~)] = (2n - m)W~~m, 

(3) (3) - 16 ( - ) [Wn ,Wm]- 22 +Sc n m An+m 

(2) ( _ )((n+m+2)(n+m+3) _ (n+2)(m+3))L + n m 15 6 n+m 

C 2 2 ) + 360 (n - 4)(n - 1 n6n+m,O 

def~ 1 
and An= L., : LkLn-k : +-fcnLn, 

k 

X21 = (l + 1)(1 - l); X21+1 = (2 + l)(l - l). 

Let us note that this algebra is not a Lie-type algebra because of the 
quadratic terms in the right hand side of [W, W] commutators. However 
these commutation relations satisfy very rigid limitations following from 
the associativity of the algebra: for example 

(3) [Wn, [Wm, Wk]] + permutations = 0. 

In the general case W-algebra is generated by several fields W<i)(z) = 
L z-i-nw~i) with higher spins 3 ~ j ~ N. Commutation relations 
have the following form 

(4) 

[Ln,Lm] = (n - m)Ln+m + 1c2 (n3 - n)6n+m,o, 

[Ln, W~l] = ((j-,--l)n - m)W~1m, 

[w<M w<hl] = n , m L L ciii,i,){k} 
(n,m){i} 

k1,···,k. . i1,···,i. 
k1+··+k,=n+m i1+··+i,:::;i1+i2-l 

X • w<i1) w<i2) w<i.) . 
• k1 • k2 • • • k. • • 

Here in r.h.s. w!2) denotes Lk and w!0) denotes 1. Again the rigid lim­

itations on constants ai~.!tl} and the set {j} arise from the necessity 
to be in accordance with associativity for commutation relations. The 
question arises: how many W-algebras exist ? The other problems in­
clude constructions of representations of these algebras and the related 
models of CFT. 
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The following important fact may be useful to answer these ques­
tions. It turns out that W-algebra can be considered as quantum version 
of a certain structure in the theory of KdV-type equations. The KdV 
equation has the form 

(5) 

This equation is Hamiltonian. This means that it can be written in the 
Poisson bracket form au 

at = {H,u}. 

The Poisson bracket has the form 

{u(x), u(y)} = 2ub'(x - y) + u'b(x - y) + b111(x - y), 
(6) 

( d d3 ) = u'+2udx + dx3 b(x-y), 

and 

H= f u2 dx. 

If one takes a Fourier decomposition of u( x) (provided that u( x) is pe­
riodic) then this Poisson bracket is converted to the familiar Virasoro 
form 

where Poisson brackets substitute commutators; so this Poisson bracket 
can be thought as classical limit of the Virasoro algebra. 

The KdV-equation is known to be connected with the second or-

der differential operator .C = d~ 2 + u(x, t) and it admits the Lax-form 
representation, that is it can be written as 

(8) 

where A is a certain 3rd order differential operator. 
The KdV-equation admits a generalization to a system of equations 

for several functions u1(t,x), .. ·,uN(t,x). This generalization is ob­
tained by taking an n-th order differential operator instead of .C. In 
these cases the equations are also Hamiltonian and Poisson brackets are 
of the form 

(9) 
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where Vii is a certain differential operator whose coefficients are poly­
nomials in ui(x) and their derivatives. For n = 3 one has two functions 
and their Fourier components Ln and Wn have the following Poisson 
bracket. 

(10) 

{Ln, Lm} = (n - m)Ln+m + 1c2 (n3 - n)8n+m,O, 

{Ln, W~l} = (2n - m)W~~m, 

16 
{Wl3), w~)} = 5c(n-m) LLkLn-k 

( _ )((n+m+2)(n+m+3) _ (n+2)(m+3))L + n m 15 6 n+m 

+ 3; 0 (n2 - 4)(n2 - l)n8n+m,O• 

These relations provide a semiclassical limit of the commutation rela­
tions for the spin 3 W-algebra as it was noticed by Feigin and Hovanova. 
That is (2)=>(10) if we substitute 

[, ]-di{}, 

(11) 
Ln -t 1i,-1Ln, 

Wn - ri- 1wn, 

C -t n-1c, 

and 

{12) ri- 0. 

This example as well as the former one leads us to the natural conjecture 
that there exists a similar relation in the general case. If we would have 
classification and explicit construction of the Hamiltonian structure for 
general KdV-type equations, we could try to classify and construct W­
algebras by means of a kind of quantization of these classical objects. 
In fact the explicit construction of general KdV-type equations exists. 
It was achieved by Drinfeld and Sokolov in the year 1980 by means of 
the Hamiltonian reduction of a natural Hamiltonian structure connected 
with affine Lie algebras. 

Let me present the simplest example of the Drinfeld-Sokolov con­
struction. Consider the .sl( 2 )-affine algebra. In this case three functions 
v+(x), v-(x),h(x) together with an extra variable k are considered as 
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coordinates on the phase space. The Poisson brackets are given by the 
following formulas (Berezin-Kirillov-Kostant Poisson bracket): 

{v+(x), v-(y)} = h(x)8(x - y) + k8'(x -y), 

(l3) {h(x), v±(y)} = ±v±(x)8(x - y), 
k 

{h(x), h(y)} = 28'(x - y). 

The set of variables v+, v-, h and k can be associated with the linear 
matrix differential operator 

(14) ~ d ( h v+) 
£ = k dx + v- -h · 

Let us now consider the group of off diagonal upper triangular matrices 
G which acts on the phase space by the Gauge transformations 

(15) E--+ a- 1 Ea 

and 

G = (~ a~x)) · 

This action is Hamiltonian. It means that any infinitesimal ( a( x) «: 1) 
variation of coordinates has the Poisson bracket form, that is 

(16) 

8V+ = {V+, Ha}, 

8V- = {v-, Ha}, 

8h = {h,Ha}, 

with an appropriate generating function Ha. Namely, 

(17) Ha(x) = J v-(x)a(x)dx. 

Let us now perform the Hamiltonian reduction with respect to this 
gauge. group. As usual the Hamiltonian reduction consists of two steps. 
The first step is imposing constraint, namely we must fix the Hamil­
tonian generators of the gauge group. In our case we put v- to be 
equal to one. The specific combination of the phase coordinates u( x) = 
v+(x) + h(x) 2 + h'(x) can be shown to commute with the generator of 
the gauge group v- under the imposed condition: 

(18) {V-(x),u(y)} = O. 
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These combinations are complete set of independent invariants of the 
gauge group. 

The second step of the Hamiltonian reduction amounts to intro­
ducing the new phase space and the new Poisson bracket. This phase 
space consists of orbits of our gauge group in the surface (subspace) 
defined by the constraints of the first step of reduction. The invari­
ant u(x) = v+ + h2 + h' can be then taken as coordinates of the new 
phase space. It can be verified by the explicit calculation that the Pois­
son bracket between u(x) and u(y) is expressed through u(x) and its 
derivatives only and has the form 

(19) 
d d3 

{u(x),u(y)}= (u'+2udx + dx3 )8(x-y). 

So the Hamiltonian reduction of the .s[(2)-affine algebra leads one to the 
Hamiltonian structure of the KdV-equation. Analogously, starting from 
a Kac-Moody algebra one obtains a Hamiltonian structure of the GKdV 
equation. Let us turn now to the quantum version of the Drinfeld­
Sokolov construction which will allow us to construct W-algebras start­
ing from an affine algebra. 

First let us consider again the case of the 9 = .s[(2) algebra. In this 
case there are three sets of generators I;t", I;;, I~ and a central charge k. 
The commutators are well-known. Let us denote as U9 the enveloping 

algebra of .s[(2). U9 contains an ideal N, which is by definition 

where Xk E U9 • 

n EN<==} n = I:xk(I; -8k,o), 
k 

Let us find those elements x E U9 which satisfy the equations 

(20) [x,J~] EN for any m. 

The totality of such elements will be denoted by V. This is the quantum 
version of the first step of the Hamiltonian reduction of the Drinfeld­
Sokolov construction. 

To make the second step we define W as the factor-space of V / N 
by the ideal N. 

(21) W=V/N. 

This means that W consists of equivalence classes of elements of V: 

(22) 



KdV Equations and W-Algebras 123 

where x1, x2 E V. The following statements hold: 

{23) 

{24) 

a) W is an associative algebra. 
b) Moreover W is the Virasoro algebra with 

· 3k 
c= ---6k. 

k+2 

c) The Virasoro generators can be represented by the expressions 

Ln = k: 2 I: IkI!-k + nI~ - ~On,O· 

Let us turn to the general case. Let g be a simple Lie algebra and 
xa, ya, Ha be its Chevalley generators. Let g be the corresponding 
affine algebra with the generators x::, yna, H:: and the central charge k. 
Denote the enveloping algebra of g by ~- g contains a subalgebra n 
generated by Y:'s. 

n admits a nontrivial one-dimensional representation a -+ x( a) de­
fined by the formula x(Y:) = On,O· Now we can define the ideal NC Ug 
as a set of elements of the form 

{25) 
aEn 

where Xa E Ug. Now we are in a position to construct a W-algebra. 
As the first step we define the space V as the space consisting of the 
elements whose commutators with a En belong to N. The second step 
is the factorization of V by N. Denote W = V / N. Then again: 

a) Wis an associative algebra. 
b) W contains the Virasoro algebra as a subalgebra whose generators 

can be chosen in the form 

{26) 

Here a:/s are the simple roots of g and p = ½ '2, /3, where f3 are the 
positive roots. 

Our quantum version of the Hamiltonian reduction has the following 
BRST analogue proposed by B. L. Feigin. I explain it for the case 
g = .s((2) again. Let us extend .s((2) by the fermion ghosts 1/Jn and "iFn 
whose commutation relations are 

(27) 

['1/Jn, 1Pm]+ = [,Pn, "iFmJ+ = 0, 

['1/Jn, "iFmJ+ = On+m,O, 
(J!,1/Jm] = 0. 
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The new algebra will be called A. 
Consider the vector space M generated by I-./;, I;;, I~, 1Pn, "'ifn from 

the vacuum vector v which satisfies the following equations: 

I!v = 0 n > 0, 

'lpnV = 0 n > 0, 

{28) "'ifnv = 0 n::; 0, 

Itv = O, 

I8v = lv. 

We shall suppose that M is factorised over its submodules and thus 
irreducible. 

Consider the operator 

{29) Q~f L(In - On,o)1P-n• 
nEZ 

Q acts on the module M and 

{30) Q2 =0. 

By means of Q we can introduce the corresponding cohomologies. Let 
UA be the enveloping algebra A. These elements :c E UA for which 

(31) (:c, Q] = 0 

obviously act on the cohomologies of Q. It is easy to verify by a direct 
calculation that 

[Ln,Q] = 0 

for 
L ~fLSUG + nlo - ~O + Lgh n n n 4 n,O n , 

where 

L~h = L(~ + k): t/J1o"'ifn-1o:. 

The Ln generate the Virasoro algebra with the central charge 

(32) 

and 

3k 
c= ---6k-2 

k+2 

A = l(l + 1) _ ~­
k + 2 4 
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The module M contains a null-vector if 

(33) 
m n 

l = -(k + 2) - -
2 2 

for integers m and n. In this case the corresponding weights of the 
Virasoro algebra t.. and c satisfy the known relation of Kac: 

(34) 

where 

and 

c-1 m n 2 
t.. = -- + ( a+- + a_ - ) 

24 2 2 ' 

3k 
c= -- -6k-2. 

k+2 
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