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Let X be a primitive Dirichlet character with conductor f, let -r(X) be 
the Gaussian sum for X, and let Lp(s, X) be the p-adic L-function associated 
with X. Then, by the results of Brumer [3] and Leopoldt [8], the value 
L/1, X) of this function at s= 1 is not zero, and is given by the following 
formula: 

Lp(I, X)= -(1-X(p)) -r(X) t X(a) log (1-C-a). 
p f a-1 

Since this value is related to the class numbers of cyclotomic fields, it is 
important to obtain a lower bound of Lp(l, X). 

Since the above formula expresses Lp(I, X) in a linear form of p-adic 
logarithms of algebraic numbers, it is natural to study lower bounds of 
linear forms of p-adic logarithms of algebraic numbers by Baker's method. 
There are several results in this direction (cf. Spindzhuk [10], Kaufman [6], 
van der Poorten [9], etc.). But some results are not explicit enough for us, 
and some paper has (minor) mistakes so that the resulting constants must 
be modified ( cf. Remark in 2-1 ). Since the values of the constants are 
essential for our purpose, we first study this problem. Then, calculating 
the relevant constants, we obtain a lower bound of Lp(l, X). 

In § 1, we improve a result of Gel'fond [4] on p-adic interpolations 
of p-adic normal functions by polynomials. In § 2, we calculate lower 
bounds of linear forms in p-adic logarithms of algebraic numbers by the 
method of Baker [2]. In § 3, we use the explicit formula of L/1, X) and, 
by calculating the relevant constants, obtain a lower bound of L(l, X). 

The author first studied this problem by the method of Kaufman [6]. 
Then he heard the existence of van der Poorten [6] from M. Waldschmidt. 
So he used the method of Baker [2] and improved the lower bound. After 
writing this paper, the author met A. Baker and heard that Waldschmidt 
improved Baker's result in [11], and that a Chinese mathematician also 

Received February 22, 1988. 



332 Y. Morita 

studied our problem (cf. [12)). 
We note that our lower bound is not best possible. It seems that we 

can improve the bound if we use the method of Waldschmidt [11] and 
calculate the relevant constants more carefully. But it seems very difficult 
to improve our lower bound by this method so much as examples show. 
Maybe, we must use the theory of ZP-extensions to get an essentially bet
ter lower bound. 

§ 1. An improvement of a result of Gel'fond book 

Let Q be the rational number field, let R be the real number field, 
and let C be the complex number field. We denote the standard valua
tion (the absolute value) of C by I I=· Let p be a prime number, let Zp 
be the ring of p-adic integers, let QP be the p-adic number field, and let 
CP be the completion of the algebraic closure of QP. We extend the 
standard p-adic valuation I IP of Qp to Cp, and denote the extended 
valuation by the same symbol I Ip· We fix embeddings of the algebraic 

closure Q of Q into C and Cp, and regard algebraic numbers as elements 
ofC and Cp. 

We say that a formal power series f(z)= L./:::i-ofmzm E CP[[z]] is a 
normal/unction if the coefficientsfm satisfy lfm\psl for any m andfm-o 
(m-=) (cf. Gel'fond [4], p. 119). Thenf(z) defines an analytic function 
on the unit disc {z e CP; \z\P<l}. Further, for any point z0 of the unit 
disk,f(z- z0) is also a normal function. Furthermore, if f(z) is a normal 
function, and if f(z) vanishes of order k at a point z0 of the unit disk, 
thenf(z)/(z-z 0)k is also a normal function (cf. ibid, for the properties of 
normal functions). 

Let r1 and r2 be positive integers, let xk (O<ksr 2- l) and a,,k 
(O<s<r 1 - I, Osksr 2 - I) be elements of Cr Then Gel'fond has shown 
that the unique polynomial P(z) e CP[z] of degree r1r2 - l such that 

is given by the following formula: 

P(z)= '£:1 1:1:t ar,-n-1,k 
k=o n=o s-o (r1-n-1)! (n-s)! 

X [(~)n-s CT (z-xk)-r•] (z-xky,-s-i CT (z-xiY,. 
dz i'Fk z=x, i*k 

Let(} be a positive rational number. We assume 
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Then we have (cf. ibid. p. 122, (82)) 

Since binomial numbers are integers, and since the inequality 

holds, it is easy to study the normality of this function. Further, if z is a 
positive integer greater than r2, then we have 

Hence we obtain the following result (cf. ibid. p. 121, (80)): 

Proposition 1. Let the notation and assumption be as above. Let m 
be a rational number. We assume that 

holds for any s and k. Then the interpolation polynomial P(z) is normal if 
the inequality 

holds. Further, we have 

\ P(z) Ip::::: \pm-r, (rz-1) [0 + 1/(p-1)) - (r1- l)]og,(r2- l)/log,p Ip 

for \z\P< I, and 

\ P(z) \p::;: I pm-3r1log,(r2- l)/log,p- ri{2+1/(p-1)) Ip 

for any Z E ZP. 

Let F(z) be a p-adic normal function. Let R and S be positive inte
gers, and let m and 0 be positive rational numbers. Let Q(Z) be the 
unique polynomial of degree RS- I such that 
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(O<r<R-1, O<s<S-1). 

We assume that 

holds for O<r<R-1, O<s<S-1. Then it follows from Proposition 1 
that Q(z) is normal if the inequality 

(R- l)S{O+ 1/(p- l)}+S log. (R-1)/log.p<m 

holds. Further, if we write 

F(z)=Q(z)+ n (z-p 8r)8 G(z), 
o,;;r,;;R-1 

then the function G(z) is also a normal function. Hence, if z is a p-adic 
integer, and if Q(z) is a normal function, then we have 

IF(z)lp< Max {lpm-38Iog.(R-1)/Iog,p-S{2+1/(p-1)} Iv, 

I p<R-1)8 {8 + 1/(p-1))- S Jog,(R-1)/Iog.v-28 Ip}• 

Hence we have the following: 

Proposition 2. Let F(z) be a normal function, let m and 0 be positive 
rational numbers, and let R and S be positive integers. We assume that 
the following two inequalities hold: 

I:! { ( ! r F }(p9r)lv <IP"'lp, 

(R- l)S{O+ 1/(p- l)}+ Slog. (R-1)/log.p<n:. 

Then, for any z E Zv, we have 

IF(z) Iv< IPCR-lJS{B +11cv-l)}-2s1og.CR-IJ/1og,p-2s Iv· 

§ 2. Lower bounds of linear forms in p-adic logarithms of algebraic 
numbers 

2-1. Notation and assumption. Let p be a prime number, and let 

Q, Q, Ov, C, Cv, etc. be as in § 1. Let at (i= 1, 2, · .. , n) be algebraic 
numbers. We assume that 



A Lower Bound of Lp(I, x) 

!at-1 IP<l21P 

!at-IIP<IPIP 

(if p=2) 

(if p>3) 

335 

holds for any i. Then it follows that lat-l!P<IP 11<P-1ljP. Hence the p
adic logarithmic function log (z)= :En;;,i (- It+ 1(z- l)n/n converges at 
z=at, and satisfies 

!log (at)IP= lat- l lP<!p 11<P-1ljP. 

Further, for !zip< 1, the function (a .. )•= exp {z log (ai)} is well-defined and 
satisfies l(at)'-llP=lzlP!log(at)IP=lzlPlat-llp, where exp(z) denote the 
p-adic exponential function exp (z)= :Ek~ozk/k!. 

Let f3t (i=O, 1, · · ·, n) be algebraic numbers. We assume that each 
f3t satisfies LBt IP< 1. Let 

A= f3o+ /31 log a1 + · · · + f3,. log an. 

If lf3olv>lp11<v-tJlp, then 1Alv=lf3olp holds. Hence we assume lf3olp< 
IP11cp-'tJlv· 

Let][ be the field generated over Q by the at (i= 1, · · ·, n) and f3t 
(i=O, 1, · · ·, n). We assume that the height of each at is at most A .. 
(At>4), and the height of each /3 .. (i=O, 1, .. ·, n) is at most B (B>4), and 
that the degree [][: Q] is at most d. Let A= Max1,;;i,;;n Ai, and let 

Q = TI log. At and Q' = I1 log. Ai. 
l~i~n l~i~n-1 

We understand that {J' and log. Q' denote 1 if n= 1. 
In this section, we obtain a lower bound of I A IP of the form 

(BQ)-ODioge D'log,P
0 

Remark. In [2], Baker studied linear forms in logarithms of algebraic 
numbers of the form A. He obtained a lower bound of !Al~ in the fol
lowing form: 

I Al~ >(B{J)-(16nd)200n{}Jog, D'. 

Further, van der Poorten has claimed in [9] that the same result holds 
over the field CP under the conditions I at - 1 IP< 1 (i = 1, · · ·, n), I f3t IP< 1 
(i = 0, 1, · · ·, n) and I f3n IP= 1. The arguments of [9] are essentially cor
rect, but the result seems to be corrected. 

In [9], the argument from p. 35, line 23 to p. 36, line 2 is not correct, 
because g is not contained in ][. Hence the resulting constant C seems 
to be modified so that C depends on p. Further, it seems that the 
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normalities of the interpolation polynomials are not checked ( cf. [9], p. 44, 
line 11-29). Since the value of the constant C is vitally important for 
us, we give an outline of the proof. Our constant depends on p, and it 
is bigger than Baker's constant. 

2-2. Results under an assumption on [lK(afq, afq, · · ·, a~1q): lK]. 
We use the method of Baker [2], and use the result of§ 1 to get estimates 
of interpolation functions. 

Let n, a 1, (3i, A, JK, d, Ai, A, B, Q, log. Q', etc. be as in 2-1. We 
assume that fin= - 1. Let k e Z be a parameter which depends on n and 
d. We assume that (1) k?::.(30ntd)an if n>2 and p>3, (2) k>(50n 2d) 6n if 
n>2 andp=2, (3) k>(60d)6, B>log. A>6, and d>6 if n= 1 and p>3, 
and (4) k>(100d)6, B>log. A>6 and d>6 if n= 1 andp=2. 

For any real number x, let [x] denote the largest integer satisfying 
[x]<x. Pute= l/(3n), L=kQ log. Q', h=L_ 1 + 1 =[log. (BQ)], L 0 =[k 1 -•Q], 
Lt=[k-•L/log. At] (1 <i<n). 

Let q be a prime number satisfying q=/=p and 7<q<k 11•, and let J 
be a non-negative integer such that qJ <kQ' log. Q'. This implies qJ <k 
if n= 1. Let D!!=L_ 1, Lf>=L 0, and LV>=[LiqJ] (l<j<n). Let 1,i(h) 
be the least common multiple of 1, 2, .. ·, h, and, for any integers /, m 
>0, let 

1 ( d )m Ll(z; h, I, m)=- - {(z+l)(z+2)· · ·(z+h)/h!f 
ml dz 

Let m0, m1, · · ·, mn-i be non-negative integers, let DJ> denote the set 
of n+2-tuples .1=(.L 1, 10, 11, ···,An) of integers satisfying 1<1_ 1~ 
L<!!, l<l 0<Lf>, l<l 1<LV>, · · ·, l<ln<L~J>. For any element.< of 
L(J), put r;=lt+-<n/3i {l<i<n-1), 

·vP>(l, z)= f (m0)µ0! t1(-;.-+-<-1; h, lo+l, µo)(lnqJ{3or•-µ• .. 
µo-o µ0 q 

Let p(l)= p<J>(l) e Zn CP. We define two functions f(z) and g(z) on 
{z e CP; lzlP< l} by 

f(z)=J<Jl(z; mo, m1, • • ·, mn-1) 

= I: p<Jl(l)-\f!'<J>(l, z)e1nP••a{"a~•• · · · a~~1"rf'1rf• · · · t:::'::1', 
,eL<J> 

g(z)=g<J>(z; m0, m 1, · · ·, mn_1) 

= I: p<J>(.1},1,mo, z)at•·a~·· . .. a~n•rr•rr· . .. r:::'::1'. 
AE L(J> 

Then we can prove the following proposition (cf. Baker [2], p. 16): 
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Proposition 3. Let the notation and assumption be as above. We 
assume 

C2 0. 73 X h k' 12 loge p 
loge (BQ) 

and 

C>0.67X h k 312 logep 
- loge (BQ) 

if n= I. 

Then there exist integers p().) = p<Jl().) e £(Jl such that (i) the p().) are not 
all zero, (ii) the absolute value of each p().) is at most exp (I0-·Lh) if 
n>2, and is at most exp(l0- 6Lh) ifn=l, and(iii) 

holds for any integer l with I<l<hk' 12qJ and for any n-tuple (m0, m1, • • ·, 

mn_1) of non-negative integers with m0 +m 1 + · · · +mn_ 1~Lq-J. 

An outline of the proof Let k be as in the beginning of 2-2. If 
n22 and p23 (resp. ifn>2 and p=2, resp. if n=l and p>3, resp. if 
n= I and p=2), then k>(30n 2d) 122 (120)12, h> [log, {4 X (120)12 X (loge 4)2 

X loge loge 4}] = 58, hk' 12 > 58 X 120= 6.96 X 103, hk 112> 58 X (120)6 2 I. 73 
X 1014 (resp. k 2 (50n2d)12 > (200)12, h 2 [loge {4 X (200)12 X (loge4)2X 
loge loge 4}]=63, hk' 122 63X 200= l.26X 103, hk 112 > 63 X (200)6 > 4.03 X 
1014, resp. k > (60d) 6 > (360)6, h 2 [loge { 6 X (360)6 X 6}] = 38, hk' 12 2 38 X 
36021.36X 104, hk1122 38 X (360)3 > l.77X 109, resp. k > (I00d) 6 :2 (600)6, 

h:2 [log, {6 X (600)6 X 6}]=41, hk' 1224I X 600=2.46 X 104, hk 112 2 41 X 
(600)3 > 8.85 X 10'). We note 1/log, 4= 0.72134 · · · ~ 0.73 and 2/3 = 
0.66666- · · ~0.67. 

We use these estimates of constants, and use the following inequality 
also: 

x/log, x::2:y/loge y 

Then, following the arguments of Baker [2], Lemma 7, and using also the 
estimate of the constant M/(N- M) in Siegel's lemma, we can prove the 
following lemma. 

Lemma 1. Proposition 3 holds for J = 0. 

Now, following the arguments of Baker [2], pp. 11-17, and using 
Proposition 2, we can prove Proposition 3 by induction on J. Namely, 
we assume that Proposition 3 holds for J. Then we can prove the fol-
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lowing two lemmas: 

Lemma 2. Let the notation and assumption be as above. Then, for 
any integer I with O<I< 3n, we have g<Jl(l; m0, m1, • • ·, mn_1)=0 for any 
integer I with l<l<hk<I+ 1J•t2qJ and for any n-tuple (m0, m1, · · ·, mn_1) of 
non-negative integers with m0 +m 1 + · · · +mn_ 1<L(l-e)1q-J. 

Lemma 3. Let the notation and assumption be as above. Then, for 
any integer l with l<l<hk' 12qJ+1 and for any n-tuple (m0, m1, · · ·, mn_1) 

of non-negative integers with m0 +m 1 + · · ·mn-i < (1/6)Lq-J, we have 
g<Jl(l/q; mo, mi, .. ·, mn-1)=0. 

We assume that Proposition 3 holds for J. Then using Proposition 2 
instead of using the complex contour integrals, we can prove Lemma 2. 
Since (1-e) 3n>e- 1> 1/3, g<Jl(f: m0, mi, · · ·, mn_1)=0 holds for any integer 
l with 1 <l<hk<1+•Jt2qJ and for any non-negative integers m0, m1, · · ·, mn-i 
with m0+m 1+ · · · +mn_ 1<(l/6)Lq-J. Since q>7>6, Proposition 3 
follows easily from these two lemmas. 

Note that in Proposition 2, there are two inequalities. The condition 
on C comes from the normality of the interpolation polynomials, and the 
condition on k comes from the other condition in Proposition 2. 

Now we have proved Proposition 3. Hence, following the arguments 
of Baker [2], pp. 17-19, we can obtain a lower bound of !Alp· 

Let the notation and assumption be as in Proposition 3. Hence we 
assume (1) k > (30n2d)6n if n > 2 and p > 3, (2) k > (50n2d) 6n if n > 2 
andp=2, (3) k>(60d) 6, B>log.A>6, and d>6 if n=l and p>3, and 
(4) k~(l00d)6, B>log.A>6 and d>6 if n=l and p=2. We also 
assume 

C>0.73X h X k312 log.p 
- log, (BQ) 

if n>2, 

and 

C>0.67X h k312 log.p 
- log, (BQ) 

if n= 1. 

Then we have the following theorem: 

Theorem 1. Let q=7 or q= 11 according as p=f=.7 or p=7. If 
[lK(afq, a~1\ • • ·, a~1q): lK]=qn, and if A=t=-0, then we have 

Let the notation and assumption be as in Theorem 1. Then 
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h/log. (BQ)< log. (BkQ log. Q')/log. (BQ) 

< {log (k)+log. (BQ log. Q)}/log, (BQ)<2+1og. (k)/log.(BQ). 

If n>2 and p>3, then log. (BQ)> log. (4 (log. 4)2)~2.03 and log. k~ 12 
log. 120> 57.4. Hence it is enough to have 

C>0.73(2x2.03+l)ks 12 10 klo . 
- 2.03 57.4 g. g.p 

Hence it is enough to have 

C>0.386k 812 log.k log.p. 

Put k= (30n2d)6n. Then log. k< l2n log. (6nd)~ 72n2d(Iog, 12)/12< 
15.0 (30n2d). Hence it is enough to have 

C> 5.80 (30n2dyn+1 log,p. 

Similarly, if n~ 2 and p = 2, then it is enough to have 

C> 0.383k312 log, k log. p. 

Put k=(50n 2d)6n. Then it is enough to have 

C>6.40(50n 2d) 9n+1 log,p. 

If n= l and p> 3, then it is enough to have 

C>0.226k 312 log.k log,p. 

Put k=(60d) 6• Then it is enough to have 

C>2.22X 10-2 (60d)10 log.p. 

If n = l and p = 2, then it is enough to have 

C>0.223k 312 log, k log,p. 

Put k=(l00d) 6• Then it is enough to have 

C> 1.43 X 10-2 (lOOd)10 log.p. 

2-3. Lower bounds of linear forms. Now we obtain a lower bound 
of the linear form A= /30 + /31 log a 1 + · · · + f3n log a.,. without the assump
tion on [K(aYq, arq, · · ·, a~1q): K]. Namely, we modify the arguments of 
Baker [2], pp. 19-21, and prove the following theorem: 
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Theorem 2. Let the notation and assumption be as in 2-1. We assume 
that An= Mini,;i,;;n Ai and Q' = Q/log, An. Then we have 

I A lp:2'. (BQ)- 2n 3/6(300nd)lOn+7!/log 8 il'log,p 

for n22 andp>3, 

for n22 andp=2, 

for n= 1 and P2 3, 

I A \p:2'. (BQ)- (100d)17 illog,p 

for n= 1 and p=2. Further, if n> 2 and if a 1, a 2, ···,an are multiplica
tively independent, then we have 

I A lp:2'. (BQ)-zn<n+tl/2(300nd)lOn+1QJog 6 !/'log, p 

for n2 2 and p> 3, and 

I A \p:2'. (BQ)-2n<n+1l/2(500nd)10n+7QJog, il'log,p 

for n>2 andp=2. 

Remark. IfK contains exp(2rri/q) (q=7 or 11, and q=/=p), then the 
constants 300, 500 in the above formulas can be reduced to 30, 50, re
spectively. 

Proof LetAi(i=l, ···,n),A,B,K,d,Q,Q',etc. beasin2-l. We 
note that, by our assumption An= Min1,;;i,;;n A 0 Q' is the largest of the 
Q/log,Ai (l:S:i:S:n). 

If B<log, A, then put B1 = log, A. Then 

(B1Q)-Cillog, il':2'. (BQ)-2Cillog8 il' 

holds. Hence, replacing the constant C by 2C, we may assume B> log, A. 
If log, A <nd, then log, Ai <nd. Put B2 = Max (B, nd), Q2 = (nd)n and 
Q~ = (nd)n-1_ We have (BQ)d 2 4d (log, 4rd?: nd. Since Q > I and 
Q log, Q' > 1/2, we have 

Hence, replacing the constant C by 4n(ndr +2c, we may assume B2 log, A 
?:nd. 
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Let q=7 or 11 according as p=f:7 or p=7. Let K 1=K (exp (21d/q)). 
Then K 1 contains at(i=I, ···,n),,Bt(i=O,I, ···,n), and exp(2rri/q). 
Further, the degree [K1 : Q] is at most [Q (exp (21ri/q): Q] X [K: Q] < 
(q- I)d<d 1 = IOd. Hence, replacing d by IOd if necessary, we may assume 
that K contains exp (21ri/q). We note that this reduction is not necessary 
if n= I. 

Now we rearrange the order of the indices of the Ai, and assume 
that A 1<A 2< ···<An. We assume that [K(aYq, · · ·, a¾q): K]=qm but 
a¾t 1 does not generate an extension of K(aYq, · · ·, a¾q) of degree q. 
Then, by the Kummer theory, there exists an element r of K such that 

(O<rt<q). 

By our assumption, lrq-1 IP<IPI:,, if p>3 and lrq-1 IP <IPIP if p=2. 
Since q=f=p, the equation Xq-,- I =0 is separable over a field of character
istic p. Hence the discriminant of this equation is not zero, and only one 
r e K can satisfy Xq = rq and Ir - I IP< 1. Hence we take such an element 
r. Then the condition 1r-11P:::;:JplP (p> 3), Ir- I IP <IPIP (p=2) is satis
fied. 

As far as possible, we construct a sequence r=ri, r2, r 3, • • • of ele
ments of K such that ri=af"af'" · · -a;,:mr?+i (O<rit<q) and express ri as 

Since the height of a; is at most A0 the absolute value of any conjugate 
of ai or a; 1 is at most A;+ L Hence the absolute value of any conjugate 
of ri or r-;:1 is at most (A1 + l) ·.·(Am+ I)(Am+I + I)<2m+IA, .. -A,,.Am+I 
< (2A)n. Since the height of ai is at most A 0 the denominator of ai or 
a; 1 is at most Ai. Hence the denominator of ri or r 11 is at most A,· · · 

AmAm+I' 
Put 

By our assumption B> log. A> nd, 

H<{2(2n2+9n+l)d2n log. AJ<2n+l)'<BBln•. 

If the above sequence terminates with qi< H, then we substitute r 1 

for am+i· Then A is expressed as 

A= ,80 +(,81 +su) loga 1 + · · · +(,8,,. +si,,.) log am 

+q 1 log r, + ... + .Sn log lXn• 
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The coefficients of this linear form are in lK with heights at most 
{2B(B+H)} 1oa. We repeat this substitution at most n-times until the con
dition [lK((af)1'q, .. ·, (a!) 11q): lK]=qn is satisfied with respect to the new 
a:, or the above sequence does not terminate with q 1 < H. Then the co
efficients fi! of the resulting linear form 

A1= fi~ + fit log at+ · · · + fi! log a! 

are in lK with heights at most {2B(B+nH)} 1oa<{2B 2(l+B s1n')}rnd <Bi= 
B840n<ct. Further, t4e heights of the af, a;, a:, · · ·, a! are at most 

{2(A1 + l)A 1}1oct < {22 AWoct < Afx1oct, 

{2(A1+ l)(A2+ l)A1A2}1oct < {2sAWOct <A~x10ct, 

{2(A1 + l)((A 1 + l)(A 2+ l))(A 3 + l)A 1(A1A2)A3}10d < {25An1°ct< A~Bxtoct, 

{2(A1 + l)((A 1 + l)(A 2+ l))((A 1 + l)(A 1 + l)(A 2 + l)(As+ l))(A 4+ 1) 

X A1(A1A2)(A1A1A2As)A.}IOd< {29A!6}1oct, ... '{21+2n-1 A;n}10ct<A;n+•10ct_ 

After these substitutions, Q = (log. A 1) (log. A2) · · · (log. An) is replaced by 
Qi<2n<n+1i12x20dQ and Q' is replaced by Q'i<2<n+tJnt220dQ'. 

If the condition [lK((af)11q, · , ·, (a!)1' q): lK]= qn is satisfied after these 
substitutions, then we use Theorem 1. We rearrange the order of index 
and assume that lfi!IP>lfi!IP holds for any i. We consider 

-A 1/ fi!=(-fi~/ p!)+(- Wfi!) log af + · · · -log a!. 

Since the denominators of the fi! and (fi:)- 1 are at most B, the denomi
nators of the pU Pn are at most B2. Hence the heights of the pU p! are at 
most (2B2(B1+1)2)ct<(B 2B1) 2ct<B 1684n'ct•. Since 

{ (Bl684n•ct•)2n (n +I) 20dQ} 2nc n+ 1l /220ctlJ Jog6 (2< n + 1l n1•20ctO') 

< (Bl690n•ct• Q)2n<n+ 1l/210ctlJ(n + I )n log6 (40ctlJ') 

< (BQ)2ncn+ll/2(30n•ct)•Olog, 0', 

Theorem 2 follows from the results of 2-2 in this case. Note that, in this 
case, the lower bound can be taken as in the second part of the theorem. 

If the above sequence does not terminate with q 1 < H, let l denote the 
least integer such that q1 > H. Then, by Lemma 6 of Baker [2], there exist 
integers b', b~, • • •, b:.,+1, not all zero, with absolute value at most H such 
that 

b~ log IX1 + • • -+b~+l logam+i+b' logrz=O. 

Hence we obtain 
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W log a,+· · · +b~ log am +b~+1 log am+i =0 

(b?=q 1b;-b'sii, b~+1=q 1b'm+1+b'). 
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Here the coefficients b;' are integers with absolute values at most 2qH 2. 
Furthermore, we can write 

b~+1A= ,B;+ ,BUoge a,+· · · + /3~ loge an 

(,Bo= b~ + 1/30, ,B; = b~ + ,,Bi - b;' /3m + 1). 

Here ,B;, ,B{, · · ·, ,B~ are elements of lK with heights at most 

( 4(2qH2)(B + 1 )B)10ds (24qB2X840n4d B162n•yaa::;;, B21(30n'd)'' 

and ftm+1=0. 
If b~+1 =i=0, then lb~+iAIPslAIP- Hence we consider this new linear 

form b~+1A which does not contain am+i· Then the first part of the theo
rem follows by induction on n, because 

{ B2l(30n2d)'2n(n+ 1)2OdQ/\ }2m<m+1'/220dJl' Jog,(2<n-t>n/220dJl' ') 

< (BQ)2<n-1Jn/26(30n2d)4Jl]og, Jl', 

and I:;1,;;i,;;n (i-1)i/2=n 3/6-n/3. Here QA and Q'A are constructed from 
Q and Q' by deleting log. Am+i, and we have used estimates B<B 840n•a, 
QA::;;,2m<m+1)ti2odQ, Q' <2<n-t)nf22OdQ' because we must use this induction 
also after the above substitutions. 

If b~+1=0, then b' =0 because q1> H. Hence b1/ ::;l=O for some jsm, 
and, eliminating log ai, the first part of the theorem can be proved by in
duction on n. Note that, if a1, a 2, • • ·, an are multiplicatively independent, 
then we have proved that the sequence terminates with qi< H. Hence the 
second part of the theorem also holds. Therefore we have completed the 
proof of Theorem 2. Note also that the remark after the theorem is clear 
from what we have seen. 

§ 3. Calculation of constants 

Let p be a prime number, and let QP be the p-adic number field, and 
let CP be the completion of the algebraic closure of QP. Let X be a non
trivial primitive Dirichlet character with conductor f, and let f = fop• 
(lo, e e Z, (fo,p)= 1) be the decomposition of the conductor f of X. Since 
xis primitive, e is either 0 or 22 if p=2. We assume X(-1)=1. 
Let Lp(s, X) be the p-adic L-function associated with X. 

Let $=exp (2rri/f) be the primitive f-th root of unity, let i--(X)= 
I:; X(a)$a be the Gaussian sum associated with X, and let log: {z e CP; 
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\z-1\P<l}~CP be the p-adic logarithmic function I:isn<=(-l)n- 1x 
(z- 1r/n. We extend the function log to a function on {z e CP; \z\p= l} 
by the functional equation log (zm)=m log (z). Then the function L/s, X) 
does not vanish at s= 1, and the value Lp(l, X) is given by the following 
formula ( cf. Brumer [3], Leopoldt [8]): 

L/1, X) = -(1- X(p))-r(X) I: X(a) log (1-c-a). 
p f 1<;,asf 

Since X is not trivial, I:~~ 1 X(a) = 0. Further, since X(- 1) = 1, 
I:1sasf/2X(a)=0. Hence 

L/1,X)=-(l-X(p))-r(X) I: X(a)log(l-c-a l-C+a)· 
p f lsasf/2 1-c- 1 1-C+l 

Let E(a)=(l-c-a)/(l-(- 1) for any integer a. Since C is a root of 
unity, log (=0. Since X(a)=O for (a,f)=;t: 1, it is enough to consider only 
E(a) for 1 <a<J/2, (a,f)= 1. Then it is well-known that the E(a) are 
units of the field Q(C), and that they are multiplicatively independent. 
Since E(a)=ca- 1E(a), the E(a)E(a) for 1 <a~ fl 2, (a,f) = 1 are also 
multiplicatively independent. 

Let 

L(X) = I: X(a) log (E(a)E(a)), 

where a runs over all integers satisfying 1 <a<f/2, (a,f)= 1. Then we 
have 

L/1, X)= -(1-X~)) -rj) L(X). 

If f is prime to p, then \l-(X(p)/p)\p=[P- 1 \P=p. Otherwise, 
\ 1- (X(p )/ p) \P = 1. Since -r(X)-r(X) = f, \-r(X) If IP = \ (-r(X))-1 \P > 1. Hence 
\LP(l, X)\P:2: \L(X)\P. Hence, to obtain a lower bound of L/1, X), it is 
enough to obtain a lower bound of L(X). 

Let rp: N ~ N be the Euler function, and let a be an integer satisfy
ing l<a<J/2, (a,f)=l. Since any conjugate of 1-c-a has the form 
1-C- b with a positive integer b, the absolute value of any conjugate of 
1-c-a is at most two. Since any conjugate of c- 1 is also a primitive f-th 
root of unity, the absolute value of any conjugate of l -c- 1 is at least 
2 sin (;rrf)>4;f Hence the height of E(a)E(a) is at most 

{2(2/2 sin (;r/ f))2}~cn12~ (f /2112)1. 
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Let K be the totally real subfield Q (sin (2-rr//)) of Q((). Then 
[K: Q]=<p(/)/2<//2. Let j:) be a prime ideal of K which divides p, and 
let µ and v be the residue degree of p and the ramification index of p, re
spectively. Thenµ, v~<p(f)/2~//2, and the norm N(j:)) of j:) is given by 
pP. Further, since K is the totally real subfield of the cyclotomic field 
Q(exp(2-rr/fop•)), the ramification index vis equal to p•- 2 if p=2 and 
Jo= I, and v is equal to p• - 1(p- l) otherwise. 

Let" be a unit of K. Then, by Fermat's theorem, r;=epP-1 is con
gruent to 1 modulo j:). Hence Ir; - I IP~ \p11"1P < \p11p•-1<P-1l Ip· Hence 
lr;p•-1 -I\P~\p 1l<P-1llp· Hence lr;P·-11P<\p 1l<P-1llp, and <!Pip· 

Let ai=(E(i)E(i))<PP-IJp• (1 <i~f/2, (i,f)= 1). Then the ai are units 
of the fields Q (sin (2-rr//)). Further, the height of each ai is at most 

Let pi=X(i) for any integer i with (i,/)= 1. Then the pi are <p(/)/2-th 
root of unity. Hence the height of each pi is at most 2P<PUl/2l<2f 12. 

Let q=7 if p*7, and let q= 11 ifp=7. Let K=Q(ai, pi; 1 <i<f/2, 
(i,f)= 1). Then [K: Q]< (<p(f)/2) X rp(<p(f)/2)~/ 2/4. 

Let d=/2/4, let n=(<p(f)-2)/2<//2, let B=2 112, and let A=Ai= 
(f/2 1'2)1'P11'. Then we have t2<(f2p 112 log. (f/2 112))112. If f *3, 4, 5, 8, 
12, then n?.2 and />7. Hence 2Q~(f 3pfl 2)ft 2~pf<a1og,7)/(7log,2)+11211112< 

p 1 '. Hence 

{2112(f2p112 log. (f/ 2112))112}-2,112>, ,1+2i1,,1•r5ooui2) u•!4)J1"fi"+1 

x <J2pf /2Jog,(f /21/2) )f /2(1/2) !og,(f2pf121og,(f /21/2)) Jog,p 

~ p-2((1/8)/2+ c121/4lf +42) JO Sf +2s>pf2 (logep)2 

"?_p-pCC9{8)/2+ (I21/4l/ +44l f (15/ +2sl 

Therefore, by the second assertion of Theorem 2, we obtain the following 
theorem: 

Theorem 3. Let the notation and assumption be as above. We assume 
further that f * 3, 4, 5, 8, 12. Then we have 

!Lp{l, X) \P 2. p-2«1/Slf2+ '121/4lf+42l J'15f+25lpf2 (log,p)2 

?_p-p7,2/2+,o. 3/ +H • 
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