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§ 0. Introduction 

A homogeneous space G/H is called a semisimple symmetric space if 
G is a real connected semisimple Lie group and there exists an involution 
of G such that H is an open subgroup of the fixed point group of the in­
volution. The most fundamental problem on the harmonic analysis on 
Gf H is to give an explicit decomposition of L2(G/H) into irreducible 
representations of G, that is, to get a Plancherel formula for L2(G/H). 
Here L2(G/H) is the space of square integrable functions on G/H with re­
spect to the invariant measure. In [03] I proposed a method to obtain 
the Plancherel formula. The method explained there works well for the 
most continuous spectra on L2(G/H) with respect to the ring D(G/H) of 
invariant differential operators on G/ H, and the Plancherel measure for 
the spectra is expressed by "c-function" for G/H which is explicitly calcu­
lated by the method in [03, §8], where G<L/H<l should be corrected to 
Ga/Ka. Comparing to the continuous spectra, the discrete spectra (the 
discrete series for G/H) are not easy to analyse by the method mentioned in 
[03, § 9] and it is hard to get the precise parametrization of the discrete 
series or to investigate its structure especially in the case when the sym­
metric space is not a K.-type. On the other hand, by using Flensted­
Jensen's duality method, we can directly study the discrete series and in 
fact we get sufficient informations to analyse the discrete series ([F] and 
[MO] etc.). Applying the usual method of parabolic induction for repre-
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sentations of G to these extreme types of spectra, we can get all the spectra 
and finally the Plancherel formula for L2(G/H). We will explain and prove 
it in subsequent papers. 

In this paper, we study and give a proof of the results explained in 
[03, §3, §4 and §5]. In [0S2] we have already studied the structure of 
root spaces which are related to the symmetric space and it covers the 
statements in [03, §2]. 

In this paper we assume that the center of G is finite for simplicity. 
This assumption is not serious in our arguments and even without the as­
sumption almost all theorems here are still valid together with their proofs 
but some theorems should be modified. For example, the manifold X 
constructed in Section 1 may be non-compact and Theorem 4.11 may have 
no natural meaning because the left hand side of ( 4.29) may be infinite sum 
(cf. Remark 4.16 in this case). These two are the only main differences. 

In Section l, we construct a compact G-manifold X which has finite 
G-orbits and all the open G-orbits are isomorphic to G/H. The orbital 
structure of X is of normally crossing type and every invariant differential 
operator on the open orbit can be analytically extended to an element of 
the ring D(X) of invariant differential operators on X. The method of 
the construction is same as that in [01] (cf. [Sc]) which constructs Xwhen 
G/H is a riemannian symmetric space. Some cases are also considered in 
[Ko] and [Se]. A different realization for some series of semisimple sym­
metric spaces (which we call K,-type) is studied in [0Slj and in the complex 
category a similar compact G-manifold is constructed in [CP] by a little 
different method. 

We identify G/Hwith an open G-orbit in X, fix a finite codimensional 
ideal J of D(X) and consider the space S of hyperfunctions on U which 
are killed by J, where U is the intersection of G/H and an open subset of 
X containing a boundary point of G/H. Then in Section 3, uisng the 
results in [04], we define boundary value maps of the space S to the spaces 
of hyperfunction-valued local sections of certain line bundles over the 
boundary components. Here the boundary components mean the G-orbits 
contained in the boundary of G/H in X and the maps commute with the 
infinitesimal actions induced by G. If an element/ of Sis ideally analytic 
at a boundary point of G/ H, f is expressed as a sum of convergent serieses 
(cf. (3.8)). If an element f of S is left K-finite, then f is automatically 
ideally analytic at any boundary point and this expression is studied by 
[H3] and [CM] in a group case and by [Ba] in a general case. 

The images of the boundary value maps satisfy induced systems of 
invariant differential equations which are given in Section 2. The study of 
the images of the boundary value maps with respect to compact boundary 
components, which we call distinguished boundaries, lead· us to the 
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concept of (most continuous) principal series for G/H. We define it in 
Section 4 and study its properties. For example, it is proved that any 
irreducible subquotient of a Harish-Chandra module realized in a function 
space on G/H is imbedded in a suitable Harish-Chandra module belonging 
to the principal series for G/H (cf. [De]). A multiplicity free theorem 
(Theorem 4.5) was obtained after [03] was written, which is clear if G is 
linear. This enables us to have a different definition of the principal series 
as in Theorem 4.10. This is the reason why I assumed that G is linear in 
[03]. 

If G/ His a group manifold, the principal series in Section 4 is naturally 
identified with the usual principal series of the group which is defined by 
[Hal] (cf. Remark 4.17). Some applications to this case will be discussed 
in other papers. 

§ 1. Construction of a compact imbedding 

Let G be a connected real semisimple Lie group with finite center and 
let a be an involutive automorphism of G. Put G"={g E G; a(g)=g} and 
let H be a closed subgroup of G with G~ c H c G", where G~ denotes the 
identity component of G". In this section we construct a compact G­
manifold X without boundary such that an open G-orbit in X is isomorphic 
to the semisimple symmetric space X defined by X=G/H. 

First we give some notation concerning the symmetric pair (G, H) as 
in [OS2]. Let K be a a-stable maximal compact subgroup of G and let () 
denote the corresponding Cartan involution. The involutions of the Lie 
algebra g of G induced by a and () are denoted by the same letters, respec­
tively. Let g= fj+ q (resp. f+ p) be the decompositions of g into + I and 
- I eigenspaces for a (resp. 0). Fix a maximal abelian subspace a in p n q 
and let a* denote the dual space of a. For a;. Ea*, put g'={Y E g; [Z, Y] 
=l(Z)Yfor any Z Ea}. Then the set l'={A Ea*; g':;t={0}, 1:;t=0} defines 
a root system with the inner product induced by the Killing form< , ) of 
g, and the Weyl group W of .r is identified with the normalizer N x(a) of 
a in K modulo the centralizer Zx(a) of a in K. (Cf. [Ro], [OS2], [Sc] etc.) 
On the other hand the normalizer N KnH(a) of a in Kn H modulo the 
centralizer ZKnH(a) of a in Kn His denoted by W(a; H), which is a sub­
group of W. For each element w of W we fix a representative w in N K(a) 
so that w EN KnH(a) if w E W(a; H). Choose a fundamental system '/ff= 
{a1, • • ·, ai} of X, where the number !=dim a is called the split rank of 
the symmetric space X, and let _r+ denote the corresponding set of all 
positive roots in .r. Let P, denote the parabolic subgroup of G with the 
Langlands decomposition P, = M,A,N, so that M,A, is the centralizer of 
a in G and the Lie algebra n.of N, equals .6a1:z+ga. 
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Now we introduce a product manifold X=GXRix W. Let x= 
(g, t, w) be an element of X. Then we put sgn x= sgn t, which is an ele­
ment of {-1, 0, !p. Here sgn t=(sgn t1, • • ·, sgn ti) with t=(t 1, ···,ti) 
e Ri and for ans e R we define sgns= 1 (resp. -1, 0) if s>0 (resp. s<0, 

s=0). Moreover we put <9,,={aJ; tJ=;t=0} and 2,,=(I:.eexRa)n2 and 
denote by W.,, the subgroup of W generated by reflections with respect to 
a in (9 .,,. Then we define a parabolic subalgebra 

(1.1) 

of g and its Langlands decomposition j:l,,=m.,,+a.,,+n.,, so that a.,,ca,. 
The corresponding parabolic subgroup of G is denoted by P.,, and P.,,= 
M.,,A.,,N.,, is the corresponding Langlands decomposition of P,,. Then it is 
clear that P.,, is the closure of P, W.,,P, in G. Moreover we define a closed 
subgroup P(x) of G by 

(1.2) P(x)=(M.,, n w- 1Hw)A.,,N.,, 

and put 

(1.3) 

Here and hereafter {H1, ••• , Hi} denotes the dual basis of the fundamental 
system 1/f, that is, HJ ea and atCHJ)=oi 1 for i,j= 1, · · ·, !. 

Definition 1.1. We say two elements x=(g, t, w) and x'=(g', t', w'). 
of Xis equivalent if and only if the following three conditions hold: 

( i) sgn x=sgnx'. 
(ii) W(a; H)wW.,,= W(a; H)w'W,,,. 
(iii) ga(x)P(x)=g'a(x')(M.,, n w1 - 1Hw)A.,,N.,,. 

Lemma 1.2. Let x=(g, t, w) and x'=(g', t', w') be elements of X 
with sgnx=sgnx'. Then we have 

(1.4) 

Suppose x and x' satisfy the above condition (ii). Then there exist 
u, u' e W(a; H) and v, v' e W.,, and m, m' e ZK(a) with uwvm=u'w'v'm'. 
In this case we have 

(1.5) (vm)- 1P(x)vm=(v'm')- 1P(x')v'm' 

and the condition (iii) in Definition I. I is equivalent to 

(1.6) ga(x)P(x)vm=g'a(x')P(x')v'm'. 
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Proof The first statement (1.4) is clear by definition and therefore 
the existence of u, u', v, v', m and m' with the condition in the lemma is 
also clear. Since v, v', m, m' e M., and u, u' e H, we have (vm)- 1(M., n 
w-1Hw)vm=M., n (vm)- 1w-1Hwvm=M., n (i.Z-1il'W'v'm')-1Hu- 1u'w'v'm'= 
M., n (w'v'm')- 1Hw'v'm' =(v'm 1)- 1(M,, n w1- 1Hw')v'm', which means (1.5). 
In the same way we have P(x')v'm'(vm)- 1=v'm'(vm)- 1P(x)=(M., n v'm'. 
(vm)- 1w-1Hw)A.,N.,=(M., n (u'w')- 1uHw)A,,N.,=(M,, n w1- 1Hw)A.,N., and 
therefore the last statement in the lemma is clear. Q.E.D. 

This lemma assures that Definition 1.1 really gives an equivalence 
relation, which we write x-x'. The quotient space of .Xby this equiva­
lence relation is denoted by X and becomes a topological space with the 
quotient topology. Let n-: X-.X be the natural projection. Then an 
action of G on Xis defined by g0 n-(g, t, w)=n-(g0 g, t, w) for g0 e G. 

Remark 1.3. (i) The map tr is factorized into the natural projection 
of X onto the product space GXR 1X(W(a; H)\ W) and a map tt of this 
space onto X. 

(ii) If Xis a Riemannian symmetric space of the non-compact type, 
then H=K, W(a; H)= Wand therefore the G-space Xis isomorphic to 
the G-space constructed in [01] (or in [Sc, Chapter 4]) but not isomorphic 
to the one in [OSI, Chapter 2]. 

To define an analytic structure on X we prepare some notation. Let 
ap be a maximal abelian subspace of +J containing a and let I(ap) be the 
restricted root system corresponding to the pair (g, ap). Then the Weyl 
group W(ap) of I(ap) is isomorphic to the group N x(ap)/M, where N x(ap) 
(resp. M) are the normalizer (resp. centralizer) of aP in K. 

Lemma 1.4 ([OS2]). ( i ) a9 is a-stable. 
(ii) W(a)+='.-(N x(a9) n N x(a))/(N x(ap) n Z x(a)). 
(iii) W(a; H)+='.-(N KnH(ap) n N KnH(a))/(N xnH(ap) n ZxnH(a)), 

::::+N KnH(ap)/(N KnH(ap) n z xnH(a)). 

Proof ( i) Let Ye ap. Then [a Y, a]= a[Y, a(a)] = a[Y, a]= {0}. 
Hence the element a Y - Y of +J n q centralizes a, which implies a Y - Y e a 
because a is a maximal abelian subspace of +J n q. Therefore a Ye a9 • 

(ii) We will show that any we W has a representative gin N x(ap) n 
Nx(a), which implies (ii). Put a:=Ad(w)(ap), +J'={Ye p; [Y, Z]=0 for 
all Zea} andG'={geG;Ad(g)(Z)=ZforallZea}. Since ap and a: 
are maximal abelian subspaces of +i' and G' = Z x(a) exp +J' is a Cartan de­
composition of the reductive group G', there exists an element z of Zx(a) 
with Ad (z)(a;)=aP. Then g=zW is a required representative of w. 
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(iii) Replacing G and p by H and lj n p, we can prove the first 
isomorphism in the same way as in (ii). Let g EN xnn(Ctv)- Then Ctv= 
Ad (g)(etv)=Ad (g)(av n lj+ a). Since Ad (g)(etv n lj)clj and Ad (g)(a)cq, 
we have Ad (g )(a)= av n q = a. This means the second isomorphism in (iii). 

Q.E.D. 

Lemma 1.4 assures that we can assume that the representatives w of 
the elements w of W satisfy Ad (w)(etv)=Ctv· Let g(a) be the reductive Lie 
algebra generated by {g(av; .:l); .:le S(etv) with .:l I et=O}, where g(av; .:l)= 
{Ye g; [Y, Z]=l(Z)Yfor all Z E etv}, and put m(a)={X Em,; [X, Y]=O 
for all Ye g(a)}. We denote by G(a) and M(a) 0 the analytic subgroups 
of G corresponding to g(a) and m(a), respectively, and put 

M(a)=M(a)o Ad 01 (Ad (K) n exp (ad (-f=T etv))). 

Then the representative w normalizes G(a) and M(a) for any we Wand we 
have the following lemma from [OS2, Lemma 8.12] (M(a)= U(a)M"T"Z· 
under the notation there). 

Lemma 1.5. ( i) m,=m(a)+g(a) 
and this is a decomposition into the direct sum of ideals of m,. 

(ii) G(a)cH and M(a)CM. 
(iii) M,=M(a)G(a). 
(iv) M,/(M, n w-'Hw);:::_M/(Mn w- 1Hw) 

;:::_M(a)/(M(a) n w-'Hw). 
We put 

Ctx=(a. n lj)+ L.iaH-exRH1, 

a(x)={Ye a; <Y, Z)=O for all Z e ax}, 

n(x)= L.iao·.tga, 

n; =0(n,), n; =0(nx) and n(x)- =0(n(x)). 

Then ax is the Lie algebra of Ax and the following 

(1.7) 

(1.8) n,=n(x)+n.,, 

are decomposition into direct sums and we have 

(1.9) 

(1.10) 

<ax, a(x))=O, 

[n(x), nx]cnx. 
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Let A"', N(x), N;;, N; and N(x)- be the analytic subgroup; of G corre­
sponding to a"', n(x), n;;, n; and n(x)-, respectively. Then we have 

Lemma 1.6. Fix an element x= (g, t, w) of X and consider the map 

UJ 

(n, m, a) 
UJ 

1------)-gnmav - 1 P ( x) 

for any v e W,,, where me M(a) is a representative of m. 
( i ) The map p~ is well-defined and gives an analytic diffeomorphism 

onto an open subset of G/P(x). 
(ii) U vEWx Imp~ is dense in G/P(x) and for v, v' E W,, 

{
Imp~=Impr 

Imp~n Imp~'= 0 

if wvv 1- 1w- 1 e W(a:; H), 

if wvv'- 1w- 1 ~ W(a; H). 

Proof We may assume g=e and moreover w=e by replacing a and 
H by a' and w-1Hw, respectively, where a'(y) = w- 1a(wyw- 1)w for ye G. 

(i) By the same reason as above we may assume v =e because M,,, 
A,, and Nx are stable under the inner automorphism defined by v-1• It is 
clear that the map p~ is well-defined. 

First we will prove that p~ is injective. So we suppose that n1m 1a1h1aini 
=n2m2a2h2a~n~ for some nj EN;, mj E M(a), aj EA"', hj E MxnH, a; EA,, 
and n; e N,, U= I, 2). Then there exist uj e N(x)- and u; e N; with nj= 
u~u1 (j=l, 2) because N;=N;N(x)- (cf. (1.8) and (1.10)). Since hja;= 
a;h1 (j=l, 2) and A.=AxA,,=A(x)A,, (cf. (1.7)), we can find bj e A(x) 
and b; e A,, which satisfy a1a;=bjVi (j= I, 2). Thus we have Ui -u1b1m1h1 • 

bi· ni = u~ · u2b2m2h2 • b~ · n~, which implies Ui = u;, u1b1m1h1 = u2b2m2h2, bi= b~ 
and ni =n~ because ujbjmjhj e M,, and because the natural map of N; X 
M,, X A,, X N,, to G is injective. Now the following Lemma 1. 7 means b1 

=b 2, u,=u 2 and m1h1 =m 2h2• Thus we have n1=uiu,=u~u 2=n 2 and m,= 
mz(h2h11) with h2h11 =m 21m1 e M(a) n H. Moreover since a1ai =b 1bi=b2b~ 
= a2a~, the decomposition (1. 7) says a1 = a2• 

Next we will prove that p~ is a submersion. For the proof it is suf­
ficient to show that the natural map of N.-xM(a)XA"'XP(x) to G is a 
submersion. By using [OSI, Lemma 1.8], this follows from the fact that 
a"'+lJ(x) and m(a)+a:"'+lJ(x) are subalgebras of g and that n;;+m(a)+ 
a:"'+lJ(x)=g. Here the last equality holds because m(a)+a"'+lJ(x)::Jm(a) 
+a"'+g(a)+a,,=m.+ a. and p(x)+n;;::Jm,, n lj+n,,+n;;::Jn.+n;;. 

(ii) Put U"=N;; M(a)A"'v- 1P(x), which is an open subset of G by 
the above argument. Also by the proof of (i) we can conclude 
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U"= N;(N(x)- A(x)M(a)D- 1(M,, n H))A,,N.,,. 

The following lemma 1.7 says that U vew,,N(x)- A(x)M(a)v- 1(M.,, n H) is 
dense in M,, and therefore U vew,,U" is dense in G because the natural map 
of N;XM,,XA,,XN,, to G defines an analytic homeomorphism onto an 
open dense subset of G. This proves that U vew,, Imp; is dense in G/P(x). 

If vv 1- 1 e W(a; H) n W.,,, then vv'- 1 e M(a)(M,, n H) and it is clear 
that Imp;=Impr. Now assume Imp;nimp;'*0· Then by the argu­
ment in the proof of (i) shows the existence of u1 e N(x)-, b1 e A(x), m1 e 
M(a) and hj EM,, n HU= 1, 2) satisfying U1b1m1v-1h1=a2b2mzv'-1hz, Then 
by Lemma 1.7 we have m1v- 1h1=m 2v'- 1h2, which means Vm11m2v'-1= 
h1h21 e Hand hence vv''""1 e W(a; H). Q.E.D. 

Lemma 1.7. ( i) Let n1 e N(x), a1 e A(x), m 1 e M,, n N x(a) and h1 

E M,,nHU= 1, 2). Ifn1a1m1h1=n2a2m2h2, then n1=nz and a1=ll2, 
(ii) The set U vew,,N(x)A(x)M(a)V(M.,, n H) is open dense in M". 
(iii) The above statements (i) and (ii) hold even if we replace N(x) by 

N(x)-. 

Proof ( i) This is proved in the same way as in the proof of [OSI, 
Lemma 1.9]. Hence we omit the proof. 

(ii) Since m.,,=n(x)+a(x)+m(a)+(m,,ntj) and since n(x)+a(x) 
and n(x)+a(x)+m(a) are subalgebras, the set N(x)A(x)M(a)(M.,,n H) is 
open in M,, (cf. [OSI, Lemma 1.8]). Moreover since V normalizes 
N(x)A(x)M(a) for any v e W.,,, the set N(x)A(x)M(a)V(M.,, n H) is also 
open in M,,. 

Put m~= [m.,,, m,,], let M; be the analytic subgroup of M,, correspond­
ing to m~ and let w:, be the quotient group of the normalizer of a in M; 
n K by the centralizer of a in M; n K, which is isomorphic to W.,,. Then 
P(x)' = N(x)A(x)(M. n M:) is a parabolic subgroup of M; and therefore it 
follows from [Ma] that the set U!= U uew;,P(x)'u(M;n H) is open dense 
in M!, where u are representatives of u. For v e W.,, we have 

N(x)A(x)M(a)V(M,, n H)=N(x)A(x)M(a)VG(a)(M.,, n H) 

= N(x)A(x)M.V(M,, n H). 

Therefore the set U. e w ,,N(x)A(x)M(a )V(M,, n H) contains M. u;. Since 
u; is dense in M; and M"=M,M;, the set M,u; is dense in M". 

(iii) This is proved in the same way as above. Q.E.D. 

Foree {-1, 0, 1}1 and t e R1, we put R1={s e R 1 ; sgn s=s}, P(s)= 
(M,, n H)A,,N" and a(t)=a(e, t, e) with x=(e, s, e) e X and (e, t, e) e X = 
GXR 1X W. We introduce a map 
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it: N-;; XM(a)XR!~G/P(e) 
UJ 

(n, m, t) 
UJ 

i---+nma(t)P(e). 

Lemma 1.6 implies that the map it is a submersion. 
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We fix a basis {X 1, • • ·, XL} of nu so that X, e g«<t> with some a(i) e 
I+ for i= 1, · · ·, L, where L=dim nu. Also we fix a basis {Z1, •• ·, ZL,} 
of mu so that {Zi, · · ·, ZL',} is a basis of m(a) and {ZL"+i, · · ·, Zd is a 
basis of g(a), where L' = dim mu and L" = dim m(a). Moreover we put l" = 
dim au and choose Hi+!> •••,Hi" Eau n lj so that {H1, •••,Hi, Hi+I> • • •, 

H1 .. } is a basis of au. We put X_ .. = -a(X .. ). Then {X_1, • • ·, X_L} is a 
basis of n-;; and {X1, •••,XL, X_1, • • •, x_L, Z1, • • •, ZL', H1, • • •, Hiu} is a 
basis of g. 

Lemma 1.8. For Ye g, e e {-1, 0, 1}1 and p= (n, m, t) e N-;; X M(a) 
XR! the vector field Y. on G/P(e) corresponding to the action of 
exp s Y(s e R) satisfies 

(Y.)r<p>=ditP( (t(ct(nm)t 2«<i>+c;(nm)) Ad (m)X_; 

Here X_t and Z 1 are identified with left invariant vector fields on N-;; and 
M(a), respectively, and t 2 = tf<H,l ·. · tf<Hi> for an element A of the complexi­
fication at of a*. We define tt<Hk>= 1 if l(Hk)=0. Moreover the analytic 
functions ct, c;, c'} and ck on G are defined by 

L L' ~ 

{1.12) Ad(gJ- 1 Y= I; (ct(g)X,+c;(g)X_t)+ I; c'}(g)ZJ+ I; cig)Hk 
i=l j=l k=l 

forge G. 

Proof. We put x=(e, e, e) e X and denote by j:J(s) the Lie algebra of 
P(e), which equals (m.,,n lj)+a.,,+n.,,. Fors e R satisfying \sl~l we write 

{1.13) exp(sY)nma(t) e nexpN(s)-mexpM(s)-a(t)expA(s)-P(e) 

with N(s) en-;;, M(s) e m(a) n q and A(s) ea"'. We multiply the above 
equation from the left with (nma(t)J- 1 and differentiate the expression with 
respect to s at s= 0. Then we have 

(1.14) Ad a(t)- 1 Ad (nm)- 1 Y 

:=Ad a(t)- 1 Ad (m)- 1 dN {0)+Ad a(t)- 1dM (0)+ dA (0) mod j:i{s). 
ds ds ds 
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On the other hand, forte R! and me M(a) we have 

(1.15) Ad a(t)- 1 X/== t2•<i) Ad a(t)- 1X_i mod +J(e). 

In fact, if xi En,,, then n.,,c1:)(e) and t 2•(i)=O. And if xi fF nx, then xi E 
mx and a(Ada(t)- 1Xi) = a(\t•<il\Xi) = -\t•<il\X_i= -t 2•<il Ada(t)"'"1X_,, 
which means (1.15). 

Putting g=nm and applying Ad a(t)- 1 to (1.12), we have 

Ad a(t)- 1 Ad (nm)- 1 Y=Ad a(t)- 1(t<ct(nm)Xi+c;(nm)X_i) 

+ t1 c1(nm)ZJ+ t1 ck(nm)Hk) 

::=Ad a(t)- 1(t (ct(nm)t 2•<'l X_, + c;(nm)X_i) 

+ t1 C'.!(nm)ZJ+ t1 cinm)Hk) mod 1:)(e). 

Comparing this with (1.14), we have 

dN (0)= Ad (m)(± (ct(nm)t 2•<il + c;(nm))X_,), 
dt i=l 

dM L" 
- (O)= I: c1(nm)Zj mod m(a) n fj, 

dt j=l 

dA i 
-.-(O)=I: cinm)Hk mod a.,,. 

dt k=l 

Identifying R! with A"' by the map a(t), the vector field on A"' defined by 
Hk e a"' corresponds to the operator - tia/atk). Hence we have the lemma. 

Q.E.D. 

For every geG and we W, we put U;'=tr(gN;;-M(a)XRix{w}). 
Then Lemma 1.6 shows the bijectivity of the continuous map 

w 

(n, m, t) 
w 

~tr(gnm, t, w). 

For brevity we put uw=N;;-X(M(a)/(M(a)nw- 1Hw))XRi. Then we 
have 

Lemma 1.9. Fix g, g' e G and w, w' e W. 
( i ) For an element Y of g the local I-parameter group of trans­

formations (¢i;)- 1 o exp (sY) o ¢i; of uw (s e R, \s\<{ 1) defines an analytic 
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vector field. 
(ii) The map (¢;:t10¢; of (¢;)- 1(u;n u;:) onto (¢;:)- 1(u;n u;:) 

defines an analytic dif.feomorphism between the open subset of uw onto that 
of uw'. 

(iii) ¢; is a homeomorphism onto an open subset u; of X. 

Proof (i) We may assume w=e. It follows from Lemma 1.6 that 
the local I-parameter group defines an analytic vector field Y(e) on N; X 
(M(a)/(M(a) n w- 1Hw))XR! for any e e {-1, 0, 1}1. Then Lemma 1.8 
shows that these vector fields Y(e) piece together and define an analytic 
vector field on u;. 

(ii) We have only to show that(¢;:) o ¢; is analytic because the map 
is bijective and its inverse is of the same form. Moreover we may assume 
g' = e because (¢;:)- 1 o ¢;= (¢1:)- 1 o <f;';-,g· We fix an arbitrary point p= 
(n0 , m 0 , to) of the domain of the map (¢':'t 1 o ¢; and put x=(gn 0 m 0 , t0 , w) 
E .X and p'=(n~, m~, tJ=(<pn- 1 o p;(p) E Uw'. We Will show that the map 

is analytic in a neighborhood of p. 
First we assume that w'=w andg E N;M(a)Ax. Putg=ntm 1a1 with 

n1 EN;, m 1 E M(a) and a1 EA". Since (gnm, t, w)=(n 1m 1a1nm, t, w)­
(n1m1a1n(m1a1)-1m1m, ait, w) for n EN;, m E M(a), t E R1 and we W, we 
have (¢:t 1 0 ¢;(n, m, t)= (n1m 1a1n(m 1a1)-1, m 1m, a1t), where 

Hence the map is analytic. 
Next we consider the case where w'=w and p'=p=(e, 1, e) with an 

e e {-1, 0, 1}1• Here 1 is the residue class of e in M(a)/(M(a) n w- 1Hw). 
Then g e P(x). It follows from Lemma 1.9 (i) that there exist neighbor­
hoods V of the origin in j:>(x) and U0 of p in uw such that for any Ye V 
ands e [O, 1], the map (¢:)- 1 o exp (sY) o ¢: defines an analytic diffeomorph­
ism of U0 onto a neighborhood of p. Since (¢:t 1 o exp (sY) o ¢: I U0 = 
(¢:t 1 o ¢':xp<sn I U0, we have the claim if g E exp V. On the other hand any 
g E P(x) can be written in the form g= gOgl • • • g k with go E M(a) n w- 1 Hw 
and gj e exp V (j= l, . · . , k). Herek is a suitable positive integer. Then 
the relation 

C¢:t 1 0 ¢;=<<¢:)- 1 0 ¢;.) 0 <<¢n-1 0 ¢;) 0 ••• 0 <<¢:)-1 0 ¢;.) 

holds in the domain of the right hand side. Since (¢:)- 1 o ¢;; are analytic 
in some neighborhoods of pin uw and map the point p to the same point 
for i= 0, · · . , k, we have the claim. 

Now consider the case where w'::;t=w, g=e and p=(e, 1, e). Then 
under the notation in Lemma 1.2 we have p' = (e, l, e) when g' = v'm'm- 11r1, 
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which we will assume in this case. Put R!= {t e R1; sgn tt=et if et:;t=O}. 
We will prove that (<J>;:)-1 a </J': is analytic in the set uw(e)=N; X 
(M(<1)/(M(<1) n w- 1Hw))XR;. Forany(n, m, t) e uw(e), we put n'=g'- 1ng' 
and a(t)'=g'- 1a(t)g'. Lett' be the element of R!gnt satisfying a(t')=a(t)' 
and let m' be the residue class of g 1- 1mg' in M(a)/(M(a) n w1- 1Hw') with 
a representative m of m. Then it follows from Lemma 1.2 that (<J>;:)-1 a 
<J>':(n, m, t)=(n', m', t'). Hence if the correspondence which maps t tot' 
as above is analytic on .R!, we can conclude the claim. Put 

I= {i e {1, · · ·, /}; et=O} and J={l, · · ·, /}-/. 

Then we have 

v'v-\xt=at+ I: mfak 
1ceJ 

v'v- 1a 1= I; m~a1c 
1ceJ 

ifi e /, 

ifj e J 

because v'v- 1 belongs to W,, which is generated by the reflections with re­
spect to a1 withj e J. Herem~ and m' are integers. Thus we have 

t~= sgn tt ·exp< -at, log (g1- 1a(t)g')> 

=sgn tt -exp <-at, Ad (g'- 1)(I; -log it. I HJ> 
tv*O 

= sgn tt · exp (v'v- 1at, I; log It. I H.> 
tJ,l"FO 

ifie/, 

ifi e J. 

Since t,.=/=-0 if t e .R! and k e J, we have the claim. 
We consider the general case. Weputg 1=(n 0m0a(t 0))-1, g2=g 3- 1g41gg11, 

-, ' - 1-- 1 d th t t' . L 1 2 ,_, (t') ·'· g3 =V mm v un er e no a 10n 1n emma . , g4 = n0m0a O , r, = 
(<J>':}-1 a(<J>;) for i=l, 2, ,fr8 =(<J>;;'r1 a(<J>':) and ,Jr4=(</J':)- 1 a(<J>;;). Then 
(<J>':)-1 a <J>;= ,Jr4 a ,Jrs a ,Jr2 a ,Jr1• It follows from what we have proved that 
this map is analytic in a neighborhood of p because ,Jri(p)=(e, 1, sgn x) 
and g2 e P(x). 

(iii) Let V be an open subset of uw and let (g', t', w') be a point of 
"- 1(</J;(V)). Put !J= (<J>;:)-1(u;: n <J>;(V)). Then Q is open in uw' and 
contains (e, 1, t'). Therefore we can find neighborhoods Yo of the origin 
in g and V1 of t0 in Rt so that (<J>;,)-1 a exp (s Y) a <J>;:(e, 1, t') is contained in 
Q for any s e [O, 1], Ye Yo and t e Vi, from which it follows that exp (V0) 

X ViX{w'}c1L"-1(<J>;(V)). This implies that "- 1(</J;(V)) is open in X and 
hence <J>;(V) is open in X. We have proved that <J>; is an open map and 
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we have the lemma. Q.E.D. 

Lemma 1.9 shows that we can define an analytic structure on X 
through the maps <fa': so that they define analytic diffeomorphisms onto 
open subsets u; of X. Then we have 

Theorem 1.10. ( i) X is a connected compact real analytic manifold 
without boundaries and U geo,wewU; is an open covering of X such that <fa': 
are real analytic diffeomorphisms. 

(ii) The action of G on X is analytic and the G-orbital structure is of 
normal crossing type in the sense of[OI, Remark 6]. 

(iii) The orbit Grr:(x) for a point x in X is isomorphic to G/P(x) and 
the orbital decomposition of X is of the form 

X= u •E{-1,0,1}!,vew(a;H)\W/Wc,,G/P(e, e, v) (disjoint union), 

where (e)= (e, e, e) E X and v is a representative of v. 
(iv) There are just 21 open orbits and they are isomorphic to G/H. 

The number of compact orbits in X equals that of the elements of the coset 
W(a:; H)\ Wand the orbits are contained in the closure of every open orbit. 

Proof The definition of X and Lemma 1.9 prove (i), (ii) and (iii) 
except the connectedness, compactness and Hausdorff separation axiom 
for X. But the connectedness is clear because rr:(GXR1 X{e}) is connected 
and contains any open orbit. 

Put U= U wewU':', It follows from Lemma 1.6 (ii), (1.5) and (1.6) 
that the intersection of U and any G-orbit in X is open dense in the orbit. 
Hence for x, E X(j= 1, 2), the sets VJ={g e G; gxJ e U} are open dense 
in G and therefore we can choose an element g of G with g- 1xi e U for j= 
1, 2. Then xJ e gU= U wewU;. Since Lemma 1.6 (ii) also says that u;= 
U';' if w' e W(a:; H)w and u; n U;' = 0 otherwise, the set gU satisfies the 
separation axiom. Since gU is open in X, two points x 1 and x2 can be 
separated by their disjoint open neighborhoods. 

Since G=KAH (cf. [F]), G= U wewKA/wH. Here A+={exp X; X 
ea with a(X)>O for all a e I+}, which equals {exp (- I:, (log tJ)H,); 

(ti, .. ·, t1) e (0, l)Z}. Hence Definition 1.1, (1.5) and (1.6) prove that the 
compact set 11:(KX [ -1, 1]1 X W) contains all open G-orbits in X. This 
means the compact set is dense in X and therefore it must coincide with X. 

Let x=(g, t, w) and x'=(g', t', w') be elements in X. Suppose Grr:(x) 
and Grr:(x') is open in X. Then sgn t and sgn t' belong to {-1, 1}1 and if 
sgn t= sgn t', then Grr:(x)= Grr:(x'). Hence the statement (iv) is clear from 
(iii). Q.E.D. 

The orbits which are not open in X are called boundary orbits in X. 
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The compact boundary orbits are called distinguished boundaries of the 
open orbits and the open orbits are isomorphic to G/H. 

We give a lemma concerning the action of G on Xwhich will be used 
later. Let geG and WE Wand put a;=(1>;t1(u.wnu;:). For any 
(n, m, t) ea; we define an element H(g, n, m, t) of a by 

(1.17) gnma(t) e N;; M(a)a(t) exp H(g, n, m, t)(Mx n w- 1Hw)Nx, 

where x=(nm, t, w) e X. Moreover we put (n'(g, n, m, t), m'(g, n, m, t), 
t'(g, n, m, t))=(<j>':)-1(g(<j>':(n, m, t))), which is denoted by (n, m, t)Y. Then 

(1.18) t;= ti exp< -ai, H(g, n, m, t)) for i= I, ... , !. 

Lemma 1.11. Let (n, m, t) ea; and assume ti=O. Then 

(1.19) at; ( t)-{exp < -ai, H(g, n, m, t)) -g,n,m, -
atj o 

if j=i, 

if I=!= i. 

Proof The following identity follows from the definition of H(g, n, 
m, t): 

(1.20) H(g'g, n, m, t)=H(g, n, m, t)+H(g', (n, m, t)Y) 

for (n, m, t) E Q;n Q;,g. 
If g e M., then (1.19) is clear because t;= ti and H(g, n, m, t)= 0. 

On the other hand it follows from (1.20) that the lemma holds for g'g on 
a; n a;,g if it holds for g' and g. Then by the same argument as in the 
proof of Lemma 1.9 (ii) we may assume that g=exp sY with Ye g and 
lsl~l. 

Let l) be the orthogonal projection of g onto a with respect to the 
Killing form. Then from (1.17) we have (d/ds)H(exp sY, n, m, t)l,-o= 
v(Ad (nma(t))- 1 Y)=v(Ad(n- 1)Y). Combining this with (1.20), we see that 
u=exp<-ai, H(expsY,n,m, t)) satisfies 

(1.21) !!1!_= -<ai, v(Ad(n'(expsY, n, m, t))- 1 Y))u. 
ds 

Suppose t1>0, · · ·, t1 >O. Then the above statement and (1.21) imply 
that t;(expsY, n, m, t) also satisfies (1.21) and that 

d (at') at' - _i =-<ai,v(Ad(n'(expsY,n,m,t))- 1 Y))-i 
ds atj atj 

-(ai, __i)__l)(Ad(n'(expsY,n,m, t))- 1 Y))t;. 
atj 
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By analyticity this means that the function (at:/atJ)(exp s Y, t, n, m) \i,=o 
also satisfies (1.21). Hence by putting g=exp sY, the both sides of the 
equation (1.19) satisfy the same differential equation (1.21) and have the 
same initial value at s=O. This implies (1.19). Q.E.D. 

§ 2. Invariant differential operators 

For a real Lie algebra o we denote by oe the complexification of o 
and for a real or complex Lie subalgebra u of Be we denote by S(u) and 
U(u) the symmetric algebra and the universal enveloping algebra of u', 
respectively, where u' is the complex Lie subalgebra of Be generated by u. 
For a non-negative integer m, we put um(u)=A(Sm(u)), where sm(u) is 
the set of homogeneous elements of degree m in S(u) and A is the sym­
metrization of S(u) onto U(u). Moreover we put Um(u)=EBf=o Uk(u). 
Then Um(u)/Um_i(u) is isomorphic to sm(u). For a subset o of Be, S(u) 6 

(resp. U(u)6) the subalgebras of o-invariants of S(u) (resp. U(u)). 
Now retain the notation in Section 1. The complex linear extensions 

of the involution <1 and 8 on g. are also denoted by the same letters. Let 
j be a maximal abelian subspace of q containing a. By [0S2, Lemma 2.4] 
we have [i, ap] = 0 and we can choose a Cartan subalgebra i of B which 
contains both j and aP. Then the pairs (B., ie), (B., ie) and (Be, (ap)e) de­
fine root systems, which we denote by I(i), I(i) and I(ap), respectively, 
and we can define compatible orders for I(i), I(j), I(ap) and I (cf. [0S2, 
§3.8]). We denote by I(i)+, I(j)+ and I(ap)+ the corresponding sets of 
positive roots and by W(i), W(j) and W(ap) the corresponding Weyl 
groups, respectively. Moreover we put p=½I:.ez<ii+a. Then p is an 
element of the complexification it of the dual space of j. 

Let n. be the nilpotent subalgebra of Be corresponding to I(j)+ and 
put flc=<1(ne). From the Iwasawa decomposition Be=fle+ie+l:ie with 
respect to <1 we have the decomposition into the direct sum 

(2.1) U(g)= fie U(n.+ ie)EB U(i)EBU(g)g. 

Leto be the projection of U(g) to U(i) with respect to this decomposition 
and 'TJ the algebra automorphism of U (i) defined by 'T)( Y) = Y - p( Y) for 
Ye j. Let Z(g) be the center of U(g) and U(g? the centralizer of g in 
U(g). Then the map r='TJ o o induces the Harish-Chandra isomorphism 

(2.2) 

where J(j) is the set of W(j)-invariant elements of U(i). We remark here 
that r(U(g?n Um(g))=l(i)n Um(i). 

Lemma 2.1. For any h e H, Ad (h) acts trivially on the algebra 
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Proof First note that Ad (h) really acts on the algebra because 
Ad(h)lj=lj. Put ,c,.=io Ad(h) o ,- 1• By [Hel] the quotient field of r(Z(g)) 
coincides with that of I(i). Hence for any D e /(i) there exist D 1 and D2 

in r(Z(g)) which satisfies D1D=D 2 and D1=1=-0. ThenD 2 =,c,.(D2)=,c,.(D 1D) 
=,c,.(D1),c,.(D)=D 1,c,.(D), which means ,c,.(D)=D. This implies the lemma. 

Q.E.D. 

Let D(G/H) (resp. D(G/G~)) denote the algebras of invariant differ­
ential operators on G/H (resp. G/G~). Then D(G/G~) is naturally iso­
morphic to the algebra U(g)~/(U(g? n U(g)lj) and Lemma 2.1 assures that 
D(G/H) is also isomorphic to this. Hence by identifying these algebras 
we have the algebra isomorphism 

(2.3) i: D(G/H)~l(i) 

and the natural projection 

(2.4) I': U(g)~--+D(G/H) 

which satisfy r = i o I'. 
By the Killing form < , ) of g we identify the complexification it of 

the dual space of I with le and then at and it are identified with subspaces 
of le· Let W(i)= {a~, · · ·, a;,} be the fundamental system of l'(i)+, where 
/' is the rank of the symmetric space G/H. We put 

ge{j; l)={Y e g0 ; [Z, Y]=l(Z)Y for all Z e j} 

m(i)= {Ye li.; [Z, Y]= 0 for all Z e i}. 

For each subset F of W(i), we define (cf. [Sc, §3.2]): 

(F)=l'(i) n I:aeF Ra 

aF={Y e j 0 ; a(Y)=O for all a e F} 

aF={Ye i.; a(Y)=O for all a e W(i)-F} 

a(F)={Yej 0 ; (Z, Y)=O forallZeaF} 

for A e l'(i)+, 

nF= I:iexm+-<F> g,;(j; a) and fiF=u(nF) 

n(F)= I:.texm+n<F> g0{j; a) and fi(F)=u(n{F)) 

mF=fi(F)+m(i)+a(F)+n(F) 

l:'F=mF+aF+nF 

WF={w e W(i); wY= Y for all Ye aF}. 
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Let qF denote the orthocompliment of mF n 9c in 9c· Then g0 decomposes 
as g0 =fiF+mF+aF+qF and it follows that 

Let oF be the projection of U(g) to U(mF+aF) with respect to this de­
composition. Then oF maps U(g? (resp. U(g)fj) into U(mF+ aF)mFnfjc 
(resp. U(mF+ aF)(mF n fj.)) because mF n 9c normalizes fiF and qF. Hence 
oF induces the map 

(2.6) U(gW(U(g)fjn U(g)fj) 

~u(mF+ aF)mFnfjcj(U(mF+ aF)mFnfj, n U(mF+ aF)(mF n fj.)). 

Let oF be the projection of U(mF+ aF) to U(i) with respect the decom­
position 

Then o=oF o oF. Let 7/F be the algebra automorphism of U(mF+aF) de­
fined by 7/F(Y+Z)= Y+Z-p(Z) for Ye mF and Z e aF. Denoting pF(Z) 
=½ tracec (ad(Z) I n(F)) for Z e j, we define an algebra automorphism 7/F 
of U(j) so that 71F(Z)=Z-pF(Z). We put rF=7JFOOF and rF==7JF ooF. 
Then 

(2.8) 

Let U(i)wF denote the set of WF-invariant elements of U(i). Then as in 
the case of r, the map rF induces the algebra isomorphism 

(2.9) IF: U(mF+ aF)mFnfj/(U(mF+ aF)mFn~ n U(mF+ aF)(mF n fj)) 
~U(j)WF. 

Lemma 2.2. Let J be an idea(of U(j) which is generated by some 
homogeneous elements Pi, . · ·, A in l(j). Then there exist finite elements 
D1, • • ·, Dn in U(g)ij which satisfy 

(2.10) for j= l,· · ·, n 

and moreover the following condition: 
Let m be a non-negative integer and Fa subset of ?r(i). Then for any 

element q of Jn U,,,(Dn U(mF+aF)mFn\ there exist elements Q1, • • ·, Qn 
of U(mF+aF)mFn~ such that 
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(2.12) for j= 1, · · ·, n. 

Proof By Lemma 2.3 below, we have di, · · ·, dn e /(j) and q1, • • ·, 

qn e U(j) such that q= "E,,qA and qA E Um(j). Replacing q1 by (1/#WF) 
. L,wewp wq,, we may assume q, are WP-invariant. We can choose DJ e 
U(g)~ and Q, E U(rttp+ aF)mpn~ with r(D,)= dj and rF 0 r;F(Qj)=q, (cf. (2.3) 
and (2.9)). Moreover we can assume Q1D1 e Um(g). Since [Q,, fip]C 
fiFU(mF+aF), we haver F(Q,D 1)=r;F(Q 1)r F(D1) by definition. Owing to 
the algebra isomorphism ,F, we have rF orF(QJD 1)=rF(r;F(QJ)rF(D 1))= 
rF 0 r;F(Q1) • rF Or F(D ,)= q,d1 because r;F(Q,) and r F(D ,) E U(mF+ aF)mpn~. 
Therefore rF(rF("E,,Q1D 1-r;- 1(q)))=O, which means 

rF("E,,Q,D,-r;- 1(q)) e U(mF+aF)(mFnfj) 

because of (2.9). On the other hand the definition of r F proves "E,,Q1D1 

-r;- 1(q)-r A"E,JQ1D1-r;- 1(q)) e ftpU(nF+ mF+ aF)+ U(g)fj. Hence the 
lemma holds. Q.E.D. 

Lemma 2.3. Let J be an ideal of U(j) generated by some elements 
Pi, · · ·, Pk in l(j). Then there exist finite elements d1, • • ·, dn of "E,J(j)pi 
which satisfy the following: 

For any element q of Jn Um(j), there exist q1, • • ·, qn E U(j) such that 
q= LJJqA and qidi E Um(i)for i= I, · · ·, n. 

Proof Let H(i) be the set of harmonic polynomials in U(j) corre­
sponding to W(j). Then U(i)=H(j)(8)l(j), which implies J=H(i)(8) 
("E,J(j)pi). Put J.= U,(i) n "E,J(i)pi. Since Um(i)= "E,.(H(i) n Um_.(i)) 
(8)(/(j) n U.(i)), we have 

m 

(2.13) Jn Um(i)= "E, (H(j) n Um_,(i))0J •. 
JJ=O 

Let S(i)wm be the set of W(i)-invariant elements of S(j) and put J= 
(£/;=0JJJ,_ 1• Then J defines an ideal of S(i)w<Jl. Since S(i)w<n is noetherian, 
there exist homogeneous generators a 1, • • • , an of J. Let d1, • • • , dn be 
the elements of "E,J(i)pi whose residue classes equal a 1, • • ·, an, respec­
tively. Then for any q e J., we can find qi, · . ·, qn e /(j) by the induction 
on v so that q= "E,,q,d, and qA e U.(i). Combining this with (2.13), we 
have the claim in the lemma. Q.E.D. 

Now we want to study G-invariant differential operators on the G­
manifold X constructed in Section 1. Let {wi, · · ·, w,} be a complete set 
of representatives of the coset W (a; H) \ W, where 

(2.14) r= [W: W(a; H)]. 
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Then [OS2, Corollray 7 .10] assures that we may assume IT\= e and 

(2.15) Ad(W1)f=j, Ad(w 1)i=i, Ad(w 1)a~=a~ 

and w/l'(i)t)= I(i)t for j= 1, · · ·, r 

where I(i)t = {a E I(j)+; a I a= O}. Using the decomposition U(g)= 
ficU(fic+ic)EBU(i)EBU(g)Ad(w;1)fjc in place of (2.1), we can define an 
isomorphism 71 of D(G/w-/Hw 1) onto I(i) in the same way as f. For each 
e e {-1, 1}1 we put X,=ir(GXR~X W). Then X, is isomorphic to G/H. 
Moreover for each w E W we define the map 

(2.16) t1: G/w- 1Hw~X.cX 
U/ U/ 

gw- 1Hw~1r(g, e, w) forge G. 

Since Ad (w- 1) defines an isomorphism of U(g? onto U(g)Adcw-')\ it in­
duces an isomorphism of D(G/H) onto D(G/w- 1Hw), which is also denoted 
by Ad (w- 1). Let 1:, be the automorphism of U(g) defined by 

l 

(2.17) 1:,(Y)= I1 ei<H,) Y for a E I U {O} and YE ga. 
i=l 

Since 1:, preserves Ad (W.11)fj, it induces an automorphism of D(G/W.11HW1), 

which is also denoted by 1: •. 

Lemma 2.4. (i) 1:,(D)=D for any DE D(G/w;1Hw 1). 

(ii) 71 o Ad (w;1)(D)= T(D)for any De D(G/H). 

Proof (i) Since 1:, preserves Ad(w; 1)fjc and fie, and is trivial on 
ic, we have (i) from the definition of the isomorphism f 1• 

(ii) Let Ga be the analytic subgroup of the adjoint group of 9c cor­
responding to (fnfj)+.J'=T(fnq)+.J'=T(l,)nfj)+(l,)nq) and let Ka be 
the analytic subgroup of Ga corresponding to (f n fj) + .J"=T (l-' n fj). Then 
Ka .is a maximal compact subgroup of Ga and the Weyl group W(i) is 
naturally identified with the normalizer of a: in Ka modulo centralizer of 
a: in Ka, where a:=.J"=I(j n f)+(j n j.,). Since Ad (w1) defines an element 
of W(i), [W, Proposition 1.1.3.3] assures that there exists an element kin 
Ka such thatAd(W 1)lic=klic-

Let u be an element of Z(g) and u' an element of U(i) defined by u­
u' E ficU(g)+ U(g)fjc. Then u-k(u') E k(ficU(g))+ U(g)fjc because k(u)=u 
and k(fjc)= qc. Applying Ad (w;1) to this relation, we have u-u' E ficU(g) 
+ U(g) Ad (w;1)t. This means that the map 71 o Ad (w;1) o r-1 is trivial 
on f(Z(g)). Since the map is an algebra automorphism of J(j) and the 
quotient field of f(Z(g)) coincide with that of J(i), we can conclude that 
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the map is trivial on /(j). Q.E.D. 

Let D(X) denote the ring of G-invariant differential operators on fl 
whose coefficients are real analytic functions. Then we have 

Theorem 2.5. There exists a surjective algebra isomorphism 

i: D(X)~l(j) 
w w 
D 1---)./J O -.. 0 (t: 1t 1(D IX,), 

which does not depend one e {-1, 1}1 andj= I, ... , r. 

Proof. Fix an element u e /(j). Then the differential operator D{ = 
t:J o -r. o (i 1)- 1(u) on x. is G-invariant and it follows from Lemma 2.4 that 
D{ = t:1 o (i 1)- 1(u) = t:' o (i 1)- 1 o i o (,- 1(u)) = t:' o Ad (w.,1)(,-1(u)). Com­
paring this with (2.16) and Lemma 1.2 and the definition of fl, we see that 
Dt does not depend on j, so we define a G-invariant differential operator 
Du on U= U •E{-1,l)lx. by 

(2.18) 

fore e {-1, 1}1 andj= 1, . · ·, /. 

To get the theorem we have only to show that Du has an analytic 
extension on fl because U is open dense in fl. Since fl= U gea, i,;;J:,;;r U? 
(cf. Theorem 1.10 (i)), the proposition follows if Du I un u;1 has an ana­
lytic extension on u;, for any g e G and any j= I, ... , !. 

Letp; denote the submersion of N; M(a)A onto the open subset un 
u;1 defined by p;(nma)=rr(gnm, (e1a-a1, • • ·, e1a-a 1), w1) for n e N;, me 
M(a) and a e A. Let u1 be an element of U(g)AdCwj"'l~ which corresponds 
to (i 1)- 1(u) and let u~ be an element of U(n;+m(a)+a) with u1 -u~ e 
U(g) Ad (w.,1)1). Then for any C 00 -function </> on X., we have 

(2.19) 

where u; acts on</> op; from the right. 
Let 

L L" l 

(2.20) Y= I; cix-i+ I; c7zj+ I; c;Hk 
i=l j=l k=l 

be an element of n;+m(a)+a under the notation just before Lemma 
1.8. Since Ad(a)X.:.t=a-a<ilX_t for aeA, the action of Yon the Lie 
group N; M(a)A from the right is expressed as the following vector field 
on N;XM(a)XA: 
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L if l 
(2.21) E Cia-a(i) Ad (m)X_i+ E c;'zj+ E C{cHk. 

i-1 j-1 k-1 

Identifying R~ with A by the map R~ 3 t >----*a(t) =exp ( - Ek log I tk I Hk) 'E A, 
we have the corresponding expression 

(2.22) 

on N-; X M(a) X R~. Applying r-, to Y, we have the expression for r-,(Y) 

(2.23) 

in place of Y. This vector field has analytic extension on N-; X M(a) X R 1 

and is moreover independent of e. 
The above statement holds for any YE n-; + m(a) + a. Hence the 

similar statement holds for u' E U(n-; + m(a)+ a) and therefore the operator 
Du I un u;, has an analytic extension on U (cf. (2.19)). Q.E.D. 

Now we review systems of differential equations with regular singu­
larities defined in [04]. Let M be an (l+n)-dimensional real analytic 
manifold with a local coordinate system (t, x)= (t1, • • ·, ti, x 1, · · ·, Xn) and 
let N 1, ••• , Ni be hypersurfaces of M such that each N 1 is defined by the 
equation tj=O. We put N=N 1n · · · nNi, Dx=(o/ox 1, · · ·, o/oxn), Di= 
(o/ot1, ... 'o/oti), -8-j = tjo/otj, -9 = (-8-1, •.. ' -8-i) and tDX = Ct10/0X1, t10/0X2, 
... ' tio/oxn)- Let z be an open subset of CN, let (!) z be the sheaf of 
holomorphic functions on Z and let zd M (resp. zd N) be the sheaves of 
real analytic functions on M (resp. N) with holomorphic parameter J. in 
z. Moreover let zfi2 M be the sheaf of differential operators on X whose 
coefficients are sections of zd M· We consider the system of differential 
equations 

(i= 1, · · ·, L) 

with one unknown function u, where Pi are sections of zfi2 M· We remark 
that if there is no holomorphic parameter we write d M, !!2 M, etc. in place 
of zd M• zfi2 M, etc., respectively. 

Let zfi2~ denote the subRing of zfi2 M whose sections Pare of the form 

(2.24) 
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Let C[s] denote the polynomial ring over C with/ indeterminants s1, • • ·, 

s1 and put zd N[s] = zd N®C[s] and <V z[S] = <V z®C[s ]. Then we have an 
algebra homomorphism a* of zP)M onto zd N[s] defined by a *(P) (.;!, x, s) 
= I::aaaC-<, x)sa for P of the form (2.24). 

For any point of N we assume that there exist sections Qi, · · ·, Qn' 
of zP)M n I::tz.9) Mpi over a neighborhood of the point which satisfy the 
following three conditions: 

Then 

(2.25) qi do not depend on x for j= I, · · ·, n'. 

(2.26) <Vz[s]/J is a free <Vz-Module of rank r, where r is a certain non­
negative integer. 

(2.27) For any q e J there exist a section Q of zP)M n I::tz.9) Mpi so that 
a*(Q)=q and ord Q=deg q. Here deg/means the degree off e 
<V,[s] with respect to sand ord Q means the order of a differential 
operator Q. 

Then the system vii is said to have regular singularities in the weak 
sense along the set of walls {N1, • • ·, N1} with the edge N. The solutions 
d-<)=(s.,i(-<), · · ·, s.,z(-<)) of the indicial equation 

(2.28) JI: q;(-t, s)=O forj=l, · · ·, n' 

are called characteristic exponents. They are indexed by JJ e { 1, · · , · r} 
because JI has r solutions including their multiplicities. For simplicity we 
moreover assume 

(2.29) s.,tC-<) are holomorphic with respect to -< for JJ= 1, ... , rand i= 
1, ... '!. 

Remark 2.6. By the coordinate transformation tt.-.tf (l < i<l) with 
a large positive integer k, the operators Q1 e zP)M change into the form 
Q;(-t, t, x, -f), tD,,). In [04] we defined systems of differential equations 
with regular singularities and assumed there that Q1 are of the form 
Q;(-t, t, x, -f), tD,). Hence here we say that the system vii has regular 
singularities "in the weak sense". We note that each characteristic ex­
ponent s.(A) changes into ks.(-<) by the coordinate transformation. The 
other assumptions are little stronger than the ones given in [04]. But the 
assumptions here are sufficient for our purpose. 
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To define the boundary value map for solutions of .,It we assume the 
following condition: 

(2.30) For any point of each wall NJ we can find a section RJ of 
I:iz.0J Mpi over a neighborhood of the point such that RJ is of the 
form 

and the coefficient a{0 ••• ·.m;. 0 ••••• 0i(J., x) of fJ.j; does not vani.sh for 
any}. and x, where mJ= ord RJ" 

Now we consider the system of differential equations 

(2.31) for i= I, · · ·, L 

on the manifold X, where Pi E D(X). We say that JV is D(X)-finite if the 
dimension of D(X)/I:iD(X)Pi is finite. It is equivalent to say that there 
exist /'(=rank G/H) algebraically independent elements in {P1, ···,PL}-

We fix an e E {-1, 0, 1}1 and aw E W so that e ~ {-1, l}z. Then the 
set X,,w=n-(GX{e}X{w}) is one of the boundary orbits in X. Put I(e)= 
{ie{I, ···,l};ei=0} andX!,w={n-(g,e',w);geG,e~=0 and e;=eJ ifeJ 
:#:0} for i E /(e). 

Theorem 2.7. Assume the system JV on X is D(X)-finite. Then for 
any e E { -1, 0, 1}1 - { -1, 1}1 and any w E W, JV has regular singularities 
in the weak sense along the set of walls {X!,w; i E /(e)} with the edge X,,w 
and satisfies the condition (2.30). The indicial equation equals 

L 

for all q E U(et,) n I: U(j)1(PJ) 
j-1 

with Ct,= I:kEI<•lRHk. Here (p- I:iEI<•lsiai) is the algebra homomorphism 
of U(j) to the polynomial ring of si (i E /(e)) induced by 

Proof We may assume w= wJ with a suitable j E {I, · · ·, r }. We 
will prove in the case where w= e. The proof in the general case is also 
obtained in the following argument by replacing lj and H by Ad (W.11)9 
and w-j1HWJ, respectively. 

Fix any g E G. By the map rp; (cf. (1.16)) we identify N; X (M(a)/(M(a) 
n H)) X R1 with the open subset u; of X. As we have seen in the proof 
of Theorem 2.5, any element u of U(n;)®U(m(a)+a)m<•lnli defines a 
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differential operator on u; through the map rp~ and the expression (2.23) 
for Ye n;+m(11)+a. 

PutPt=f(Pi) and J= I;iU(i)pi. Since the assumption is equivalent to 
the condition that U(i)/J is of finite dimension, the dimension of the space 
U(a.)/(Jn U(a.)) is also finite. Let q be an element of Jn U(a.). .Put 
F={a e W(i); a!a.=0}. Then flFC(n;). and flF+mF+aF:::)(n;+m.+ 
a.) •. Then Lemma 2.2 says that there exist D 1, • • ·,,Dn e U(g? and Si, 
.. ·, Sn e U(mF+aF)mFnij so that r(Dj) e J, SjDj e udegg{g) and 

Let S1 and D1 be elements of U(n;)®U(m(11)+a)m<•>nij so that SJ-s; 
and DJ-DJ belong to U(g)(lj n m(11).L). Then we have 

(2.33) t s;n1-r;-1(q) e flFU(n;)®U(m(11)+a)m(•)nij+ U(g)lj 
j-1 

because (SJ-S;)DJ e U(g)lj. Let Q be the differential operator on u; 
corresponding to :z::;Js;n1. Then clearly Q e :z::;igy 2Pi and ord Q= deg q. 
Since t«<i) e :Z:::tercs,d 2 tt if X-«Cil e flF, it follows from the expression 
(2.23) that the operator Q is of the form (2.24) and 11*(Q)(s)= 
-(I:ieics,stat)r;- 1(q). (We remark that 0z=C and that ti (i e /(e)) corre­
spond to ti, ... , t1 in (2.24). Hence if e=(O, ... , 0), the correspondence 
is straightforward.) 

Let {q1, , • ·, qn} be a basis of Jn U(a.) and let QJ be the differential 
operators on u; which are constructed as above corresponding to qJ, re­
spectively. Then it is clear that Qi, ... , Qn satisfy the conditions (2.25), 
(2.26) and (2.27) and that the indicial equation equals .A? given in Theorem 
2.7. 

If we consider the case where x., w is a hypersurface, it is also clear 
that the system .Ai satisfies the condition (2.30). Q.E.D. 

Let J e ir We define an algebra homomorphism X, of D(X) to C 
by X.(D)=J(f(D)). Then X,=X,, if and only if J' e W(i)J. In most cases 
we only consider the system 

(2.34) vii,: (D-X.(D))u=O for all D e D(X). 

The following proposition gives the characteristic exponents of vii,. 

Proposition 2.8. Retain the notation in Thorem 2.7 and put W(e)= 
{we W(i); wl a,=id}, J= I:pe 1 c0 U(i)(p-J(p)) and 1= U(a,) n J. Then 
any solution of the equation 
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for all q e J. 

is equal to sw(A)=(sw,tCA))ierc,J with a suitable w E W(i), where Sw,,0)= 
<p-wA, H,). Moreover the multiplicity of the solution sw(A) is a positive 
integer which is not larger than #(W(e)\{v e W(j); Svw0)=sw0)}). 

Proof Replacing s, by s,+p(H,), we may assume p=O. Put J'= 
{q e U(j); (w-l)(q)=0 for we W(j)}. Then clearly J'-::JJ. 

First consider the case where the stabilizer of ,l in W(i) is trivial. 
Then dim U(i)/J' = # W(j). Let H(j) be the space of harmonic polynomials 
in U(j) corresponding to W(j). Then U(i)=H(i)®l(i) and dim H(j)= 
# W (i). This means dim U (j)/ J = # W (j)( = dim U (j)/ J') and therefore J = 
J' because J'-:JJ. Hence l={q e U(a,); (w-l)(q)=0 for we W(i)}, which 
implies the lemma and every root of .,11. is simple. 

Consider the general case. Then there exist a positive number m so 
that the condition q e J implies qm e J'. Therefore the condition q e J 
implies qm E J' n U(a.). Hence swO) are roots of .,//. and every root of 
JI. equals sw(A) with a suitable we W(j). The remaining problem is to 
estimate the multiplicities of roots. 

We have only to estimate the multiplicity of the root s,(-l) by replac­
ing ,l by w-l. We chooseµ e j! so that the stabilizer of -l+ µtin W(i) is 
trivial for any t e C with 0<ltl<l. Put Jt= I:pe 10 ,U(i)(p-(-l+µt)(p)) 
andJ:={qe U(i);(w(-l+µt))(q)=0forwe W(i)}. WealsochooseZea, 
so that for every we W(j)the condition (w-l, Z)=(-l, Z) implies sw(A)= 
s,(-l) and putpo(t)= CTweww(Z-(w(-l+µt), Z)). Thenpo(t) is contained 
in 1:. Since 1:=Jt if 0<lt!<l, po(t) e le for any t e C with I ti< I. Put 
W1={we W(j); (w-l,Z)=(A,Z)}, W2=W(i)-W1 and pi(t)=CTwewi 
(Z-(w(-l+ µt), Z)) for i= 1, 2. Let £!\[Z] denote the ring of polynomials 
of Z with coefficients in the ring (!)e of convergent power series oft. Then 
there exist qi(t) and qz(t) in (!Jt[Z] such thatpi(t)qi(t)+p 2(t)qz(t)=I. Put 
ri(t)=pi(t)qt(t). Then the elements ri(t)rz(t), ri(t)2-ri(t) and r2(t)2-rz(t) 
are contained in Jt for It I~ I. 

For any p e U(i) we put ,/it(p)= I;tC-l+ µt)(J;,)hi by using the expres­
sion p= I;,J;.ht with ft e /(j) and h, e H(j). Then for any t, 'Pt defines a 
map of U(j) onto H(j) with the kernel Jt, and dim <fatCU(a,)) equals 
dim U(a,)f(Jt n U(a.)), which also equals the number of roots of .,//i+µt 
including their multiplicities. Putting <fa!(p)=<fatCrtCf)p) for i=l, 2,p e U(j) 
and te C, we have <pe=<fa!+<fa:, <fa!o<fa}=<p}, <fa! o<f>!=<fa! and <fa} o<fa:=<fa:o<fa}=O. 
Hence the multiplicities of the root s.{A) is given dim <jJo(rz(O)U(a.)). On 
the other hand if0<!tl~l, then dim<fatCrz(t)U(a.))=#{swO+µt); we W1} 

because all roots of .,//A+µt are simple in this case. Since swO+ µt)= 
Sw,(A+µt) if w' e W(e)w and since dim<jJo(rz(O)U(a,))<dim<jJt(rz(t)U(a.)) 
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if I ti~ 1, we have dim ¢oCrlO)U(a,))::;: #(W(s)\ W1)- Q.E.D. 

In the first step of the proof of Proposition 2.8 we have obtained. 

Corollary 2.9. If an element .?. of j; is regular (i.e. w.?.=,t=J. for any 
w E W(j) with w=;t=e), then all solutions of :ii; are simple. 

§ 3. Boundary value maps 

First we define G-modules attached to G-orbits in X. Retain the 
notation in Section 1 and Section 2. Recall {w1,. • ·, w,} is a complete set 
of representatives of the coset W(a; H)\ W. For any e E {O, 1}1 andj E 

{l, · · ·, r} we put X/=rr(GX{s}X{w 1}) (CX). Then Xf is isomorphic to 
G/P(x) with x=(e, s, w1) EX. In (1.2) the subgroup P(x) is defined by 

P(x)=(Mxn w;1Hw1)AxNx. 

For simplicity we put Pf=P(x), M,=Mx, Mf=Mxn w-;1HW1, A,=Ax, 
N,=Nx and N;=N;; in the case x=(e, s, w1) and denote by N, m., m!, 
a., n, and n; the corresponding Lie algebras. Moreover we put j, = a, n j. 
Note that any G-orbit in Xis isomorphic to G/P1 with suitable e andj. 

The space f!J(G) of hyperfunctions on G is naturally left G-module by 

G X f!J( G)~f!J( G) 
llJ llJ 

(g, f(x)}----+(rr gf)(x)= f(g- 1x). 

The induced action of Ye g on f!J(G) is also denoted by "Y· For anyµ E 

(j,); let f!J(X1; Lµ) be the space of hyperfunctions f on G satisfying 

(3.1) f(gman)=aµ-pf(g) 

for all g E G, m E Mf, a EA, and n EN,. Then f!J(X!; Lµ) is a G-sub­
module of f!J(G) and canonically identified with the space ofhyperfunction 
valued sections of the line bundle Lµ on G/P1 associated with the character 
T~ of P1 given by 

(3.2) 

Here we remark 

Lemma 3.1. 

and 

p(Y)=O for any YE CT, n g 

1 
p(Z)= 2 trc ad (Z) Inc n m(a)c for any Z E j n f. 
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Proof Let Ye a,. Since [Y, n(a)]= {O}, p(Y)= ½ tr ad (Y) In.+ n(a) 
=½trad(Y)ln,. Combining this with a(n.)=fi., we have p(a(Y))= 
-p(Y). Hence if Ye a. n tj, p(Y)= -p(Y) and therefore p(Y)=O. Let 
Z e j n t. Since O(n,)= fi, and O(Z)= Z (resp. a(nc n g(a)c)= nc n g(a), and 
a(Z)= -Z), we have similarly tr ad (Z) I n,=0 (resp.tread (Z) Inc n g(a)c 
=0). Hence owing to the direct sum decomposition nc=(ncnm(a)c)+ 
(nc n g(a)c)+ (n.)c, we have p(Z)= ½ tread (Z) Inc=½ tread (Z) Inc n m(a)c-

Q.E.D. 

For an open subset U of Xf we denote by :Jl(U; Lµ) the space of hy­
perfunction sections of the line bundle Lµ over U. 

Let D(Xf) denote the algebra of Mf-invariant differential operators 
on the symmetric space M,/Mf. Since Ad(M,)lm,=lnt(m,), we have 
the isomorphism 

(3.3) 7{: D(X!)~/(j(c)) 

as in the case where c=(l, · · ·, 1) (cf. Lemma 2.1 and (2.3)). Here i(c)= 
{Ye j; <Y, Z)=O for all Z e i,} and I(i(c)) is the set of WF-invariants in 
U(i(c)) with F={a e W(i); a ij,=0}. (Ifj= 1, the map 7{ is defined by the 
restriction of 7F in (2.9).) Since M, normalizes N, and centralizes A., the 
action of Mf-invariant elements of U(m,) on :Jl(G) from the right leaves 
the space :Jl(Xf; Lµ) invariant. Hence the elements of D(Xf) define dif­
ferential operators on :Jl(Xf; Lµ) which commute with the left action of G. 
For any ideal J' of D(X!) we define a system of differential equations 

(3.4) vlt': Du=O for all De J' 

on :Jl(Xf; Lµ) and denote by :Jl(Xf; Lµ; vlt') the G-submodule of :Jl(Xf; Lµ) 
consisting of the solutions of the system Jt'. Similarly we define a g-sub­
module :Jl(U; Lµ: vlt'). 

We identify the symmetric space X=G/H with the open G-orbit 
n-(GX (1, .. ·, 1) X W) of X. Let J be an ideal of finite codimension in 
D(X) and let :Jl(X; Ji!") denote the space of hyperfunction solutions of the 
system 

(3.5) Ji!": Du=O for all De J 

defined on the symmetric space X. We remark that Ji!" can be written in 
the form (2.31) with suitable P1, •• ·, PL because J is finitely generated. 
For any µ e (i,)1 we have an algebra homomorphism lµ of U(i) onto 
U(i(c)) which satisfies ,µ(Y) equals µ(Y) if Ye i, and Y if Ye i(c). Then 
the map tµ= (7{)-1 o c µ o 7 defines an algebra homomorphism of D(X) to 
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D(X!). Let jµ denote the ideal of D(X!) generated by eµ(i). Then we can 
define the induced system 

(3.6) JV: Du=O . µ for all De jµ 

on X/ associated to µ. We note that jµ is also of finite codimension in 
D(XJ). 

Owing to Theorem 2.7 we can define boundary value map of 
tJ(X; JV). Let A1, • • ·, Am be the solutions of the indicial equation .A7 in 
Theorem 2.7 including their multiplicities. Here A,=0.,,) e en by putting 
n= #l(e) and i. are called th¥ characteristic exponents. Then for any 
point p of Xl we have a boundary value map 

(3.7) 

attached to each characteristic exponent i., where UP is an open neigh­
borhood of pin Xf and tJ(Up) is the space of hyperfunctions on UP. The 
definition of [3. is given in [04, §4]. We give some properties of [3 •. 

. There exist a neighborhood V of UP iti X so that if u e tJ(X; JV) 
satisfies [3.(u)= 0 for JJ= 1, .. ·, m, then u is identically zero on vn X (cf. 
[04, Thorem 4.4)). 

Assume [3.(u) are analytic for JJ= 1, · · ·, m. Then u has an expression 

m 

(3.8) u(t, x)= I; a.(t, x)t'•q. (log t) 
JJ=l 

in vn X and is called ideally analytic at p (cf. [04, Theorem 5.3]). Here 
(t, x) is a local coordinate system with t=(t,),ei<•> so that Xis defined by 
ft >O for all i e I(e), Xl is defined by t, = 0 for all i e /(e), a.(t, x) are real 
analytic functions on V and q. (log t) are polynomials of log t, (i e l(e)). 
Moreover if 

(3.9) for any JJ and JJ' with JJ-:::/=JJ', 

then q,= 1 and [3.(u)(x)=a.(O, x). Here we put N={O, 1, 2, · ·. }. The 
expression (3.8) is the same one given in [Ha] or [CM] but here we obtain 
(3.8) under much weaker assumption (cf. [04, Theorem 5.2]). 

We may assume I(e)= {l, · · ·, n} without loss of generarity. Then 
we can define a semi-order for /31, • • ·, f3m which has the following pro­
perties (cf. [04, Theorem 4.5]): 

(3.10) If /3. > /3,,, then _!_ (1. -A,,) e Nn. 
2 



Realization of Symmetric Spaces 631 

(3.11) Define a line bundle 

L().,)= (T;, X')®,,,, ® ... ® (T;n X)®•,,n 
e,w 1 X{ X{ e,w 1 

over Xj under the notation in Theorem 2.7. For an open subset U of Xj, 
let !!J(U; L().,)) denote the space ofhyperfunction sections of L().,) over U. 
Moreover we define 

!!J(U, X; JV),={u e !!J(X; JV); ~,,(u)=O on a neighborhood of 

every point of U for any 1/ with ~., < ~,}. 

Then for any u e !J6(U, X; JV),, the definition of the hyperfunction section 

does not depend on the choice of local coordinate systems. In other 
words we can define the following map 

Put ti= tf/ 2 for i= 1, ... , n with a positive integer k and consider the 
coordinate system (t', x)= (ti, · · ·, t~, x). Then Lemma 1.8 and the proof 
of Lemma 1.9 (i) say that the vector field Y on X corresponding to an 
element Y of g defines an analytic vector field under the coordinate system 
(t', x). Moreover Lemma 2.4 (i) and the proof of Proposition 2.5 (cf. 
(2.16) and (2.23)) say that any Pe D(X) defines an analyic differential 
operator under the coordinate system (t', x) If k is sufficiently large, the 
system JV has regular singularities along X1,w and the characteristic expo­
nents are (k/2)). 1, • • • , (k/2)).m under the coordinate system (cf. Remark 
2.6). Here we can also choose k so that (k/2)).,-(k/2)).,, $ Nn if½().,-).,,) 
,;t Nn because there are only finite ).,. This corresponds to the conditions 

(3.9) and (3.10). Applying the results in [04] to JV under this coordinate 
system, we define the map ~. mentioned above. 

Since G acts on X and preserves each X!,w1 there is a natural action 
of G on L().,) given by 

(3.12) 

under the coordinate <P;(n, m, t) and <P;,(n', m', t'), respectively, where 
w=w, and g,g',yeG with g'=yg and (n,m,t),(n',m',t')eN;X 
(M(a)/(M(a)n w-'Hw))XR 1 (cf. Theorem 1.10 (i)). Thus for any g e G 
we have a commutative diagram 
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(3.13) 

and the map [3. in (3.13) is a g-homomorphism. 

Lemma 3.2. Define µ e (j,)t by 

(3.14) µ= (p-t i.,iai) I j •. 

Then the line bundles L(l.) and Lµ on Xf are isomorphic and the isomorphism 
is G-equivariant. 

Proof Retain the notation just before the lemma. Then the relation 
¢;(n, m, t)=</>;,(n', m', t') is equivalent to (n', m', t')= (</>':)-1 o <J>';,(n, m, t) 
with g"=g'- 1g. It follows from Lemma 1.11 that 

onXf 

for i= 1, · · ·, n under the notation there. Hence 

onXf. 

The definition of H(g", n, m, t) means 

g"nma(t) e n'm'a(t) expH(g", n, m, t)M!N,. 

Since log a(t) and log a(t') are killed by a 1, ••• , an and since 

-r~(a(t )- 1m 1- 1n1- 1g"nma(t))= exp (p- µ, H(g", n, m, t)), 

(3.15) (dt')l•= -r~(a(t1)- 1m'- 1n1 - 1g 1- 1gnma( t))- 1(dt)i• 

ifµ= (p- I:;i l,,iai) I j,. 
On the other hand, by definition Lµ is G X C modulo the equivalence 

relation (xb, c)-(x, -r~(b)c) for x e G, be Pf and c e C. Therefore 

(3.16) (g'n'm' a(t'), 1)-(gnma(t), -r~(a(t')- 1m 1- 1n1 - 1g 1 - 1gnma(t))). 

Thus the lemma follows from (3.12), (3.15) and (3.16). Q.E.D. 

By Lemma 3.2 we identify L(l.) with Lµ, where µ is given by (3.14). 
Therefore we may replace L(l.) by Lµ in the commutative diagram (3.13). 

Next we consider the system of differential equations which are satis-
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fled by the boundary values, which is studied in [04, §6]. Use the local 
coordinate system (t, x)=(t 1, · · ·, tn, x1, • • ·, xn,) as before. Then [04, 
Theorem 6.1 (ii)] says that if u(t, x) e &l(U, X; .Y). satisfies a differential 
equation 

then the boundary value /3.(u)(x) satisfies the induced equation 

P(O, x, .:l..,i; · · ·, .:l..,m o/oxi, · · ·, o/oxn,)f3.(u)(x)= 0. 

We apply the above statement to all P in i. Let P be an Ad (w,t"1)lj­
invariant element of U(g) corresponding to P. Then the expression of P 
in the local coordinate system is obtained from (2.23). In fact P is a sum 
of the products of vector fields of the form (2.23). The induced equation 
iS given by Changing ta(i) tO ta(i) lti=•••=tn=O and tko/fk tO A.•,k fork= 1, · • •, n 
in the expression (2.23). Then the term X_, vanishes if X_, en;-. 

Put F={a e ?/f(i); a\j,::;t=O} and suppose w1 =e. Then the above 
statement says that the induced equation coincides with the differential 
operator corresponding to,. o oF(P) (cf. (2.5)). Here,. denotes an algebra 
homomorphism of U(mF+aF) to U(mF) which is identity on U(mF) and 
satisfies ,.(Hk)= -.:1..,k for k= 1, ... , n. This implies rF o ,. o oF(P)= 
'l. 0 rF O oF(P) = ,. 0 7Ji,1 0 r(P) = ( µ 0 r(P). Since ,. 0 oF(P) is a (mF n lj)­
invariant element of U(mF) and since the map rF induces an algebra iso­
morphism fF of D(X!) onto U(j(e))w,.. (cf. (2.9)) the induced equation 
corresponds to tµ(P). Hence the boundary value /3.(u) satisfies the induced 
system (3.6). The above argument is also valid in the case where w;::;t=e. 
Thus we have the main theorem in this section. 

Theorem 3.3. Let Xi be a boundary component contained in the 
closure of X in X and let U be an open subset of Xi. Let .Y be the system 
(3.5) of differential equations defined by an ideal j of finite codimension in 
D(X). Then the boundary map /3. defines a commutative diagram 

{3. 
&l(U, X; .Y). ~PA(U; Lµ; %µ) 

~g l /3. ~g l 
&u(gU, X; %).~&u(gU; L"; %") 

(3.16) 

forge G and the map /3. in (3.16) is U(g)-equivariant. Hereµ is defined by 
(3.14) and%µ is the induced system (3.6) associated to µ. 

Remark 3.4. (i) If U=Xi, then we have a G-equivariant map /3.: 
&l(Xi, X; %).-&l(Xf; Lµ). 
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(ii) Fix J.J, Then if ½(A.,--<.)~ Nn for J.J' E {1, · · ·, m}-J.J, PA(X/, 
X; %).=PA(X; %). 

(iii) For any non-zero u e PA(X; %) there exist at least one J.J e 
{1, ... , m} such that u e PA(X/, X; %). and /3.(u)=/=0. This is proved as 
follows: 

Suppose /3.(u)=0 for all /3.. Then there exist an open neighborhood 
V of X/ in X so that u I fJ n X = 0. Since Vis independent of u ( cf. [04, 
Theorem 4.41) and since f3.(1cg(u))= 1cg(f3.(u))=0, we have 1cg(u) I vn X=0 
for all g e G and therefore u= 0. Hence if u=/= 0, there exist /3. with /3.(u) 
=/=0. Then any minimal element of {/3.; /3.(u)=/=0} with respect to the semi­
order is the required one. 

§ 4. Principal series 

In the preceding section we construct some G-modules attached to 
boundary components of X. The G-modules attached to the distinguished 
boundaries are most important, which lead us a concept of (most 
continuous) principal series for X. When X is a group manifold, this 
coincides with the usual principal series defined in [Hal]. First we give a 
proposition which will be useful for the study of principal series for X. 

Proposition 4.1. We can choose the complete set {w1, • • ·, wr} of 
representatives of W(a; H)\ W(a) and the representatives w1 e N x(a) of W.1 

for j= l, · · ·, r with W1=e such that they satisfy both (2.15) and 

(4.1) m(a) n Ad (w;1)fj= m(a) n fj for j= 1, · · ·, r. 

Proof We can assume that w1 and w1 satisfy (2.15) (cf. [OS2, 
Corollary 7.10]). Put m(a)r=[m(a), m(a)]. Since Ad (w1)m(a)=m(a), 
Ad (w1)- 1a Ad (w1) induce involutive automorphisms of m(a),. Applying 
Lemma 4.2 below to these involutions, we find Z 1 e j n m(a)r such that 
Ad (exp Z 1)- 1 Ad (w1)- 1a Ad (w1) Ad (exp Z 1)X =aX for all Xe m(a)r. Re­
placing w1 by w, exp Z1, we can moreover assume Ad (w,)-1a Ad (w1)X = 
aX for Xe m(a)r. Hence if Xe Ad (w1)· 1(m(a)r n fj), we have aX= 
Ad (w1t 1a Ad (W1)X=X and so Ad (w1)· 1(m(a)r n fj) = m(a)r n fj. Since 
i n m(a) n fj is the orthogonal complement of j in i + a~ with respect to the 
Killing form, it is stable under the map Ad (w1)- 1 (cf. (2.15)). Hence 
m(a) n Ad(w 1)- 1fj=Ad (w,)- 1(m(a) n fj)=Ad (w1)- 1(m(a)r n fj+j n m(a) n 
fj)=m(a)r n fj+j n m(a) n fj=m(a) n fj. Q.E.D. 

Lemma 4.2. Let u be a compact semisimple Lie algebra and let a 1 

and a2 be two involutive automorphisms of u. Put q,={X e u; a/X)= -X} 
for j= 1 and 2. Suppose there exists an abelian subalgebra t of u such that 
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t is a maximal abelian subspace of q1 and also that of q2• Then there exists 
an element Z oft such that (exp ad(Z))a 1=a 2 (expad(Z)). 

Proof We extend o-1 and o-2 to complex linear involutions of the 
complexification Uc of u. Let f be a maximal abelian subalgebra of u 
which contains t. We remark that o-1 \ fc=o-2 \ fc. If t=t, the lemma coin­
cides with [He, Ch. IX, Theorem 3.4]: We will proceed in the same way 
as in the proof of the theorem. 

Let L1 be the set of non-zero roots of uc with respect to fc and suppose 
L1 is ordered so that if a e J+ and a\t::;t:O, then -ai(a) e J+. Let {Xa; 
a e L1} be a Wey! basis of Uc mod f c with respect to u. Then 

where aa,1a.,_ 1= 1 and \a.,1 \= 1 for a e L1 and j= 1, 2 (cf. [He, Ch. IX, 
Corollary 2.4]) Let Z be an element off c such that 

(4.2) a.,1 = a., 2 exp 2(a, Z) 

for any simple root a for J+. Then Z e f because \a.,1 \= 1. 
Suppose a, /3, a+/3 e L1. Then a.+,s,1X.,c.+.s>=atlX., X,s]=[a/X.), 

a/X,s)]= [aa,Jx•,C•)> a,s,JX•,C,&)]=a •. ,a.s.iX.,c.), x.,c,s)]. Since 0'1(r)=az(r) for 
all re L1, we have 

(4.3) 

This implies (4.2) for all a e J+ by induction. Since a_;,_,1a.,1= 1, we have 
(4.2) for all a e L1. 

Supposer e L1 satisfies T\ t=O. Since air)=r and a;= 1, it is clear 
that aiX 7)=X 7 or a/X 7)= -Xr If aiX 7)= -X 7, then X7 E (q1)c and 
[Y, X7]=r(Y)X 7=0 for Ye tc. which contradicts to the fact that tc is a 
maximal abelian subspace of (q1)c. Hence aiX 7)=X 7 and so a7,1= 1. Next 
suppose a is a simple root in J+ with a\ t::;t=O. Then -a ia)= /3+ I:tmtrt, 
where mt are non-negative integers and f3 and rt are simple roots in J+ 
with /3\t::;t:O and r-1\t=O. Since a7,, 1=1, we have a., 1/a.,2=a,s,i/a,s,2 by 
using (4.3). Hence if a, f3 and r are simple roots for J+ with a\ t= /3 \ t 
and r \ t=O, then a • .ifaa,2=a,s,i/a,s,2 and a7, 1/a7,2= 1. This assures that we 
can choose Z et. Then for any a e L1, o-2 (exp ad(Z))X.=0-2 (exp(a, Z))X. 
=a., 2 (exp (a, Z))X •• c«i= a.,1 (exp-(a, Z))X.,c«i= (exp ad (Z))a.,1X.,<•l 
=(expad(Z))0' 1X.. This implies the lemma. Q.E.D. 

For k= I, ... , r let II k be the set of equivalence classes of finite 
dimensional irreducible representations of P. with (P. n w; 1Hwk)-fixed 
vectors and put II= U r=1 II k· Let (-,, E,) be a representation of P. be-
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longing to a class in ll k· Then there exist an element µ e a; and a finite 
dimensional irreducible representation e of M(a) with a non-zero (M(a) 
n w;1Hwk)-fixed vector such that 

(4.4) 

for any me M(a), x e G(a), a e A. and n e N. (cf. Lemma 3.1 and [W, 
Lemma 5.5.1.3]). 

Let M(a)";; denote the set of equivalence classes of irreducible unitary 
representations of M(a) with non-zero (M(a) n w; 1Hwk)-fixed vectors. 
Then 

(4.5) 

by the correspondence ( 4.4). 
Here and hereafter in this section the surfix k and the superfix k 

always mean a positive integer between 1 and r. 

Definition 4.3. Let (-r, E,) be a representation of P. belonging to a 
class in ll and let V, be a vector bundle over G/P. associated to -r:. Then 
the G-module i!,1(G/P.; V,) of hyperfunction sections of V, is called the 
space ( of hyperfunction sections of a representation of G) belonging to the 
(most continuous) principal series for G/H. The isomorphic class of G­
modules containing f!,l(G/P.; V,) will be called a member of the principal 
series for G/H and it is uniquely defined by the class in ll containing -r:. 

Let ~ e M(a );;- and µ e a; such that they correspond to -r: through 
(4.5). Then we write V,= V<,P in Definition 4.3. Let d(e) be the dimen­
sion of E, and let m-e(m)= (ai/m)) (i,j= 1, · · ·, d(~)) be a unitary matrix 
representation of M(a) corresponding to ~- Let f!,l(G)d«l be the space of 
column vectors of hyperfunctions on G with length d(~). Then the space 
f!,l(G/P.; v.,µ) can be regarded as the space offunctionsf in f!,l(G)d«> which 
satisfy 

(4.6) f(gmxan)=aµ-p~(m- 1)f(g) 

for any g e G, me M(a), x e G(a), a e A, and n e N •. 
Next we will study the set ll. For a Lie group G' we denote by G' 

or G'"' the set of equivalence classes of finite dimensional irreducible re­
presentations of G'. Put 

(4.7) Z(Ap)=Ad;/(Ada(K)nexpad(,/=-Iap)). 

Then the group l=Z(Ap) exp i is the centralizer of i in G and called the 
Cartan subgroup of G with the Lie algebra j. Let(~,µ) e M(a);;-x a; and 
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let -r E Ilk which is related to (.;, µ) as above. Lett be an equivalent class 
of irreducible representations of Z(Av) X M(a) 0 which corresponds to .;= 

through the natural map of Z(Av)XM(a) 0 onto M(a). Since the finite 
group Z(Av) centralizes M(a) 0 , it follows from the following lemma 4.4 
that M(a) is identified with the subset of Z(Av) X M(a )0 whose members 
have non-zero vectors fixed by {(g, g- 1); g E Z(Av) n M(a)}. Thus we have 

(4.8) Ilk-::=.{-. E (Z(Av)XM(a) 0 xAr; (-r!H{: I]>O} with 

H{={(g1, g2, e) E Z(Aµ)XM(a) 0 XA; g1g2 E w;;1Hw\}. 

Lemma 4.4. Let (tr, E) be a finite dimensional irreducible represen­
tation of a Lie group G', H' a normal subgroup of G' and E0 a minimal H'­
invariant subspace of E with dim E0 >O. If (tr I H', E0 ) is a trivial represen­
tation, all the elements of E are fixed by H' and therefore tr is regarded as 
an irreducible representation of the quotient group G'/H'. On the other 
hand, if Z 0 ,(H')H' = G', (tr I H', E) is isomorphic to the direct sum of finite 
copies of (tr I H', E0 ). Here Z 0 ,(H')= {g E G'; gh= hg for all h E H'}. 

Proof Let E' be the union of H'-invariant subspaces E" of E such 
that (tr, E") is isomorphic to (tr, E0 ). It is esay to see that E' is G'­
invariant. Hence the lemma. Q.E.D. 

Let 00 E Z(Ap) and d<; E .M(a)0 such that they correspond to -r E Ilk 
through (4.8). We identify d<; with the highest weight of the correspooding 
representation of m(a) with respect to X(i)t. Since (m(a), m(a) n fj) is a 
symmetric pair and X(i)t is a corresponding positive restricted root 
system, the element d.; of (in m(a)); belongs tot; by denoting 

(4.9) 

(cf. Theorem 4.5). Let E,° be the corresponding subspace of highest weight 
vectors in E,. Then dim E,°= dim 00 and (-r I J, E:) is an irreducible repre­
sentation of J and we have 

Theorem 4.5. (i) The above correspondence gives the bijection 

UI UI 

'r ~c-. I J, E,o) 

with 

II;={r,, El'''; [r,,1Jn w;;1Hwk: l]>O and <dr,,, a)>0for any a e X(i)t} 

and dr,, is the element of i; which satisfies trexpz=exp <dr,,, Z) for the 
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representation TC belonging to Ce J,..._ 
(ii) [!' I M(a) n w; 1Hwle: 1]= [a?(t) I Jn w; 1HW1,: 1]= 1 for all t' E Ille. 

Now we prepare two lemmas to prove the theorem. 

Lemma 4.6. Let (M(a) n H) 0 be the identity component of M(a) n H. 
Then 

(4.11) M(a) n H= (M(a) n Hn Z(Ap) exp t)(M(a) n H) 0 • 

Proof. Fix an arbitrary me M(a)n H. Put M'=M(a)/Z(Ap) and 
denote by m the residue class of m in M'. We remark that M' is a com­
pact connected Lie group with the Lie algebra m(a). Since M(a) and 
Z(A,) are a-stable, a induces an involution a' on M'. Let Z' be the identity 
component of the centralizer of m in M'. Then me Z' because m is 
contained in a maximal torus in M'. Since a'(m)=m, Z' is a'-stable. Let 
t' be a a' -stable maximal abelian subspace of the Lie algebra of Z'. Then 
the maximal abelian subgroup exp t' of Z' contains m. Hence there exist 
Xie m(a)n g and X 2 e m(a)n q such that [Xi, X 2]=0 and m=exp(Xi+X 2) 

in M'. Moreover since maximal abelian subspaces of m(a) n q are con­
jugate under the action of Ad exp (m(a) n g), we can find a X0 in m(a) n g 
such that Ad exp (x 0)X2 et. Hence exp (X0)mexp (-Xi) exp (-X 0) e 
exp tin M' and the element z=exp (X0)m exp (-Xi) exp (-X 0) of M(a) is 
contained in Hn Z(Ap)exp t. Therefore we have me (M(a) n H) 0zx 
(M(a) n H) 0 , which equals z(M(a) n H) 0 because (M(a) n H) 0 is a normal 
subgroup of M(a) n H. Thus we can conclude that the left hand side 
of (4.11) is contained in the right hand side of (4.11). The converse 
inclusion relation is obvious. Q.E.D. 

The author obtained the following lemma and Proposition 4.8 in co­
operate with J. Sekiguchi and H. Midorikawa. Hence the author expresses 
his gratitude to them. 

Lemma 4.7. lfG is a simple Lie group, then the dimension of any 
irreducible representation belonging to Ille equals one. 

Proof. We assume k= 1 without loss of generality. First we remark 
that if G is a real form of a complex Lie group G0 , the lemma is clear be­
cause J is abelian. . Hence we may assume that G is not isomorphic to a 
real form of a complex Lie group. 

Let G be the universal covering group of G and TC the natural projec­
tion of G onto G. Let Z, be the subgroup of the center of G such that the 
Lie group G,= G/Z, is isomorphic to a real form of a simply connected 
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complex Lie group. The involution a of the Lie algebra g defines involu­
tions on G and G ., which are denoted by the same letter a. Moreover the 
fixed point group G" of G with respect to a is known to be connected. 

Now consider the case where G has a finite center. Then it is known 
that z.::::.Z2• Put Z,={e, z}. Since Z, is a-stable, a(z)=z. Let[; be an 
irreducible representation of ]belonging to a class in Il 1• Then[; naturally 
defines an irreducible representation of rr-1(]), which will be denoted by(. 
Since 1e-1(H) contains the analytic subgroup of G with the Lie algebra fj, 
1r-1(Jn H) contains Z, and therefore t has a non-zero vector fixed by Z,. 
This means that t \ z. = id and that ( induces an irreducible representation 
of the abelian group l/Z,. Hence t and[; are one-dimensional representa­
tions. 

Next consider the case that G has an infinite center. Put f' = [f, f] and 
let c1 denote the center of f. Then it is known that the analytic subgroup 
K' of G, with the Lie algebra f' is simply connected and therefore K' is 
identified with the analytic subgroup of G. Let rr, be the natural projection 
of G onto G,.Let z1 and z2 be arbitrary elements of 1r-1(Z(Aµ)). Then there 

. exist X 1 e Ci and k 1 e K' such that z 1=k 1 exp X 1 in G for j= 1 and 2. 
Since 1r,(1r-1(Z(Aµ))) is abelian, k 1k 21e, (exp X 1)1e, (exp X2)= 1e,(k1 exp X 1)1r, · 
(k2 exp X2)= 1r,(k2 exp X 2)1e,(k1 exp X 1)=k 2k 11e, (exp X2)1r.(exp X 1) and there­
fore k 1k 2=k 2k 1 and z 1z2=z 2z 1• Thus we see that 1r-1(Z(Aµ)) is abelian and 
so is Z(Aµ), Since l=Z(Aµ) exp i, J is also abelian and the lemma is clear. 

Q.E.D. 

As a corollary of the proof of Lemma 4. 7 we have 

Proposition 4.8. Let (g, fj) be a symmetric pair with a real simple Lie 
algebra g and let a be the corresponding involution. Suppose the center of a 
a-stable maximal compact Lie algebra t is zero or contained in q. Let Ge 
be a simply connected Lie group with the Lie algebra g and let G and H be 
the analytic subgroups of Ge with the Lie algebra g and q, respectively. Then 
G/H is simply conneted. 

Proof Use the notation in the proof of Lemma 4.7. Then G/G" is 
simply connected and G· is connected. First suppose f is semisimple. If 
G is isomorphic to G, we have nothing to prove. Therefore we suppose 
moreover that G is not isomorphic to G. Then G/Z.:=.G and Z,cG•. 
This implies G"/Z.:=.Hand G/H:=.G/G", which is simply connected. Next 
suppose the cener Ci of f is not zero and c1cfj. Then K/(Kn H):=. 
K' /(K' n H). Since K' is simply connected, so is K' /(K')" and the group 
(K')"={g e K'; a(g)=g} is connected. Hence K'nH=(K')". On the 
other hand K/(Kn H) is homotopic to G/H (cf. [BJ), it is also simply con­
nected. Q.E.D. 
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Proof of Theorem 4.5. We may assume k= 1 without loss of gener­
ality. Let (r, E,) be an irreducible representation of M(a) belonging to a 
class in II 1• Let E?' be the space of vectors in E, fixed by M(a) n H and 
let p 0 be the projection of E, onto the space E: of highest weight vectors 
of the representation of M(a) 0 • Since the map p 0 commutes with the 
action of 1:(j), each element of po(E;') is fixed by 1:(jn H). 

Put E,= E;/f) · · · if)E;". Here E! are M(a )0 -invariant minimal non­
trivial subspaces, 1: IE! are equivalent to d~ and n= dim 00 under the 
notation just before the theorem. Then po(E!)CE!. Let (, ) be the inner 
product on E, so that 1: I M(a) is unitary. If ui is a non-zero vector fixed 
by (M(a) n H) 0 and vi is a non-zero vector in E! n E:, then ui and vi are 
unique to within scalar factors. Moreover we have (ui, vi)=i=O (cf. the 
proof of [W, Theorem 3.3.1.1]). Hence po(ui)= C1,vi with suitable non-zero 
Ci EC for i= 1, · · ·, n. Thus p 0 I E1; is injective and the map wk in the 
theorem is well-defined. On the other hand it is clear that the map wk is 
injective because (1: I j, E:) determines the representations 00 and d~. 

Let (C, E) be an irreducible representation of j which belongs to a 
class in II~. Since j = Z(Av) exp i, we can find an irreducible representation 
(f, E) of Z(Av) X M(a) 0 exp j such that the space of highest weight vectors 
of (f I M(a) 0 , E) coincides with E and that f g(v)= Cg(v) for any g E Z(Av) 
U exp f and any v EE. Leto E Z(Avf" and d~ E M(a)';; such that f belongs 
to the class (o, d~) E Z(Avf'XM(a);;-:::::::(Z(Aµ)XM(a) 0 )~. Put Z'= 
{(g1, g2) E Z(Aµ) X exp j; g1g2 = e}. Since the element of E is fixed by f g 

with any g E Z', any element of Eis fixed by Z' (cf. Lemma 4.4). Hence 
(f, E) induces an irreducible representation of M(a), which we will denote 
by (1:, E). Next we will prove that (1:, E) has a non-zero (M(a) n H)-fixed 
vector. The proof of [W, Theorem 3.3.1.1] says that there the representa­
tion of M(a) 0 belonging to d~ has a non-zero (M(a) n H) 0 -fixed vector 
unique up to a scalar factor. By the same reason for the injectivity of p 0 

the map 

(4.12) ff 
llJ llJ 

V ~s 'C ,JV )dh 
(M(a)nH)o 

is also injective, where dh is the normalized Haar measure of (M(a) n H) 0 • 

Let z e Hn Z(Aµ) exp j and let v be a non-zero element of E fixed by 
jn H. Since the map (M(a) n H) 0 => h>4h'=zhz- 1 defines an automorphism 
of(M(a)nH) 0 and dh=dh', we have 

1:z(PH(v))= f 1:z1:,Jv)dh= f 1:h,1:.(v)dh'= f 1:",(v)dh'=PH(v). 
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Moreover since PH(v) is also fixed by (M(a) n H) 0 , it follows from Lemma 
4.6 that .E has a non-zero vector fixed by M(a) n H. 

Thus we have proved that the map wk is bijective and moreover that 
[-r\M(a)nH: l]=[wk(r)\JnH: 1] for any-re Ilk. To complete the proof 
of the theorem, it is sufficient to show 

(4.13) [C\JnH: 1]<2 for any C e ]"'. 

Let G be a covering group of G such that a can be lifted to an involution 
of G and let n be the projection of G onto G. Since any C e J"' naturally 
defines an element ~ e rr-1cJr and [C\JnH: l]=[~\rr- 1(JnH): 1], we 
have only to show that [C' \ n- 1(]) n G ~: 1] <2 for any (' e (rr-1(]))"' where 
G ~ is the analytic subgroup of G with the Lie algebra fj. Let g = g1 + ... 
+ gN be the decomposition of g into simple Lie algebras and let Gi be the 
analytic subgroup of G with the Lie algebra g, for any i= 1, ... , N. 
Putting G = G 1 X · · · X G N• we can reduce the proof of ( 4.13) in the case 
when (g, fj) is an irreducible symmetric pair. If G is simple, then Lemma 
4.7 gives the proof. Hence assume (G, H) is irreducible and G is not 
simple. Then G= G' X G' and we can assume a(g 1 g2)= (g2, g1) for (g1, g2) 

e G'X G'. Thus l=l 1 xJ 1, Jn H ={(g, g); g e J'} with a Cartan sub-
group J' of G' and therefore (4.13) is clear. Q.E.D. 

Put J K = J n Kand 

(4.14) IIK,k={C E If{; [C!lKn w,;1Hwk: l]>O and 

(d(, a) >0 for all a e l'(j):}. 

Then we have the natural isomorphism II;:::: II K,k X a; because J = 
J x exp aP. Here d( is the element of (inf); corresponding to C in (4.14). 
Now we have 

Theorem 4.9. ( i ) Let m be a positive integer. Then the restrictions 
of representations to subgroups induce the bijective maps between the fol­
lowing sets of equivalence classes of representations: 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

{o EM.; [o\M.nH: l]=m}. 

{o E iK(a); [o\Zx(a)nH: l]=m}. 

{o EM; [o\MnH: l]=m}. 

{o E M(a): [o\M(a)nH: l]=m}. 

Moreover restricting to the space of highest weight vectors with respect to 
l'(i)t, the above sets are isomorphic to 
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(4.19) 

(ii) The sets in (i) are empty ifm>l. 
(iii) The statements in (i) and (ii) also hold even if we replace H by 

w1/Hw1<for k=l, · · ·, r. 

Proof Note that M.=M(a)G(a), M(a)CMCZx(a), G(a)CH and 
G(a) is a normal subgroup of M •. Then the theorem follows from Lemma 
4.4 and Theorem 4.5. Q.E.D. 

We are going to define another realization of principal series for G/ H 
as G-submodules of 81(G) which we will relate to G-modules constructed 
in Section 3. Let (1:, E,) be a representation of P. belonging to a class in 
Ilk and X, the corresponding character. We fix a Hermitian inner product 
(,) on E, by which 1: I M(a) is unitary. Let fr*, E,) be the contragr.adient 
representation of (1:, E,). Then 

(4.20) 81(G/P.; V,)={ ~ J;®v,;J; e 81(G), v, e E, and 
finite sum 

~J;(g)®v,= ~J;(gx)®T_,,(v,) for any g e G and x e P.} 

by definition. We fix an (M(a) n w;;1Hw1<)-fixed vector u, so normalized 
that (u,, u,)= 1 and we define the G-homomorphism 

(4.21) p~: 81(G/P.; V,)~81(G) 
w w 

~J;®v, ~ ~(v,, u,)J;. 

Put Q1<=(M. n w;/Hwk)A.N. and define a G-submodule of 81(G): 

(4.22) 8l(G/Q1<; L,)={f e 81(G);f(g)=X,(e)f f(gm)X,(m)dm and 
M(u) 

f(glum)= f(g)aµ-p for any he M. n w;;1Hw1<, a e A. and n e N.}, 

where the elementµ eat is determined by 1: through (4.5). Then we have 

Theorem 4.10. The map p~ induces the isomorphism between G­
modules: 

(4.23) 

Its inverse is given by 

w w 

f(g) ~x,(e) f f(gm)®Tm(u,)dm. 
M(u) 
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Here dm is the Haar measure on M(a) with f dm= 1. 

Proof Let L.,_h,(i)vi E /!J(G/P.; V,). Then for any g E G, h E M(a) 
n w·i/Hwk, x e Gta), a e A. and n e N., we have L., (vi, u,)J;,(ghxan)= 
L., (-r (lixan) -1(Vt), u,).f;,(g )= L.,_(-Z-1iu,xan)-,(Vt), -r ,,.tu,))J;,(g) = aµ-p L.,(Vi, u,)J;,(g). 
Moreover we have 

f L., (vi, u,).(;(gm)X,(m)dm= f L.,_(-Z-m-1(Vt), u,).{;(g )X,(m)dm 

= L.,(f x,(m)-rm-1(vi)dm, u,)J;,(g) 

=X,(e)- 1 L.,(Vt, u,)J;,(g). 

Hence we see that the image of p: is contained in /!J( G/ Qk; L,). 
Fix an orthonormal basis u1, • • ·, ud of E, with u1 = u •. Here d= X,(e). 

Put Mk=M(a) n Wi;1Hwk for simplicity and put at/m)=(-rm(ut), u1 ) for 
me M(a) and i, j= 1, ... , d. Then by the Peter-Wey! theory we have 

at/m)= aJ;(m-1), 

if (i, j)= (s, t), 

if (i, j) * (s, t) 

and since it follows from Theorem 4.5 that any (M(a) n Wi;1HWk)-fixed 
element of E, is a scalar multiple of u1, we have 

for i= 2, · .. , d. Here dh is the Haar measure on Mk with f dh= 1. 

Let L.,_h,(g)(i)ui be any element of /!J(G/P.; V,). Then 

q: 0 p~(L.,J;,(g )0ui) = d f L., (ui, u1)J;,(gm)®-rm(u1)dm 

= dL.,_J;,(g) 0 fc-rm-,(Ut), u1)-rm(u1)dm 

= dL.,th(g)(i) f ati(m- 1)L.,_Ja1JuJdm 

=dL.,t,JJ;,(g)®(f a1;(m)a1/m)dm )u, 

= L.,h,(g)®ut. 
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On the other hand for any f(g) e P.B(G/Qk, L,) and 1 <i<d, we have 

J f(gm)au(m)dm=J J f(gmh)a;tCmh)dmdh 
M(u) Mk M(u) 

=J f(gm)dmJ au(mh)dh 
M(u) Mk 

=0 

and therefore 

p~ o q:(f)= p~( d J f(gm)®1:m(u1) dm) 

=dJJ(gm)(1:m(u 1), u1)dm 

=dJJ(gm)a 11(m)dm 

=dJJ(gm)(a 11(m)+ · · · +a,l,d(m))dm 

= d J f(gm)X.(m)dm 

=f(g). Q.E.D. 

Since the G-module P-B(G/Qk; L,) is determined by the class t e Ilk 
containing 1:, we sometimes write P.B(G/Qk; L,) or P.B(G/Qk; L,) in place of 
P-B(G/Qk; L,), where (=wit) e II~. We sometimes fix a representation be­
longing to each class in II 1c and identify them. For any (: e II~ let d(;' be 
the element of i: under the notation in Theorem 4.5. Then clearly d(;' e i: 
and we can define the map 

(4.25) IJ~--:,.i: 
w w 
(;' i-:,.d'(;'= -d(;'-2plt.+p. 

Now recall the notation in Section 3. Here we are concerned with 
compact boundary components of G/H. Hence we put e=0=(0, · · ·, 0) 
e {-1, 0, 1}1• Then M,=M., M:=M.n»r;;1Hwk, A,=A., N,=N., P: 
=Qk, i,=a, j(e)=t and x:=G/Q1c, In this case the isomorphism (3.3) 
becomes 

(4.26) 

Let J' be any finite codimensional ideal of D(Xl) and letµ be any element 
of a:. We consider the system of differential equations 
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(4.27) .,,It': Du= 0 for all De J' 

on !JB(Xt; Lµ) as in Section 3. We put 

(4.28) V(.,,1/')={~ et;; ti(D)(~)=O for any De J'}. 

Then V(.,,1/')X{µ} is a finite subset oft;xa;:::::j; and we have 

Theorem 4.11. Under the above notation the G-homomorphism 

(4.29) EB 
CE llf,,d'C E V(.d') X {µ} 

IJJ IJJ 

(/4) f-----+ f = "E,f, 

is well-defined and bijective. The inverse map is obtained by 

IJJ IJJ 

f(g) c-----+(rHf))(g) =Xc(e)f f(gm)X,(m)dm. 
M(a) 

Here x, is the character of the representation of P. which corresponds to 
( e ll~::::::llk by Theorem 4.5. 

Proof The space !JB(K) of hyperfunctions on K has a natural 
topology as the dual of the space d(K) of real analytic functions on K 
and any ,Jr e :JB(K) has the expansion 

,Jr(g)= I:, X.(e)f ,Jr(gm)X.(m-1)dm 
oEM(a)" M(a) 

in this topology. Here X6 denotes the character corresponding to o E 

M(a)". Considering the restriction on K, :JB(Xt; Lµ; .,,It') is identified with 
a closed subspace of :JB(K). 

Let.f E !JB(Xt; Lµ; .,,It'). Then 

(4.30) if= L, f. 
liEM(a)" 

f.(g)=X.(e)f f(gm)X.(m- 1)dm. 
M(a) 

Since f f(gmh)X.(m- 1)dm = f f(gm)X.(hm- 1)dm = f f(gm)X.(m- 1h)dm for 

any~h e M(a) n Wi;,1Hwk, we have 

f.(g)=X.(e)f f(gm)rp.(m- 1)dm 
M(a) 
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with 

and fo=¢,=0 if [o\M(a)nw;;-1Hwk: 1]=0. Moreover for any De 
U(m(a))m<•)n!J we have 

(Dfo)(g)= X.(e) f f(gm)(Dep 0)(m- 1)dm. 
M(a) 

Sopposefo:-"t:0. Now we apply Lemma 4.12 to Depa, Lemma 4.12 
can be obviously extended to the case where G is a compact connected 
Lie group and moreover to the case where the symmetric pair in the lemma 
equals (M(a), M(a) n w; 1Hwk) because M(a)= Z(AP)M(a) 0 and Z(Ap) 
centralizes M(a) 0 • Owing to Lemma 1.5, Lemma 2.1 and Lemma 3.1, we 
have Depa= t~(D)(do+ p \ ±Jepa for any 

De U(m(a))m<•Jn!J/(U(m(a))mca)n!J n U(m(a))(m(a) n lj))::::D(Xo), 

where doe t; is the highest weight corresponding to o. Hence DJ= 
L'.t~(D)(do+p\±c)h for any DE D(Xf). 

By the uniqueness of the expansion (4.30), we can conclude that 
fo=O if [o I M(a) n w; 1HW1c: 1] = 0 or do+ p I tc $ V(.,11'). Now if 'E II~ 
(::::Il1c::::M(a)';;x a;) corresponds to (o, µ) e M(a)"'X a;, then X_(m)=Xa(m) 
for any me M(a) and therefore rt(f)= Jo •. Moreover it is easy to see that 
rt o rt=rt and rt o rt,=O if l;=t:I;'. Hence the theorem is clear Q.E.D. 

The following lemma used in the above proof is well-known. But we 
will give its proof in order to formulate it in our notation. 

Lemma 4.12. Suppose that G is compact and G/H is a compact sym­
metric space. Leto e G with [o \ H: l]=t:O and let Xa be the corresponding 

character. Then the zonal spherical function epa(g)= f xa(gh)dh satisfies 

(4.31) Dep.= 'i(D)(do+ p I ±c)epa for any De D(G/H). 

Here dh is the Haar measure on H with f dh= I and do e i; is the highest 

weight corresponding to o. 

Proof First we remark ±=i and doe r-T ±*. Let (tr, E) be a re­
presentation of G belonging to o and fix a Hermitian inner product ( , ) 
on E such that (tr, E) is unitary. Let u1, • • ·, uN be an orthonormal basis 
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of E such that u1 is a H-:fixed vector and let u0 e Ebe the highest weight 
vector with respect to 2(j)+. Let G0 be a complex Lie group with the Lie 
algebra g0 such that G is a maximal compact subgroup of G0 • Recall that 
n0 is a nilpotent subalgebra of g0 corresponding to 2(i)+ and fl 0 =a(n 0) 

(cf. §2). Moreover we remark that if X1+f=-IX 2 e n0 with elements X 1 

and X2 of g, then X1-.f=TX 2 e fl 0 • 

Put ,Jro(g)=(11:g(u1), u0). Then ,Jr6(g) is extended to a holomorphic 
function on G0 , which is denoted by the same letter, and we have 

,J,6 (exp (X) exp (Y) exp (Z))=exp do(U) 

for any Xe fl 0 , Ye tc and Z e ij. because do(- U)=do(U) if U et. Hence 
forD e U(g) we have (D,Jr.)(exp (X) exp (Y))=r(D)(d'o),J, 6 (exp (X)exp(Y)) 
by putting d'o=do+plt •. Therefore if De U(g)\ we have (D<j>.)(z)= 
r(D)(do),Jra(z) for any z e {exp (X) exp (Y) exp (Z); Xe fl 0 , Ye t 0 and Z e 
lj0}. Hence D,Jr0 ='t(D)(d'o),Jr0 for any De D(G/H) because it holds on a 
neighborhood of the identity in G0 • 

Now we remark that <j>J(g)=(11:g(u1), u1). Since u1 e Z:xeaCrrxuo, <J>lg) 
belongs to the C-linear span of left translations of ,Jra(g) by x e G. Hence 
D<J>0='t(D)(d'o)<j>6 for any De D(G/H). Q.E.D. 

We have a direct consequence of Theorem 4.11 : 

Corollary 4.13. For an element (r;, µ) e t! X at we de.fine the system 

JV~: Du= t~(D)(r;, µ)u for any D e D(Xf) 

of differential equations on f!l(Xf; Lµ). Moreover putting 

5IB(t)t={r; e .f=Tt*; (r;, a) >Ofor any a e 2(j)+ and exp (r;-p, Y)=O 

for any Ye t satisfying exp Ye w; 1Hwk}, 

we have 

EB f!l(Xf; Lµ; JV;)~f!l(Xf; Lµ; vii'). 
~EV(.,1')nWl(t)t 

Especially f!l(Xt; LP; vlt')={O} if V(vlt') n 5IB(t)t= 0. 

Remark 4.14. By a theorem due to E. Cartan and S. Helgason (cf. 
[W, Theorem 3.3.1.l]) the condition r; e V(vlt') n 5IB(t)t implies that 
(r;-p, a)/(a, a) is a non-negative integer for any a e 2(i)t. 

Finally we give the following theorem which was announced in [01] 
and [02]. 
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Theorem 4.15. Let J be a finite codimensional ideal of the ring 
D(G/H) of the invariant differential operators on G/H and let :!J(G/H; JV) 
be the space of hyper/unction solutions of the system 

JV: Du=O for all DE J 

on G/H. Then there exist finite elements -z-1, · · ·, "NE fl~ and G-invariant 
subspaces V(O), · · ·, V(n) of :!J(G/H; JV) such that V(O) = {O}, V(N)= 
:!J(G/H; JV) and that the quotient space V(i)/V(i- l) is G-isomorphic to a 
G-invariant subspace of the principal series :!J(G/P,; V,,) for any i E 

{I, ... , N}. 

The above theorem is easily obtained by combining Remark 3.4, 
Theorem 4.10, Theorem 4.11 and Corollary 4.13. Much more explicit 
imbedding theorem will be given in [05]. 

Remark 4.16. When we consider the space of K-finite solutions of 
JV in Theorem 4.15, we conclude that the space is a Harish-Chandra 
module and every irreducible subquotient of the Harish-Chandra module 
is a submodule of the Harish-Chandra module corresponding to a certain 
principal series for G/H. This is clear because the principal series for G/H 
is a G-invariant subspace of a usual principal series for G. 

In the case when the center C of G is infinite and #(C/Cn H) is also 
infinite, the space of K-finite solutions of JV in the above statement should 
be replaced by U(g)-module V generated by a K-finite solution of JV. In 
fact, in this case, the left hand side of (4.29) is an infinite direct sum. But 
since the K-type of Vis discrete, only the finite summands are related to 
V and we have the same statement for V even if C is infinite. 

Remark 4.17. Let G' be a connected real semisimple Lie group. Put 
G=G'XG', a(g 1,g 2)=(g 2, g1) and H={(g, g) E G; g E G'}. Then the sym­
metric space G/H is naturally identified with the group manifold G'. We 
call this case a group case. 

Then M(a)=M'XM', G(a)={e}, A.={(a, a- 1) E G; a E Av} and N.= 
{(n, 6'(n)) E G; n EN'}. Here G'=K'AvN' is an Iwasawa decomposition 
of G', 6' is the corresponding Cartan involution of G' etc. We denote an 
object for G' by the symbol with dash of the corresponding object for G. 
An irreducible representation of M with a non-zero (M(a) n H)-fixed 
vector is a direct tensor product of an irreducible representation ~ of M' 
and its contragradient representation ~*- Hence the representation of G 
belonging to the principal series for G/ His identified with the representa­
tion of G' X G' induced from the representation 
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-r((man, m'a'n') E ~(m)a1-p'~*(m')a 1 -w*,-p' 

for (m, a, n, m', a', n') E M'XAvXN'XM'XAvXN' 

of P'XP'. Here~ is an irreducible representation of M', A is an element 
of (a;); and w* is the longest element of the Weyl group of the symmetric 
space G'/K'. Hence the representation is the direct tensor product of a 
representation belonging to the principal series of G' and its contragradient. 
We remark that we consider both left and right actions of G' on the func­
tions on G'. 
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