Any Irreducible Smooth $\boldsymbol{G L}_{2}$-Module is Multiplicity Free for any Anisotropic Torus

Hiroaki Hijikata

Dedicated to Prof. Ichiro Satake on his sixtieth birthday

§ 1.

Let k be a non-archimedean local field, B be a quaternion algebra, i.e. a central simple algebra of rank 4 over k. Let L be a separable quadratic subfield of B. The group $G=B^{\times}$, of the regular elements of B, is a T.D.L.C. ($=$ totally disconnected locally compact) group by the induced topology from B, and $H=L^{\times}$is a closed subgroup of G. In other words, G is a k-form of $G L_{2}$, and H is a maximal torus anisotropic modulo center. Let (π, E) be a smooth representation of G on the complex vector space E. The purpose of this paper is to prove the following:

Theorem A. If (π, E) is irreducible as G-module, then it is multiplicity free as H-module. Namely, there is a subset $\hat{H}(\pi)$ of the set \hat{H} of all quasicharacters of H such that

$$
\pi=\bigoplus_{x \in \mathscr{H}(\pi)} \chi \quad \text { as } H \text {-module } .
$$

§ 2.
The irreducible smooth representations of $G=B^{\times}$are classified into several series (cf. [J-L], [K] for split G, and [G-G], [Ho] for non-split G). To identify the set $\hat{H}(\pi)$ for all L amounts to get a complete knowledge for the representation π, at least character-theoretically. In this respect, there are no difficulties if k has odd residual characteristic. While, in dyadic case, I have determined $\hat{H}(\pi)$ (for all L) for some series of π 's, but not yet for all series.

When G is non-split, i.e. B is a division algebra, there is a close connection between Theorem A and the Basis Problem of modular forms as
indicated in Part II Chap. 9 of [H-P-S]. This connection is the motivation of this work.

When G is split, i.e. $B=M_{2}(k)$, and $G=G L_{2}(k)$, let K be a maximal compact modulo center subgroup of G. There are two such K 's up to conjugacy. The standard one, the normalizer of a maximal compact subgroup of G, contains unramified L^{\times}, while the other one, the normalizer of an Iwahori subgroup of G, contains any ramified L^{\times}. Hence we have the following:

Corollary. Any irreducible smooth representation π of $G L_{2}(k)$ is multiplicity free as k-module. In particular, π is admissible. (The last statement is well known, and it is valid for any reductive group G as shown in [B]).

§ 3.

As for the proof, Theorem A is a formal consequence of the following simple

Proposition B. For each L, there is a topological antiautomorphism τ of the algebra B satisfying:
(i) τ is of order 2 ,
(ii) $\tau(a)=a$ for any $a \in L$,
(iii) each coset $H g$ contains a τ-fixed element.

Proof. Let $a_{\mapsto} \rightarrow \bar{a}$ denote the Galois action of L over k. By SkolemNoether theorem, there exists $y \in B^{\times}$such that

$$
y^{2} y^{-1}=\bar{a} \quad \text { for any } a \in L
$$

Then it follows that $B=L \oplus y L, y^{2} \in k^{\times}$and

$$
i: a+y b \longmapsto \bar{a}-y b
$$

is the canonical involution of B.
By Hilbert theorem 90, there exists $c \in L^{\times}$such that

$$
\bar{c} c^{-1}=-1
$$

Define τ as the composite $i \circ I(c y)$ of the canonical involution i and the inner automorphism $I(c y): x \mapsto(c y) x(c y)^{-1}$, i.e.

$$
\tau: a+y b \longmapsto a+y \bar{b}
$$

Clearly, τ is a topological antiautomorphism of order 2, fixing each
element of L. Since $G=B^{\times}=L^{\times}((L+y) \cup\{1\}), \tau$ also satisfies the last condition (iii).

§ 4.

The formal argument to derive Theorem A from Proposition B can be summarized as Proposition C below after introducing some notation.

We consider a triple (G, Z, ω) consisting of a T.D.L.C. group G, its closed normal subgroup Z, and a locally constant homomorphism $\omega: Z \rightarrow C^{\times}$, normalized by $G, \omega\left(g z g^{-1}\right)=\omega(z)$ for any $z \in Z, g \in G$. Let $S(G, \omega)$ denote the vector space of all locally constant complex valued functions f on G, of which supports are compact $\bmod Z$, and which are ω-semiinvariant, $f(z g)=\omega(z) f(g)$ for any $z \in Z . \quad S(G, \omega)$ is an associative algebra over C by the convolution product,

$$
f_{1} * f_{2}\left(g_{0}\right)=\int f_{1}(g) f_{2}\left(g^{-1} g_{0}\right) d \bar{g}
$$

where $d \bar{g}$ is a left invariant Haar measure of $\bar{G}=G / Z$.
Let H be a closed subgroup of G containing Z and having a compact quotient H / Z. Let $\varepsilon: H \rightarrow C^{\times}$be a locally constant homomorphism which coincides with ω on Z. Let $S(G, H, \varepsilon)$ denote the subalgebra of $S(G, \omega)$ consisting of all ε-bi-semiinvariant functions $f, f(h g)=f(g h)=$ $\varepsilon(h) f(g)$ for any $h \in H$. Let (π, E) be a smooth representation of G, on which Z acts as $\omega^{-1}, \pi(z) v=\omega(z)^{-1} v$ for $z \in Z, v \in V$. Finally let $E\left(H, \varepsilon^{-1}\right)$ denote the ε^{-1}-eigen subspace under H,

$$
E\left(H, \varepsilon^{-1}\right)=\left\{v \in E \mid \pi(h) v=\varepsilon(h)^{-1} v \text { for } h \in H\right\} .
$$

Proposition C. \quad There are the implications: (I) $\Rightarrow(\mathrm{II}) \Rightarrow$ (III).
(I) G has a topological antiautomorphism τ satisfying:
(1) $\tau(Z)=Z, \tau(H)=H, \varepsilon \circ \tau=\varepsilon$,
(2) the automorphism $\tau^{\prime}: g \mapsto \tau(g)^{-1}$ is of finite order,
(3) each double coset HgH contains a τ-fixed element.
(II) The algebra $S(G, H, \varepsilon)$ is commutative.
(III) If (π, E) is irreducible, then $\operatorname{dim} E\left(H, \varepsilon^{-1}\right) \leq 1$.

§ 5.

In the rest of this paper, we retain all the notation of Section 4. The first implication '(I) \Rightarrow (II)' is rather obvious. The first assumption (1) implies that the map $f \mapsto \tau f:=f \circ \tau^{-1}$ is a linear isomorphism of $S(G, \omega)$. It also implies that τ^{\prime} induces an automorphism $\bar{\tau}^{\prime}$ of \bar{G}, hence $d\left(\bar{\tau}^{\prime}(\bar{g})\right)=$ $c d \bar{g}$ by some positive constant c. Then the second assumption (2) implies
that $c=1$, hence $\tau\left(f_{1} * f_{2}\right)=\tau f_{2} * \tau f_{1}$ for $f_{1}, f_{2} \in S(G, \omega)$. The third assumption (3) implies $\tau f=f$ if $f \in S(G, H, \varepsilon)$, hence $f_{1} * f_{2}=f_{2} * f_{1}$ for $f_{1}, f_{2} \in$ $S(G, H, \varepsilon)$.

The next implication '(II) \Rightarrow (III)' is more or less known, at least if H is open in G (cf. [C], [B-Z]). In particular, if Z is a trivial subgroup $\{1\}$, hence ω is also trivial, and moreover if H is open and compact, '(II) \Rightarrow (III)' is a part of Proposition 2.10 of [B-Z]. Although there is no difficulty to modify their method (of embedding $S(G, \omega)$ into the algebra of distributions) to be capable of covering our case of non-trivial ω and not open H, the points to be checked might not be clear without giving the exact statement at each step. Here, we will give a shorter proof relying on a result of [C], under an extra condition,
(4) Z is a closed subgroup of the center of G.

Note that $(G, Z)=\left(B^{\times}, k^{\times}\right)$of Section 1 certainly satisfies (4). Note also, as a general theory, the assumption (4) is not essentially restrictive, since we may work on the quotient by the kernel of ω, of G, Z and everything.

§ 6.

Recall that G is a T.D.L.C. group iff it has a fundamental system of neighbourhoods \mathscr{U} of 1 , consisting of open compact subgroups U. Since ε is locally constant, it is trivial on $H \cap U$ for some $U \in \mathscr{U}$. By (4), $Z U$ is an open subgroup normalizing U, and $[H: H \cap Z U]$ is finite, hence the intersection $\cap h U h^{-1}$ for $h \in H /(Z U \cap H)$ is an open compact subgroup normalized by H. Thus we may and shall assume that \mathscr{U} consists of open compact subgroups U satisfying
(5) $h U h^{-1}=U$ for $h \in H$, and $U \cap H \subset \operatorname{ker} \omega$.

Hence there is a unique homomorphism $u: H U \rightarrow C^{\times}$satisfying
(6) $u=\varepsilon$ on $H, u=1$ on U.

Let $\mu(H U)$ denote the volume of $H U / Z$ by the Haar measure $d \bar{g}$ of \bar{G} and let \dot{u} denote the function on G which coincides with $\mu(H U)^{-1} u$ on $H U$, and zero outside. Since $H U$ is open and compact $\bmod Z, \dot{u}$ is a member of $S(G, \omega)$, and by the definition of convolution, we have:

$$
\begin{aligned}
\dot{u} * f & =f \text { iff } f(x g)=u(x) f(g) \\
f * u \cdot & \text { for any } x \in H U, \\
\text { iff } f(g x)=u(x) f(g) & \text { for any } x \in H U .
\end{aligned}
$$

and

$$
\begin{equation*}
S(G, H U, u)=\dot{u} * S(G, \omega) * \dot{u} . \tag{7}
\end{equation*}
$$

Since $S(G, H, \varepsilon)$ is the union of $S(G, H U, u)$, it is commutative iff each $S(G, H U, u)$ is commutative.

By definition, a representation (π, E) is smooth iff E is the union of the U-fixed subspace $E(U, 1)$. Since $E\left(H, \varepsilon^{-1}\right) \cap E(U, 1)=E\left(H U, \varepsilon^{-1}\right)$, $E\left(H, \varepsilon^{-1}\right)$ is the union of $E\left(H U, u^{-1}\right)$, and $E\left(H U, u^{-1}\right) \subset E\left(H U^{\prime},\left(u^{\prime}\right)^{-1}\right)$ if $U \supset U^{\prime}$. Therefore if one knows that $\operatorname{dim} E\left(H U, u^{-1}\right) \leq d$ for any $U \in \mathscr{U}$, and $\operatorname{dim} E\left(h U_{0}, u_{0}^{-1}\right)=d$ for some $U_{0} \in \mathscr{U}$, then one can conclude that $E\left(H, \varepsilon^{-1}\right)=E\left(H U_{0}, u_{0}^{-1}\right)$.

Since Z acts on E as $\omega^{-1}, S(G, \omega)$ acts on E by

$$
\begin{equation*}
\pi(f) v=\int f(g) \pi(\mathrm{g}) v d \bar{g} \tag{8}
\end{equation*}
$$

In particular, $\pi(\dot{u})$ is the projection operator of E to $E\left(H U, u^{-1}\right)$, and by (7), $S(G, H U, u)$ acts on $E\left(H U, u^{-1}\right)$. Also observe

$$
\begin{equation*}
\pi\left(g_{0}\right) \circ \pi(f)=\pi\left(L\left(g_{0}\right) f\right) \tag{9}
\end{equation*}
$$

where $L\left(g_{0}\right) f=\left(g_{\mapsto} \mapsto f\left(g_{0}^{-1} g\right)\right) \in S(G, \omega)$.
Now '(II) \Rightarrow (III)' is a consequence of the following:
(10) If E is G-irreducible and $E\left(H U, u^{-1}\right) \neq 0$, then $E\left(H U, u^{-1}\right)$ is $S(G, H U, u)$-irreducible. (Hence if $S(G, H U, u)$ is commutative, $\operatorname{dim} E\left(H U, u^{-1}\right)=1$.)

The claim (10) is in [C]. We reproduce its proof. Let v_{0} be a nonzero vector in $E\left(H U, u^{-1}\right)$ and v be an arbitrary vector in $E\left(H U, u^{-1}\right)$. Since E is G-irreducible, we can find $g_{i} \in G, c_{i} \in C(i=1, \cdots, n)$ such that $v=\sum c_{i} \pi\left(g_{i}\right) v_{0}$. Since $v_{0}=\pi(\dot{u}) v_{0}$, by (9), $\pi\left(g_{i}\right) v_{0}=\pi\left(g_{i}\right) \pi(\dot{u}) v_{0}=\pi\left(L\left(g_{i}\right) \dot{u}\right) v_{0}$ $=\pi\left(L\left(g_{i}\right) \dot{u}\right) \pi(\dot{u}) v_{0}$. Since $v=\pi(\dot{u}) v$, we have $v=\pi(f) v_{0}$ with

$$
f=\sum c_{i} \dot{u} * L\left(g_{i}\right) \dot{u} * \dot{u}
$$

which lies in $S(G, H U, u)$ by (7).

References

[B] I. N. Bernshtein, All reductive p-adic groups are of type I, Funct. Anal. Appl., 8 (1974), 91-93.
[B-Z] I. N. Bernshtein - A. V. Zelevinskii, Representations of the group GL(n,F) where F is a non-archimedean local field, Russian Math. Surveys, 31:3 (1976) 1-68.
[C] W. Casselman, Introduction to the theory of admissible representation of p-adic reductive groups, preprint.
[G-G] I. M. Gelfand and I. M. Graev, Representations of quaternion groups over locally compact and function fields, Funct. Anal. Appl., 2 (1969), 19-33.
[H-P-S] H. Hijikata, A. Pizer and T. Shemanske, The Basis Problem for modular
forms on $\Gamma_{0}(N)$, preprint.
[Ho] R. Howe, Kirillov theory for compact p-adic groups, Pacific J. Math., 73, (1977), 365-381.
[J-L] H. Jacquet and R. Langlands, Automorphic forms on $G L(2)$, Lecture Notes in Math., 114 (1970).
[K] P. Kutzko, On the super cuspidal representation of GL(2), I, II, Amer. J. Math., 100 (1978), 43-60 and 705-716.

Department of Mathematics
Kyoto University
Kyoto 606
Japan

