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Introduction 

0-1. Let G be PSL(2, R) and let I' ( cG) be a Fuchsian group of the 
first kind. In [Sel], a zetafunction Zr(s) was introduced and proved to 
have many important properties which resemble those of usual £-functions, 
such as Euler product, functional equation, and analogue of Riemann 
Hypothesis. This function, now called with the name of Selberg, is gener
alized to any discrete subgroup I' of a semi-simple Lie group of R-rank 
one, when G/I' is compact by Gangolli [Gan], and later by Gangolli
Warner [G-W] to the case when G/I' has a finite volume. Meanwhile, 
an analogue of Zr(s) was introduced by Ihara [I-1], for a cocompact 
torsion-free discrete subgroup I' of PSL(2, K) or PL(2, K), where K is a 
p-adic field. Especially it was shown that Ihara's zeta function Zr(u) is a 
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rational function of the indeterminate u. This result is based on a remark
able structure theorem of such I', which in particular asserts that it is a 
free group with explicitly constructible basis (i.e. minimal set of generators). 

0-2. In this paper, we shall extend Ihara's results to the case when 
G is a semi-simple algebraic group over a p-adic field Kand I' is a discrete 
subgroup of G such that G/ I' is compact, under the assumption that G has 
K-rank one, and that it has an affine Tits system (G, B, N, S). In this case, 
S consists of two elements, say, s1, s2, and Bruhat-Tits' building X at
tached to (G, B, N, S) is a tree with two distinct kinds of vertices ([T-1, 2]). 
It is known that I' acts on X freely and that I' is again a free group ([Ser-1]). 
As in Ihara [I-I], our zetafunction Zr(u; p) is defined, for an n-dimensional 
unitary representation p of I', by the infinite (formal) product 

(0.1) Zr(u; p):= fI det{ln-p(r)ucteg{rlrJ- 1 

!rlr 

where the product is taken over the set of "primitive hyperbolic" I'-con
jugacy classes {r}r, and its degree is defined as follows. Recall that U1 = 
BU Bs,B, U2 =BU Bs2B are the subgroups of G which contain B properly 
and which represent the G-conjugacy classes of the maximal ( open) com
pact subgroups. We define the length function l: G-+NU {0} by 

(0.2) 

and put 

(0.3) deg{r}r: = Min l(x- 1rx). 
xEG 

0-3. To state our main result, put 

It follows from our assumption on the compactness of G/I' that hi (the 
class number of I' with respect to Ui) is finite. Let :R(G, U1) be the Hecke 
algebra of the pair (G, U1), and let A 1,P be the following matrix given by 
the Brandt representation of :R(G, U1) attached top: 

(0.4) A,,p: = (aij) e M(nh 1, C), with ai 1 = I: p(r), 
T 

where the last sum is taken over the set I' n x; 1G1xj, {xi (I< i:s;;h,)} being 
a complete set of representatives of U1\G/I'. See the text(§ 7) for another 
interpretation of A,,p· The purpose of this paper is to prove the following: 

Theorem (0.5). Let the notation and assumptions be as above. Then 
I' is a free group of rank r=q 1h1 -h 2 + 1 ( =q 2h2 -h 1 + 1), and we have 
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(0.6) Zr(u; p)- 1 =(l-u)nCr- 1l(l +q 2ur<n2 -h 1l 

X det{Inn, -(A 1,P-q 2+ l)u+q 1q2u2}. 

Let p= 1 be the trivial representation, and put Zr(u)=Zr(u; 1). Combining 
the above result and that of Garland [Gar] (see also [Cas]), we get an 
information on the spectral decomposition of L2(G/I'), which was first 
found by Ihara [I-1] for G=PSLz(K): 

Corollary (0. 7). We have the following equality 

-Res~IogZr(u)=r=the multiplicity of the Steinberg 
u- 1 du representation in L2(G/I'). 

There are at least three different ways to prove the above theorem. 
The first, which is based on the combinatorial argument on the structure 
of I', is a reformulation of the ideas of Ihara [I-1] in terms of the Tits 
system. We shall describe this proof in some detail. The second proof, 
which uses the graph-theoretic interpretation of the I'-conjugacy classes, 
will be sketched briefly. The third method, which uses the Selberg's 
original idea of trace formula, is not complete yet. It would be an inter
esting problem to give an interpretation of our results and some questions 
arising therefrom, in terms of the spectral decomposition of £2( G/ I'). This 
will be treated in the subsequent paper [Ha]. 

0-4. As a matter of fact, our zetafunction Zr(u; p) can be defined for 
subgropus I' of a much wider class of groups G; and the above theorem 
holds in such general setting. In the Appendix, we shall study the class 
of groups for which the whole procedure of the evaluation of Zr(u; p) 
developed in this paper can be applied without any change of notation. 

Throughout the following, for any set S, # (S) will denote its cardinal 
number. For any ring A and a positive integer n, M(n, A) will denote the 
ring of all n by n matrices whose entries are elements of A. The symbol 
[x] (x e R) will be the largest integer n such that nS:,,x. 

§ 1. Groups with axiom (G, /, I), (G, /, II) 

Let G be an abstract group. Assume that we are given a map 

!: G---+NU{O} 

called the length, satisfying the following conditions (G, l, D, (G, !, II), 
where G1 denotes the set of all elements of G with length l (/=0, 1, 2, · · ·) 
and U:=G 0• 
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(G, I, I) For any l, G1 is non-empty, U is a subgroup of G, and 

According to this condition we can define the Hecke algebra .-ff(G, U) with 
respect to the pair (G, U) as in Shimura [Sh]. Since each G1 is a union of 
finite number of U-double cosets, it can be considered as an element of 
:ff(G, U) (by taking formal sum instead of disjoint union). 

(G, I, 11) There exist two natural numbers q1, q2 such that 

(1.1) G~=G2 +(q 2 -I)G 1+qlq 1+I)U 

(1.2) G1Gi=G1+1+(q2-l)Gz+q1q2G1-1 (2<1), 

where the products G~, Gp 1 are taken in :ff(G, U). 

From this it follows immediately that 

(1.3) for I<l. 

The class of groups satisfying our axiom (G, l, I), (G, /, II) has been 
studied in Appendix. Here we collect some of the results. The proofs are 
given in Appendix. Let .0:={wJ; I<j<t:=qll+q 1)} be a complete set 
of representatives of U\G 1• Then one has the following 

Lemma (1.4). 
( i) For each we .Q, there is a unique p e .Q such that pw e U. 
(ii) For each we .Q, #{p e .Q; pw e G1}=q 2-l. 
(iii) For all other p e .Q, one has pw e G2 • 

Lemma (1.5). Any element g e G is expressed as a product 

for which one has l(g)<l, with equality if and only if g e G1• Moreover, the 
last condition is equivalent to 

for n = I, 2, · · . , l -1. 

Lemma (1.6). Suppose that x, y, z e GI" 
( i) lf xy e G2 and yz e Gi, then xyz e Gi+t (i=O, I, 2). 
(ii) lf xy e Gt and yz e G2, then xyz e Gt+i (i=O, 1, 2). 

Corollary (1.7). Suppose that X=X 1X2 •• -x,,. e G,,., and Y=YtA· · · 
Yn e Gn are (free) products of x 1, • • ·, x,,. e G1, Yi, · · ·, Yn e G1 respectively. 
If x,,.Yt e G1, then one has l(xy)=m+n-1, and vice versa. 
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These results have simple interpretations in terms of trees ( cf. Ap
pendix). We now describe it briefly. Recall first the following: 

Definition (1.8). Let qt, q2 be two positive integers. By a semi
regular bipartite tree of valency (q1+1, q2 +l), we mean a connected 
tree X(qi, q2)=(Vi, V2 ; E) whose set of vertices is a disjoint union of two 
subsets V1, V2, and each vertex P e Vt (resp. Q e V2) is adjacent exactly 
to qt+l (resp. q2 +1) vertices of V2 (resp. V1) (see Fig. 1 in §2). 

Let Vt be the coset space U\ G, on which G acts by the right multipli
cation. For each P= Ux e V1, the set V(P; 2) consisting of the points 
Q= Uy such that l(xy- 1)= 1 has the cardinality t=qll +q 1)( =independent 
of P), as one sees immediately from (G, l, I) and (1.3). 

Lemma (1.9). The set V(P; 2) is divided into a disjoint union of q1 + 1 
subset EiP) (0<f5At); and for any two distinct points Q= Uy, R= Uz of 
E/P), one has l(yz- 1)= I. 

Proof See Appendix Lemma (10.9). 

Now we consider the (disjoint) union E* of all pairs (P, E/P)), 
Pe Vt: 

q, 

(1.10) E*:= U U (P, E/P)) 
PEV1j-O 

One can regard E* as a fibre space over Vt, whose fibre over the point P 
is a set of qt+ 1 subsets E/P). This fibre space structure is compatible 
with the action of G. On the other hand one can introduce an equivalence 
relation on E* : 

(1.11) (P, E/P))c:=.(Q, EiQ))~E/P) U {P}=EiQ) U {Q}. 

One can denote the equivalence class of (P, E/P)) by the q2 + 1 points set 
E/P) U {P}. Note that each set E/P) U {P} also has the same property 
as in the Lemma (1.9). Call V2 the set of equivalence classes: V2 :=E*/c:=.. 
Now we define a bipartite graph X, whose set of vertices consists of the 
disjoint union of V1 and V2 ; and we require that two vertices P e V1 and 
E1 e Vz are ajacent (i.e., joined by an edge e=[P, E1]) iff Pe EJ" It is not 
difficult to see that X is a semi-regular bipartite tree of valency (q1 + 1, 
q2 + 1 ). Moreover, the action of G is naturally extended to X, in such 
a way that is transitive on Vt. This gives the first half of the following: 
(cf. Theorem (11.10)) 

Theorem (1.12). Let qi, q2 be the given positive integers. There exists 
a bijection between the following objects: 
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( i) The group G with length function which satisfy the axiom (G, l, I), 
(G, l, II). 

(ii) The groups G which acts on the semiregular bipartite tree X(q 1, q2), 

of valency (q1 +l, q2 +l), whose action is transitive on the first 
set V1 of its vertices. 

Moreover, one can identify the coset space U\G and the set V1 ; the length 
function l on U\ G is then equal to the half of the distance d x defined by the 
tree X(q 1, q2): l(Ux, Uy)=dx(Ux, Uy)/2. 

Note that we are assuming that G acts on X(q 1, q2) from the right, so 
that on V1 '.:::'. U\G, the action of G is that of the right multiplication. Let 
P0 E V1 be the distinguished point which is corresponding to U. Then one 
has 

(1.13) 

§;2. Tits system and building 

The most important class of groups G and the length function /, which 
satisfy the conditions (G, l, I), (G, l, II) in the preceding paragraph, is 
supplied by the socalled Tits system, or B-N pair. We shall review the 
definition and some of the basic facts on Tits system that we need for our 
study. Recall that a Tits system is a quadruplet (G, B, N, S) consisting of 
a group G, subgroups B, N of G, and a subset S of W: = N/(B n N) which 
satisfy the following conditions: 

(T. 1) BUN generates G and B n N is a normal subgroup of N. 
(T. 2) S consists of a finite number of elements of order 2, and Wis 

generated by them. 
(T. 3) sBw CBwB U BswB (s E S, w E W). 
(T. 4) For any s ES, we have sBsrtB. 

In (T. 3) and (T. 4), expressions like sBw, BwB make sense since s, w are 
defined modulo T:=Nn BcB. The group Wis called the Weyl group 
of the Tits system. 

Fact (2.1). (W, S) is a Coxeter system. 

Fact (2.2). G=BWB, and the mapping w-+BwB is a bijection of W 
onto B\G/B (Bruhat decomposition). 

For XcS, let Wx be the subgroup of W generated by X. Put 
Gx:=BWxB. 

Fact (2.3). Gx is a subgroup of G and is generated by Usex BsB. 
Moreover, the assignment X-+Gx is a bijection between the power set 

of S and the set of subgroups of G containing B. 
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Fact (2.4). Let (Xi)iEI is a family of subset of X; if X = ni xi then 
Gx=ni Gx,· And we have Gx,CGx, if and only if XicXj. 

We call Gx the standard parabolic subgroup of type X. It is known 
that any subgroup containing B is of this type. 

Now we assume, throughout this paper, that 

(2.5) ( i) S consists of two elements, say, s1, s2• 

(ii) s1s2 is of infinite order. 

Then W=<s1, s2 ; sf=s~=l) is isomorphic to the infinite dihedral group. 
Let U1, U2 be the standard parabolic subgroups corresponding to the sub
sets {si}, {s2} of S respectively: 

(2.6) 

Moreover, we assume that the cardinalities 

are finite. Then it follows immediately that 

Let :;Jt(G, B) be the Hecke algebra of (G, B). By a result of Iwahori
Matsumoto [I-M], we have 

(2.9) :;Jt(G, B)'.:::'.Z[T,, T;Jne 

(non-commutative ring generated by T1, I;) 

(2.10) 

We have also the Hecke algebras :;Jt(G, Ui) for which we have 

Now we recover the length function l: G---+NU {O} as follows. First 
we define l(w)(w e W) to be the number of s2 in the reduced expression 
of w. Then we put 

(2.12) l(g)=l(w), if g E BwB. 

It is immediate to see that the condition (G, l, I) is satisfied. Notice that 
U=l- 1(0)= U1• We shall show that it also satisfy (G, !, II). 



178 K. Hashimoto and A. Hori 

Lemma (2.13). Let W=W 1W2 • • ·Wr (wi e S) be the reduced expression 
of w e W. Then one has 

r 

#(B\BwB)= TI #(B\BwiB). 
i=l 

Proof See [1-M], and [Mac], Proposition (3.1.7). 

Lemma (2.14). As an element of ;lf(G, B), we have 

G1 =(1 + T1)Tz(T1T2)2-1(I +T1) (/:2::: 1). 

Q.E.D. 

The relations (1.1), (1.2) now follow easily from this and (2.10). Thus 
we see that a Tits system of affine type of rank two, together with a choice 
of one of its two generators in S, gives a group G satisfying (G, /, I), 
(G, l, II). 

Next we review the Bruhat-Tits building X attached to the Tits 
system (G, B, N, S) of affine type of rank two. By this assumption on the 
rank, it is a tree described as follows. The set V of its vertices is a disjoint 
union of V1 and V2 , each of which is in one-to-one correspondence with 
U1\G and U2\G respectively. The set E of its edges is in one-to-one cor
respondence with B\G. Let 'Pi: B\G-UiG be the natural projection (i= 
1, 2). Then two vertices P, Qare joined by a (non-oriented) edge e if and 
only if P=cpi(e), Q=cpz(e), where we regard P, Q, e as elements of U1\G, 
U2\G, and B\G respectively. 

One can describe it also as follows. First notice that the normalizer 
of any parabolic subgroup of G coincides with itself. So one can identify 
the cosets Utg in Ui\G (resp. Bg in B\G) with the set of conjugates g- 1 Uig 
(resp. g- 1Bg) of the parabolic subgroups of each type. Then the two 
vertices are adjacent (i.e., joined by an edge) if and only if the intersection 
of the corresponding parabolic subgroups is a conjugate of B. 

(2.15) Example. P0 ~ U1, Q0 ~ U2, e0 ~ B 

q1=4, q2=2 

In the figure below, black vertices {•}and white ones { o} correspond to 
the conjugates {gU1g- 1} and {gU2g- 1} respectively. Each black vertex has 
I +q 1 adjacent (white) vertices, and each white one has 1 +q 2 adjacent 
(black) vertices. 

Let P 0 and Q0 be, as in Fig-I, the adjacent pair of vertices corres
ponding to U1, U2 respectively. For the sake of simplicity, we identify Vi 
with Ui\G, E with B\G, and denote them simply by Vi, E respectively 
(i=l, 2). 
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(Figure-1) 

§ 3. P-adic algebraic groups 

Let G be a semi-simple algebraic group defined over a local field K, 
and assume that G has K-rank one and has an affine Tits system (G, B, N, 
S). Note that the last condition is satisfied if G is simply connected. In 
this case B is called the I wahori subgroup. Let W be the (affine) W eyl 
group of our Tits system. The assumption on the K-rank implies that our 
Tits system has rank two, so that, writing S={s 1, s2}, all the conditions of 
the preceding paragraph are satisfied. 

# Type simply connected groups (d1, d2) 

( 1 ) A1 SL(2, K) (1, 1) 
(2) C-BC 1 SU(3, L/K); [L: K]=2, L/K=ramified (1, 1) 
(3) dA2d-1 SL(2, D); D=K-simple div. algebra (d, d) 

(d;;e2) [D: K]=d 2 

(4) 2Ai' SU(4, L/K); [L: K]=2, L/K=unramified (3, 3) 
(5) 2A' SU(3, L/K); [L: K]=2, L/K=unramified (3, 1) 
(6) 2c3 Sp(3)= U(3, D); D=div. quaternion/K (3, 2) 
(7) 2c2 Sp(2)= U(2, D); D=div. quaternion/K (1, 2) 
( 8) 2C-B3 SUskew(4, D/K); [L: K]=2, L/K=ramified (3, 2) 
( 9) 2C-B2 SUsirnw(3, D/K); [L: K]=2, L/K=ramified (1, 2) 
(10) 4D4 SUsirnw(4, D/K); [L: K]=2, L/K=unramified (1, 4) 
(11) 4D5 SUsirnw(5, D/K); L=KffiK (3, 4) 

In (8)-(11), SUskew(r, D/K) denotes the special unitary group of a quaternion 
skew-hermitian form q(x) of rank r, with Witt index=l, andL denotes the center 
of the even Clifford algebra of q(x). 
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Fact(3.1). The two subgroups U1:=BUBs;B (i=l,2) form a re
presentatives of the G-conjµgacy classes of th,e maximal open compact 
subgroups of G. 

Let q denote the cardinal number of the .residue field of K, i.e. 0/p 
:::::.Fp. 

Fact (3.2). There are two positive integers d1, d2 such that #(B\Bs 1B) 
=qd• (=q;, say, for i=l, 2). 

According to the classification of Tits [T-2], there are 11 types of 
simple and semi-simple groups over a local field K, up to the central iso
geny, which have K-rank one. They are listed in the above table. 

§ 4 Structure of the discrete subgroups I' 

Let G be a group with a length function l: G-.NU {O} satisfying the 
axiom (G, l, I), (G, /, II) in § 1. And let I' be a subgroup of G which 
satisfies: 

(I', I) I' is torsion free, and rnx- 1 Ux={l} for any x e G. 

(I', II) #(U\G/I')<oo. 

We put h: = #( U\ G / I'), and denote by { x 1, • • • , x ,,,} a complete set of re
presentatives in U\G/I', which is fixed once and for all. Thus we have 

h 

(4.1) G=U Uxjr (disjoint). 
j-1 

Also put, for each I= I, 2, · · . : 

(4.2) 

Note that (I', I), (I', II) imply that sgl are all finite set. One can easily 
show, as in [I-I], that the mapping G1-+(SW) defines a ring homomorphism 
<p: Z[G 1; l=O, I, 2, · · · ]-+M(h, Z[I']), where we identify the set si~> and 
the formal sum of its elements in the group ring Z[I']. And one can show 

We shall denote sg> simply by Stj· From the assumption (G, /, II) and 
the above remark, it follows that I' is generated by Ut,J S;1• More 
precisely, one has 

Lemma (4.4). Let i,j {1-::;_i,j<h) be given. Then 



with 
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00 

(i) I'=US}j> (disjoint). 
l=O 

(ii) Each element re sg> has a following expression 

(iii) In the above expression, the indices (i1, i2, • • ·, i1 _ 1) and the ele
ments a;ktw (0<k<l-1) are uniquely determined by r and(i,j). 

Proof. (i) This follows trivially from G=x;- 1Gxj=U~ 0 x;-1G1xJ 
(disjoint). (ii) Let r be any element of sgi. Then one sees that xirx·;1 e 
G1, so that from Lemma (1.5), there exists a unique expression of xirx-;1 
of the following form: 

with 

Put 

for n=l, 2, · · ·, l-1. 

g0:=UW1,Wh · · ·Wi,xi, 

g1 : =whwJ, · · · wiixi, 

There exists a unique index i1 _ 1 such thatg 1 _ 1 e Ux£,_,I';writingg 1 _ 1= 
(J)i,xJ=v 1 _ 1xt,_,a;,_ti (v1 _ 1 e U, ai,-ti e I'), one sees that ai,-ti e S;,_,r 
Next let i1 _ 2 be the unique index such that g 1_ 2ai,-Ii e Ux;,_,I'; and write 

One sees immediately that a£,_,;,_, e S£,_,;,_,. Repeating this procedure, 
one gets an expression (*) of r as asserted. The condition(**) follows 
from the corresponding condition (J)inwin+, e G2, since one has 

(iii) The uniqueness follows easily from the above arguments. 
Q.E.D. 

Note that S;J=S 1f. Let S be a subset of U S;J-{1} such that U S;J= 
SU s- 1 U {l}. 

Corollary (4.5). The subgroup I' of G satisfying (I', I), (I', II) is a 
free group with free generators S. 
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Proof. The fact that I' is a free group is proved in Appendix, 
Corollary (10.12). Therefore our assertion follows immediately from 
Lemm (4.4). Q.E.D. 

However, in general, it is difficult to determine the set S explicitly, as 
has been done in [I-1]. This is partly because the same element <1 can 
belong to many of the subsets Sir 

Remark (4.6). Using the action of G on the tree X(q 1, q2), the above 
Lemma (4.4) can be interpreted as follows. We first note that 

and that, ifwe put PJ:=P 0x1 (l<j<h), then we have 

(4.8) V1=U {P1 ; I<j<h}r (disjoint). 
rEI' 

In particular, each point P e V1 determines uniquely the index i (1 < i < h) 
and r Er such that P=Poxir. 

Now for each re Si~=I'nx; 1G1x 1, one has dx(P0xi' P0xtr)=2l. 
Put R0 :=P 0xtr, R 1:=P 0x 1, and let 

C(Ro, Rz)=[Ro, Qi, R1, Q2, R2, ···,Qi, Rz] 

be the geodesic path from R 0 to R 1 in X(q 1, q2). Then each Rk e V1 de
termines an index ik (l<ik~h) and an element rk e I'. Now it is easy to 
see that 

r1-, =<1i1-,J• 

rl-2 = <lt1-2i1-,<Tiz-1j' 

Lemma (4.9). For any element <1 of StJ (1 <i,j<h), one has 

Proof Note that <TE sij (resp. 'CE ski) is equivalent to dx(PoXt<T, PoX3) 
=2 (resp. dx(P0xt, P0xk-r)=2). Now the set B:={R E V1 ; dx(P0xi, R)=2} 
is divided, according to its distance from P0x p- 1, into three disjoint sub
sets: B=B 0 UB1 UB2, with 
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From the above remark, it follows that if R e B1, then R is expressed as 
R=P 0xk-. with l<k<h,-. e S',/2. Now the assertion follows from Lemma 
(1.4). Q.E.D. 

Figure-2 

Finall; we shall make the following observation. 

Lemma ( 4.10). Let I' be a subgroup of G satisfying the conditions 
(I', I), (I', II). Then one has: 

( i) h2 :=(1 +q 1)h/(I +q 2) is an integer. 
(ii) Thefree rank r of I' is given by r=q 1h-h 2 +1. 

Proof Consider the quotient graph Y=X(q 1, q2)/I', for which one 
has #(V 1Y)=#(V 1/I')=h. Putting h2 =#(V 2 Y)=#(V 2/I'), one sees that 
the number of edges in Yis (q1 +l)h=(q 2 +l)h 2, hence (i). To prove (ii), 
one notes that the Euler characteristic of Y is 

(4.11) X(Y)=(h+h 2)-(q 1 + l)h 

=dim H 0(I', R)-dim H 1(I', R) 

=1-r. Q.E.D. 

Remark ( 4.12). It would be interesting to interprete h2 and prove the 
equality (i) combinatorially, without using the graph Y. In fact, using the 
notation of (1.10), h2 is seen to be the number of the equivalence classes 
EiP) U {P} modulo I'; and (i) can be proved by counting the cardinality 
of E*/I' in two different ways. 
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§ 5. r-conjugacy classes of given degree 

In this and the next sections, the notation and the assumptions will 
be the same as in the previous sections. We begin with the same defini
tion as in [I-1]: 

Definition (5.1) For any I'-conjugacy class {r}r (re I'), we put 

deg{r}r:=Min l(x- 1rx), 
xEG 

and call it the degree of {r}r, or of r. 

Note that, from G=U7-i UxiI', one has 

(5.2) deg{r}r:=Min {/; o e SW, o is I'-conjugate tor}. 
1,;;i,;;h 

Now let r be an element of SW, and let 

be the expression as in Lemma (4.4). For the sake of simplicity, put am 
=aim-iim (m=l, 2, · · ·, !). Let k (l<k<[l/2]) be such that 

(5.3) 

i1=i 1_ 1 and a 1a1=l, 

i2=i 1_ 2 and a 1_ 1a2= 1, 

ik=iz-k and ai-k+iak= 1, 

ik+1=/:::dz-k-1 or a1-kak+1=t'=l. 

Lemma (5.4). Let re SW satisfy the above condition. Then one has 
( i) If ai-kak+1 e S;;>_._1 ik+1 then deg{r}r=l-2k. 
(ii) Jf al-k(Jk+IE sg~k-iik+l then deg{r}r=f-2k-l. 

Proof By the condition (5.3) one sees that 

so that r is I'-conjugate to r':=a.+ 1 •• -ai-k· Again by (5.3) one sees that 
r' e S;!~2k>. Also from i1_k=ik, one has a1_kak+t e S;;"~•-iiH, with m=l 
or 2. Consider the element r":=ak~l'ak+i=ak+z· · -a1_k_1a1_kak+1, which 
is I'-conjugate tor. Since the condition(**) of Lemma (4.4) is satisfied 
with only possible exception form= 1 in the last factor, we see from (1.7) 
that r" e S;!~~f,"';_2

1-m>. Thus we have deg{r}r>l-2k+2-m. Now let 
o e I' be such that o- 1r"o e S}"'), and suppose that n<l-2k+2-m. 
Using Lemma (4.4), one finds s> 1 such that o e S;!~,1, so that o is ex-
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pressed as 

with the similar condition as(**) of Lemma (4.4). We may assume that 
o has been so chosen thats(> 1) is minimal among such elements. Sup
pose first that m = 2. If we have 

1:i;.~11,ui.+1ik+• e S};>iH, U S~~>i•+-' or 

O'i•ik+11:ik+1fi e sg}. u sg},, 

then using Lemma (1.4) it follows easily that n=l(J- 1r"o)>l-2k+2s-2 
>l-2k, which contradicts to our assumption. Thus we have either 
1:ik+, 11=0'iH,ik+• and fi=ik+ 2, or 1:ik+,1,=0'i;,}k+, and fi=ik+i· Replacing 
r" by r' or by O'z-1r,0'1r,+1 • • ·O'z-1r,-i, this reduces the problem to the case of 
o with s-1, which contradicts to the minimality of s. The case m= 1 can 
be treated similarly, if we regard the product O'z-kO'k+i as a single element 
of sg~•-•i>+,· Q.E.D. 

The geometric interpretation of this result is quite simple and helpful to 
understand the situation. We first note that for re SW, the expression 

with 

corresponds to the geodesic path C (i.e., the path without backtracking) in 
the tree X(q 1, q2), joining P0x, and P0x;r, Now, if we project C to the 
quotient graph X(q 1, q2)/I', we get a closed path C in X(q 1, q2)/I'. In 

(Figure-3) 
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general, however, C has a backtracking at the origin= terminal, as is 
illustrated in the above figures. 

From the proof of Lemma (5.4) and the above interpretation, we 
immediately have the following 

Lemma (5.5). Let r E SW and let 

be the expression as in Lemma (4.4). Moreover, suppose that aia1 ES;;~,;,
Then 

(i) Theelementsrj:=aj+laj+ 2 • • ·aia 1 • • -aj(O~j<l-l)areexactly 
those which are I'-conjugate to r and which are contained in some S;,;;, 
(l<m<h; l is fixed). 

(ii) The above l elements r j (O< j~ 1-1) are not necessarily distinct. 
If exactly d of them are mutually distinct, then each one belongs to exactly 
d diffi S (l)' • • "{ • r s<n } d l erent mms, l.e., -11' m, iE mm=. 

§ 6. Zeta function Zr(u; p) 

Let r ( -=I=-1) be an element of I'. Since I' is a free group of finite rank, 
the centralizer Cr(r) ofr in I' is an infinite cyclic group. We call r or, the 
conjugacy class {r}r, to be primitive, if Cr(r) is generated by r. 

Definition. Let p; I' -.U(n) be an n-dimensional unitary represen
tation of I'. Then the zeta function Zr(u; p) of I' attached to p is defined 
by an infinite product 

(6.1) Zr(u; p):= CT det(/n-p(r)udeg{rlr)- 1• 

{rlr 

Let G= Ut 1 UxiI' be a decomposition of G into disjoint union whose set 
of representatives is fixed throughout the following. Consider the Brandt 
representation of .Yt'(G, U) attached top: 

(6.2) <pp: .Yt'(G, U)----+M(nh, Cf=-M(h, C)&>M(n, C) 

UyU----+( I; p(rnsi,Js1i· 
rEI'nxf 1UyUXj 

We put 

(6.3) for 1=0, 1, 2, ... 

Also put h1 :=h, h2 :=(q 1 +l)h 1/(q2 +l); recall that h2 is an integer, and 
that the rank of I' is equal to h1q1-h 2 +l=h 2q2 -h 1 +l (cf. Lemma 
(4.10)). 
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Now our main result of this paper is the following 

Theorem (6.4). The zeta function Zr(u; p) is a rational function of u 
which has the following expression: 

Zr(u; p)-1 =(1-ut<r-lJ(l +qzut<h2-h1l 

X det{Inh, -(A1,p-q2+ l)u+q 1q2u2}. 

We shall prove this theorem. Taking the logarithmic derivative of 
(6.1), one gets 

(6.5) 

with 

(6.6) 

where the second sum in (6.6) is extended over the set of primitive I'
conjugacy classes P such that deg P= d. Suppose that o e S;fl is a re
presentative of P. Then by Lemma (5.4) we see that r=o11d e SW, and 
that, if we express r as in Lemma (5.5) then by the primitiveness of P= 
{o}r, there are exactly d mutually different ones among the / expressions 
ri (O<j~l-1). It follows that each of them is contained in exactly d 
distinct S;,;~'s (1 <m<h). Thus we have 

(6.7) ~ tr p(r). 
rES}J' 

deg{r)r~l 

For each l> 1, k (O<k<[(l-1)/2]), and i (1 ~i <h), put 

S;\•k,+) =={r E sw; (5.3) with (Jl_k(Jk+I E S;;~k-1ik+1} 

S;\·k,-):={r e sw, (5.3) with (Jl_k(Jk+I e sg~k-lik+l}, 

where we use the abbreviated notation as in Lemma (5.4), and k is de
termined by (5.3). Then one has for each i (1 <i<h) and I:?: 1, 

[(l-1)/2] [(l-2)/2] 

(6.8) Sj\l= U Sj;,k,+l U U S;;·k,-l (disjoint). 
k~O k~O 

Lemma (6.9). (i) Fork:?: I, the mapping 

h h 

(6.10) ,;,+. "'s<z,1c,+J__,,."' sc.z_-21c,o,+) 
'f' . LJ it L..J JJ 

i=l j =l 
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is (q1 - I)qlq 1q2)k- 1-to-one. 

(ii) For k>O, the mapping 

h h 

(6.11) ,1.- • "sii,k,-)~" S(z_-2k-1,o,+) 
"JJ • L.;. ii L.J JJ 

i-1 j-1 

r=a1<J2· • ·aiak+t· • ·<li-k)aj;1· • ·<l11~<lk+2" • ·<lz-k<lk+l 

is (q2 - I)(q 1q2)k-to-one. 

Proof We first prove (i). Suppose we are given r' =<lk+l . .. <lz-k E 

Sl;;,2kl, and consider the number of choices for ak, .. ·, a1. We first show 
that there are (q1 - l)q 2 choices for ak. Indeed, ak should be chosen under 
the following conditions: 

akak+t E Sj;;H, i.e., dx(P 0xi•+1ai:,l 1, P 0xi,_,ak)=2 

<lz-k<li:,1 E Sj;~._11 ,_ 1 i.e., dx(P 0xi•-,ak, P 0xi 1_._,<lz-k)=2 

<lz-k<lk+t E Sj;~•-,iH, i.e., dx(P 0x 1k+1ai:,l 1, P 0xi 1_._,a 1_k)=2. 

Noting that the index ik has been given, we see that to choose ak is equiva
lent to choose the vertex P 0xi._,a. e V1, which is at the distance 4 from 
the (given) vertices P 0xik+ 1ai:,l 1, P 0xi 1_._,<lz-•· Now it is easy to see from 
Lemma (4.9) that there exactly (q1 - l)q 2 such vertices (see also Figure 2). 
Next for each choice of a., one can show by Lemma (4.9) that there are 
q1q2 choices for ak-t· Similarly for each choice of <h, a._ 1, · · ·, aj+t, there 
are q1q2 choices for a j" This proves (i). To prove (ii), it suffices to note 
that, for given a.+ 2, · · ·, <lz-k, there are exactly q2- l choices of ak+t such 
that r'=a •• 2 • • ·<lz-k<lk+t e Sj;~;t-:;.11, which follows easily from Lemma 
(4.9). Then one can proceed as in the case (i). Q.E.D. 

Let f be a class function on I'. For a finite subset S of I', we 
denote by f(S) the sum of f(r), r e S. 

Corollary (6.12). For any class function f on I', one has 

Proof Let X be the character of p, i.e., X(r)=tr p(r) (re I'). Then 
we have 
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II, 

tr(A 1,p)= E X(SW) 
i=l 

[(Z-1)/2] II, [(Z-2)/2] II, 

= E E X(s~vc,+)) + E E X(S~!·k,-)) 
k=O i=l k=O i=l 

II, [(Z-1)/2] II, 

= E X(S~!·O,+))+(q1 - l)q2 E (q,q2)k-1 E X(S~!-2k,O, +)) 
i=l k=l i=l 

[(Z-2)/2] II, 

+(q2- l) E (q1q2)k E xcsit-21c-i,o, +)) 
k=O i=l 

Thus from (6.7), we obtain 

(6.13) 

Q.E.D. 

Lemma (6.14). 

N1,p=tr(A 1,p)-(q 2- l)tr(A 1_ 1,p) 

-% {(q2- l)+(q1-q2)q2 11:t (-q 2)m }tr(A1c,p). 

Proof We prove this by induction on/. Note first that the asser~ 
tion for I= 1 follows from (6.13). Suppose that it is true for I= 1, 2, . , . , 
p-1. Using (6.13) for l=p, and the induction hypothesis, we have an 
equality: 

(6.15) Np,p=tr(Av,P)-(q 2- l)tr(Ap-i,p) 
[(p-1)/2] 

-(q1 - l)q2 E (q1q2l-'tr(Ap-21c,p) 
k=l 

[(p-1)/2] p-2k-1 

+(q1- l)(q2- l)q2 E (q,q2)1c-i E tr(A 1,p) 
k=l J=l 

[(p-1)/2] p-2k-2 p-2k-2-j 

+(q1-l)(q1-q2)q~ E (q1q2)k-l E E (-q2rtr(Aj,p) 
k=l j=l m=O 

[(p-2)/2] 

-(q2- l) E (q1q2)1ctr(Ap-21c-1,p) 
k=l 

[(p-2)/2] p-2k-2 

+(q 2-l) 2 E (q1q2)1c E tr(Ai,P) 
k=O j=l 

[(p-2)/2] p-2k-3 p-2k-3-j 
+(q2-l)(q1-q2)q2 E (q1q2)k E E (-q2rtr(Aj,p). 

k=O j=l m=O 

Now a direct calculation shows that the total sum of the right hand side 
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of (6.15) is equal to that of (6.14) for l=p. Q.E.D. 

Using (6.5) and (6.14), we have 

d = 
(6.16) u-IogZr{u; p)= I; tr(Ai,p)uz 

du z~1 
= = l-2 

-(q2- l) I; tr(Ai-i,p)ul-(q 2 -I) I; I; tr(Ak,p)ui 
l~2 l~3 k~l 

= l-2 l-2-k 

-(q1 -qz)q2 I; I; I; (-q2)mtr(Ak,p)ul 
l~3 k~l m~o 

={l-(q 2 -l) 't;,/1k-(q 1-q 2)q 2 't;,2 }; (-qzrutt tr(Ai,p)ui 

={I (qz-I)u - (q1-q2)q2u2 }f: tr(A )ul 
I-u (I-u)(I+q 2u) z~1 l,p 

I q q u2 = = - i 2 • I; tr(Az p)uz. 
(1-u)(l +q 2u) z~1 ' 

Applying the Brandt representation cpp to the both sides of (1.1), (1.2), we 
have 

(6.17) Ai,p=A 2,p +(q 2 - I)A 1,P+qz(q 1 + l)A 0,p, 

(6.18) A 1,pAi,p =Ai+i,p +(q 2 - I)Ai,p +q 1q2Ai-i,p (!> 2). 

It is easy to see that these equalities are equivalent to the following one in 
the ring Z[Ai,p; !~ O] [[u]] of formal power series. 

(6.19) 

Taking the trace of both sides of ( 6.19), we have 

(6.20) 

-nh- l-q1q2u2 
(l-u)(I+q 2u) 

Now the following equality is easily proved: 

(6.21) 
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Combining (6.20) and (6.21) together with Zr(O; p)= 1, we get the following 
expression of Zr(u; p): 

Zr(u; p)-1=(l-u)<Q1Q2-tin1i;cq,+1i(1 +q 2u)<Q1-Q2Jnn/(q2+t) 

X det{In1i, -(A1,p-q2+ l)u+q 1q2u2}. 

Note that, by Lemma (4.10), we have 

(q1q2- l)h qiq1+l)h1 (q2+l)h1 q2h2-h 1 =r- l, 
q2+l q2+l qz+l 

(q1-q2)h (qi+ l)h1 (q2+ l)h1 h2-h1, 
q2+l q2+l qz+l 

This completes the proof of the theorem (6.4). 

§ 7. Remarks 

Finally we shall give some remarks on our results. 

7-1. First, we shall give a graph-theoretic interpretation of our 
results. The basic ideas have been suggested by [Ser-1] (see also [Su]). 
Let Y denote the finite quotient graph X(q 1, q2)/I'. Then the group I' 
can be identified with the fundamental group of Y, or its realization as a 
CW-complex, with respect to a (fixed) point. And there is a bijective 
correspondence between the set of I'-conjugacy classes and the set of 
geodesic cycles. Note that, by definition, a geodesic cycle is a closed path 
in Y without backtracking, modulo the equivalence induced by shifting 
the origin. A cycle is called primitive, if it is not a power of another 
cycle. This corresponds to the primitive I'-conjugacy classes. Thus, de
noting by IPI the length of the geodesic cycle Pin Y, we get 

(7.1) Zr(u; p)= I1 det(In-p(<P))ulP!l 2)-1, 
P:primitive 

where the product is extended over all primitive cycles P of Y, and <P) 
denotes the corresponding conjugacy class of I'. Taking the logarithmic 
derivative of (7.1), we get 

(7.2) 

where C runs through the set of geodesic path in Y of length 2!, with 
origin a vertex belonging to V1 Y (=image of V1). In this context, the 
matrix A 1,p has the following interpretation. Let SiI') be the C-vector 
space 
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(7.3) Sp(I'):={f: V1-en;f(Pr)=f(P)p(r) for any re I'}. 

Since I' acts on X(qi, q2) without fixed point, it follows that Sp(I') is of 
finite dimension with dim Sp(I')=n#(ViY)=nh. Note that Sp(I') is re
garded as a space of en-valued functions on U\G, on which one can 
define the representation of the Hecke algebra .:Yt'(G, U) by the convolu
tion. It is immediate to see that the resulting representation is equivalent 
to the Brandt representation 'h defined by (6.2); and A 1,P corresponds to 
the following linear operator on Sp(I'): 

(7.4) I: 
QEV1 

dx(P,Q)=2l 

f(Q). 

Let Vt={Pk; l<k<h} be a complete set of representatives of V1/I'= V1 Y, 
and let e1:=(0, ... , 0, 1, 0, . ·., 0) (1 <j<n) be the standard unit vectors 
of en. Then the functions A 1 (l<k<h, I<j<n) of Sp(I') which are 
determined by the conditionfk,iPk)=e 1,fk,;(P,,.)=0 (m-=!=k) from a basis 
of Sp(I'). Using this basis, it is easy to show 

(7.5) tr(A 1,p)= I; X(r). 
rEI',PE V1* 
dx(P ,Pr) =2! 

Using these interpretations, one can simplify the proofs of the results in 
§6. 

7-2. Suppose that (G, !) is obtained from a Tits system (G, B, N, S). 
Then one can proceed the same calculation of Zr(u; p), with U2 instead of 
U1• Thus one gets a second formula for Zr(u; p): 

(7.6) Zr(u; p)-1=(1-ut<r-1,(1 +q1u)n<"'•-"'•' 

X det{In,,,,-(Ai,p-q 1 + l)u+q 1q2u2}. 

where Ai,p is defined similarly as A 1,p. Note that, while the zeta function 
Zr(u; p) defined by (7.1) is independent of the choice between U1 and U2, 

the final results (6.4) and (7.6) are not symmetric in q1, q2 and h1, h2• It is, 
therefore, an interesting problem to explain this difference in the two ex
pressions. It is also an important problem to ask the possible relation 
between our results on Zr(u; p) and the spectral decomposition of L2(G/I'). 
We shall study these problems in the subsequent paper [Ha]. Here we 
content ourselves with the following observation. 

Suppose that G is an algebraic group over a local field K satisfying 
the conditions of§ 3. Suppose moreover, that p= 1, the trivial represent
ation, and put A1 =A 1, 1• Then, by the same argument as in [I-1], we see 
that A1 has the eigenvalue qz(l +q 1) with multiplicity one. It follo-ws that 
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Zr(u; 1)- 1 has the factor (1-u) with multiplicity r=dimH'(I', R). This, 
combined with a result of [Car], [Gas], implies the following result which 
generalizes that oflhara [I-1]: 

Proposition (7. 7). We have the following equality 

- Res _!!__ log Z r(u) = r= the multiplicity of the Steinberg 
u= 1 du representation in L 2(G/I'). 

We shall give a different proof of this in [Ha], which is independent 
of [Gar], [Cas]. 

Appendix. Bipartite trees, Hecke algebras, and flowers of groups 
(by Ki-ichiro Hashimoto) 

Contents 

§ 8. Introduction 
§ 9. Groups with axioms (G, l, I), (G, l, II) 
§ 10. Construction of the tree X(q" q2) 

§ 11. Graph of groups over a flower 
§ 12. Tits system and the Hecke algebra 

§ 8. Introduction 

In [1-1], Ihara studied the discrete subgroups of SL(2, K) over a p
adic field K. There he established, among others, a remarkable structure 
theorem which states that any discrete torsion free subgroup I' of SL(2, K) 
is a free group, whose free basis can be constructed in an explicit way. In 
fact what he did is more; such structure theorem was proved for subgroups 
of more general groups G satisfying certain axioms, and a zeta function for 
such I' has been introduced and studied with a number of applications. 
The proofs are based on somewhat mysterious combinatorial arguments, 
as was written in the introduction of [Ser-1]. Later Serre [Ser-I] gave a 
graph-theoretic interpretation of the first result, generalizing it to much 
more general class of groups G. In one of the main theorems (Th. 13 in 
§ 1.5.4), he established a structure theorem of groups acting on a tree X. G 
is then recovered as the fundamental group 1r1(G, Y, T) of the graph of 
groups (G, Y) at a maximal tree T ( c Y), where Y is the quotient graph 
X/G. Ihara's structure theorem is generalized to subgroups I' of such G. 

Here we note that, according to a philosophy of Tits, the tree attached 
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to G= SL(2, K) is regarded as the analogue of the upper half-plane for 
SL(2, R). Based on this idea, a theory of harmonic analysis on trees has 
been constructed (cf. [Car]). Ihara's main result in [I-1] on the zeta func
tion of I' ( cSL(2, K)) is particulary interesting if viewed from this point. 

However, in such full generality, it seems difficult to extend the results 
of[I-1] on zeta functions, or to get a deep result on the arithmetic ofa sub
group I' ofG. 

We note here that in [l-1], an essential role has been played by the 
relations (G, 1, II) (cf. (11.12)) of Hecke operators (ap-adic analogue of the 
Laplacian), which have been given in [Ser-1] a simple interpretation in 
terms of graph theory, or trees. It is, therefore, natural to study the class 
of groups acting on trees, which are not necessarily homogeneous, for which 
one can expect a nice relation for elements of its Hecke algebra, that will 
lead us to the evaluation of zeta functions for its (discrete) subgroups I', 
as well as its application to the spectral decomposition of L 2(G/I'). We 
require that the Hecke operators satisfy, instead of the relations (G, 1, II) 
of [1-1], one of those which appear in the theory of Iwahori-Matsumoto 
[1-M] (see (1.1), (1.2)). 

The purpose of this note is to prove the equivalence between the 
following classes of objects consisting of groups and some extra data: 

(8.1) Groups G satisfying similar axioms (G, 1, I), (G, l, II) as in [I-1], 
the latter describing a structure of the Hecke algebra :?it'(G, U) of G with 
respect to a subgroup U (cf. (1.1), (1.2)). 

(8.2) Groups G with an action on a semi-regular bipartite tree X(q 1, q2) 

=(V 1, Vi; E) of valency (q1 +l, q2 +l), which is transitive on V1, one of its 
two kinds of vertices. 

(8.3) Fundamental groups rci(G, F, T) of the ''flowers F", of groups 
with certain regularity condition (cf. (11.4) (11.5)); here a flower is a finite 
graph described as in the following: 

Fig. (8. 4) 
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The equivalence of (8.2) and (8.3) follows as a special case of Serre's 
description of the groups acting on a tree, mentioned above. We included 
it in our main result, not only because of its beautiful characterization of 
our class, but also because it shows very well the range of it. As a 
simplest case, our class contains the groups which have the Tits system 
(G, B, N, S), where S consists of two elements generating the infinite 
dihedral group, and the flower reduces to e-o. This is the case for 
any simply connected groups over the local fields K with K-rank one. In 
fact our motivation has been to extend the results of [I-1] to such groups. 
However, (8.3) shows that our class covers much more wide class of groups 
which in general fail to have a Tits system. 

Notation. For a finite set S, #(S) denotes its cardinality. By a 
graph, we mean, unless otherwise stated, a non-oriented one. If X is a 
graph, we denote VX (resp. EX) the set of its vertices (resp. edges). If X 
is a tree, dx: VXX VX-NU{O} denotes the distance on X. For a vertex 
PE VX and l E NU{O}, we put VX(P; l):={Q E VX; dx(P, Q)=l}. 

§ 9. Groups with axioms (G, /, I), (G, !, II) 

We shall prove the results described in § 1. Let (G, !) be as in § 1. 
We begin with the following remark. Our axioms (G, /, I, II) can be 
viewed as a generalization of those of Ihara [I-1], in two ways. First, if 
we put q1 = q2 = q, then we see that our axioms can be derived from those 
of [I-1], by considering only Gu's (see Remark (11.14)). This is what we 
obtain by replacing PLz(K) by PSLz(K) in [I-1]. On the other hand, axioms 
of [I-1] is recovered also by putting q2 = 1 in our axioms. In terms of 
trees, this corresponds to considering the barycentric subdivision of the 
homogeneous tree attached to PLz(K) (see § 10). 

Proof of Lemma (1.4). Since (i) is trivial, and (iii) follows from (i), 
(ii) and (1.1), we only need to show (ii). From the definition of the 
product G1 • G1 in :/t'(G, U), we have 

where the formal sum is taken with multiplicities (cf. [Sh], Chap. 3). 
Comparing this with (1.1), we see that, for any I; e Gi, 

The assertion (ii) follows from this by taking i;=w- 1 E G11 =G 1• Q.E.D. 

It follows from (1.1) and Lemma (1.4), (i) that we have t=#(U\G 1) 
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= qz(q1 + 1); and the induction using (1.2) shows 

(1.3) for l> l. 

Proof of Lemma (l.5). Repeated application of the argument as 
above shows that 

(9.6) Gf= ~ UwJ,w12• • ·Ww 
ji,j2···,il 

with multiplicity taking into account. On the other hand, we see from 
(G, !, I), (G, !, II) and the induction on l that 

Gf=Gi+c1Gi-i + · · · +czU (ct E NU{O}). 

Comparing these two expressions for Gf, we get the assertions except for 
the equivalence; /(g)=/ 8 (*)- To prove this, we note that this assertion 
is equivalent to the identity 

(9.7) 'v<•l Uw w · · ,w L__i ji jz ii' 
ji,j2,·••,j1, 

where ,S<*l is the partial sum of (9.6) of those which satisfy the condition 
(*)- From what we have seen, it follows that Gz is contained in the sum 
.S<*l. On the other hand, from Lemma (1.4) we see that the number of 
U-cosets in this sum is (q1q2)z- 1qz(q1 + I), which is equal to #(U\Gz) (cf. 
(1.3)). This proves our asssertion. Q.E.D. 

We remark that, under the condition (G, !, I), (G, !, II) is equivalent 
to the statements in Lemmas (1.4) and (1.5). 

Following [I-1], we call a product xy (x, y E G) free, if l(xy)=l(x)+ 
l(y). The free product of n elements x 1 • • • xn is defined similarly. It is 
easy to see from the above lemma that, if xy, yz are free products and 
y $ U, then xyz is free. In particular for x 1, x2, • • ·, Xz E G1, we have 

The following is also an easy consequence of Lemma (1.5). 

Lemma (9.9). If the product xy is free and xy= uw Jiw J• • • • w Ji is its 
unique expression as in Lemma (l.5), then one canfindv EU such that x= 

UWJiWJo · · · WJmV and y= v- 1wJm+,WJm+z · • • WJ, (m=f(x)). 

Now we give a 

Proof of Lemma (l.6). The assertions for i=O are trivial, since 
UGzU=Gz. Also the assertions for i=2 follow from the remark preceding 
Lemma (9.9). So we prove them for i= l. 
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Let G1=,I: 1 Um1 and G2=I:t'.i. Um;,mi• be the decompositions into 
U-cosets as above. Then the product G1G2 in .Yt1(G, U) is expressed as 

G1G2 = I: ,I:<*l Um1m;,m;. 
j i1,i2 

= ,I:<*l Um1m;,m;.+ ,I:<1lU(m1m;,)m;.+ ,I:<0lU(m1m;,)m;2 , 

j,ii,it 

where ,I:<il is the sum of Um1mi,m;. such that m1mi, e G; (i=O, 1). From 
(9.7), we have ,I:};2.,i.=G8• Also from Lemma (1.4), (i) and (iii), it follows 
that ,I:<0l=q 1q2G1• Now comparing theabove expression for G1G2 with 
that of (1.2), 1=2, we 'get ,I:<1l=(q 2 - l)G 2, from which it follows that 
m 1mi,m;. e G2. 

Thus we have proved the assertion (i) for i= 1, in the case x=m 1, 

y=m;,, z=m;. e Q. The general case is easily reduced to this and Lemma 
(9.9), since Q is an arbitrary set of representatives of U\G 1• (ii) follows 
from (i), by taking inverse (G";:1 =G 1). Q.E.D. 

§ 10. Construction of a tree X(q 1, q2) 

A tree of complete graphs. 

Let (G, /) be a pair of a group and a function I on G taking values in 
non-negative integers, which satisfy (G, /, I). Following an idea of Serre 
[Ser-I], we define a graph Z=Z(q 1, q2) on which G acts. Let VZ:= U\G 
be the homogeneous space of G consisting of the (left) U-cosets. We de
fine a function dz: VZX VZ-NU{O} by 

(IO.I) dz(Ux, Uy):=l(xy- 1) (x, ye G). 

Then it follows immediately from (G, /, I) that dz satisfies the following 
properties. 

(10.2) dz is symmetric and G-invariant. 

(10.3) dz(P, R)=O~P=R (P, Re VZ). 

(10.4) For any Pe VZ, and I e NU{O}, the cardinality t1 of the set 
{Re VZ; dz(P, R)=l} is.finite, and it is independent ofP. 

Then we define two points P, R e VZ to be adjacent ( or joined by an edge), 
if dz(P, R)= I. This gives us a: combinatorial graph Z on which G acts, 
having VZ as its set of vertices. Recall that a combinatorial graph is a 
graph which does not contain any circuit oflength n<2. 

Now we assume ,that G satisfies the second axiom (G, I, II). Then 
from (1.3), we have t1=(q 1q2)L-1t, t=t 1=qz(q1 +1). Call a circuit of length 
3 a triangle. Lemma (1.4), (ii) implies that, if q2 > 1 then the graph Z 
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contains a triangle; in fact e:=[U, Uw, Upw, U] (w, p, pw E G1) is such a 
triangle. If, on the other hand, q2 = 1, then our axioms reduce to that of 
[I-1], in which case (G, !, II) is equivalent to the assertion that Z is a tree 
(see [Ser-I], p. 117, ex. 2). 

We call a circuit en= [P0, P 1, • • ·, P n = P0] in a graph Z to be minimal, 
if the only pairs of vertices in {P0, P 1, • • ·, Pn-i} adjacent in Z are {Pi, Pi+i} 
(i=O, I,···, n-1); or equivalently, ifno proper subset of this is the set 
of vertices of a circuit in Z. 

Lemma (10.5). The graph Z(q 1, q2) contains no minimal circuit of 
length n>4. 

Proof Suppose on the contrary that Z contains a minimal circuit 
en= [P0, P 1, · · ·, P n = P 0] oflength n2: 4. Since the action of G on the set 
of vertices of Z is transitive, we may assume that P0 = U, and write P1 = 
Ux1, P2=UX2X1, • • ·, Pn-1=Uxn-1· • ·X2X1, where X1, • • ·, Xn-1 E GI. Now 
the assumptions that n>4 and that en is minimal, imply that xixi+i E G2 

for i= 1, · · ·, n-2. By (9.8), this implies thatl(xn-i · · · X2X1)=dz(P 0, P n-i) 
=n-1>1, a contradiction. Q.E.D. 

Lemma (10.6). If two distinct triangles {P1, P2, P,}, {P1, P2, Rs} in Z 
share an edge [P1, P2], then the remaining two vertices are adjacent: 
dz(P,, R,)= 1. 

Proof Again we may writeP 1 = U, P2 = Uw, P,= Upw, andR,= Ur:w, 
where w, p, pw, r:,r:w E G1• Suppose, on the contrary, that dz(P,, R,)= 
l(pr:- 1)=2. Then applying Lemma (1.6), (i) for x=p, y=r:-1, z=r:w, one 
gets l(xyz)=l(pw)=2, a contradiction. Q.E.D. 

Now it is easy to see how our graph Z(q 1, q2) looks like. The follow
ing Lemma shows that it is a 'tree of complete graphs K(q 2+ I)'; recall that 
a complete graph K(n) is a combinatorial graph consisting of n vertices, 
any two of which are adjacent. Namely, each vertex Pin Z is a common 
vertex of q1 + I distinct complete graphs isomorphic to K(q 2 + I). Call a 
complete graph isomorphic to K(4) a tetrahedron (cf. Fig. (10.7)) . 

• ' -K(3): triangle K( 4): tetrahedron K(n): n=6 

Fig. (10. 7) 
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Fig. (10. 8) 

We say that two (not necessarily distinct) edges to be related, if they 
belong to a tetrahedron in Z (or a triangle if q2 =2, or identical if q2 = 1). 

Lemma (10.9). (i) The above relation is an equivalence relation in 
the set EZ of edges of Z, which is compatible with the G-action. 

(ii) For any vertex P e VZ, it induces an equivalence relation in the 
set Z(P) of vertices of Z adjacent to P, each equivalence class consisting of 
q2 vertices. 

Proof (i) is easily proved by an application of Lemma (10.6). Two 
vertices Ri, R 2 e Z(P) are equivalent if and only if the edges [P, R 1], [P, R2] 

are related. To prove (ii), we may assume that P=P 0 = U. Writing R 1 

= Uw1, R 2 = Uw-z (w1, w2 e Q), we see that this is the case if and only if 
w1w21 e UU G1• For each R 2, the number of such R 1 e Z(P) is seen from 
Lemma (1.4) to be 1 +(q 2 -l)=q 2• Q.E.D. 

Tree X(q 1, q2). 

We now construct a tree X(q 1, q2) from Z(q 1, q2), which is of bipartite 
type of valency (q1 + 1, q2+ 1), and which is acted upon by our group G. 
Let Z*(q 1, q2) be the barycentric subdivision of the graph Z=Z(q 1, q2). 

This means that we add new vertex Q at the middle point of each edge 
[P, R] of Z, and call it to be adjacent to P, R. The set of added vertices 
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is denoted by V2Z*, and the rest is denoted by V,Z*. Thus one has 

VZ*= V,Z* U ViZ* (disjoint); V1Z*~ VZ, ViZ*~EZ. 

Clealy the action of G on Z is .induced on Z*, and so is the equivalence 
relation on V2Z* ~ EZ, in such a way that it is compatible with G-action. 
Therefore one obtains a quotient graph 

Namely we identify the vertices in ViZ* which are equivalent; and if two 
such vertices Q,, Q2 are adjacent to a common vertex Pe V,Z*, we also 
identify two edges [P, Q,], [P Q2] (see Fig. (10.10)). Notice, among others, 
that by this process of making quotient, no two vertices of V,Z* (~ VZ) 
are identified, as one sees immediately from Lemma (10.9). 

As a result, we get a graph X(q,, q2)=(V 1, Vi; E) of bipartite type, 
which is semi-regular of valency (q,+1, q2 +1), \¾hose set of vertices are 
divided into two disjoint parts V,: = V,Z * and V2 : = V2Z */(equivalence), 
and each edge y=[P, Q] e E joins a vertex Pe V1 and a vertex Q e Vz, 
Now the following properties (i), (ii), (iii) are easily proved by what we 
have seen (cf. Fig. (10.10)). 

Fig. (10. 10) 

Theorem (10.11). Let the notation be as above. 
( i) The graph X(q,, q2)=(V 1, Vi; E) is a connected tree of semi

regular bipartite type with valency (q1 + l, q2 + 1): i.e., it is a tree where 
each vertex PE V1 is adjacent to q, + 1 vertices in Vi, and each Q e V2 '?is 
adjacent to q2 + l vertices in V,. 

(ii) The distance on V, ~ VZ which is induced from that of the tree 
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X(q 1, q2), coincides with 2dz(P, P'). 
(iii) The group G acts on X(q 1, q2) in such a way that it has no in

version and that it is transitive on V1• 

Conversely, suppose that a group G and its action on the connected 
semi-regular bipartite tree X =(V 1, V2, E) of valency (q1 + I, q2 + 1), satisfy
ing the condition (iii) above, are given. Then the mapping l: G-.N U {O} 
given by l(g)=(I/2)dx(P, Pg) (PE V1) satisfies (G, l, I), (G, l, II). 

Proof We prove the last assertion. By the assumption we can 
identify V1 with U\G, where U: =Stab(P 0), P0 = U. The properties (G, l, I) 
for the mapping l is immediately seen. To show (G, l, II), we note that 
;lf(G, U) is regarded as a subring of End(Z[V 1]), where Z[V 1] is the free 
Z-module over V1• Namely, a U-double coset UxU=LJ 1 Ux1 maps P= 
Uz ( E V1) to the formal sum I; 1 Ux1z. Then one sees that G1 : P-. I; Q, 
the sum taken over the set of vertices such that dx(P, Q)=21. The as
sertion follows easily from this. Q.E.D. 

Corollary (10.12). Let G be as above. 
(i) If I' is a torsion free subgroup of G such that rnx- 1 Ux={I} 

for any x E G. Then I' is a free group. 
(ii) If, moreover, I' satisfies # ( U\ G /I')< oo, then it has a finite basis 

of rank rr=h 1q1 -h 2 +I (=h 2q2 -h 1 +I), where h1=#(U\G/I')=#(V 1/I'), 
h2 =#(V 2/I') are the number of I'-orbits in Vi, Vi, respectively. 

Proof This follows from [Ser-I], I.3.3, Theorem 4.4', together with 
the relation (q1 + I)h 1 =(q 2+ I)h 2• In fact the assumptions in (i) imply that 
the (restricted) action of I' on the tree X(q 1 q2) is a free action. To see 
this, suppose, on the contrary, that r e I' (r-=/= I) has a fixed point Q e V2• 

Then it induces a permutation on the finite set of vertices adjacent to Q. 
Hence some power r of r has a fixed point P= Ux E V1• This implies 
that r EI' n x- 1 Ux, a contradiction. Q.E.D. 

Notice that the assumption on the torsion-freeness of I' can be 
weakened to the one that I' has no torsion element r -=f= I such that r = I 
for n=(q 2 +l)!. 

§ 11. Graph of groups over a flower 

Now we consider the quotient graph F: =X(q 1, q2)/G. Thus we as
sume that G is a group acting on X(q 1, q2) as described in (10.11). Then 
it is clear that F is a finite graph; in fact the image of the vectices of V1 

(resp. Vi) consists of a single (resp. at most 1 +q1) points. Denote them 
by V1F={P} and VzF={Q 1, ···,Qr}· Also denote the image of Eby EF. 
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From its shape, we shall call F a flower, and each of its subgraphs con
sisting of p<o: ={P, Qi, all edges Yi,j (I :::;::j:::;:: ti) connecting them}, a petal 
of the flower F(l<i<r). 

Let Pi= P 0 E V1, and let Qi, 1 E Vi be the vertex such that the edge 
[Pi, Qi,j] project to Yi,J (I:::;::j:::;::ti). We denote by U(Qi, 1) the stabilizer 
in G of Qi,J· Similarly, let Qi E V2 , and let Pi,j E V1 be the vertex such 
that the edge [Qi, Pi,j] project to Yi,J (1 <j < ti). We denote by U(Pi, 1) the 
stabilizer in G of Pi,j' Note that un U(Qi,) (resp. U(Qi) n U(Pi, 1)) is 
the stabilizer of the edge [Pi, QiJ (resp. [Qi, PtJ). Since the two edges 
[Pi. Qi,jl and [Pi,J, Qi] have the same image Yi,J in F, one finds gt,J E G 
such that [Pi, QiJgi,J = [Pi,i' Qi], i.e., Pigi,J = Pi,j• Qig;,} = Qi,J· It 
follows that 

(11.2) 

We refer to the following equalities (11.4), (11.5) as the regularity condition. 

Proposition (11.3). Let the notation be as above. 
( i ) The number of petals in F = r = # ( Vi/ G). 
(ii) The number of edges in a petal Fi=tt=#(V(Qi; 1)/U(Qi)), and 

one has 

t, 

(11.4) I; [U(Q;): U(Qi)n U(Pi)]=q 2 +l (1:::;::i:::;::r). 
j-1 

(iii) One has similarly 

r ti 

(11.5) I; I; [U(Pi): U(Pi)n U(Qi,j)]=q1+I. 
i=l j=l 
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Proof (i) is clear. To prove (ii), one notes first that for two vertices 
Q, Q' e V(Pi; I), the edges [Pi, Q], [Pi, Q'] have the same image in F if 
and only if there exists g e G such that Pig=Pt and Qg= Q', i.e., if and 
only if they belong to the same U(Pi)-orbit. The equality ti= #(V(Pi; 1)/ 
U(Pi)) follows from this, and counting the vertices in V(Pi; l) in two 
ways, one gets (11.4). (iii) is proved similarly. Q.E.D. 

Recall that a graph ofgroups (G, Y) is a connected graph Ytogether 
with an assignment G: Y-+{groups} which assigns to each vertex Pe VY 
(resp. oriented edge y= [P, Q] e EY) a group G(P) (resp. G(y)). More
over, it is required that G([P, Q])=G([Q, P]), and there are monomor
phisms 

(11.6) 
G([P, Q])----+ G(Q), a-+aY 

II 
G([Q, P]) ----+ G(P), a-+av ( cf. [Ser-I]). 

Suppose that a group G acts on a graph X, and Y: = X/G be its quotient 
graph. Then one gets in the natural way a graph of groups (G, Y), called 
the associated graph of groups. This is exactly what we described above; 
namely G(P)= U(P)=the stabilizer of P in G, and G([P, Q])=G(P) n 
G(Q) (note the compatibility condition (11.2)). 

A maximal tree T in a graph Y is a subgraph which is a tree, and 
which is maximal (i.e., containing all vertices of Y). In [Ser-I] the funda
mental group n/G, Y, T) of (G, Y) at Tis defined. It is a group with 
generators G(P) (Pe VY) and gy(y e EY) with the relations 

(11. 7) g;;1aYgy=av, gfl=g:;1 (y E EY, a E G(y)), 

and gy= l if ye ET ( =edges of T). 

Then the following fundamental results have been proved in [Ser-I]: 

Theorem (11.8) (Serre). Let (G, Y) be a graph of groups and T a 
maximal subtree of Y. 

( I ) There exists a tree X(G, Y, T) on which ;r:i(G, Y, T) acts in such 
a way that X(G, Y, T)/ni(G, Y, T)::: Y. 

( 2) X(G, Y, T) and ;r:i(G, Y, T) are universal; i.e., for any group G 
and a connected graph X on which G acts in such a way th:1t X/G::: Y, and 
that the associated graph of groups is isomorphic to (G, Y), there are 
natural surjective morphisms: cp: ni(G, Y, T)-+G, ,fF: X(G, Y, T)-+X. 

Theorem (11.9) (Serre). Suppose that a group G acts on a connected 
non-empty graph X, and let (G, Y) be its associated graph of groups, where 
Y = X/G. Then the following properties are equivalent: 

(a) Xis a tree. 
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(b) f: X(G, Y, T)~X is an isomorphism. 
( c) cp: rri(G, Y, T)~G is an isomorphism. 

Now it is not difficult to show, by using the explicit construction of 
X(G, Y, T) described in [Ser-I], § I.5.3, that, if we start from a graph of 
groups (G, F) over our flower F which satisfies the regularity condition 
(11.4), (11,5), then X(G, F, T) is isomorphic to X(q 1, q2). In fact using 
(11.4) (resp. (11.5)), one can show that any vertex Q (resp. P) lying over a 
white one Qi E ViF (resp. black one P0 E V1F) has q2 + I edges (resp. q1 + I 
edges). 

Summing up, we have shown the equivalence of the following classes 
of groups (with extra structures). 

Theorem (11.1 O) (Main result). The following three classes of groups 
with extra data are mutually equivalent: 

( 1 ) The groups G with a length function l: G---+N U {O}, satisfying 
axioms (G, l, I), (G, l, II). 

( 2) The groups G which act on a semi-regular bipartite tree X(q 1, q2) 

=(V 1, Vz; E) in such a way that the action is transitive on V1• 

( 3) The fundamental groups rri(G, F, T) of flowers of groups (G, F) 
with regularity condition (11.4), (11.5). 

Example (11.11). Let G* be a free group with n generators ai, ... , 
<Xn· Denote by l*(x) the length of the reduced word of x e G*. Define 
G to be the subgroup of G* consisting of x such that l*(x)=O (mod 2), 
and put /(x):=(1/2)/*(x). It is well known that G is again a free group, 
and by Schreier's index theorem, the rank of G is r0 =(n-l)[G*: G]+l 
=2n-1. It is immediately seen that (G, l) satisfies (G, l, I) with U={l}. 
To see the second axiom (G, l, II), we note first that (G*, /*) satisfies the 
corresponding axioms of [1-1], and that G1 = G;;, for any le NU {O}. 
Namely one has in .Yf(G*, U*)=Z[G*] ( =the group ring of G*), 

with q = 2n -1. Our axiom ( G, l, II) with q 1 = q2 = 2n - I easily follows 
from these equalities. Let Z=Z(q 1, q2) be the graph associated with (G, /) 
(cf. § 10), and let P0 = U= I be the origin of Z. It is also easy to see that 
two vertices R, R' e Z are related as in Lemma (10.9), (ii) if and only if 
their reduced words coincide after the first words. From this it follows 
that the action of G on the set Vi of new vertices of X(q 1, q2) is transitive. 
On the other hand, since U = { 1 }, no two edges adjacent to P0 are G
equivalent. We have shown that the quotient graph X(q1, q2)/G looks 
like a petal as in the following: 
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}:q+l=2n edges 

Fig. (11. 13) 

This example can also be constructed from the graph of groups, associated 
to the above petal where to both vertices attaches the trivial group ( cf. 
[Ser-1]). 

Remark (11.14). As described above, the results of lhara [1-1] are 
reproduced ifwe put q1=q 2=q, and G1=G;,,, where (G*, /*) satisfies the 
axioms of [1-1]. This explains the relation for PGL(2, K) and PSL(2, K). 

§ 12. Tits system and the Hecke algebra 

In the rest of this paper, we shall study the steps in which our group 
G comes to have properties which appear in the theory of Tits system. 
Thus we assume that G is a group with the conditions described in 
Theorem (11.10). 

Notation being as in § 1, we put P 0 : = U e V1, and choose, once and 
for all, a vertex Q0 e V2 which is adajcent to P0• Also put, V: = V1 U V2, 

and for any point P e V, call U(P) the stabilizer of P in G. The action of 
G on X(qi, q2) induces the action of U(P) on each V(P; !). Notice that 
U(P 0)= U, and we have the natural bijection V(P 0 ; 21)/Uc:=. U\GifU. 

Lemma (12.1). We have the following inequalities: 

#(V 2/G)<#(V(P 0 : l)/U)<#(V(P 0 ; 2)/U)~ · · · <#(V(P 0 ; 1)/U)< · · · 

Proof For any vertex Q E Vi, take a vertex P e V1 which is adjacent 
to Q. If we write P= Ux (x e G), then we have Qx- 1 e V(P 0 ; 1). This 
shows that any G-orbit in Vi is represented by a vertex in V(P 0 ; 1), hence 
the first inequality. The rest follows from the fact that, by mapping the 
adjacent vertex near to the origin P0, one has the inverse system 

where each map is surjective, and U-equivariant. Q.E.D. 

Proposition (12 3). The following conditions are equivalent. 
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(a) G acts transitively on E (=the set of edges of X( q1, q2)) 

(b) #(V(P 0 ; 1)/U)=I, i.e., V(P 0 ; l)=Q 0 -U. 
( c) G= U1*BU2 (product with amalgamated subgroup B), where 

U1 := U, U2 := U(Q 0), and B:= U1 n U2 • 

Moreover, it follows under these conditions that the action of U2 on 
V(Q 0 ; 1) is transitive: #(V(Q 0 ; 1)/U2)= 1. 

Proof The equivalence (a)8(c) is nothing but Theorems 6, 7 of 
[Ser-1], § I.4.1. Other part is easily proved as in the above Lemma. (See 
also the proof of Proposition (12.4)). Q.E.D. 

Proposition (12.4). Suppose that the conditions of the above propo
sition are satisfied. Then one has the following assertions. 

( i) #(U\G 1/U)= 1 ~#(B\U 2/B)=2~#(V(Q 0 ; l)/B)=2. 
(ii) Under these conditions, one has s~ E B for any s2 E U2 - B. Similar 

assertions hold for U1, s1 E U1 - B. 

Proof ( i) Note first that, in general one has the inequalities 

(12.5) 

where both equalities hold if and only if G acts transitively on E. In fa::t 
the index [ U1 : B] is equal to the number of vertices of the U1-orbit Q0 • U1 

in V(P 0 ; l ), the latter having 1 + q1 vertices. And similarly for [U2 : B]. 
Now suppose that G is transitive on E, so that U1 is transitive on V(P 0 ; 1). 
Let w E G1 be such that the vertex P,,, lies in the same component of 
X-{P 0} as Q0, i.e., dx(Q 0, P,,,)= l. Then one has 

#(U\G 1):Z #(U\UwU)= #(U\U-wUw- 1) 

= #((Un wUw- 1)\cvUw- 1) 

=[U: B]-[B: Unw- 1 Uw]. 

From this and the equality in (12.5), one sees that 

To prove the last equivalence, we notice again that our assumption implies 
that U2 is transitive on V(Q 0 ; 1). Since the stabilizer in U2 of the vertex 
P 0 is B, we see that B\ U2/ B is in one-to-one correspondence with the orbit 
space V(Q0 ; 1)/B, Moreover, since un w- 1Uw is the stabilizer of P,,, e 
V(Q0 : 1 ), we see that the right hand side of ( *) is equivalent to the 
condition that V(Q 0 ; 1)-{P 0} is a single B-orbit, i.e., ~(B\U 2/B)=2. 

(ii) is an immediate consequence of what we have seen, since s2 in-
duces the transposition of the two B-orbits in V(Q 0 ; 1). Q.E.D. 
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We note that the element s2 above belongs to G1• The following 
Lemma is easily proved by the above arguments and (9.8). 

Lemma (12.6). Suppose that the conditions stated in (12.4) are satis
_fied. Then one has (s1s2)l, (s2s1)1 E G1 for any l EN. 

Now we suppose that the conditions in (12.4) are satisfied, and con
sider the Hecke algebra :ft'(G, B). Call Ti the element BsiB (i= 1, 2), and 
IB the unit element of :ft'(G, B). 

Proposition (12.7). I';=(qi- l)Ti+qJB (i= 1, 2). 

Proof By our assumption, the set E of the edges of X(q 1, q2) is identi
fied with B\G, and :ft'(G, B) can be regarded as a subring of End(Z[EJ), 
where Z[E] denotes the free Z-module over the set E. Regarding Q0 as 
the origin, one can identify E with V -{Q 0}, by assigning each edge to its 
end vertex lying on the other side of Q0• Let E(Q 0 ; 1) be the set of edges 
corresponding to V(Q 0 ; 1). Then from what we have seen in the proof of 
Proposition (12.4), it follows that E(Q 0 ; 1) consists of two B-orbits, cor
responding to the decomposition B\U 2/B=B UBs 2B. This implies that as 
an element of End(Z[E]), T2 maps each edge e to the formal sum of the 
q2 edges which share the same vertex Q E Vi with e. The identity for T2 

follows immediately from this fact. The one for T1 is proved similarly. 
Q.E.D. 

Notice that T1T2 =faT2T1• It follows from the above proof that the 
monomials/B, T/I'z, T2T;, · · ·, Ti,Ti,· · -Ti,(im=faim+i,m=l, · · -,l-l)are 
pairwise disjoint, hence they are linearly independent. Also it is easy to 
prove: 

Corollary (12.8). As elements of :ft'(G, B), one has 

G1 =(l+T1)Tz(T 1T2)1-1(1+T 1) (l>l). 

Theorem (12.9). Notation being as above, suppose that qi, q2> 2, and 
that the conditions in (12.4) are satisfied. Then the following assertions are 
all equivalent. 

( i) If i1 , • • ·, i1 E {1, 2} and im=faim+i (m= 1, 2, · · ·, 1-1), then Ti,Ti, 
· · · Tt, consists of a single B-double coset. 

(ii) :ft'(G, B)=Z[T 1, T2]. 

(iii) #(U\G 1/U)= 1 for any l EN. 
(iv) U acts transitively on V(P 0 ; l) for any l E N. 
(iv)' U2 acts transitively on V(Q 0 ; l) for any l E N. 
( v) There exist a subgroup N of G and a set S such that ( G, B, N, S) 

is a Tits system. 
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Proof. ( i )=}(ii): This follows immediately from (12.8). 
(ii):::} ( i ) : This follows from the obvious relation 

since the left hand side is expressed as a polymomial of T1, T2• 

(i):::} (iii): From (12.8), we see that (i) is equivalent to 

(12.10) 

From this and the fact that U =BU Bs1B, it follows that G1 = U(s1s2)1 U. 
(iii){=}(iv): This is immediate from the remark preceding (12.1). 
(iv)=}( i ): We shall show that (iv) implies (12.10). 
First note that, for any / e N, the set V(P0 ; 21) is decomposed ac

cording to the distance from Q0 : 

(12.11) V(P0 ; 2l)=(V(P 0 ; 2/)n V(Q0 ; 2/-1)) U(V(P 0 ; 21) 

n V(Q0 ; 21+1)), 

where both of these components are stable under B. It is easy to see that 
si( e U-B) induces the transposition of them. Since U is assumed to be 
transitive on V(P0 ; 21), this implies that B acts on each components transi
tively, i.e., #(V(P 0 2l)/B)=2, or equivalently #(U\G 1/B)=2. From Lemma 
(12.6) it follows that 

(12.12) 

Next let EV(P 0 ; 21) be the set of all edges of X(q,, q2) which have as their 
one of end points the vertices of V(P0 ; 21). From our assumption, it is 
easy to see that EV(P 0 ; 21) consists of two U-orbits: 

EV±(P 0 ;21):={eeEV(P 0 ;21); the other end pointe V(Q0 ;2/±1)}. 
Taking P0 as the origin of X(q 1, q2), we can naturally identify E with 
V-{P 0}, in such a way that the identification is compatible with U-action. 
It then follows from (12.3) that one has a commutative diagram 

E B\G 
(12.13) u u (/EN), 

EV(P 0 ; 21) '.:::'. B\G 1 

which is compatible with U-action. We then see from (12.12) that 

Now it is easy to describe the B-orbits decomposition of EV±(P 0 ; 21). 
Namely, as in (12.11), each of them is divided into two V-orbits according 
to the distance between their end points in V2 and Q. Thus we have 
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#(B\B(s 2s1)- 1 U/B)= #(B\ U(s2s1)1B/B)=2, 

#(B\Bs 21(s2s1)- 1U/B)= #(B\ Us2(s2s1)1B/B)=2, 

hence #(B\G 1/B)=4. Now we see from (12.8) that 

(12.14) (T 2T1)1=B(s 2s1)1B, Ti(T;T 1)1=Bsi(s 2s1)1B, 

(T2T1)l- 1T2=B(s2s1)1- 1s2B, (T1T2)2=B(s 1s2)1B, 

for any I e N, hence (12.10). 
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We have established the equivalence (i)8(ii)8(iii)8(iv). Since the 
conditions (i), (ii) are symmetric in qi, q2, one sees that (iv)8(iv)'. 

(iv), (iv)' 8(v): This has been pointed out in [Ser-1], 11.1 ex. How
ever, we sketch briefly how one finds N and S, under the assumptions of 
(iv), (iv)'. Let L;: = (P0, Q0, P1, Q1, • • ·) e Um V (P0 ; I) an infinite half line 
(path) starting from P0, and let L0 : =(Q 0, P0, Q _1, P -i, • • ·) E lim V(Q0, I) 
be a similar one starting from Q0• Put L 0 :=L; UL0•• From the assump
tions (iv), (iv)', one finds element s1 e U1 (resp. s2 e U2) which induces on 
L 0 the reflection at P0 (resp. Q0). Call N the subgroup of G consisting of 
elements which keep L stable, and put T:=Bn N. Then it is easy to see 
that Tl L={id.}, and Tis a normal subgroup of N, and that N/T=Aut(L) 
=(s 1, s2 jsf=s:=id.). Putting S={s 1, s2 (mod T)}, it is not difficult to 
check the axioms of Tits system (or, BN-pair; see [Bou], [Ser-1], [T-2]. In 
fact, the only non-trivial part is to show (T-4), which follows from the 
property (12.14) above. Conversely, if (G, B, N, S) is a Tits system, then 
it is easy to see that the associated Tits building is isomorphic to our tree 
X(qi, q2) with the same action of G. Therefore the assertion reduces to 
the well known properties of the Tits system. This completes the proof 
of Theorem (12.9). Q.E.D. 
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