Duality Theorems for Abelian Varieties over Z_{p}-extensions

Kay Wingberg

Dedicated to Kenkichi Iwasawa on his 70th birthday

Our concern in this paper is to define p-adic height pairings for an abelian variety A over an algebraic number field k on the niveau of a Z_{p}-extension k_{∞} of k. We will show that there exists a map from the 1 -torsion submodule $T_{\Lambda} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}$ of the Pontrjagin dual of the p-Selmer group to the adjoint α of the corresponding module for the dual abelian variety A^{\prime}. Here Λ denotes the completed group ring of $\operatorname{Gal}\left(k_{\infty} / k\right)$ over \boldsymbol{Z}_{p} and p is a prime number where A has good reduction. \mathscr{A} denotes the Néron model defined over the ring of integers \mathcal{O}_{∞} of k_{∞}. More generally, for $i \geqq 0$ there are canonical maps

$$
T_{A} H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*} \longrightarrow \alpha\left(T_{A} H^{2-i}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}(p)\right)^{*}\right) .
$$

These maps are quasi-isomorphisms if A has ordinary good reduction at p. In this case they can be regarded as non-degenerate pairings between the 1 -torsion submodules of $H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}$ and of $H^{2-i}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}(p)\right)^{*}$. The pairing induced on a finite layer k_{n} / k coincides with the pairing defined by Schneider [8] (for $i=1$ and assuming that $H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}$ is Λ-torsion and fulfills a certain semi-simplicity property).

Furthermore, we define an Iwasawa L-function in terms of characteristic polynomials of $T_{A} H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}$:

$$
\begin{gathered}
L_{p}(A, \kappa, s)=\prod_{i=0}^{2} F_{i}\left(\kappa(\phi)^{s-1}-1\right)^{(-1)^{i+1}}, \quad s \in \boldsymbol{Z}_{p}, \\
F_{i}(t)=p^{\mu_{i}} \operatorname{det}\left(t-(\phi-1) ; T_{A} H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*} \otimes \boldsymbol{Q}_{p}\right),
\end{gathered}
$$

where κ is the character corresponding to k_{∞}, ϕ is a generator of $\operatorname{Gal}\left(k_{\infty} / k\right)$ and μ_{i} is the μ-invariant of $H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}$. In the ordinary case the pairing mentioned above leads to a functional equation for $L_{p}(A, \kappa, s)$ with respect to $s \mapsto 2-s$. This generalizes a result of Schneider [8] and

Received July 1, 1987.

Mazur [4], since we do not assume $H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}$ to be Λ-torsion.
In the supersingular case, i.e., if the p-rank of the reduction \mathscr{A} / κ_{p} is zero for every prime \mathfrak{p} above p, the adjoint of $T_{A} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}$ can be identified with the dual of the kernel of the canonical map

$$
H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right) \longrightarrow \prod_{p \in \Sigma} H^{1}\left(k_{\infty p}, A(p)\right)
$$

where Σ denotes the set of primes ramified in k_{∞} / k. This generalizes a result for elliptic curves with complex multiplication obtained by Billot [2].

At the end of the paper we study how the pairing for an abelian variety A which is ordinary at p behaves on the two parts of the p-Selmer group given by the p-part of the Tate-Šafarevič group $\amalg_{\infty}(A)(p)$ and the "Mordell-Weil group" $A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}$. Assuming that the p-part of \amalg on each layer of k_{∞} / k is finite we obtain a quasi-isomorphism

$$
T_{\delta} Ш_{\infty}(A)(p)^{*} \xrightarrow{\approx} \alpha\left(T_{\delta} \amalg_{\infty}(A)(p)^{*}\right)
$$

and a quasi-exact sequence

$$
\begin{aligned}
0 \longrightarrow & T_{\nu} Ш_{\infty}\left(A^{\prime}\right)(p)^{*} \longrightarrow \alpha\left(T_{\Lambda}\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / Z_{p}\right)^{*}\right) \\
& \longrightarrow T_{A}\left(A^{\prime}\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / Z_{p}\right)^{*} \longrightarrow \alpha\left(T_{\nu} Ш_{\infty}(A)(p)^{*}\right) \longrightarrow 0
\end{aligned}
$$

where $T_{\nu} M$ and $T_{\dot{\delta}} M$ of a compact Λ-module M of finite type are defined by $\underline{\lim } M^{\Gamma_{n}}$ and $T_{\dot{\delta}} M=T_{A} M / T_{\nu} M$, respectively. In particular, if the group of Γ_{n}^{n}-invariants of $\amalg_{\infty}(A)(p)$ is infinite then A has a k_{n}-rational point of infinite order. As a corollary one obtains a non-degenerate pairing

$$
A\left(k_{\infty}\right) \times A^{\prime}\left(k_{\infty}\right) \longrightarrow Q_{p},
$$

if $\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) *$ is Λ-torsion and $\amalg_{\infty}(A)(p)^{\Gamma_{n}}$ is finite for all $n \geq 0$.
Finally I would like to thank the M.S.R.I. for its hospitality and the DFG (Heisenberg Programm) for support while this work was done.

§ 0. Notations

For an abelian group M let $\operatorname{Tor} M$ be the torsion subgroup and $M_{\text {Tor }}:=M /$ Tor M, let $\operatorname{Div} M$ be the maximal divisible subgroup and $M_{\text {Div }}:=M / \operatorname{Div} M$. For $m \in N$ let the groups ${ }_{m} M$ and M_{m} be the kernel and cokernel of the multiplication by m, respectively, and put $M(p)=$ $\varliminf_{m}^{\lim _{p^{m}}} M$ for a prime number p.

For a commutative group scheme G we use contrary to the convention above the usual notation G_{m} for the kernel of the m-multiplication.

For a \boldsymbol{Z}_{p}-module M let $M^{*}=\operatorname{Hom}\left(M, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)$ be the Pontrjagin dual of M. For a G-module M, G a group, M^{G} and M_{G} denote the invariants and coinvariants of G, respectively.

Throughout this paper the cohomology groups $H^{i}(S$,$) are taken$ with respect to the big fppf-site on a scheme S.

§ 1. Λ-modules

Let Γ be a pro- p-group isomorphic to \boldsymbol{Z}_{p} and let $\Lambda=\boldsymbol{Z}_{p} \llbracket \Gamma \rrbracket$ be the completed group ring of Γ. We also consider Λ as the ring of power series $Z_{p} \llbracket T \rrbracket$ over Z_{p} via the homeomorphism $\gamma_{\mapsto} \rightarrow 1+T$, where γ is a generator of Γ.

Let M be a finitely generated compact Λ-module, then

$$
T_{A} M \quad \text { and } \quad T_{\mu} M
$$

denote the Λ-torsion submodule and the Z_{p}-1 orsion submodule of M, respectively. We define

$$
F_{\Lambda} M:=M / T_{\Lambda} M \quad \text { and } \quad T_{\lambda} M:=T_{\Lambda} M / T_{\mu} M
$$

Furthermore let Γ_{n} be the subgroup of Γ of index p^{n} and let

$$
T_{\nu} M:=\underset{n}{\lim _{n}} M^{\Gamma_{n}} \quad \text { and } \quad T_{\grave{\partial}} M:=T_{A} M / T_{\nu} M .
$$

If ξ_{r} denotes the irreducible polynomial of the p^{r}-th root of unity, then there is a quasi-isomorphism

$$
T_{\nu} M \approx \oplus_{i} \Lambda / \xi_{i} \quad \text { for some polynomials } \xi_{i} .
$$

If

$$
T_{\delta_{i+1}} M:=T_{\delta}\left(T_{\delta_{i}} M\right) \quad \text { where } T_{\delta_{1}} M:=T_{\delta} M
$$

then there must be an i_{0} with $T_{\delta_{i_{0}+1}} M=T_{\delta_{i_{0}}} M$ and we define

$$
T_{\delta_{\infty}} M:=T_{\delta_{i_{0}}} M \quad \text { and } \quad T_{\varepsilon} M:=\operatorname{ker}\left(T_{\Lambda} M \rightarrow T_{\delta_{\infty}} M\right)
$$

Obviously the characteristic polynomial of $T_{\varepsilon} M$ is a product of polynomials ξ_{r} and $T_{\delta_{\infty}} M$ has no divisor $\xi_{r}, r \geq 0$. For a Λ-module M let \dot{M} be the Λ-module given by M with a new action of Γ

$$
\gamma \cdot m:=\gamma^{-1} m \quad \text { for } m \in M, \gamma \in \Gamma
$$

If

$$
\alpha(M):=\operatorname{Ext}_{\Lambda}^{1}(M, \Lambda) .
$$

denotes the adjoint of a compact Λ-torsion module M of finite type then according to [6] I.2.2 or [2] Corollaire 1.2, Remarque 3.4

$$
\alpha(M)=\varliminf_{i} \operatorname{Hom}_{Z_{p}}\left(M / \mathfrak{q}_{i} M, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) \approx \dot{M}
$$

where $\left\{\mathfrak{q}_{i}\right\}$ is a sequence of divisors disjoint from the annihillator of M such that $\cap \mathfrak{q}_{i}=1$. If $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ is a quasi-exact sequence of compact Λ-torsion modules of finite type, then applying the contravariant functor α we obtain a quasi-exact sequence

$$
0 \longrightarrow \alpha\left(M_{3}\right) \longrightarrow \alpha\left(M_{2}\right) \longrightarrow \alpha\left(M_{1}\right) \longrightarrow 0 .
$$

If m denotes the maximal ideal of Λ we get for a compact Λ-module M of finite type a quasi-isomorphism

$$
\beta(M):=\varliminf_{i} \operatorname{Hom}\left(M / m^{i} M, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) \approx F_{A} M .
$$

Lemma 1.1. Let M be a compact 1 -module of finite type. Then there are quasi-isomorphisms
(a) $\varliminf_{n, m}\left({ }_{p m} M *\right)_{\Gamma_{n}} \approx \alpha\left(T_{\lambda} M\right) \approx \dot{T}_{\lambda} M$
(b) $\prod_{n, m}\left(M *_{p m}\right)^{T_{n}} \approx \alpha\left(T_{\mu} M\right) \approx \dot{T}_{\mu} M$
(c) $\quad \varliminf_{n, m}\left(M * \Gamma_{n}\right)_{p m} \approx \alpha\left(T_{\dot{\delta}} M\right) \approx \dot{T}_{\dot{\delta}} M$
(d) $\varliminf_{n, m}{ }_{p m}\left(M *_{\Gamma^{n}}\right) \approx \alpha\left(T_{\nu} M\right) \approx \dot{T}_{\nu} M$
(e) $\varliminf_{n, m}{ }_{p^{m}} M * \Gamma_{n} \approx \beta\left(F_{A} M\right) \approx F_{A} M$
(f) $\quad \varliminf_{n, m} M *_{p^{m} \Gamma n} \approx 0$,
where the limit is taken with respect to the p-multiplication resp. canonical surjection and the norm map resp. canonical surjection. Here and in the following we use the notation $\dot{T}_{-}(M)=T_{-}(\dot{M})$.

Proof. All assertions are obtained easily from the general structure theory of compact noetherian Λ-modules. So we will only indicate the proof of (c) and (d).

Since

$$
\varliminf_{n, m}\left(M^{T_{n}}\right)_{p^{m}}=\underline{\varliminf_{m}}\left(T_{\nu} M\right)_{p^{m}}
$$

it follows

$$
\varliminf_{n, m}{ }_{p}\left(M_{\Gamma^{n}}\right) \approx \varliminf_{m} \operatorname{Hom}\left(T_{\nu} M_{p^{m}}, \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) \approx \dot{T}_{\nu} M .
$$

In order to prove (c) we decompose M

$$
M \approx \bar{M} \oplus T_{\mu} M \quad \text { with } T_{\mu} \bar{M}=0
$$

First we see

$$
\begin{aligned}
& \varliminf_{n, m}\left(\left(T_{\mu} M\right)^{* \Gamma_{n}}\right)_{p^{m}}=\varliminf_{n} \operatorname{Hom}\left(\varliminf_{m}{ }_{p} m\right. \\
&\left.\left.=\varliminf_{n} \operatorname{Hom}\left(T_{\mu} M\right)_{\Gamma_{n}}\right), \boldsymbol{Q}_{\Gamma_{n}}, \boldsymbol{Q}_{p}\right) \\
&\left.\boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) \approx \dot{T}_{\mu} M
\end{aligned}
$$

and secondly the exact sequence

$$
0 \longrightarrow \bar{M} \xrightarrow{p^{m}} \bar{M} \longrightarrow \bar{M}_{p^{m}} \longrightarrow 0
$$

leads to an exact sequence

$$
0 \longrightarrow\left(\bar{M}^{r_{n}}\right)_{p^{m}} \longrightarrow\left(\bar{M}_{p m}\right)^{\Gamma_{n}} \longrightarrow{ }_{p m}\left(\bar{M}_{\Gamma_{n}}\right) \longrightarrow 0 .
$$

Hence we obtain a quasi-exact sequence

$$
0 \longrightarrow\left(\dot{T}_{\nu} \bar{M}\right)^{*} \longrightarrow\left(\dot{T}_{\lambda} \bar{M}\right)^{*} \longrightarrow{\underset{n, m}{ }{ }^{p} m}^{\left.\lim _{\Gamma_{n}}\right) \longrightarrow 0}
$$

(recall that the projective limit is an exact functor in the category of profinite groups). This proves (c).

§ 2. Duality theorems for abelian varieties

Let k be a number field and let A be an abelian variety defined over k. Let \mathscr{A} be its Néron model over the ring of integers \mathcal{O} of k and let \mathscr{A}^{0} be the connected component of \mathscr{A}. By A^{\prime} and \mathscr{A}^{\prime} we denote the dual abelian variety and its Néron model, respectively. We say A has good (ordinary) reduction at a prime number p, if A has good (ordinary) reduction at all primes of k above p. Since A and A^{\prime} are k-isogenous A^{\prime} has in that case good (ordinary) reduction too.

Theorem 2.1. Let A be an abelian variety over k with good reduction at p.
(i) (Artin/Mazur) The cup product induces a perfect duality of finite groups

$$
H^{i}\left(\mathcal{O}, \mathscr{A}_{p^{m}}\right) \times H^{3-i}\left(\mathcal{O}, \mathscr{A}^{\prime}{ }_{p^{m}}\right) \longrightarrow H^{3}\left(\mathcal{O}, \boldsymbol{G}_{m}\right) \xrightarrow{\sim} \boldsymbol{Q} / \boldsymbol{Z} \quad \text { for all } i \geq 0 .
$$

The above pairing induces the following perfect pairings
(ii) $H^{1}\left(\mathcal{O}, \mathscr{A}^{0}\right)(p)_{\text {Div }} \times H^{1}\left(\mathcal{O}, \mathscr{A}^{\prime}\right)(p)_{\text {Div }} \longrightarrow Q / Z$,
(iii) (Cassels/Tate)

$$
Ш(A)(p)_{\mathrm{Div}} \times \amalg\left(A^{\prime}\right)(p)_{\mathrm{Div}} \longrightarrow \boldsymbol{Q} / \boldsymbol{Z} .
$$

Remark. A proof of (i) is given in an unpublished paper of Artin and Mazur [1] and also by Milne [15] III. Corollary 3.2. The assertion (ii) is proved by Schneider [7] § 6 Lemma 3 (observe that $H^{1}(\mathcal{O}, \mathscr{A}(p))_{\text {Div }}=$ $\left.H^{1}(\mathcal{O}, \mathscr{A})(p)_{\text {Div }}\right)$. The perfect duality for the Tate-Šafarevič groups was announced by Tate in [10]. A proof can be found in [5] I. Theorem 6.13, II. Theorem 5.6.

We will shortly indicate, how this also follows from the flat duality theorem and a duality theorem of Grothendieck. The exact sequence

$$
0 \longrightarrow \mathscr{A}^{0} \longrightarrow \mathscr{A} \longrightarrow \mathscr{F} \longrightarrow 0
$$

defines a skyscraper sheaf \mathscr{F}. The stalk

$$
\mathscr{F}_{x}=\pi_{0}\left(\mathscr{A}_{x}\right) \quad \text { for } x \in \mathcal{O}
$$

is the group of connected components of $\mathscr{A}_{x}=\mathscr{A} \times{ }_{0} \kappa(x)$. According to [4], Appendix, the image of the middle map in the exact cohomology sequence

$$
H^{0}(\mathcal{O}, \mathscr{F}) \longrightarrow H^{1}\left(\mathcal{O}, \mathscr{A}^{0}\right) \longrightarrow H^{1}(\mathcal{O}, \mathscr{A}) \longrightarrow H^{1}(\mathcal{O}, \mathscr{F})
$$

is $\amalg(A)$. Therefore we obtain a commutative and exact diagram

The vertical exact sequences are induced by the exact sequence above: observe that

$$
H^{i}(\mathcal{O}, \mathscr{F})(p)=\underset{x}{\oplus} H^{i}\left(\kappa(x), \pi_{0}\left(\mathscr{A}_{x}\right)\right)(p)=\underset{x}{\oplus} H^{i}\left(\kappa(x), \pi_{0}\left(\mathscr{A}_{x}\right)(p)\right)
$$

is a finite group. The right vertical map δ is defined by the exact divisor sequence

$$
0 \longrightarrow \boldsymbol{G}_{m / 0} \longrightarrow g_{*} \boldsymbol{G}_{m / k} \longrightarrow \underset{x}{\oplus}\left(i_{x}\right)_{*} \boldsymbol{Z} \longrightarrow 0
$$

$\left(g: \operatorname{Spec} k \rightarrow \operatorname{Sec} \mathcal{O}\right.$ and $\left.i_{x}: \operatorname{Spec} \kappa(x) \rightarrow \operatorname{Spec} \mathcal{O}\right)$ under consideration of

$$
H^{1}(\kappa(x), \boldsymbol{Q} / \boldsymbol{Z})=H^{2}(\kappa(x), Z)=H^{2}\left(\mathcal{O},\left(i_{x}\right)_{*} Z\right)
$$

The pairing at the top is defined as follows: By SGA 7 IX 11.3.1 we have a perfect duality

$$
\pi_{0}\left(\mathscr{A}_{x}^{\prime}\right)(p) \times \pi_{0}\left(\mathscr{A}_{x}\right)(p) \longrightarrow \boldsymbol{Q} / \boldsymbol{Z}
$$

(observe $p \neq$ char $\kappa(x)$). Now it is easy to check that the induced pairing

$$
\oplus_{x}^{\oplus} H^{0}\left(\kappa(x), \pi_{0}\left(\mathscr{A}_{x}^{\prime}\right)(p)\right) \times \underset{x}{\oplus} H^{1}\left(\kappa(x), \pi_{0}\left(\mathscr{A}_{x}\right)(p)\right) \longrightarrow \oplus_{x} H^{1}(\kappa(x), \boldsymbol{Q} / \boldsymbol{Z})
$$

coincides with the pairing given by (ii) via δ. Therefore we obtain a perfect duality for the Tate-Šafarevič group.

Now let k_{∞} be a Z_{p}-extension of k and let k_{n} be the n-th layer of k_{∞} / k. Let \mathcal{O}_{n} and \mathcal{O}_{∞} be the ring of integers of k_{n} and k_{∞}, respectively. We denote by Σ the finite set of primes of k which are ramified in k_{∞} (and which therefore lie above p).

Theorem 2.2. Let A be an abelian variety over k with good reduction at p. Then the flat duality induces quasi-isomorphisms

$$
\begin{equation*}
\alpha\left(H^{0}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}\right) \approx T_{A} H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}(p)\right)^{*} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\beta\left(F_{\Lambda}\left(H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}\right) \approx F_{A} H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}(p)\right)^{*} \oplus \Lambda^{s}\right. \tag{ii}
\end{equation*}
$$

and a quasi-exact sequence

where the third term"is ${ }_{\star}$ quasi-isomorphic to $\Lambda^{2 s}$,

$$
\begin{gathered}
s=\sum_{p \in \Sigma}\left(\operatorname{dim} A-r_{p}\right)\left[k_{\mathfrak{p}}: \boldsymbol{Q}_{p}\right] \\
r_{\mathfrak{p}}=p \text {-rank of the reduction } \mathscr{A} / \kappa(\mathfrak{p}),
\end{gathered}
$$

and where $N_{\mathfrak{p}}$ denotes the group of "universal norms in $A\left(k_{\infty p}\right)$ ""

$$
N_{\mathfrak{p}}=\bigcup_{n} \bigcap_{m \geq n} N_{k_{m p} / k_{n \mathfrak{p}}}\left(A\left(k_{m \mathfrak{p}}\right)\right) .
$$

In particular, the above sequence induces a quasi-exact sequence

$$
0 \longrightarrow \Lambda^{s} \longrightarrow \Lambda^{2 s} \longrightarrow \Lambda^{s} \oplus T_{\Lambda} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}(p)\right)^{*} \longrightarrow \dot{T}_{A} H^{1}\left(\mathcal{O}, \mathscr{A}^{0}(p)\right)^{*} \longrightarrow 0
$$

Remark 2.3. (i) If k_{∞} is the cyclotomic \boldsymbol{Z}_{p}-extension it is conjectured that $F_{A} H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*} \approx 0$. This is proved for elliptic curves with complex multiplication by an order in an imaginary quadratic field K defined over an abelian extension of K with good ordinary reduction at p, see [3] Proposition 15, and in the case that the reduction of the abelian variety A / k is supersingular for every \mathfrak{p} / p and the Iwasawa- μ-invariant of $k\left(A_{p}\right)$ is zero, [9] Theorem 5, Remark 1.
(ii) The canonical map

$$
H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*} \longrightarrow H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)\right)^{*}
$$

is a quasi-isomorphism except for the μ-part if $i=1$. Indeed, we have

$$
\begin{aligned}
H^{r}\left(\mathcal{O}_{\infty}, \mathscr{F}(p)\right)^{*} & =\underset{n}{\lim _{n}} \oplus_{x} H^{r}\left(\kappa(x), \pi_{0}\left(\mathscr{A}_{x}\right)(p)\right)^{*} \\
& \cong \bigoplus_{x \in B} \oplus_{j} \boldsymbol{Z} / p^{n_{j}(x)} \llbracket \Gamma \rrbracket
\end{aligned}
$$

where B is the set of all bad primes $x \in \mathcal{O}$ splitting completely in k_{∞} / k and the integers $n_{j}(x)$ for $x \in B$ are given by

$$
H^{r}\left(\kappa(x), \pi_{0}\left(\mathscr{A}_{x}\right)(p)\right)^{*} \cong \bigoplus_{j} \boldsymbol{Z} / p^{n_{j}(x)}
$$

In order to prove Theorem 2.2 we need
Lemma 2.4. Let N be a discrete Γ-module.
(i) There are isomorphisms

$$
\begin{aligned}
& H^{1}\left(\Gamma, N_{\mathrm{Tor}}\right) \cong\left(N \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{\Gamma} /\left(\left(N_{\mathrm{Tor}}\right)^{\Gamma} \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) \\
& H^{2}(\Gamma, N) \cong\left(N \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)_{\Gamma}
\end{aligned}
$$

(ii) Let $\left(N \otimes Q_{p} / Z_{p}\right)^{*}$ be a Λ-module of finite type. Then there is a quasi-exact sequence

$$
0 \longrightarrow \varliminf_{n, m}\left(N_{\text {Tor }}\right)^{\Gamma_{n}} \otimes \boldsymbol{Z}_{p} \longrightarrow \beta\left(F_{A}\left(N \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) *\right) \longrightarrow \varliminf_{n, m}{ }_{p^{m}} H^{1}\left(\Gamma_{n}, N_{\text {Tor }}\right) \longrightarrow 0
$$

Proof. Taking cohomology of the exact sequence

$$
0 \longrightarrow N_{\text {Tor }} \longrightarrow N_{\text {Tor }} \otimes Z\left[\frac{1}{p}\right] \longrightarrow N \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p} \longrightarrow 0
$$

leads to an exact sequence

$$
0 \longrightarrow N_{\text {Tor }}^{\Gamma} \longrightarrow N_{\text {Tor }}^{\Gamma} \otimes Z\left[\frac{1}{p}\right] \longrightarrow\left(N \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{r} \longrightarrow H^{1}\left(\Gamma, N_{\text {Tor }}\right) \longrightarrow 0
$$

and an isomorphism

$$
H^{2}(\Gamma, N)=H^{2}\left(\Gamma, N_{\text {тог }}\right) \cong H^{1}\left(\Gamma, N \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) \cong\left(N \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)_{\Gamma} .
$$

This proves (i). Taking Γ_{n} instead of Γ and applying the projective limit to the exact sequence

$$
0 \longrightarrow \longrightarrow_{p m}\left(N_{\text {Tor }}^{\Gamma_{n}^{n}} \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) \longrightarrow \longrightarrow_{p m}\left(N \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{\Gamma_{n} \longrightarrow}{ }_{p m} H^{1}\left(\Gamma_{n}, N_{\text {Tor }}\right) \longrightarrow 0
$$

implies the result (ii).
Proof of Theorem 2.2. From the global flat duality theorem we obtain a perfect pairing

$$
\varliminf_{n, m} H^{i}\left(\mathcal{O}_{n}, \mathscr{A}_{p m}\right) \times H^{3-i}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}(p)\right) \xrightarrow{\cup} \varliminf_{n, m} H^{2}\left(\mathcal{O}_{n}, \boldsymbol{G}_{m}\right) \leftrightharpoons \boldsymbol{Q} / \boldsymbol{Z}
$$

where the projective limits are taken with respect to the norm map and the multiplication by p. In order to compute $\varliminf_{n, m} H^{i}\left(\mathcal{O}_{n}, \mathscr{A}_{p m}\right)$ we consider the descent diagram [8] p. 332, [7] Lemmas 6.1, 6.3 :

Here $H^{i}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n},-\right)$ denotes the equivariant cohomology, [7] Appendix, and $\Gamma_{n \mathfrak{p}}$ is the decomposition group of Γ_{n} with respect to \mathfrak{p}. We calculate the projective limit of the finite groups in the diagram:

$$
\varliminf_{n, m} H^{i}\left(\mathcal{O}_{n}, \mathscr{A}_{p^{m}}\right) \cong H^{3-i}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}(p)\right)^{*}
$$

$$
\varliminf_{n, m} H^{i}\left(\Gamma_{n}, H^{j}\left(\mathcal{O}_{\infty}, \mathscr{A}_{p^{m}}\right)\right) \cong \varliminf_{n, m} H^{i}\left(\Gamma_{n}, H^{j}\left(\mathcal{O}_{\infty}, \mathscr{A}_{p^{m}}^{0}\right)\right) .
$$

The exact Kummer sequence, SGA 7 IX 2.2.1

$$
0 \longrightarrow \mathscr{A}_{p m}^{0} \longrightarrow \mathscr{A}^{0}(p) \xrightarrow{p^{m}} \mathscr{A}^{0}(p) \longrightarrow 0
$$

implies an exact sequence

$$
0 \longrightarrow H^{i-1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)\right)_{p^{m}} \longrightarrow H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}_{p m}^{0}\right) \longrightarrow{ }_{p}{ }^{m} H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)\right) \longrightarrow 0
$$

and therefore we obtain an exact sequence

$$
\begin{aligned}
0 \longrightarrow & \left(H^{i-1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)\right)_{p^{m}}\right)^{\Gamma_{n}} \longrightarrow H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}_{p^{m}}^{0}\right)^{\Gamma_{n}} \\
& \longrightarrow{ }_{p m} H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)\right)^{\Gamma_{n}} \longrightarrow H^{i-1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)\right)_{p^{m} \Gamma_{n}} \\
& \longrightarrow H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}_{p^{m}}^{0}\right)_{\Gamma_{n}} \longrightarrow\left(_{p^{m}} H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)\right)\right)_{\Gamma_{n}} \longrightarrow 0 .
\end{aligned}
$$

By Lemma 1.1 we obtain quasi-isomorphisms

$$
\begin{aligned}
& \varliminf_{n, m} H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}_{p^{m}}^{0}\right)^{\Gamma_{n}} \approx \alpha\left(T_{\mu} H^{i-1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)\right)^{*}\right) \oplus \beta\left(F_{A} H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)\right)^{*}\right) \\
& \varliminf_{n, m} H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}_{p^{m}}^{0}\right)_{\Gamma_{n}} \approx \alpha\left(T_{\lambda} H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)\right)^{*}\right)
\end{aligned}
$$

inducing quasi-isomorphisms

$$
\varliminf_{n, m} H^{i}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n}, \mathscr{A}_{p^{m}}^{0}\right) \approx \alpha\left(T_{\Lambda} H^{i-1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)\right)^{*}\right) \oplus \beta\left(F_{\Lambda} H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}\right)
$$

Next, for $\mathfrak{p} \in \Sigma$ we want to show
Claim 1. $\varliminf_{n, m}{ }_{p}{ }^{m} H^{1}\left(\Gamma_{n}, A\left(k_{\infty p}\right)\right) \cong\left(A^{\prime}\left(k_{\infty p}\right) / N_{p}^{\prime} \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}$

$$
\approx Z_{p} \llbracket \Gamma_{p} \rrbracket^{2\left(\operatorname{dim} A-r_{p}\right)\left[k_{p}: \ell_{p}\right]}
$$

Proof. According to [12], Theorem 2.2 the group

$$
H^{2}\left(\left(\Gamma_{p}\right)_{n}, A\left(k_{\infty p}\right)\right) \cong\left(A\left(k_{\infty p}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)_{\left(\Gamma_{p}\right)_{n}}
$$

(Lemma 2.4.i) is of finite order independent of n, n big enough. Therefore we obtain a quasi-exact sequence:

$$
\begin{aligned}
0 \longrightarrow & \varliminf_{n, m}{ }_{p} H^{1}\left(\left(\Gamma_{\mathfrak{p}}\right)_{n}, A\left(k_{\infty p}\right)\right) \longrightarrow \varliminf_{n, m} \lim _{p_{m} m} H^{1}\left(k_{\mathfrak{p} n}, A\right) \\
& \longrightarrow{\underset{n, m}{ }{ }_{p} m}^{H^{1}\left(k_{\infty p}, A\right)^{\left(\Gamma_{\mathfrak{p}}\right)_{n}} \longrightarrow \varliminf_{n, m} H^{1}\left(\left(\Gamma_{\mathfrak{p}}\right)_{n}, A\left(k_{\infty p}\right)\right)_{p^{m} m} .}
\end{aligned}
$$

Again by [12] Theorem 2.2 the modules

$$
\begin{aligned}
& \varliminf_{n, m}{ }_{p} H^{1}\left(k_{p n}, A\right) \cong\left(\varliminf_{n, m} A^{\prime}\left(k_{p n}\right)_{p m}\right)^{*}=\left(A^{\prime}\left(k_{\infty \mathfrak{p}}\right) \otimes Q_{p} / Z_{p}\right)^{*}, \\
& \varliminf_{n, m} p^{m} H^{1}\left(k_{\infty p}, A\right)^{\left(\Gamma_{p}\right) n} \approx \beta\left(H^{1}\left(k_{\infty p}, A\right)^{*}\right) \approx F_{A} H^{1}\left(k_{\infty p}, A\right)^{*}
\end{aligned}
$$

are quasi-free of $\operatorname{rank}\left(2 \operatorname{dim} A-r_{p}\right)\left[k_{p}: \boldsymbol{Q}_{p}\right]$ and $r_{p}\left[k_{p}: \boldsymbol{Q}_{p}\right]$, respectively. Since the fourth module in the sequence above is $\boldsymbol{Z}_{p} \llbracket \Gamma_{p} \rrbracket$-torsion we prove Claim 1.

Now the proof of the theorem will be accomplished once we have shown the quasi-surjectivity of the map

$$
\psi=\varliminf_{n, m} \psi_{n, m}: \varliminf_{n, m} H^{2}\left(\mathcal{O}_{n}, \mathscr{A}_{p m}\right) \longrightarrow \varliminf_{n, m} H^{2}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n}, \mathscr{A}_{p m}\right) .
$$

(Observe that $F_{A} H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}$ can be divided out of the first exact sequence in 2.2 (iii) in order to obtain the second, since a quasi-exact sequence $0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0$ of compact Λ-modules of finite type induces a quasi-exact sequence

$$
\left.0 \longrightarrow M_{1} \longrightarrow \operatorname{ker}\left(M_{2} \longrightarrow F_{1} M_{3}\right) \longrightarrow T_{1} M_{3} \longrightarrow 0 .\right)
$$

Now, according to [8] Lemma 3 we have a commutative and exact diagram

where $Y_{n}=\mathcal{O}_{n} \backslash \Sigma_{n}$. If $A_{n, m}^{i}$ and $B_{n, m}^{i}$ denote the kernel and cokernel of the map $\varphi_{n, m}$ and $C_{n, m}^{i}$ and $D_{n, m}^{i}$ the kernel and cokernel of $\psi_{n, m}$, respectively, then we obtain exact sequences

$$
0 \longrightarrow B_{n, m}^{i} \longrightarrow D_{n, m}^{i} \longrightarrow A_{n, m}^{i+1} \longrightarrow C_{n, m}^{i+1} \longrightarrow 0 .
$$

Claim 2. $\varliminf_{n, m} B_{n, m}^{2} \approx 0$.
Proof. Because

$$
\begin{aligned}
& H_{\Sigma_{n}}^{2}\left(\mathcal{O}_{n}, \mathscr{A}_{p^{m}}\right)=\bigoplus_{p \in \Sigma_{n}}{ }_{p}{ }^{m} H^{1}\left(k_{n p}, A\right) \\
& H_{\Sigma_{n}}^{2}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n}, \mathscr{A}_{p^{m}}\right)=\bigoplus_{p \in \Sigma_{n}} p^{m} H^{1}\left(k_{\infty p}, A\right)^{r_{n p}}
\end{aligned}
$$

[4] 5.1, 5.2 and [8] Lemma 7, we have

$$
\left.B_{n, m}^{2}=\bigoplus_{p \in \Sigma_{n}} \operatorname{coker}_{p_{p} m} H^{1}\left(k_{n \mathfrak{p}}, A\right) \longrightarrow \longrightarrow_{p m} H^{1}\left(k_{\infty p}, A\right)^{\Gamma_{n \mathfrak{p}}}\right)
$$

Hence by the exact sequence in the proof of Claim 1:

$$
\varliminf_{n, m} B_{n, m}^{2} \subseteq \varliminf_{n, m} H^{1}\left(\Gamma_{n \mathfrak{p}}, A\left(k_{\infty p}\right)\right)_{p m} .
$$

From Lemma 2.4 (i) we obtain a surjection

$$
\left(\left(A\left(k_{\infty p}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{T_{n \mathfrak{p}}}\right)_{p m} \longrightarrow H^{1}\left(\Gamma_{n p}, A\left(k_{\infty p}\right)_{\text {Tor }}\right)_{p m} .
$$

Because

$$
\begin{aligned}
& \varliminf_{n, m} H^{1}\left(\Gamma_{n \mathfrak{p}}, \operatorname{Tor}\left(A\left(k_{\infty p}\right)\right)\right)_{p m} \approx 0, \\
& \varliminf_{n, m}\left(\left(A\left(k_{\infty p}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{\left.\Gamma_{n \mathfrak{p}}\right)_{p m} \approx \dot{T}_{\dot{\delta}}\left(A\left(k_{\infty p}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*} \approx 0}=\$\right. \text {. }
\end{aligned}
$$

by Lemma 1.1 and [12] Theorem 2.2 we obtain

$$
\varliminf_{n, m} H^{1}\left(\Gamma_{n p}, A\left(k_{\infty p}\right)\right)_{p m} \approx 0
$$

proving Claim 2.
Claim 3. $\varliminf_{n, m} A_{n, m}^{3}$ and $\varliminf_{n, m} C_{n, m}^{3}$ are finitely generated Z_{p}-modules of the same rank.

Proof. We have the (quasi-) isomorphisms

$$
\begin{aligned}
& \varliminf_{n, m} H_{\Sigma_{n}}^{3}\left(\mathcal{O}_{n}, \mathscr{A}_{p m}\right) \cong\left(\lim _{n, m} \oplus_{p \in \Sigma_{n}} H^{0}\left(\mathcal{O}_{n p}, \mathscr{A}_{p m}^{\prime}\right)\right)^{*}=\bigoplus_{p \in \Sigma} A^{\prime}\left(k_{\infty p}\right)(p)^{*}, \\
& \varliminf_{n, m} H_{\Sigma_{n}}^{3}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n}, \mathscr{A}_{p^{m}}\right)
\end{aligned} \begin{aligned}
& \varliminf_{n, m} \bigoplus_{p \in \Sigma_{n}}\left({ }_{p m} H^{1}\left(k_{\infty} A\right)\right)_{r_{n \mathcal{p}}} \approx \bigoplus_{p \in \Sigma} \dot{T}_{\lambda} H^{1}\left(k_{\infty p}, A\right)^{*} \\
& \\
& \approx \bigoplus_{p \in \Sigma} T_{\lambda} A^{\prime}\left(k_{\infty p}\right)(p)^{*} \approx \bigoplus_{p \in \Sigma} A^{\prime}\left(k_{\infty p}\right)(p)^{*}
\end{aligned}
$$

(by local flat duality, Lemma 1.1, [12] Theorem 2.2 and Theorem 3.4),

$$
\begin{aligned}
& \varliminf_{n, m} H^{3}\left(\mathcal{O}_{n}, \mathscr{A}_{p^{m}}\right) \cong A^{\prime}\left(k_{\infty}\right)(p)^{*}, \\
& \begin{aligned}
\varliminf_{n, m} H^{3}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n}, \mathscr{A}_{p^{m}}\right) & \cong \varliminf_{n, m} H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}_{p^{m}}\right)_{\Gamma_{n}} \approx \varliminf_{n, m}\left({ }_{p m} H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)\right)\right)_{\Gamma_{n}} \\
& \approx \dot{T}_{\lambda} H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)\right)^{*} \approx A^{\prime}\left(k_{\infty}\right)(p)^{*}
\end{aligned}
\end{aligned}
$$

(by Lemma 1.1 and the assertion (i) of this theorem proven above). Because $A_{n, m}^{4}=0$ there is an isomorphism

$$
\varliminf_{n, m} B_{n, m}^{3} \cong \varliminf_{n, m} D_{n, m}^{3} .
$$

Together with the quasi-isomorphisms above this proves Claim 3.

Now, from Claims 2 and 3 it follows

$$
\text { coker } \psi=\varliminf_{n, m} \operatorname{coker} \psi_{n, m}=\varliminf_{n, m} D_{n, m}^{2} \approx 0 .
$$

This completes the proof of Theorem 2.2.
Corollary 2.5. Let A be an abelian variety over k with good supersingular reduction at every prime above p. Assume $H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}$ to be a 1-torsion module. Then the Pontrjagin dual of the kernel of the canonical map

$$
H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right) \longrightarrow \prod_{p \in \Sigma} H^{1}\left(k_{\infty p}, A(p)\right)
$$

is quasi-isomorphic to $\dot{T}_{A} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}(p)\right)^{*}$.
This result is also obtained by Billot [2] for elliptic curves which have complex multiplication. The Corollary 2.5 follows easily from the theorem, because the above map is dual to the projective limit of the maps

$$
\begin{aligned}
& \oplus_{p \in \Sigma_{n}} H^{1}\left(k_{n p}, A_{p m}^{\prime}\right) \longrightarrow \oplus_{p \in \Sigma_{n}} p_{m} H^{1}\left(k_{n p}, A^{\prime}\right) \\
& \longleftrightarrow \bigoplus_{p \in \Sigma_{n}} p^{m} H^{1}\left(\Gamma_{n p}, A\left(k_{\infty p}\right)\right) \longrightarrow H^{2}\left(\mathcal{O}_{n}, \mathscr{A}_{p m}\right) .
\end{aligned}
$$

Observe that the middle map is an isomorphism, i.e., the universal norms $N A\left(k_{n p}\right)$ are zero in the supersingular case, [9] Theorem 1. We conclude this section with some easy consequences of the assumption that $\amalg_{n}=$ $\amalg\left(A\left(k_{n}\right)\right)(p)$ is finite for all n.

Proposition 2.6. Let \amalg_{n} be finite for all n. Then
i) $\operatorname{rank}_{A} H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*} \leq \operatorname{rank}_{A}\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}$,
ii) $\operatorname{rank}_{A} \amalg_{\infty}^{*} \leq \sum_{p \in \Sigma}\left(\operatorname{dim} A-r_{p}\right)\left[k_{p}: \boldsymbol{Q}_{p}\right]=S$.

Corollary 2.7. Let \amalg_{n} be finite for all n. If $\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}$ is a人-torsion module, then $\operatorname{rank}_{A} H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}=0$ and $\operatorname{rank}_{A} \amalg_{\infty}^{*}=s$.

Proof. Because of

$$
\operatorname{rank}_{A}\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}+\operatorname{rank}_{A} \amalg_{\infty}^{*}=s+\operatorname{rank}_{A} H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*},
$$

[8] Lemma 2.2, the second assertion follows from the first. Now, since $\amalg\left(A\left(k_{n}\right)\right)(p)$ is finite for all n, we obtain by the flat duality theorem and [8] Lemma 1.4 an isomorphism

$$
\varliminf_{n} \mathscr{A}^{0}\left(\mathcal{O}_{n}\right) \otimes \boldsymbol{Z}_{p} \leftrightarrows \varliminf_{n, m} H^{1}\left(\mathcal{O}_{n}, \mathscr{A}_{p m}\right) \cong H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}(p)\right)^{*} .
$$

Hence

$$
\begin{aligned}
\operatorname{rank}_{A} H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*} & =\operatorname{rank}_{A} \varliminf_{n} \mathscr{A}^{0}\left(\mathcal{O}_{n}\right) \otimes \boldsymbol{Z}_{p} \\
& =\operatorname{rank}_{A} \varliminf_{n} A\left(k_{n}\right) \otimes \boldsymbol{Z}_{p} \quad(\text { see Remark } 2.3 \mathrm{ii}) \\
& \leq \operatorname{rank}_{A} F_{A}\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}
\end{aligned}
$$

by Lemma 2.4 (ii).

§ 3. Ordinary reduction

In this section we will consider abelian varieties which have ordinary good reduction at p. As a direct consequence of Theorem 2.2 we obtain the following result

Theorem 3.1. Let A be an abelian variety with ordinary good reduction at p. Then for $i \geq 0$ there are quasi-isomorphisms induced by the global flat duality

$$
\begin{aligned}
& T_{A} H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}(p)\right)^{*} \approx \alpha\left(T_{A} H^{2-i}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)\right)^{*}\right) \\
& F_{A} H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}(p)\right)^{*} \approx \beta\left(F_{A} H^{3-i}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}\right)
\end{aligned}
$$

Remark 3.2. The quasi-isomorphism

$$
T_{\lambda} H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}(p)\right)^{*} \approx \alpha\left(T_{\lambda} H^{2-i}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}\right)
$$

can be understood as pairing

$$
T_{\lambda} H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}(p)\right)^{*} \times T_{\lambda} H^{2-i}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*} \longrightarrow Z_{p}
$$

with finite kernels. Indeed, the quasi-isomorphism is obtained from the discrete-compact pairing

According to [11] Lemma 7.6 we obtain a pairing of compact Λ-modules. Now let

$$
\kappa: G_{k} \longrightarrow Z_{p}^{*}
$$

be the continuous character of the absolute Galois group of k corresponding to the Z_{p}-extension k_{∞} / k and let ϕ be a generator of $\Gamma=G\left(k_{\infty} / k\right)$. We define an Iwasawa L-function of A with respect to κ by

$$
L_{p}(A, \kappa, s)=\prod_{i \geq 0} F_{i}\left(\kappa(\phi)^{s-1}-1\right)^{(-1)^{i+1}}, \quad s \in \boldsymbol{Z}_{p},
$$

where

$$
F_{i}(t)=p^{\mu_{i}} \operatorname{det}\left(t-(\phi-1) ; T_{A} \boldsymbol{H}^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*} \otimes \boldsymbol{Q}_{p}\right)
$$

is the characteristic polynomial of the Λ-torsion module $T_{\Lambda} H^{i}$ and μ_{i} denotes the μ-invariant of $H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}$ (see also [8] $\S 2$, where L_{p} is defined assuming that $H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)$ is a 1 -torsion module). Using a polarization we obtain from Theorem 3.1 and [4] Lemma 7.1 a quasiisomorphism

$$
T_{\lambda} H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*} \approx \dot{T}_{\lambda} H^{2-i}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}, \quad i \geq 0,
$$

which implies the following result
Corollary 3.3. Let A be an abelian variety with good ordinary reduction at p. Then the Iwasawa L-function satisfies a functional equation with respect to $s \mapsto 2-s$:

$$
L_{p}(A, \kappa, s)=\varepsilon \cdot \kappa(\phi)^{(s-1)\left(2 \lambda_{0}-\lambda_{1}\right)} L_{p}(A, \kappa, 2-s),
$$

where

$$
\begin{aligned}
& \lambda_{i}=\operatorname{rank}_{Z_{p}} T_{2} H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*} \\
& \varepsilon=(-1)^{r}, \quad r=\operatorname{ord}_{t=0} F_{1}(t) .
\end{aligned}
$$

Remark. The above corollary generalizes a result of Mazur and Schneider [4] Corollary 7.8, [8] p. 342, where k_{∞} / k is an admissible $Z_{p}{ }^{-}$ extension, i.e., the bad primes split only finitely in k_{∞} / k and $H^{i}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}$ are assumed to be Λ-torsion modules.

Proposition 3.4. If A has good ordinary reduction at p and $Ш_{n}$ is finite for all n, then $Ш_{\infty}^{*}$ is a 1 -torsion module.

This is a direct consequence of Proposition 2.6 (ii).

Proposition 3.5. Let A be ordinary at p and let \amalg_{n} be finite for all n. Then

$$
T_{\delta}\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / Z_{p}\right)^{*} \approx 0
$$

i.e.,

$$
\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*} \approx \Lambda^{\rho_{2}} \oplus \oplus_{i} \Lambda / \xi_{i}
$$

for some polynomials ξ_{i} and $\rho_{2}=\operatorname{rank}_{1} H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}$.
Remark 3.6. This result should hold true without any conditions. For trivial reasons one also obtains this assertion if $\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) *$ is a Λ-torsion module: Since $A\left(k_{\infty}\right)$ is a discrete Γ-module, it is easy to see that $\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}$ is fixed under the action of Γ_{n}, n big enough. Indeed, for $m \geq n$ there are injections

Lemma 2.4 (i). Since $A\left(k_{\infty}\right)_{\text {Tor }}$ is discrete, i.e., $A\left(k_{\infty}\right)_{\text {Tor }}=\bigcup_{n}\left(A\left(k_{\infty}\right)_{\text {Tor }}\right)^{T_{n}}$, we obtain

$$
\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}=\underset{n}{\varliminf_{n}}\left(\left(A\left(k_{\infty}\right)_{\text {Tor }}\right)^{\Gamma_{n}} \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}
$$

where the limit is taken over the surjective norm maps. Since $\left(A\left(k_{\infty}\right) \otimes\right.$ $\left.\boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}$ is by assumption of finite \boldsymbol{Z}_{p}-rank, the projective system will become stationary. Hence

$$
\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}=\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right) * \Gamma_{n}
$$

for some $n \geq 0$. Now the general structure theory of compact Λ-modules of finite type proves the assertion above.

Proof of Proposition 3.5. We have to show that

$$
\dot{T}_{\delta}\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*} \approx \varliminf_{n, m}\left(\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{\Gamma n}\right)_{p m} \approx \varliminf_{n, m} H^{1}\left(\Gamma_{n}, A\left(k_{\infty}\right)_{\text {Tor }}\right)_{p m}
$$

is finite. (Here we used Lemma 1.1 and 2.4i).
From the spectral sequence

$$
H^{i}\left(\Gamma_{n}, H^{j}\left(\mathcal{O}_{\infty}, \mathscr{A}\right)\right) \Longrightarrow H^{i+j}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n}, \mathscr{A}\right)
$$

[7] Appendix, we obtain exact sequences
$(*) \quad 0 \longleftarrow H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}\right)(p)^{\Gamma_{n}} \longleftarrow H^{2}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n}, \mathscr{A}\right)(p)$

where $F_{1}(n)$ denotes the first filtration step of $\left.H^{2}\left(\mathcal{O}_{\infty}\right) \mathcal{O}_{n}, \mathscr{A}\right)$. Since $H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}\right)$ is a torsion group, we have

$$
\begin{aligned}
& H^{2}\left(\Gamma_{n}, H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}\right)\right)=0 \\
& H^{2}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n}, \mathscr{A}(p)\right) \cong H^{2}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n}, \mathscr{A}\right)(p) \\
& H^{2}\left(\mathcal{O}_{n}, \mathscr{A}(p)\right) \cong H^{2}\left(\mathcal{O}_{n}, \mathscr{A}\right)(p),
\end{aligned}
$$

hence

$$
F_{1}(n) \cong H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)_{\Gamma_{n}}
$$

From the second spectral sequence

$$
H^{i}\left(\mathcal{O}_{n}, R^{j} \pi_{\Gamma_{n} *} \mathscr{A}\right) \Longrightarrow H^{i+j}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n}, \mathscr{A}\right),
$$

see [7] Appendix, we obtain the exact sequence

$$
\begin{aligned}
0 \longrightarrow H^{1}\left(\mathcal{O}_{n}, \mathscr{A}\right)(p) & \longrightarrow H^{1}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n}, \mathscr{A}\right)(p) \longrightarrow \oplus_{p \in \Sigma} H^{1}\left(\Gamma_{n \mathfrak{p}}, A\left(k_{\infty p}\right)\right) \\
\longrightarrow & H^{2}\left(\mathcal{O}_{n}, \mathscr{A}\right)(p) \longrightarrow H^{2}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n}, \mathscr{A}\right)(p) \longrightarrow 0
\end{aligned}
$$

using [8] Proposition 1.2. Therefore

$$
H^{i}\left(\mathcal{O}_{n}, \mathscr{A}\right)(p) \approx H^{i}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n}, \mathscr{A}\right)(p), \quad i \geq 0
$$

where the defect is independent of n, n big enough, [8] Proposition 1.1 (iii). By the perfect duality 2.1 (iii) and the finiteness of $H^{1}\left(\mathcal{O}_{n}, \mathscr{A}\right)(p)$ we obtain a quasi-exact sequence

$$
0 \longrightarrow \varliminf_{n} H^{1}\left(\Gamma_{n}, A\left(k_{\infty}\right)\right) \longrightarrow H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime 0}\right)(p)^{*} \longrightarrow{\underset{i m}{n}}^{\lim ^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}\right)(p)^{\Gamma_{n}}, ~}
$$

where the next term

$$
\varliminf_{n} H^{2}\left(\Gamma_{n}, A\left(k_{\infty}\right)\right) \cong\left(T_{\nu}\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}\right)^{*}
$$

(Lemma 2.4i) is \boldsymbol{Z}_{p}-torsion. Now $H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}\right)(p)^{*}$ is a Λ-torsion module (3.4), hence

$$
H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}\right)(p)^{*} \approx T_{\delta_{\infty}} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}\right)(p)^{*} \oplus T_{\varepsilon} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}\right)(p)^{*}
$$

and therefore

$$
\varliminf_{n} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}\right)(p)^{\Gamma_{n}} \approx \dot{T}_{\delta_{\infty}} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}\right)(p)^{*} \oplus\left(T_{\varepsilon} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}\right)(p)^{*} \otimes_{Z_{p}} Q_{p}\right)
$$

Hence the quasi-exact sequence above shows

$$
\varliminf_{n} H^{1}\left(\Gamma_{n}, A\left(k_{\infty}\right)\right) \otimes \boldsymbol{Q}_{p}=0,
$$

i.e., $\varliminf_{n} H^{1}\left(\Gamma_{n}, A\left(k_{\infty}\right)\right)$ is Z_{p}-torsion, and therefore

$$
\varliminf_{n, m} H^{1}\left(\Gamma_{n}, A\left(k_{\infty}\right)\right)_{p m}
$$

can only have a μ-part. But this is impossible, since $T_{\delta}\left(A\left(k_{\infty}\right) \otimes Q_{p} / Z_{p}\right)^{*}$ has zero μ-invariant.

Theorem 3.6. Let A be an abelian variety over k with ordinary good reduction at p and let $\amalg\left(A\left(k_{n}\right)\right)(p)$ be finite for all n. Then the global flat duality induces quasi-isomorphisms

$$
\begin{align*}
& T_{\tilde{\delta}} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}\right)(p)^{*} \approx \alpha\left(T_{\delta} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}\right)(p)^{*}\right) \tag{i}\\
& T_{\delta} \amalg_{\infty}\left(A^{\prime}\right)(p)^{*} \approx \alpha\left(T_{\delta} 山_{\infty}(A)(p)^{*}\right)
\end{align*}
$$

and a quasi-exact sequence
(ii) $\quad 0 \longrightarrow T_{\nu} \amalg_{\infty}\left(A^{\prime}\right)(p)^{*} \longrightarrow \alpha\left(T_{1}\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}\right)$

$$
\longrightarrow T_{A}\left(A^{\prime}\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / Z_{p}\right)^{*} \longrightarrow \alpha\left(T_{\nu} Ш_{\infty}(A)(p)^{*}\right) \longrightarrow 0
$$

Corollary 3.7. Let the assumptions of 3.4 be fulfilled, then the following is true.
(i) Any divisor of the form ξ_{r} of $Ш_{\infty}(A)(p)^{*}$ is also a divisor of $\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}$. In particular, if $\amalg_{\infty}(A)(p)^{\Gamma_{n}}$ is infinite then A has a k_{n}-rational point of infinite order.
(ii) The following assertions are equivalent:
(a) The 1 -torsion submodule of $H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}$ is semi-simple by $\zeta_{p^{n}}-1$ for all $n \geq 0$, i.e.,

$$
T_{\varepsilon} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*} \approx \underset{r}{\oplus} \Lambda / \xi_{r}
$$

(b) The Γ_{n}-invariants $\amalg_{\infty}(A)(p)^{\Gamma_{n}}$ of $\amalg_{n}(A)(p)$ are finite groups for all $n \geq 0$.
(c) There is a quasi-isomorphism

$$
\alpha\left(T_{A}\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}\right) \approx T_{A}\left(A^{\prime}\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}
$$

induced by the global flat duality.
Corollary 3.8. Let A be an abelian variety with ordinary good reduction at p. Let $\Pi_{\infty}(A)(p)^{\Gamma_{n}}$ be finite for all n and assume that $\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}$ is a 1 -torsion module. Then there is a non-degenerate pairing

$$
A\left(k_{\infty}\right) \times A^{\prime}\left(k_{\infty}\right) \longrightarrow Q_{p}
$$

In particular, there are non degenerate pairings

$$
A\left(k_{n}\right) \times A^{\prime}\left(k_{n}\right) \longrightarrow Q_{p}
$$

for all n.
Proof of Theorem 3.6. From the descent diagram we derive the commutative and quasi-exact diagram

We will compute the projective limits. First, from the lower exact sequence in the diagram $\left(^{*}\right)$ of the proof of 3.5 with \mathscr{A}^{0} instead of \mathscr{A} we obtain a quasi-exact sequence

$$
\begin{aligned}
& 0 \longrightarrow \varliminf_{n, m} p^{m} \\
&\left(H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)\right)_{\Gamma_{n}}\right) \longrightarrow \varliminf_{n, m}{ }_{p^{m}} H^{2}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n}, \mathscr{A}^{0}\right) \\
& \longrightarrow \varliminf_{n, m}{ }_{p^{m}} H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}\right)^{r_{n}} \longrightarrow 0
\end{aligned}
$$

hence

$$
\varliminf_{n, m} p_{m} H^{2}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n}, \mathscr{A}^{0}\right) \approx \alpha\left(T_{\nu} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}\right) \oplus \beta\left(F_{A} H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}\right) .
$$

Because of

$$
\varliminf_{n, m} H^{2}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n}, \mathscr{A}_{p m}\right) \approx \alpha\left(T_{1} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{(}(p)\right)^{*}\right) \oplus \beta\left(F_{A} H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}\right)
$$

(see proof of 2.2) we obtain

$$
\varliminf_{n, m} H^{1}\left(\mathcal{O}_{\infty} / \mathcal{O}_{n}, \mathscr{A}^{0}\right)_{p^{m}} \approx \alpha\left(T_{\delta} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}(p)\right)^{*}\right)
$$

Now, since \amalg_{n} is finite for all n we have by Theorem 2.1 (ii) an isomorphism

$$
\varliminf_{n, m} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{0}\right)_{p^{m}} \cong H^{1}\left(\mathcal{O}_{n}, \mathscr{A}^{\prime}\right)(p)^{*}
$$

Furthermore

$$
\varliminf_{n, m} H^{2}\left(\mathcal{O}_{n}, \mathscr{A}_{p m}\right) \cong H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}(p)\right)^{*}
$$

hence

$$
\varliminf_{n, m}{ }_{p m} H^{2}\left(\mathcal{O}_{n}, \mathscr{A}^{0}\right) \cong\left(A^{\prime}\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*} .
$$

Therefore, the diagram above induces the commutative and quasi exact diagram

Since $H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}\right)(p)^{*}$ is Λ-torsion (3.4) we have a quasi-isomorphism

$$
F_{\Lambda}\left(A^{\prime}\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / Z_{p}\right)^{*} \approx \beta\left(F_{\Lambda} H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}\right)
$$

and a quasi-exact and commutative diagram
$0 \longrightarrow H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}\right)(p)^{*} \longrightarrow T_{A} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}\right)(p)^{*} \longrightarrow T_{A}\left(A^{\prime}\left(k_{\infty}\right) \otimes \mathscr{Q}_{p} / Z_{p}\right)^{*} \longrightarrow 0$

where the map ψ is induced by the quasi-isomorphism in the middle (Theorem 3.1).

Therefore the characteristic polynomial of $T_{\Lambda}\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / Z_{p}\right) * \approx T_{\nu}\left(A\left(k_{\infty}\right)\right.$ $\left.\otimes \boldsymbol{Q}_{p} \mid \boldsymbol{Z}_{p}\right)^{*}$ (3.5) devides the characteristic polynomial of $T_{\nu} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}$. This shows that all horizontal maps in the diagram (+) are quasiisomorphisms:

$$
\begin{align*}
& \left(A^{\prime}\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / Z_{p}\right)^{*} \approx \alpha\left(T_{\nu} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}\right) \oplus \beta\left(F_{A} H^{2}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}\right), \\
& H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}\right)(p)^{*} \approx \alpha\left(T_{\delta} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}\right) . \tag{3.9}
\end{align*}
$$

Thus we obtain from the diagram above the quasi-exact sequence
$\left.0 \longrightarrow T_{\nu} Ш_{\infty}\left(A^{\prime}\right)(p)^{*} \longrightarrow \alpha\left(T_{\Lambda}\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / Z_{p}\right)^{*}\right) \xrightarrow{\psi} T_{\Lambda}\left(A^{\prime}\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / \boldsymbol{Z}_{p}\right)^{*}\right)$.
Obviously the cokernel of ψ is quasi-isomorphic to $\alpha\left(T_{\nu} \amalg_{\infty}(A)(p)^{*}\right)$. Furthermore, the diagram above implies a quasi-injection

$$
T_{\delta} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}\right)(p)^{*} \circlearrowright T_{\delta} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}\right)(p)^{*} .
$$

Hence, taking the adjoint and combining it with the quasi-isomorphism (3.9) we obtain a quasi-surjection

$$
H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}\right)(p)^{*} \approx \alpha\left(T_{\delta} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}(p)\right)^{*}\right) \longrightarrow \alpha\left(T_{\delta} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}^{\prime}\right)(p)^{*}\right)
$$

This proves Theorem 3.6.
Proof of Corollary 3.7. Since

$$
T_{\nu}\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p} / Z_{p}\right)^{*} \quad \text { and } \quad T_{\nu} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*}
$$

have the same characteristic polynomials the following assertions are equivalent:

$$
\begin{aligned}
& H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*} \text { is semi-simple by } \zeta_{p^{n}}-1 \text { for all } n \geq 0, \\
& T_{\nu} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*} \approx T_{\varepsilon} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}(p)\right)^{*} \\
& T_{\nu} H^{1}\left(\mathcal{O}_{\infty}, \mathscr{A}\right)(p)^{*} \approx 0 \\
& \amalg_{\infty}(A)(p)^{* r_{n}} \text { is finite for all } n \geq 0 .
\end{aligned}
$$

Because $\amalg_{\infty}(A)(p)^{*}$ is Λ-torsion the last assertion is equivalent to

$$
\amalg_{\infty}(A)(p)^{r_{n}} \text { is finite for all } n \geq 0
$$

The equivalence to (c) and the first assertion follow immediately from 3.6 (ii).

Proof of Corollary 3.8. This is a consequence of 3.7 (ii), observing that the maps

$$
\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p}\right)^{\Gamma_{n}} \longrightarrow\left(A\left(k_{\infty}\right) \otimes \boldsymbol{Q}_{p}\right)_{\Gamma_{n}}, \quad n \geq 0,
$$

induced by the identity are isomorphisms because

$$
\left(A\left(k_{\infty}\right) \otimes Q_{p} / Z_{p}\right)^{*} \approx T_{\nu}\left(A\left(k_{\infty}\right) \otimes Q_{p} / Z_{p}\right)^{*} .
$$

References

[1] M. Artin, B. Mazur, Global duality, unpublished.
[2] P. Billot, Quelques aspects de la descente sur une courbe elliptique dans le cas de réduction supersingulière, Compositio Math., 58 (1986), 341-369.
[3] J. Coates, Infinite descent on elliptic curves, in: Arithmetic and Geometry, paper dedicated to I. R. Shafarevich on the occasion of his 60th birthday, Vol. I. Progress in Math., 35, Boston Birkhäuser (1983), 107-137.
[4] B. Mazur, Rational points of abelian varieties with value in towers of number fields, Invent. Math., 18 (1972), 183-266.
[5] J. Milner, Arithmetic duality theorems, Perspectives in Math., Academic Press (1986).
[6] B. Perrin-Riou, Arithmétique des courbes elliptiques et théorie d'Iwasawa, Soc. Math. de France. Mémoire, 17 (1984).
[7] P. Schneider, Iwasawa L-functions of varieties over algebraic number fields, a first approach, Invent. Math., 71 (1983), 251-293.
[8] ——, p-adic height pairings II, Invent. Math., 79 (1985), 329-374.
[9] -, Arithmetic of formal groups and applications I: Universal norm subgroups, Invent. Math., 87 (1987), 587-602.
[10] J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Intern. Congress Math. Stockholm, (1962), 234-241.
[11] K. Wingberg, Duality theorems for Γ-extensions of algebraic number fields, Compositio Math., 55 (1985), 333-381.
[12] -, On the rational points of abelian varieties over \boldsymbol{Z}_{p}-extension of number fields, Math. Ann., 279 (1987), 9-24.
SGA 7I: A. Grothendieck, Groupes Monodormie en Géométrie Algebrique, Lect. Notes in Math., 288, Berlin-Heidelberg-New York, Springer (1972).

Universität Erlangen-Nürnberg
Mathematisches Institut
Bismarckstr. 11/2
D-8520 Erlangen
BRD

