Advanced Studies in Pure Mathematics 17, 1989 Algebraic Number Theory — in honor of K. Iwasawa pp. 471-492

Duality Theorems for Abelian Varieties over Z_p -extensions

Kay Wingberg

Dedicated to Kenkichi Iwasawa on his 70th birthday

Our concern in this paper is to define *p*-adic height pairings for an abelian variety A over an algebraic number field k on the niveau of a \mathbb{Z}_p -extension k_{∞} of k. We will show that there exists a map from the A-torsion submodule $T_A H^1(\mathcal{O}_{\infty}, \mathscr{A}(p))^*$ of the Pontrjagin dual of the *p*-Selmer group to the adjoint α of the corresponding module for the dual abelian variety A'. Here A denotes the completed group ring of $\operatorname{Gal}(k_{\infty}/k)$ over \mathbb{Z}_p and p is a prime number where A has good reduction. \mathscr{A} denotes the Néron model defined over the ring of integers \mathcal{O}_{∞} of k_{∞} . More generally, for $i \geq 0$ there are canonical maps

$$T_{\mathcal{A}}H^{i}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*} \longrightarrow \alpha(T_{\mathcal{A}}H^{2-i}(\mathcal{O}_{\infty}, \mathscr{A}'(p))^{*}).$$

These maps are quasi-isomorphisms if A has ordinary good reduction at p. In this case they can be regarded as non-degenerate pairings between the Λ -torsion submodules of $H^i(\mathcal{O}_{\infty}, \mathscr{A}(p))^*$ and of $H^{2-i}(\mathcal{O}_{\infty}, \mathscr{A}'(p))^*$. The pairing induced on a finite layer k_n/k coincides with the pairing defined by Schneider [8] (for i=1 and assuming that $H^1(\mathcal{O}_{\infty}, \mathscr{A}(p))^*$ is Λ -torsion and fulfills a certain semi-simplicity property).

Furthermore, we define an Iwasawa *L*-function in terms of characteristic polynomials of $T_4H^i(\mathcal{O}_{\infty}, \mathcal{A}(p))^*$:

$$\begin{split} L_p(A, \kappa, s) &= \prod_{i=0}^2 F_i(\kappa(\phi)^{s-1} - 1)^{(-1)^{i+1}}, \qquad s \in \mathbb{Z}_p, \\ F_i(t) &= p^{\mu_i} \det(t - (\phi - 1); T_A H^i(\mathcal{O}_{\infty}, \mathscr{A}(p))^* \otimes \mathbb{Q}_p), \end{split}$$

where κ is the character corresponding to k_{∞} , ϕ is a generator of Gal (k_{∞}/k) and μ_i is the μ -invariant of $H^i(\mathcal{O}_{\infty}, \mathscr{A}(p))^*$. In the ordinary case the pairing mentioned above leads to a functional equation for $L_p(\mathcal{A}, \kappa, s)$ with respect to $s \mapsto 2-s$. This generalizes a result of Schneider [8] and

Received July 1, 1987.

Mazur [4], since we do not assume $H^1(\mathcal{O}_{\infty}, \mathcal{A}(p))^*$ to be Λ -torsion.

In the supersingular case, i.e., if the *p*-rank of the reduction $\mathscr{A}/\kappa_{\mathfrak{p}}$ is zero for every prime \mathfrak{p} above *p*, the adjoint of $T_{A}H^{1}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*}$ can be identified with the dual of the kernel of the canonical map

$$H^{1}(\mathcal{O}_{\infty}, \mathscr{A}(p)) \longrightarrow \prod_{\mathfrak{p} \in \Sigma} H^{1}(k_{\infty \mathfrak{p}}, A(p))$$

where Σ denotes the set of primes ramified in k_{∞}/k . This generalizes a result for elliptic curves with complex multiplication obtained by Billot [2].

At the end of the paper we study how the pairing for an abelian variety A which is ordinary at p behaves on the two parts of the p-Selmer group given by the p-part of the Tate-Šafarevič group $\coprod_{\infty}(A)(p)$ and the "Mordell-Weil group" $A(k_{\infty}) \otimes Q_p/Z_p$. Assuming that the p-part of \coprod on each layer of k_{∞}/k is finite we obtain a quasi-isomorphism

$$T_{\mathfrak{z}} \coprod_{\mathfrak{z}} (A)(p) * \xrightarrow{\approx} \alpha(T_{\mathfrak{z}} \coprod_{\mathfrak{z}} (A)(p) *)$$

and a quasi-exact sequence

$$0 \longrightarrow T_{\nu} \coprod_{\infty} (A')(p)^{*} \longrightarrow \alpha(T_{A}(A(k_{\infty}) \otimes Q_{p}/Z_{p})^{*})$$
$$\longrightarrow T_{A}(A'(k_{\infty}) \otimes Q_{p}/Z_{p})^{*} \longrightarrow \alpha(T_{\nu} \coprod_{\infty} (A)(p)^{*}) \longrightarrow 0$$

where $T_{\nu}M$ and $T_{\delta}M$ of a compact Λ -module M of finite type are defined by $\varinjlim_{n} M^{r_{n}}$ and $T_{\delta}M = T_{\Lambda}M/T_{\nu}M$, respectively. In particular, if the group of Γ_{n} -invariants of $\coprod_{\infty}(A)(p)$ is infinite then A has a k_{n} -rational point of infinite order. As a corollary one obtains a non-degenerate pairing

$$A(k_{\infty}) \times A'(k_{\infty}) \longrightarrow \boldsymbol{Q}_{p},$$

if $(A(k_{\infty}) \otimes \mathbf{Q}_{p}/\mathbf{Z}_{p})^{*}$ is Λ -torsion and $\coprod_{\infty} (A)(p)^{\Gamma_{n}}$ is finite for all $n \geq 0$.

Finally I would like to thank the M.S.R.I. for its hospitality and the DFG (Heisenberg Programm) for support while this work was done.

§ 0. Notations

For an abelian group M let Tor M be the torsion subgroup and $M_{\text{Tor}} := M/\text{Tor } M$, let Div M be the maximal divisible subgroup and $M_{\text{Div}} := M/\text{Div } M$. For $m \in N$ let the groups $_m M$ and M_m be the kernel and cokernel of the multiplication by m, respectively, and put $M(p) = \lim_{m \to \infty} M$ for a prime number p.

For a commutative group scheme G we use contrary to the convention above the usual notation G_m for the kernel of the *m*-multiplication. For a Z_p -module M let $M^* = \text{Hom}(M, Q_p/Z_p)$ be the Pontrjagin dual of M. For a G-module M, G a group, M^g and M_g denote the invariants and coinvariants of G, respectively.

Throughout this paper the cohomology groups $H^{i}(S, \cdot)$ are taken with respect to the big fppf-site on a scheme S.

§ 1. Λ -modules

Let Γ be a pro-*p*-group isomorphic to Z_p and let $\Lambda = Z_p[\![\Gamma]\!]$ be the completed group ring of Γ . We also consider Λ as the ring of power series $Z_p[\![T]\!]$ over Z_p via the homeomorphism $\gamma \mapsto 1+T$, where γ is a generator of Γ .

Let M be a finitely generated compact Λ -module, then

$$T_{A}M$$
 and $T_{a}M$

denote the A-torsion submodule and the Z_p -torsion submodule of M, respectively. We define

$$F_AM := M/T_AM$$
 and $T_2M := T_AM/T_MM$.

Furthermore let Γ_n be the subgroup of Γ of index p^n and let

$$T_{\nu}M:=\varinjlim_{n}M^{\Gamma_{n}}$$
 and $T_{\delta}M:=T_{A}M/T_{\nu}M.$

If ξ_r denotes the irreducible polynomial of the p^r -th root of unity, then there is a quasi-isomorphism

$$T_{\nu}M \approx \bigoplus_{i} \Lambda/\xi_{i}$$
 for some polynomials ξ_{i} .

If

$$T_{\delta_{i+1}}M := T_{\delta}(T_{\delta_i}M)$$
 where $T_{\delta_1}M := T_{\delta}M$

then there must be an i_0 with $T_{\delta_{i_0+1}}M = T_{\delta_{i_0}}M$ and we define

$$T_{\delta_{\infty}}M := T_{\delta_{i_0}}M$$
 and $T_{\varepsilon}M := \ker(T_{A}M \to T_{\delta_{\infty}}M).$

Obviously the characteristic polynomial of $T_{\varepsilon}M$ is a product of polynomials ξ_r and $T_{\delta_{\infty}}M$ has no divisor ξ_r , $r \ge 0$. For a Λ -module M let \dot{M} be the Λ -module given by M with a new action of Γ

$$\gamma \cdot m := \gamma^{-1}m$$
 for $m \in M, \gamma \in \Gamma$.

If

$$\alpha(M) := \operatorname{Ext}_{4}^{1}(M, \Lambda).$$

denotes the adjoint of a compact Λ -torsion module M of finite type then according to [6] I.2.2 or [2] Corollaire 1.2, Remarque 3.4

$$\alpha(M) = \lim_{i} \operatorname{Hom}_{\boldsymbol{Z}_p}(M/\mathfrak{q}_i M, \boldsymbol{Q}_p/\boldsymbol{Z}_p) \approx M$$

where $\{q_i\}$ is a sequence of divisors disjoint from the annihilator of M such that $\cap q_i = 1$. If $0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$ is a quasi-exact sequence of compact Λ -torsion modules of finite type, then applying the contravariant functor α we obtain a quasi-exact sequence

$$0 \longrightarrow \alpha(M_3) \longrightarrow \alpha(M_2) \longrightarrow \alpha(M_1) \longrightarrow 0.$$

If *m* denotes the maximal ideal of Λ we get for a compact Λ -module *M* of finite type a quasi-isomorphism

 $\beta(M) := \lim \operatorname{Hom}(M/m^i M, \boldsymbol{Q}_p/\boldsymbol{Z}_p) \approx F_A M.$

Lemma 1.1. Let M be a compact Λ -module of finite type. Then there are quasi-isomorphisms

- (a) $\lim_{n,m} (_{p^m} M^*)_{\Gamma_n} \approx \alpha(T_{\lambda} M) \approx \dot{T}_{\lambda} M$
- (b) $\lim_{n,m} (M_{pm}^*)^{\Gamma_n} \approx \alpha(T_{\mu}M) \approx \dot{T}_{\mu}M$
- (c) $\lim_{n,m} (M^{*r_n})_{p^m} \approx \alpha(T_{\delta}M) \approx \dot{T}_{\delta}M$
- (d) $\lim_{n,m} \lim_{p^m} (M^*_{\Gamma^n}) \approx \alpha(T_{\nu}M) \approx \dot{T}_{\nu}M$
- (e) $\lim_{n,m} {}_{p^m} M^{*\Gamma_n} \approx \beta(F_A M) \approx F_A M$
- (f) $\lim_{n,m} M^*_{p^m \Gamma^n} \approx 0,$

where the limit is taken with respect to the p-multiplication resp. canonical surjection and the norm map resp. canonical surjection. Here and in the following we use the notation $\dot{T}_{-}(M) = T_{-}(\dot{M})$.

Proof. All assertions are obtained easily from the general structure theory of compact noetherian Λ -modules. So we will only indicate the proof of (c) and (d).

Since

$$\lim_{n,m} (M^{\Gamma_n})_{pm} = \lim_{m} (T_{\nu}M)_{pm}$$

it follows

$$\lim_{n,m} {}_{p^m}(M^*{}_{\Gamma^n}) \approx \lim_{m} \operatorname{Hom}(T_{\nu}M_{p^m}, Q_p/Z_p) \approx \dot{T}_{\nu}M.$$

In order to prove (c) we decompose M

$$M \approx \overline{M} \oplus T_{\mu}M$$
 with $T_{\mu}\overline{M} = 0$.

First we see

$$\underbrace{\lim_{n,m} ((T_{\mu}M)^{*r_n})_{pm} = \underbrace{\lim_{n}} \operatorname{Hom}(\underbrace{\lim_{m}}_{pm}((T_{\mu}M)_{r_n}), \boldsymbol{Q}_p/\boldsymbol{Z}_p) \\ = \underbrace{\lim_{n}} \operatorname{Hom}(T_{\mu}M_{r_n}, \boldsymbol{Q}_p/\boldsymbol{Z}_p) \approx \dot{T}_{\mu}M$$

and secondly the exact sequence

$$0 \longrightarrow \overline{M} \xrightarrow{p^m} \overline{M} \longrightarrow \overline{M}_{p^m} \longrightarrow 0$$

leads to an exact sequence

$$0 \longrightarrow (\overline{M}^{\Gamma_n})_{pm} \longrightarrow (\overline{M}_{pm})^{\Gamma_n} \longrightarrow_{pm} (\overline{M}_{\Gamma_n}) \longrightarrow 0.$$

Hence we obtain a quasi-exact sequence

$$0 \longrightarrow (\dot{T}_{\nu}\overline{M})^* \longrightarrow (\dot{T}_{\lambda}\overline{M})^* \longrightarrow \lim_{n,m} p^m(\overline{M}_{\Gamma_n}) \longrightarrow 0$$

(recall that the projective limit is an exact functor in the category of profinite groups). This proves (c).

§ 2. Duality theorems for abelian varieties

Let k be a number field and let A be an abelian variety defined over k. Let \mathscr{A} be its Néron model over the ring of integers \mathscr{O} of k and let \mathscr{A}^0 be the connected component of \mathscr{A} . By A' and \mathscr{A}' we denote the dual abelian variety and its Néron model, respectively. We say A has good (ordinary) reduction at a prime number p, if A has good (ordinary) reduction at all primes of k above p. Since A and A' are k-isogenous A' has in that case good (ordinary) reduction too.

Theorem 2.1. Let A be an abelian variety over k with good reduction at p.

(i) (Artin/Mazur) The cup product induces a perfect duality of finite groups

$$H^{i}(\mathcal{O}, \mathscr{A}_{p^{m}}) \times H^{\mathfrak{z}-i}(\mathcal{O}, \mathscr{A}'_{p^{m}}) \longrightarrow H^{\mathfrak{z}}(\mathcal{O}, \mathbf{G}_{m}) \xrightarrow{\sim} \mathbf{Q}/\mathbf{Z} \quad \text{for all } i \geq 0.$$

The above pairing induces the following perfect pairings

- (ii) $H^{1}(\mathcal{O}, \mathscr{A}^{0})(p)_{\text{Div}} \times H^{1}(\mathcal{O}, \mathscr{A}')(p)_{\text{Div}} \longrightarrow Q/Z,$
- (iii) (Cassels/Tate)

$\amalg (A)(p)_{\mathrm{Div}} \times \amalg (A')(p)_{\mathrm{Div}} \longrightarrow \mathbf{Q}/\mathbf{Z}.$

Remark. A proof of (i) is given in an unpublished paper of Artin and Mazur [1] and also by Milne [15] III. Corollary 3.2. The assertion (ii) is proved by Schneider [7] § 6 Lemma 3 (observe that $H^1(\mathcal{O}, \mathcal{A}(p))_{\text{Div}} =$ $H^1(\mathcal{O}, \mathcal{A})(p)_{\text{Div}}$). The perfect duality for the Tate-Šafarevič groups was announced by Tate in [10]. A proof can be found in [5] I. Theorem 6.13, II. Theorem 5.6.

We will shortly indicate, how this also follows from the flat duality theorem and a duality theorem of Grothendieck. The exact sequence

 $0 \longrightarrow \mathscr{A}^{0} \longrightarrow \mathscr{A} \longrightarrow \mathscr{F} \longrightarrow 0$

defines a skyscraper sheaf \mathcal{F} . The stalk

$$\mathcal{F}_x = \pi_0(\mathscr{A}_x) \quad \text{for } x \in \mathcal{O}$$

is the group of connected components of $\mathscr{A}_x = \mathscr{A} \times_{\mathscr{O}} \kappa(x)$. According to [4], Appendix, the image of the middle map in the exact cohomology sequence

$$H^{0}(\mathcal{O}, \mathscr{F}) \longrightarrow H^{1}(\mathcal{O}, \mathscr{A}^{0}) \longrightarrow H^{1}(\mathcal{O}, \mathscr{A}) \longrightarrow H^{1}(\mathcal{O}, \mathscr{F})$$

is $\coprod(A)$. Therefore we obtain a commutative and exact diagram

$$\begin{array}{cccc} H^{1}(\mathcal{O}, \mathcal{F}')(p) \times H^{0}(\mathcal{O}, \mathcal{F})(p) \longrightarrow \bigoplus H^{1}(\kappa(x), \mathbf{Q}/\mathbf{Z}) \\ & \uparrow & \downarrow^{\delta} & \downarrow^{\delta} \\ H^{1}(\mathcal{O}, \mathcal{A}')(p)_{\mathrm{Div}} \times H^{1}(\mathcal{O}, \mathcal{A}^{0})(p)_{\mathrm{Div}} \longrightarrow H^{3}(\mathcal{O}, \mathbf{G}_{m}) \\ & \uparrow & \downarrow \\ & \coprod (\mathcal{A}')(p)_{\mathrm{Div}} & \coprod (\mathcal{A})(p)_{\mathrm{Div}} . \\ & \uparrow & \downarrow \\ & 0 & 0 \end{array}$$

The vertical exact sequences are induced by the exact sequence above: observe that

$$H^{i}(\mathcal{O}, \mathscr{F})(p) = \bigoplus_{x} H^{i}(\kappa(x), \pi_{0}(\mathscr{A}_{x}))(p) = \bigoplus_{x} H^{i}(\kappa(x), \pi_{0}(\mathscr{A}_{x})(p))$$

is a finite group. The right vertical map δ is defined by the exact divisor sequence

$$0 \longrightarrow \mathbf{G}_{m/o} \longrightarrow g_*\mathbf{G}_{m/k} \longrightarrow \bigoplus_x (i_x)_*\mathbf{Z} \longrightarrow 0$$

(g: Spec $k \rightarrow$ Spec \mathcal{O} and i_x : Spec $\kappa(x) \rightarrow$ Spec \mathcal{O}) under consideration of

$$H^{1}(\kappa(x), Q/Z) = H^{2}(\kappa(x), Z) = H^{2}(\mathcal{O}, (i_{x})_{*}Z).$$

The pairing at the top is defined as follows: By SGA 7 IX 11.3.1 we have a perfect duality

$$\pi_0(\mathscr{A}'_x)(p) \times \pi_0(\mathscr{A}_x)(p) \longrightarrow Q/Z$$

(observe $p \neq \text{char } \kappa(x)$). Now it is easy to check that the induced pairing

$$\bigoplus_{x} H^{0}(\kappa(x), \pi_{0}(\mathscr{A}'_{x})(p)) \times \bigoplus_{x} H^{1}(\kappa(x), \pi_{0}(\mathscr{A}_{x})(p)) \longrightarrow \bigoplus_{x} H^{1}(\kappa(x), \mathbb{Q}/\mathbb{Z})$$

coincides with the pairing given by (ii) via δ . Therefore we obtain a perfect duality for the Tate-Šafarevič group.

Now let k_{∞} be a \mathbb{Z}_p -extension of k and let k_n be the *n*-th layer of k_{∞}/k . Let \mathcal{O}_n and \mathcal{O}_{∞} be the ring of integers of k_n and k_{∞} , respectively. We denote by Σ the finite set of primes of k which are ramified in k_{∞} (and which therefore lie above p).

Theorem 2.2. Let A be an abelian variety over k with good reduction at p. Then the flat duality induces quasi-isomorphisms

(i)
$$\alpha(H^0(\mathcal{O}_{\infty}, \mathscr{A}(p))^*) \approx T_A H^2(\mathcal{O}_{\infty}, \mathscr{A}'(p))^*$$

(ii)
$$\beta(F_{\mathcal{A}}(H^{1}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*}) \approx F_{\mathcal{A}}H^{2}(\mathcal{O}_{\infty}, \mathscr{A}'(p))^{*} \oplus \Lambda^{*}$$

and a quasi-exact sequence

$$0 \longrightarrow F_{A}H^{2}(\mathcal{O}_{\omega}, \mathscr{A}'(p))^{*} \longrightarrow \beta(F_{A}H^{1}(\mathcal{O}_{\omega}, \mathscr{A}(p))^{*})$$

$$\bigoplus_{\mathfrak{p} \in \mathcal{Z}} (A'(k_{\omega\mathfrak{p}})/N'_{\mathfrak{p}} \otimes \mathcal{Q}_{p}/Z_{p})^{*}$$

$$0 \leftarrow \beta(F_{A}H^{2}(\mathcal{O}_{\omega}, \mathscr{A}(p))^{*}) \oplus \alpha(T_{A}H^{1}(\mathcal{O}_{\omega}, \mathscr{A}^{0}(p))^{*}) \leftarrow H^{1}(\mathcal{O}_{\omega}, \mathscr{A}(p))^{*}$$

where the third term is quasi-isomorphic to
$$\Lambda^{2s}$$
,

$$s = \sum_{\mathfrak{p} \in \mathcal{I}} (\dim A - r_{\mathfrak{p}}) [k_{\mathfrak{p}}; \mathbf{Q}_{p}]$$

$$r_{\mathfrak{p}} = p \text{-rank of the reduction } \mathcal{A}/\kappa(\mathfrak{p})$$

and where N_n denotes the group of "universal norms in $A(k_{\infty p})$ "

$$N_{\mathfrak{p}} = \bigcup_{n} \bigcap_{m \ge n} N_{k_{m\mathfrak{p}}/k_{n\mathfrak{p}}}(A(k_{m\mathfrak{p}})).$$

In particular, the above sequence induces a quasi-exact sequence

$$0 \longrightarrow \Lambda^{s} \longrightarrow \Lambda^{2s} \longrightarrow \Lambda^{s} \oplus T_{A}H^{1}(\mathcal{O}_{\infty}, \mathscr{A}'(p))^{*} \longrightarrow \dot{T}_{A}H^{1}(\mathcal{O}, \mathscr{A}^{0}(p))^{*} \longrightarrow 0.$$

Remark 2.3. (i) If k_{∞} is the cyclotomic \mathbb{Z}_p -extension it is conjectured that $F_A H^2(\mathcal{O}_{\infty}, \mathscr{A}(p))^* \approx 0$. This is proved for elliptic curves with complex multiplication by an order in an imaginary quadratic field K defined over an abelian extension of K with good ordinary reduction at p, see [3] Proposition 15, and in the case that the reduction of the abelian variety A/k is supersingular for every \mathfrak{p}/p and the Iwasawa- μ -invariant of $k(A_p)$ is zero, [9] Theorem 5, Remark 1.

(ii) The canonical map

$$H^{i}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*} \longrightarrow H^{i}(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p))^{*}$$

is a quasi-isomorphism except for the μ -part if i=1. Indeed, we have

$$H^{r}(\mathscr{O}_{\infty},\mathscr{F}(p))^{*} = \varprojlim_{n} \bigoplus_{x \in B} H^{r}(\kappa(x), \pi_{0}(\mathscr{A}_{x})(p))^{*}$$
$$\cong \bigoplus_{x \in B} \bigoplus_{j} \mathbb{Z}/p^{n_{j}(x)}\llbracket\Gamma\rrbracket$$

where B is the set of all bad primes $x \in O$ splitting completely in k_{∞}/k and the integers $n_{*}(x)$ for $x \in B$ are given by

$$H^{r}(\kappa(x), \pi_{0}(\mathscr{A}_{x})(p))^{*} \cong \bigoplus_{i} \mathbb{Z}/p^{n_{j}(x)}.$$

In order to prove Theorem 2.2 we need

Lemma 2.4. Let N be a discrete Γ -module. (i) There are isomorphisms

$$H^{1}(\Gamma, N_{\text{Tor}}) \cong (N \otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{\Gamma}/((N_{\text{Tor}})^{\Gamma} \otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p}).$$
$$H^{2}(\Gamma, N) \cong (N \otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})_{\Gamma}.$$

(ii) Let $(N \otimes Q_p/Z_p)^*$ be a Λ -module of finite type. Then there is a quasi-exact sequence

$$0 \longrightarrow \lim_{n,m} (N_{\mathrm{Tor}})^{\Gamma_n} \otimes \mathbb{Z}_p \longrightarrow \beta(F_{\mathcal{A}}(N \otimes \mathbb{Q}_p/\mathbb{Z}_p)^*) \longrightarrow \lim_{n,m} {}_{p^m} H^1(\Gamma_n, N_{\mathrm{Tor}}) \longrightarrow 0$$

Proof. Taking cohomology of the exact sequence

$$0 \longrightarrow N_{\text{Tor}} \longrightarrow N_{\text{Tor}} \otimes Z\left[\frac{1}{p}\right] \longrightarrow N \otimes Q_p/Z_p \longrightarrow 0$$

leads to an exact sequence

Duality Theorems

$$0 \longrightarrow N_{\text{Tor}}^{\Gamma} \longrightarrow N_{\text{Tor}}^{\Gamma} \otimes Z\left[\frac{1}{p}\right] \longrightarrow (N \otimes Q_p/Z_p)^{\Gamma} \longrightarrow H^1(\Gamma, N_{\text{Tor}}) \longrightarrow 0$$

and an isomorphism

$$H^{2}(\Gamma, N) = H^{2}(\Gamma, N_{\text{Tor}}) \cong H^{1}(\Gamma, N \otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p}) \cong (N \otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})_{\Gamma}.$$

This proves (i). Taking Γ_n instead of Γ and applying the projective limit to the exact sequence

$$0 \longrightarrow_{p^m} (N_{\operatorname{Tor}}^{\Gamma_n} \otimes \boldsymbol{\mathcal{Q}}_p / \boldsymbol{Z}_p) \longrightarrow_{p^m} (N \otimes \boldsymbol{\mathcal{Q}}_p / \boldsymbol{Z}_p)^{\Gamma_n} \longrightarrow_{p^m} H^1(\Gamma_n, N_{\operatorname{Tor}}) \longrightarrow 0$$

implies the result (ii).

Proof of Theorem 2.2. From the global flat duality theorem we obtain a perfect pairing

$$\varprojlim_{n,m} H^{i}(\mathcal{O}_{n}, \mathscr{A}_{p^{m}}) \times H^{i-i}(\mathcal{O}_{\infty}, \mathscr{A}'(p)) \xrightarrow{\bigcup} \varprojlim_{n,m} H^{i}(\mathcal{O}_{n}, \boldsymbol{G}_{m}) \cong \boldsymbol{Q}/\boldsymbol{Z}$$

where the projective limits are taken with respect to the norm map and the multiplication by p. In order to compute $\lim_{n,m} H^i(\mathcal{O}_n, \mathscr{A}_{p^m})$ we consider the descent diagram [8] p. 332, [7] Lemmas 6.1, 6.3:

$$0 \longrightarrow H^{1}(\Gamma_{n}, \mathscr{A}_{pm}(k_{\infty})) \longrightarrow H^{1}(\mathcal{O}_{n}, \mathscr{A}_{pm}) \longrightarrow H^{1}(\mathcal{O}_{\infty}, \mathscr{A}_{pm})^{\Gamma_{n}} \longrightarrow 0$$

$$\bigoplus_{\gamma \in \mathbb{Z}} \mathcal{P}^{m}H^{1}(\Gamma_{np}, \mathcal{A}(k_{\infty p})) \longrightarrow H^{1}(\mathcal{O}_{\infty}, \mathscr{A}_{pm})^{\Gamma_{n}} \longrightarrow 0$$

$$H^{2}(\mathcal{O}_{n}, \mathscr{A}_{pm}) \longrightarrow H^{2}(\mathcal{O}_{\infty}, \mathscr{A}_{pm})^{\Gamma_{n}} \longrightarrow 0.$$

Here $H^i(\mathcal{O}_{\infty}/\mathcal{O}_n, -)$ denotes the equivariant cohomology, [7] Appendix, and $\Gamma_{n\mathfrak{p}}$ is the decomposition group of Γ_n with respect to \mathfrak{p} . We calculate the projective limit of the finite groups in the diagram:

$$\lim_{n,m} H^{i}(\mathcal{O}_{n},\mathscr{A}_{p^{m}}) \cong H^{3-i}(\mathcal{O}_{\infty},\mathscr{A}'(p))^{*},$$

$$\lim_{n,m} H^{i}(\Gamma_{n}, H^{j}(\mathcal{O}_{\infty}, \mathscr{A}_{pm})) \cong \lim_{n,m} H^{i}(\Gamma_{n}, H^{j}(\mathcal{O}_{\infty}, \mathscr{A}_{pm}^{0})).$$

The exact Kummer sequence, SGA 7 IX 2.2.1

$$0 \longrightarrow \mathscr{A}^{0}_{pm} \longrightarrow \mathscr{A}^{0}(p) \xrightarrow{p^{m}} \mathscr{A}^{0}(p) \longrightarrow 0$$

implies an exact sequence

$$0 \longrightarrow H^{i-1}(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p))_{pm} \longrightarrow H^{i}(\mathcal{O}_{\infty}, \mathscr{A}^{0}_{pm}) \longrightarrow_{pm} H^{i}(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)) \longrightarrow 0$$

and therefore we obtain an exact sequence

$$0 \longrightarrow (H^{i-1}(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p))_{p^{m}})^{\Gamma_{n}} \longrightarrow H^{i}(\mathcal{O}_{\infty}, \mathscr{A}^{0}_{p^{m}})^{\Gamma_{n}}$$
$$\longrightarrow_{p^{m}} H^{i}(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p))^{\Gamma_{n}} \longrightarrow H^{i-1}(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p))_{p^{m}\Gamma_{n}}$$
$$\longrightarrow H^{i}(\mathcal{O}_{\infty}, \mathscr{A}^{0}_{p^{m}})_{\Gamma_{n}} \longrightarrow (_{p^{m}} H^{i}(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)))_{\Gamma_{n}} \longrightarrow 0.$$

By Lemma 1.1 we obtain quasi-isomorphisms

$$\begin{split} & \varprojlim_{n,m} H^i(\mathcal{O}_{\omega}, \mathscr{A}^0_{p^m})^{\Gamma_n} \approx \alpha(T_{\mu}H^{i-1}(\mathcal{O}_{\omega}, \mathscr{A}^0(p))^*) \oplus \beta(F_A H^i(\mathcal{O}_{\omega}, \mathscr{A}^0(p))^*), \\ & \varprojlim_{n,m} H^i(\mathcal{O}_{\omega}, \mathscr{A}^0_{p^m})_{\Gamma_n} \approx \alpha(T_{\lambda}H^i(\mathcal{O}_{\omega}, \mathscr{A}^0(p))^*) \end{split}$$

inducing quasi-isomorphisms

$$\lim_{n,m} H^i(\mathcal{O}_{\infty}/\mathcal{O}_n, \mathscr{A}_{pm}^0) \approx \alpha(T_{\mathcal{A}}H^{i-1}(\mathcal{O}_{\infty}, \mathscr{A}^0(p))^*) \oplus \beta(F_{\mathcal{A}}H^i(\mathcal{O}_{\infty}, \mathscr{A}(p))^*).$$

Next, for $\mathfrak{p} \in \Sigma$ we want to show

Claim 1.
$$\lim_{n,m} {}_{pm}H^{1}(\Gamma_{n}, A(k_{\infty \mathfrak{p}})) \cong (A'(k_{\infty \mathfrak{p}})/N'_{\mathfrak{p}} \otimes \mathcal{Q}_{p}/\mathcal{Z}_{p})^{*}$$
$$\approx \mathbb{Z}_{p} \llbracket \Gamma_{\mathfrak{p}} \rrbracket^{2(\dim A - r_{\mathfrak{p}})[k_{\mathfrak{p}}:\mathcal{Q}_{p}]}$$

Proof. According to [12], Theorem 2.2 the group

$$H^{2}((\Gamma_{\mathfrak{p}})_{n}, A(k_{\infty\mathfrak{p}})) \cong (A(k_{\mathfrak{op}}) \otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})_{(\Gamma_{n})_{n}}$$

(Lemma 2.4.i) is of finite order independent of n, n big enough. Therefore we obtain a quasi-exact sequence:

$$0 \longrightarrow \varprojlim_{n,m} {}_{p^m} H^1((\Gamma_{\mathfrak{p}})_n, A(k_{\infty\mathfrak{p}})) \longrightarrow \varprojlim_{n,m} {}_{p^m} H^1(k_{\mathfrak{p}n}, A)$$
$$\longrightarrow \varprojlim_{n,m} {}_{p^m} H^1(k_{\infty\mathfrak{p}}, A)^{(\Gamma_{\mathfrak{p}})_n} \longrightarrow \varprojlim_{n,m} H^1((\Gamma_{\mathfrak{p}})_n, A(k_{\infty\mathfrak{p}}))_{p^m}.$$

Again by [12] Theorem 2.2 the modules

Duality Theorems

$$\lim_{n,m} {}_{pm} H^1(k_{\mathfrak{p}n}, A) \cong (\lim_{n,m} A'(k_{\mathfrak{p}n})_{pm})^* = (A'(k_{\infty\mathfrak{p}}) \otimes \mathcal{Q}_{\mathfrak{p}}/\mathcal{Z}_p)^*,$$

$$\lim_{n,m} {}_{pm} H^1(k_{\infty\mathfrak{p}}, A)^{(\Gamma_{\mathfrak{p}})_n} \approx \beta (H^1(k_{\infty\mathfrak{p}}, A)^*) \approx F_A H^1(k_{\infty\mathfrak{p}}, A)^*$$

are quasi-free of rank $(2 \dim A - r_{\nu})[k_{\nu}; Q_{\nu}]$ and $r_{\nu}[k_{\nu}; Q_{\nu}]$, respectively. Since the fourth module in the sequence above is $Z_{\nu}[\Gamma_{\nu}]$ -torsion we prove Claim 1.

Now the proof of the theorem will be accomplished once we have shown the quasi-surjectivity of the map

$$\psi = \lim_{n,m} \psi_{n,m} \colon \lim_{n,m} H^2(\mathcal{O}_n, \mathscr{A}_{p^m}) \longrightarrow \lim_{n,m} H^2(\mathcal{O}_m, \mathscr{A}_{p^m}).$$

(Observe that $F_A H^2(\mathcal{O}_{\infty}, \mathscr{A}(p))^*$ can be divided out of the first exact sequence in 2.2 (iii) in order to obtain the second, since a quasi-exact sequence $0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0$ of compact Λ -modules of finite type induces a quasi-exact sequence

$$0 \longrightarrow M_1 \longrightarrow \ker(M_2 \longrightarrow F_A M_3) \longrightarrow T_A M_3 \longrightarrow 0.)$$

Now, according to [8] Lemma 3 we have a commutative and exact diagram

where $Y_n = \mathcal{O}_n \setminus \Sigma_n$. If $A_{n,m}^i$ and $B_{n,m}^i$ denote the kernel and cokernel of the map $\varphi_{n,m}$ and $C_{n,m}^i$ and $D_{n,m}^i$ the kernel and cokernel of $\psi_{n,m}$, respectively, then we obtain exact sequences

$$0 \longrightarrow B^{i}_{n,m} \longrightarrow D^{i}_{n,m} \longrightarrow A^{i+1}_{n,m} \longrightarrow C^{i+1}_{n,m} \longrightarrow 0.$$

Claim 2. $\lim_{n,m} B_{n,m}^2 \approx 0.$

Proof. Because

$$\begin{split} H^2_{\Sigma_n}(\mathcal{O}_n, \mathscr{A}_{pm}) &= \bigoplus_{\mathfrak{p} \in \Sigma_n} {}_{pm} H^1(k_{n\mathfrak{p}}, A), \\ H^2_{\Sigma_n}(\mathcal{O}_{\infty}/\mathcal{O}_n, \mathscr{A}_{pm}) &= \bigoplus_{\mathfrak{p} \in \Sigma_n} {}_{pm} H^1(k_{\infty\mathfrak{p}}, A)^{\Gamma_{n\mathfrak{p}}}, \end{split}$$

[4] 5.1, 5.2 and [8] Lemma 7, we have

$$B_{n,m}^{2} = \bigoplus_{\mathfrak{p} \in \mathfrak{T}_{n}} \operatorname{coker}(_{\mathfrak{p}m} H^{1}(k_{n\mathfrak{p}}, A) \longrightarrow_{\mathfrak{p}m} H^{1}(k_{\infty\mathfrak{p}}, A)^{\Gamma_{n\mathfrak{p}}}).$$

Hence by the exact sequence in the proof of Claim 1:

$$\lim_{n,m} B_{n,m}^2 \subseteq \lim_{n,m} H^1(\Gamma_{n\mathfrak{p}}, A(k_{\infty\mathfrak{p}}))_{pm}.$$

From Lemma 2.4 (i) we obtain a surjection

$$((A(k_{\infty \mathfrak{p}}) \otimes \boldsymbol{Q}_p / \boldsymbol{Z}_p)^{\Gamma_{n \mathfrak{p}}})_{pm} \longrightarrow H^1(\Gamma_{n \mathfrak{p}}, A(k_{\infty \mathfrak{p}})_{\mathrm{Tor}})_{pm}.$$

Because

$$\underbrace{\lim_{n,m} H^{1}(\Gamma_{n\mathfrak{p}}, \operatorname{Tor}(A(k_{\infty\mathfrak{p}})))_{\mathfrak{p}m} \approx 0,}_{n,m} ((A(k_{\infty\mathfrak{p}}) \otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{\Gamma_{n\mathfrak{p}}})_{\mathfrak{p}m} \approx \dot{T}_{\delta}(A(k_{\infty\mathfrak{p}}) \otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{*} \approx 0$$

by Lemma 1.1 and [12] Theorem 2.2 we obtain

$$\lim_{n,m} H^1(\Gamma_{n\mathfrak{p}}, A(k_{\infty\mathfrak{p}}))_{\mathfrak{p}m} \approx 0$$

proving Claim 2.

Claim 3. $\lim_{n,m} A_{n,m}^{3}$ and $\lim_{n,m} C_{n,m}^{3}$ are finitely generated \mathbb{Z}_{p} -modules of the same rank.

Proof. We have the (quasi-) isomorphisms

$$\begin{split} \lim_{n,m} H^3_{\Sigma_n}(\mathcal{O}_n, \mathscr{A}_{p^m}) \cong (\lim_{n,m} \bigoplus_{\mathfrak{p} \in \Sigma_n} H^0(\mathcal{O}_{n\mathfrak{p}}, \mathscr{A}'_{p^m}))^* = \bigoplus_{\mathfrak{p} \in \Sigma} A'(k_{\infty\mathfrak{p}})(p)^*, \\ \lim_{n,m} H^3_{\Sigma_n}(\mathcal{O}_\infty/\mathcal{O}_n, \mathscr{A}_{p^m}) \cong \lim_{n,m} \bigoplus_{\mathfrak{p} \in \Sigma_n} (_{p^m} H^1(k_\infty A))_{\Gamma_{n\mathfrak{p}}} \approx \bigoplus_{\mathfrak{p} \in \Sigma} \dot{T}_\lambda H^1(k_{\infty\mathfrak{p}}, A)^* \\ \approx \bigoplus_{\mathfrak{p} \in \Sigma} T_\lambda A'(k_{\infty\mathfrak{p}})(p)^* \approx \bigoplus_{\mathfrak{p} \in \Sigma} A'(k_{\infty\mathfrak{p}})(p)^* \end{split}$$

(by local flat duality, Lemma 1.1, [12] Theorem 2.2 and Theorem 3.4),

$$\begin{split} & \varinjlim_{n,m} H^{3}(\mathcal{O}_{n}, \mathscr{A}_{pm}) \cong A'(k_{\infty})(p)^{*}, \\ & \varinjlim_{n,m} H^{3}(\mathcal{O}_{\infty}/\mathcal{O}_{n}, \mathscr{A}_{pm}) \cong \varinjlim_{n,m} H^{2}(\mathcal{O}_{\infty}, \mathscr{A}_{pm})_{\Gamma_{n}} \approx \varinjlim_{n,m} (_{pm}H^{2}(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)))_{\Gamma_{n}} \\ & \approx \dot{T}_{1}H^{2}(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p))^{*} \approx A'(k_{\infty})(p)^{*} \end{split}$$

(by Lemma 1.1 and the assertion (i) of this theorem proven above). Because $A_{n,m}^4 = 0$ there is an isomorphism

$$\lim_{n,m} B^3_{n,m} \cong \lim_{n,m} D^3_{n,m}.$$

Together with the quasi-isomorphisms above this proves Claim 3.

Now, from Claims 2 and 3 it follows

$$\operatorname{coker} \psi = \lim_{n,m} \operatorname{coker} \psi_{n,m} = \lim_{n,m} D_{n,m}^2 \approx 0.$$

This completes the proof of Theorem 2.2.

Corollary 2.5. Let A be an abelian variety over k with good supersingular reduction at every prime above p. Assume $H^2(\mathcal{O}_{\infty}, \mathcal{A}(p))^*$ to be a Λ -torsion module. Then the Pontrjagin dual of the kernel of the canonical map

$$H^{1}(\mathcal{O}_{\infty}, \mathscr{A}(p)) \longrightarrow \prod_{\mathfrak{p} \in \Sigma} H^{1}(k_{\infty\mathfrak{p}}, A(p))$$

is quasi-isomorphic to $\dot{T}_{A}H^{1}(\mathcal{O}_{\infty}, \mathscr{A}'(p))^{*}$.

This result is also obtained by Billot [2] for elliptic curves which have complex multiplication. The Corollary 2.5 follows easily from the theorem, because the above map is dual to the projective limit of the maps

$$\bigoplus_{\mathfrak{p}\in \mathfrak{L}_n} H^1(k_{n\mathfrak{p}}, A'_{p\mathfrak{m}}) \longrightarrow \bigoplus_{\mathfrak{p}\in \mathfrak{L}_n} {}_{p\mathfrak{m}} H^1(k_{n\mathfrak{p}}, A')$$

$$\longleftrightarrow_{\mathfrak{p}\in \mathfrak{L}_n} {}_{p\mathfrak{m}} H^1(\Gamma_{n\mathfrak{p}}, A(k_{\mathfrak{o}\mathfrak{p}})) \longrightarrow H^2(\mathcal{O}_n, \mathscr{A}_{p\mathfrak{m}}).$$

Observe that the middle map is an isomorphism, i.e., the universal norms $NA(k_{np})$ are zero in the supersingular case, [9] Theorem 1. We conclude this section with some easy consequences of the assumption that $\coprod_n = \coprod (A(k_n))(p)$ is finite for all n.

Proposition 2.6. Let \coprod_n be finite for all n. Then

i) $\operatorname{rank}_{A} H^{2}(\mathcal{O}_{\infty}, \mathcal{A}(p))^{*} \leq \operatorname{rank}_{A} (A(k_{\infty}) \otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{*},$

ii) $\operatorname{rank}_{A} \coprod_{\infty}^{*} \leq \sum_{y \in Y} (\dim A - r_{y})[k_{y}; \boldsymbol{Q}_{p}] = s.$

Corollary 2.7. Let \coprod_n be finite for all n. If $(A(k_{\infty}) \otimes \mathbf{Q}_p / \mathbf{Z}_p)^*$ is a Λ -torsion module, then $\operatorname{rank}_A H^2(\mathcal{O}_{\infty}, \mathcal{A}(p))^* = 0$ and $\operatorname{rank}_A \coprod_{\infty}^* = s$.

Proof. Because of

$$\operatorname{rank}_{A}(A(k_{\infty})\otimes Q_{n}/Z_{n})^{*} + \operatorname{rank}_{A}\coprod_{\infty}^{*} = s + \operatorname{rank}_{A}H^{2}(\mathcal{O}_{\infty}, \mathcal{A}(p))^{*},$$

[8] Lemma 2.2, the second assertion follows from the first. Now, since $\coprod (A(k_n))(p)$ is finite for all n, we obtain by the flat duality theorem and [8] Lemma 1.4 an isomorphism

$$\lim_{n} \mathscr{A}^{0}(\mathcal{O}_{n}) \otimes \mathbb{Z}_{p} \cong \lim_{n,m} H^{1}(\mathcal{O}_{n}, \mathscr{A}_{p^{m}}) \cong H^{2}(\mathcal{O}_{\infty}, \mathscr{A}'(p))^{*}.$$

Hence

$$\operatorname{rank}_{A} H^{2}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*} = \operatorname{rank}_{A} \varprojlim_{n} \mathscr{A}^{0}(\mathcal{O}_{n}) \otimes \mathbb{Z}_{p}$$
$$= \operatorname{rank}_{A} \varprojlim_{n} \mathbb{A}(k_{n}) \otimes \mathbb{Z}_{p} \qquad \text{(see Remark 2.3 ii)}$$
$$\leq \operatorname{rank}_{A} F_{A}(\mathbb{A}(k_{\infty}) \otimes \mathbb{Q}_{p}/\mathbb{Z}_{p})^{*}$$

by Lemma 2.4 (ii).

§ 3. Ordinary reduction

In this section we will consider abelian varieties which have ordinary good reduction at p. As a direct consequence of Theorem 2.2 we obtain the following result

Theorem 3.1. Let A be an abelian variety with ordinary good reduction at p. Then for $i \ge 0$ there are quasi-isomorphisms induced by the global flat duality

$$T_{A}H^{i}(\mathcal{O}_{\infty}, \mathscr{A}'(p))^{*} \approx \alpha(T_{A}H^{2-i}(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p))^{*}),$$

$$F_{A}H^{i}(\mathcal{O}_{\infty}, \mathscr{A}'(p))^{*} \approx \beta(F_{A}H^{3-i}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*}).$$

Remark 3.2. The quasi-isomorphism

$$T_{\lambda}H^{i}(\mathcal{O}_{\infty}, \mathscr{A}'(p))^{*} \approx \alpha(T_{\lambda}H^{2-i}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*})$$

can be understood as pairing

$$T_{\lambda}H^{i}(\mathcal{O}_{\infty},\mathscr{A}'(p))^{*}\times T_{\lambda}H^{2-i}(\mathcal{O}_{\infty},\mathscr{A}(p))^{*}\longrightarrow \mathbb{Z}_{p}$$

with finite kernels. Indeed, the quasi-isomorphism is obtained from the discrete-compact pairing

$$\begin{array}{cccc} H^{i}(\mathcal{O}_{\infty}, \mathscr{A}'(p)) & \times \varprojlim_{n,m} H^{3-i}(\mathcal{O}_{n}, \mathscr{A}_{pm}) \longrightarrow \mathcal{Q}_{p}/\mathcal{Z}_{p} \\ & & \downarrow \approx \\ (T_{\mathcal{A}}H^{i}(\mathcal{O}_{\infty}, \mathscr{A}'(p))^{*})^{*} & \varinjlim_{n,m} H^{3-i}(\mathcal{O}_{\infty}/\mathcal{O}_{n}, \mathscr{A}_{pm}) \\ & & \uparrow \approx \\ & & \uparrow \approx \\ (T_{\mathcal{A}}H^{i}(\mathcal{O}_{\infty}, \mathscr{A}'(p))^{*})^{*} & \alpha(T_{\mathcal{A}}H^{2-i}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*}) \end{array}$$

According to [11] Lemma 7.6 we obtain a pairing of compact Λ -modules. Now let

$$\kappa: G_k \longrightarrow Z_p^*$$

be the continuous character of the absolute Galois group of k corresponding to the Z_p -extension k_{∞}/k and let ϕ be a generator of $\Gamma = G(k_{\infty}/k)$. We define an Iwasawa L-function of A with respect to κ by

$$L_p(A, \kappa, s) = \prod_{i\geq 0} F_i(\kappa(\phi)^{s-1} - 1)^{(-1)^{i+1}}, \quad s \in \mathbb{Z}_p,$$

where

$$F_i(t) = p^{\mu_i} \det(t - (\phi - 1); T_A H^i(\mathcal{O}_{\infty}, \mathcal{A}(p))^* \otimes \mathbf{Q}_p)$$

is the characteristic polynomial of the Λ -torsion module $T_{d}H^{i}$ and μ_{i} denotes the μ -invariant of $H^{i}(\mathcal{O}_{\infty}, \mathcal{A}(p))^{*}$ (see also [8]§2, where L_{p} is defined assuming that $H^{i}(\mathcal{O}_{\infty}, \mathcal{A}(p))$ is a Λ -torsion module). Using a polarization we obtain from Theorem 3.1 and [4] Lemma 7.1 a quasiisomorphism

$$T_{i}H^{i}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*} \approx T_{i}H^{2-i}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*}, \quad i \geq 0,$$

which implies the following result

Corollary 3.3. Let A be an abelian variety with good ordinary reduction at p. Then the Iwasawa L-function satisfies a functional equation with respect to $s \mapsto 2-s$:

$$L_n(A, \kappa, s) = \varepsilon \cdot \kappa(\phi)^{(s-1)(2\lambda_0 - \lambda_1)} L_n(A, \kappa, 2-s),$$

where

$$\lambda_i = \operatorname{rank}_{Z_p} T_{\lambda} H^i(\mathcal{O}_{\infty}, \mathscr{A}(p))^*$$

$$\varepsilon = (-1)^r, \qquad r = \operatorname{ord}_{t=0} F_1(t).$$

Remark. The above corollary generalizes a result of Mazur and Schneider [4] Corollary 7.8, [8] p. 342, where k_{∞}/k is an admissible \mathbb{Z}_p -extension, i.e., the bad primes split only finitely in k_{∞}/k and $H^i(\mathcal{O}_{\infty}, \mathcal{A}(p))^*$ are assumed to be Λ -torsion modules.

Proposition 3.4. If A has good ordinary reduction at p and \coprod_n is finite for all n, then \coprod_{∞}^* is a Λ -torsion module.

This is a direct consequence of Proposition 2.6 (ii).

Proposition 3.5. Let A be ordinary at p and let \coprod_n be finite for all n. Then

 $T_{\delta}(A(k_{\infty})\otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{*}\approx 0,$

i.e.,

$$(A(k_{\infty})\otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{*} \approx \Lambda^{\rho_{2}} \oplus \oplus \Lambda/\xi_{i}$$

for some polynomials ξ_i and $\rho_2 = \operatorname{rank}_A H^2(\mathcal{O}_{\infty}, \mathcal{A}(p))^*$.

Remark 3.6. This result should hold true without any conditions. For trivial reasons one also obtains this assertion if $(A(k_{\infty}) \otimes Q_p/Z_p)^*$ is a Λ -torsion module: Since $A(k_{\infty})$ is a discrete Γ -module, it is easy to see that $(A(k_{\infty}) \otimes Q_p/Z_p)^*$ is fixed under the action of Γ_n , *n* big enough. Indeed, for $m \ge n$ there are injections

Lemma 2.4 (i). Since $A(k_{\infty})_{\text{Tor}}$ is discrete, i.e., $A(k_{\infty})_{\text{Tor}} = \bigcup_{n} (A(k_{\infty})_{\text{Tor}})^{\Gamma_{n}}$, we obtain

$$(A(k_{\infty})\otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{*} = \underbrace{\lim_{n}}_{n} ((A(k_{\infty})_{\mathrm{Tor}})^{\Gamma_{n}} \otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{*}$$

where the limit is taken over the surjective norm maps. Since $(A(k_{\infty}) \otimes Q_p/Z_p)^*$ is by assumption of finite Z_p -rank, the projective system will become stationary. Hence

$$(A(k_{\infty})\otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{*} = (A(k_{\infty})\otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{*\Gamma_{n}}$$

for some $n \ge 0$. Now the general structure theory of compact Λ -modules of finite type proves the assertion above.

Proof of Proposition 3.5. We have to show that

$$\dot{T}_{\delta}(A(k_{\infty})\otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{*} \approx \lim_{n,m} \left((A(k_{\infty})\otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{\Gamma_{n}} \right)_{pm} \approx \lim_{n,m} H^{1}(\boldsymbol{\Gamma}_{n}, A(k_{\infty})_{\mathrm{Tor}})_{pm}$$

is finite. (Here we used Lemma 1.1 and 2.4i).

From the spectral sequence

$$H^{i}(\Gamma_{n}, H^{j}(\mathcal{O}_{\infty}, \mathscr{A})) \Longrightarrow H^{i+j}(\mathcal{O}_{\infty}/\mathcal{O}_{n}, \mathscr{A}),$$

[7] Appendix, we obtain exact sequences

where $F_1(n)$ denotes the first filtration step of $H^2(\mathcal{O}_{\infty}/\mathcal{O}_n, \mathscr{A})$. Since $H^1(\mathcal{O}_{\infty}, \mathscr{A})$ is a torsion group, we have

$$\begin{aligned} H^{2}(\Gamma_{n}, H^{1}(\mathcal{O}_{\infty}, \mathscr{A})) &= 0, \\ H^{2}(\mathcal{O}_{\infty}/\mathcal{O}_{n}, \mathscr{A}(p)) &\cong H^{2}(\mathcal{O}_{\infty}/\mathcal{O}_{n}, \mathscr{A})(p), \\ H^{2}(\mathcal{O}_{n}, \mathscr{A}(p)) &\cong H^{2}(\mathcal{O}_{n}, \mathscr{A})(p), \end{aligned}$$

hence

 $F_1(n) \cong H^1(\mathcal{O}_{\infty}, \mathscr{A}(p))_{\Gamma_n}.$

From the second spectral sequence

$$H^{i}(\mathcal{O}_{n}, R^{j}\pi_{\Gamma_{n}} \mathscr{A}) \Longrightarrow H^{i+j}(\mathcal{O}_{\infty}/\mathcal{O}_{n}, \mathscr{A}),$$

see [7] Appendix, we obtain the exact sequence

$$0 \longrightarrow H^{1}(\mathcal{O}_{n}, \mathscr{A})(p) \longrightarrow H^{1}(\mathcal{O}_{\infty}/\mathcal{O}_{n}, \mathscr{A})(p) \longrightarrow \bigoplus_{\mathfrak{p} \in \Sigma} H^{1}(\Gamma_{n\mathfrak{p}}, A(k_{\infty\mathfrak{p}}))$$
$$\longrightarrow H^{2}(\mathcal{O}_{n}, \mathscr{A})(p) \longrightarrow H^{2}(\mathcal{O}_{\infty}/\mathcal{O}_{n}, \mathscr{A})(p) \longrightarrow 0$$

using [8] Proposition 1.2. Therefore

$$H^{i}(\mathcal{O}_{n}, \mathscr{A})(p) \approx H^{i}(\mathcal{O}_{\infty}/\mathcal{O}_{n}, \mathscr{A})(p), \quad i \geq 0,$$

where the defect is independent of n, n big enough, [8] Proposition 1.1 (iii). By the perfect duality 2.1 (iii) and the finiteness of $H^1(\mathcal{O}_n, \mathscr{A})(p)$ we obtain a quasi-exact sequence

$$0 \longrightarrow \varprojlim_{n} H^{1}(\Gamma_{n}, A(k_{\infty})) \longrightarrow H^{1}(\mathcal{O}_{\infty}, \mathscr{A}^{\prime 0})(p)^{*} \longrightarrow \varprojlim_{n} H^{1}(\mathcal{O}_{\infty}, \mathscr{A})(p)^{\Gamma_{n}}$$

where the next term

$$\lim_{n} H^{2}(\Gamma_{n}, A(k_{\infty})) \cong (T_{\nu}(A(k_{\infty}) \otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{*})^{*}$$

(Lemma 2.4i) is \mathbb{Z}_p -torsion. Now $H^1(\mathcal{O}_{\infty}, \mathscr{A})(p)^*$ is a Λ -torsion module (3.4), hence

$$H^{1}(\mathcal{O}_{\infty}, \mathscr{A})(p)^{*} \approx T_{\delta_{\infty}}H^{1}(\mathcal{O}_{\infty}, \mathscr{A})(p)^{*} \oplus T_{\varepsilon}H^{1}(\mathcal{O}_{\infty}, \mathscr{A})(p)^{*}$$

and therefore

$$\lim_{n} H^{1}(\mathcal{O}_{\omega}, \mathscr{A})(p)^{\Gamma_{n}} \approx \dot{T}_{\delta_{\omega}} H^{1}(\mathcal{O}_{\omega}, \mathscr{A})(p)^{*} \oplus (T_{\varepsilon} H^{1}(\mathcal{O}_{\omega}, \mathscr{A})(p)^{*} \otimes_{Z_{p}} Q_{p}).$$

Hence the quasi-exact sequence above shows

$$\lim_{n} H^{1}(\Gamma_{n}, A(k_{\infty})) \otimes \boldsymbol{Q}_{p} = 0,$$

i.e., $\lim_{n \to \infty} H^{1}(\Gamma_{n}, A(k_{\infty}))$ is \mathbb{Z}_{p} -torsion, and therefore

$$\lim_{n,m} H^1(\Gamma_n, A(k_\infty))_{pm}$$

can only have a μ -part. But this is impossible, since $T_{\delta}(A(k_{\infty}) \otimes Q_p/Z_p)^*$ has zero μ -invariant.

Theorem 3.6. Let A be an abelian variety over k with ordinary good reduction at p and let $\coprod(A(k_n))(p)$ be finite for all n. Then the global flat duality induces quasi-isomorphisms

(i)
$$T_{\delta}H^{1}(\mathcal{O}_{\infty}, \mathscr{A}')(p)^{*} \approx \alpha(T_{\delta}H^{1}(\mathcal{O}_{\infty}, \mathscr{A}^{0})(p)^{*}),$$

 $T_{\delta}\coprod_{\infty}(A')(p)^{*} \approx \alpha(T_{\delta}\coprod_{\infty}(A)(p)^{*})$

and a quasi-exact sequence

(ii)
$$0 \longrightarrow T_{\nu} \coprod_{\infty} (A')(p)^{*} \longrightarrow \alpha(T_{A}(A(k_{\infty}) \otimes \mathbf{Q}_{p}/\mathbf{Z}_{p})^{*})$$
$$\longrightarrow T_{A}(A'(k_{\infty}) \otimes \mathbf{Q}_{p}/\mathbf{Z}_{p})^{*} \longrightarrow \alpha(T_{\nu} \coprod_{\infty} (A)(p)^{*}) \longrightarrow 0$$

Corollary 3.7. Let the assumptions of 3.4 be fulfilled, then the following is true.

(i) Any divisor of the form ξ_{τ} of $\coprod_{\infty}(A)(p)^*$ is also a divisor of $(A(k_{\infty})\otimes Q_p/Z_p)^*$. In particular, if $\coprod_{\infty}(A)(p)^{\Gamma_n}$ is infinite then A has a k_n -rational point of infinite order.

(ii) The following assertions are equivalent:

(a) The A-torsion submodule of $H^1(\mathcal{O}_{\infty}, \mathcal{A}(p))^*$ is semi-simple by $\zeta_{p^n}-1$ for all $n\geq 0$, i.e.,

$$T_{\varepsilon}H^{1}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*} \approx \bigoplus_{r} \Lambda/\xi_{r}.$$

(b) The Γ_n -invariants $\coprod_{\infty}(A)(p)^{\Gamma_n}$ of $\coprod_n(A)(p)$ are finite groups for all $n \ge 0$.

(c) There is a quasi-isomorphism

$$\alpha(T_A(A(k_{\infty})\otimes \boldsymbol{Q}_p/\boldsymbol{Z}_p)^*) \approx T_A(A'(k_{\infty})\otimes \boldsymbol{Q}_p/\boldsymbol{Z}_p)^*$$

induced by the global flat duality.

Corollary 3.8. Let A be an abelian variety with ordinary good reduction at p. Let $\coprod_{\infty}(A)(p)^{r_n}$ be finite for all n and assume that $(A(k_{\infty})\otimes Q_p/Z_p)^*$ is a Λ -torsion module. Then there is a non-degenerate pairing

$$A(k_{\infty}) \times A'(k_{\infty}) \longrightarrow \boldsymbol{Q}_{p}.$$

In particular, there are non degenerate pairings

$$A(k_n) \times A'(k_n) \longrightarrow \boldsymbol{Q}_n$$

for all n.

Proof of Theorem 3.6. From the descent diagram we derive the commutative and quasi-exact diagram

$$0 \longrightarrow \lim_{n,m} H^{1}(\mathcal{O}_{n}, \mathscr{A}^{0})_{pm} \longrightarrow \lim_{n,m} H^{1}(\mathcal{O}_{n}/\mathcal{O}_{n}, \mathscr{A}^{0})_{pm}$$

$$0 \longrightarrow \lim_{n,m} H^{2}(\mathcal{O}_{n}, \mathscr{A}_{pm}) \longrightarrow \lim_{n,m} H^{2}(\mathcal{O}_{n}/\mathcal{O}_{n}, \mathscr{A}_{pm}) \longrightarrow 0$$

$$\lim_{n,m} \lim_{pm} H^{2}(\mathcal{O}_{n}, \mathscr{A}^{0}) \longrightarrow \lim_{n,m} \lim_{pm} H^{2}(\mathcal{O}_{n}/\mathcal{O}_{n}, \mathscr{A}^{0}).$$

$$0 \longrightarrow 0$$

We will compute the projective limits. First, from the lower exact sequence in the diagram (*) of the proof of 3.5 with \mathscr{A}^0 instead of \mathscr{A} we obtain a quasi-exact sequence

$$0 \longrightarrow \varprojlim_{n,m} {}_{pm}(H^{1}(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p))_{\Gamma_{n}}) \longrightarrow \varprojlim_{n,m} {}_{pm}H^{2}(\mathcal{O}_{\infty}/\mathcal{O}_{n}, \mathscr{A}^{0})$$
$$\longrightarrow \varprojlim_{n,m} {}_{pm}H^{2}(\mathcal{O}_{\infty}, \mathscr{A}^{0})^{\Gamma_{n}} \longrightarrow 0$$

hence

$$\lim_{n,m} {}_{p^m} H^2(\mathcal{O}_{\infty}/\mathcal{O}_n, \mathscr{A}^0) \approx \alpha(T_{\nu} H^1(\mathcal{O}_{\infty}, \mathscr{A}(p))^*) \oplus \beta(F_A H^2(\mathcal{O}_{\infty}, \mathscr{A}(p))^*).$$

Because of

$$\lim_{n,m} H^2(\mathcal{O}_{\omega}/\mathcal{O}_n, \mathscr{A}_{p^m}) \approx \alpha(T_A H^1(\mathcal{O}_{\omega}, \mathscr{A}^0(p))^*) \oplus \beta(F_A H^2(\mathcal{O}_{\omega}, \mathscr{A}(p))^*)$$

(see proof of 2.2) we obtain

$$\lim_{n,m} H^1(\mathcal{O}_{\omega}/\mathcal{O}_n,\mathscr{A}^0)_{p^m} \approx \alpha(T_{\delta}H^1(\mathcal{O}_{\omega},\mathscr{A}^0(p))^*).$$

Now, since \coprod_n is finite for all *n* we have by Theorem 2.1 (ii) an isomorphism

$$\lim_{n,m} H^1(\mathcal{O}_{\infty}, \mathscr{A}^0)_{p^m} \cong H^1(\mathcal{O}_n, \mathscr{A}')(p)^*.$$

Furthermore

$$\lim_{n,m} H^2(\mathcal{O}_n, \mathscr{A}_{p^m}) \cong H^1(\mathcal{O}_{\infty}, \mathscr{A}'(p))^*$$

hence

$$\lim_{n,m} {}_{pm} H^2(\mathcal{O}_n, \mathscr{A}^0) \cong (A'(k_\infty) \otimes \boldsymbol{Q}_p / \boldsymbol{Z}_p)^*.$$

Therefore, the diagram above induces the commutative and quasi exact diagram

$$(+) \begin{array}{cccc} & 0 & & 0 \\ & \downarrow & & \downarrow \\ H^{1}(\mathcal{O}_{\infty}, \mathscr{A}')(p)^{*} \longrightarrow \alpha(T_{\delta}H^{1}(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p))^{*}) \\ & \downarrow & & \downarrow \\ (+) & H^{1}(\mathcal{O}_{\infty}, \mathscr{A}'(p))^{*} \longrightarrow \alpha(T_{4}H^{1}(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p))^{*}) \oplus \beta(F_{4}H^{2}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*}) \\ & \downarrow & & \downarrow \\ (A'(k_{\infty}) \otimes \mathcal{Q}_{p}/\mathbb{Z}_{p})^{*} \longrightarrow \alpha(T_{\nu}H^{1}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*}) \oplus \beta(F_{4}H^{2}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*}). \\ & \downarrow & \downarrow \\ 0 & 0 & 0 \end{array}$$

Since $H^1(\mathcal{O}_{\infty}, \mathscr{A}')(p)^*$ is Λ -torsion (3.4) we have a quasi-isomorphism

$$F_{A}(A'(k_{\infty})\otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{*} \approx \beta(F_{A}H^{2}(\mathcal{O}_{\infty}, \mathcal{A}(p))^{*})$$

and a quasi-exact and commutative diagram

Duality Theorems

where the map ψ is induced by the quasi-isomorphism in the middle (Theorem 3.1).

Therefore the characteristic polynomial of $T_A(A(k_{\infty}) \otimes \mathbf{Q}_p/\mathbf{Z}_p)^* \approx T_\nu(A(k_{\infty}) \otimes \mathbf{Q}_p/\mathbf{Z}_p)^*$ (3.5) devides the characteristic polynomial of $T_\nu H^1(\mathcal{O}_{\infty}, \mathcal{A}(p))^*$. This shows that all horizontal maps in the diagram (+) are quasiisomorphisms:

(3.9)
$$\begin{array}{l} (A'(k_{\omega})\otimes \boldsymbol{Q}_{p}/\boldsymbol{Z}_{p})^{*} \approx \alpha(T_{\nu}H^{1}(\mathcal{O}_{\omega}, \mathcal{A}(p))^{*}) \oplus \beta(F_{A}H^{2}(\mathcal{O}_{\omega}, \mathcal{A}(p))^{*}), \\ H^{1}(\mathcal{O}_{\omega}, \mathcal{A}')(p)^{*} \approx \alpha(T_{\delta}H^{1}(\mathcal{O}_{\omega}, \mathcal{A}(p))^{*}). \end{array}$$

Thus we obtain from the diagram above the quasi-exact sequence

$$0 \longrightarrow T_{\nu} \coprod_{\infty} (A')(p)^* \longrightarrow \alpha(T_A(A(k_{\infty}) \otimes \boldsymbol{Q}_p/\boldsymbol{Z}_p)^*) \xrightarrow{\psi} T_A(A'(k_{\infty}) \otimes \boldsymbol{Q}_p/\boldsymbol{Z}_p)^*).$$

Obviously the cokernel of ψ is quasi-isomorphic to $\alpha(T, \coprod_{\infty} (A)(p)^*)$. Furthermore, the diagram above implies a quasi-injection

$$T_{\delta}H^{1}(\mathcal{O}_{\infty}, \mathscr{A}')(p)^{*} \longrightarrow T_{\delta}H^{1}(\mathcal{O}_{\infty}, \mathscr{A}')(p)^{*}.$$

Hence, taking the adjoint and combining it with the quasi-isomorphism (3.9) we obtain a quasi-surjection

$$H^{1}(\mathcal{O}_{\infty}, \mathscr{A})(p)^{*} \approx \alpha(T_{\delta}H^{1}(\mathcal{O}_{\infty}, \mathscr{A}'(p))^{*}) \longrightarrow \alpha(T_{\delta}H^{1}(\mathcal{O}_{\infty}, \mathscr{A}')(p)^{*}).$$

This proves Theorem 3.6.

Proof of Corollary 3.7. Since

$$T_{\nu}(A(k_{\infty})\otimes Q_{\nu}/Z_{\nu})^{*}$$
 and $T_{\nu}H^{1}(\mathcal{O}_{\infty}, \mathcal{A}(p))^{*}$

have the same characteristic polynomials the following assertions are equivalent:

$$\begin{split} H^{1}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*} &\text{ is semi-simple by } \zeta_{p^{n}} - 1 \text{ for all } n \geq 0, \\ T_{\nu}H^{1}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*} \approx T_{\varepsilon}H^{1}(\mathcal{O}_{\infty}, \mathscr{A}(p))^{*}, \\ T_{\nu}H^{1}(\mathcal{O}_{\infty}, \mathscr{A})(p)^{*} \approx 0, \\ & \coprod_{\infty} (A)(p)^{*r_{n}} \text{ is finite for all } n \geq 0. \end{split}$$

Because $\coprod_{\infty} (A)(p)^*$ is A-torsion the last assertion is equivalent to

$\coprod_{\infty} (A)(p)^{r_n}$ is finite for all $n \ge 0$.

The equivalence to (c) and the first assertion follow immediately from 3.6 (ii).

Proof of Corollary 3.8. This is a consequence of 3.7 (ii), observing that the maps

$$(A(k_{\infty})\otimes \boldsymbol{Q}_{p})^{\Gamma_{n}} \longrightarrow (A(k_{\infty})\otimes \boldsymbol{Q}_{p})_{\Gamma_{n}}, \qquad n \geq 0,$$

induced by the identity are isomorphisms because

$$(A(k_{\infty})\otimes \mathbf{Q}_{p}/\mathbf{Z}_{p})^{*} \approx T_{\nu}(A(k_{\infty})\otimes \mathbf{Q}_{p}/\mathbf{Z}_{p})^{*}.$$

References

- [1] M. Artin, B. Mazur, Global duality, unpublished.
- [2] P. Billot, Quelques aspects de la descente sur une courbe elliptique dans le cas de réduction supersingulière, Compositio Math., 58 (1986), 341-369.
- [3] J. Coates, Infinite descent on elliptic curves, in: Arithmetic and Geometry, paper dedicated to I. R. Shafarevich on the occasion of his 60th birthday, Vol. I. Progress in Math., 35, Boston Birkhäuser (1983), 107–137.
- [4] B. Mazur, Rational points of abelian varieties with value in towers of number fields, Invent. Math., 18 (1972), 183-266.
- [5] J. Milner, Arithmetic duality theorems, Perspectives in Math., Academic Press (1986).
- [6] B. Perrin-Riou, Arithmétique des courbes elliptiques et théorie d'Iwasawa, Soc. Math. de France. Mémoire, 17 (1984).
- [7] P. Schneider, Iwasawa L-functions of varieties over algebraic number fields, a first approach, Invent. Math., 71 (1983), 251-293.
- [8] —, p-adic height pairings II, Invent. Math., 79 (1985), 329-374.
- [9] —, Arithmetic of formal groups and applications I: Universal norm subgroups, Invent. Math., 87 (1987), 587-602.
- [10] J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Intern. Congress Math. Stockholm, (1962), 234–241.
- K. Wingberg, Duality theorems for *I*-extensions of algebraic number fields, Compositio Math., 55 (1985), 333-381.
- [12] —, On the rational points of abelian varieties over Z_p -extension of number fields, Math. Ann., **279** (1987), 9-24.
- SGA 7I: A. Grothendieck, Groupes Monodormie en Géométrie Algebrique, Lect. Notes in Math., 288, Berlin-Heidelberg-New York, Springer (1972).

Universität Erlangen-Nürnberg Mathematisches Institut Bismarckstr. 1½ D-8520 Erlangen BRD