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§ 0. Introduction

A homogeneous space G/H is called a semisimple symmetric space if
G is a real connected semisimple Lie group and there exists an involution
of G such that H is an open subgroup of the fixed point group of the in-
volution. The most fundamental problem on the harmonic analysis on
G/H is to give an explicit decomposition of L*(G/H) into irreducible
representations of G, that is, to get a Plancherel formula for L*G/H).
Here L*(G/H) is the space of square integrable functions on G/H with re-
spect to the invariant measure. In [O3] I proposed a method to obtain
the Plancherel formula. The method explained there works well for the
most continuous spectra on L¥G/H) with respect to the ring D(G/H) of
invariant differential operators on G/H, and the Plancherel measure for
the spectra is expressed by “c-function” for G/H which is explicitly calcu-
lated by the method in [O3, §8], where G?¢/H? should be corrected to
G¢/K?%. Comparing to the continuous spectra, the discrete spectra (the
discrete series for G/H) are not easy to analyse by the method mentioned in
{03, §9] and it is hard to get the precise parametrization of the discrete
series or to investigate its structure especially in the case when the sym-
metric space is not a K,-type. On the other hand, by using Flensted-
Jensen’s duality method, we can directly study the discrete series and in
fact we get sufficient informations to analyse the discrete series ([F] and
[MO] etc.). Applying the usual method of parabolic induction for repre-

Received May 30, 1987.



604 T. Oshima

sentations of G to these extreme types of spectra, we can get all the spectra
and finally the Plancherel formula for L*(G/H). We will explain and prove
it in subsequent papers.

In this paper, we study and give a proof of the results explained in
[03, §3, §4 and §5]. In [OS2] we have already studied the structure of
root spaces which are related to the symmetric space and it covers the
statements in [O3, §2].

In this paper we assume that the center of G is finite for simplicity.
This assumption is not serious in our arguments and even without the as-
sumption almost all theorems here are still valid together with their proofs
but some theorems should be modified. For example, the manifold ¥
constructed in Section 1 may be non-compact and Theorem 4.11 may have
no natural meaning because the left hand side of (4.29) may be infinite sum
(cf. Remark 4.16 in this case). These two are the only main differences.

In Section 1, we construct a compact G-manifold X which has finite
G-orbits and all the open G-orbits are isomorphic to G/H. The orbital
structure of X is of normally crossing type and every invariant differential
operator on the open orbit can be analytically extended to an element of
the ring D(X) of invariant differential operators on X. The method of
the construction is same as that in [O1] (cf. [Sc]) which constructs X when
G/H is a riemannian symmetric space. Some cases are also considered in
[Ko] and [Se]. = A different realization for some series of semisimple sym-
metric spaces (which we call K,-type) is studied in [OS1] and in the complex
category a similar compact G-manifold is constructed in [CP] by a little
different method.

We identify G/H with an open G-orbit in X, fix a finite codimensional
ideal J of D(X) and consider the space S of hyperfunctions on U which
are killed by J, where U is the intersection of G/H and an open subset of
X containing a boundary point of G/H. Then in Section 3, uisng the
results in [0O4], we define boundary value maps of the space S to the spaces
of hyperfunction-valued local sections of certain line bundles over the
boundary components. Here the boundary components mean the G-orbits
contained in the boundary of G/H in X and the maps commute with the
infinitesimal actions induced by G. If an element f of S is ideally analytic
at a boundary point of G/H, f'is expressed as a sum of convergent serieses
(cf. (3.8)). If an element f of S is left K-finite, then f is automatically
ideally analytic at any boundary point and this expression is studied by
[H3] and [CM] in a group case and by [Ba] in a general case.

The images of the boundary value maps satisfy induced systems of
invariant differential equations which are given in Section 2. The study of
the images of the boundary value maps with respect to compact boundary
components, which we call distinguished boundaries, lead us to the
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concept of (most continuous) principal series for G/H. We define it in
Section 4 and study its properties. For example, it is proved that any
irreducible subquotient of a Harish-Chandra module realized in a function
space on G/H is imbedded in a suitable Harish-Chandra module belonging
to the principal series for G/H (cf. [De]). A multiplicity free theorem
(Theorem 4.5) was obtained after [O3] was written, which is clear if G is
linear. This enables us to have a different definition of the principal series
as in Theorem 4.10. This is the reason why I assumed that G is linear in
[O3].

If G/H is a group manifold, the principal series in Section 4 is naturally
identified with the usual principal series of the group which is defined by
[Hal] (cf. Remark 4.17). Some applications to this case will be discussed
in other papers.

8§ 1. Construction of a compact imbedding

Let G be a connected real semisimple Lie group with finite center and
let ¢ be an involutive automorphism of G. Put G°={g e G; a(g)=g} and
let H be a closed subgroup of G with G72C HC G, where G? denotes the
identity component of G’. In this section we construct a compact G-
manifold X without boundary such that an open G-orbit in X is isomorphic
to the semisimple symmetric space X defined by X=G/H.

First we give some notation concerning the symmetric pair (G, H) as
in [0S2]. Let K be a g-stable maximal compact subgroup of G and let 4
denote the corresponding Cartan involution. The involutions of the Lie
algebra g of G induced by ¢ and 6 are denoted by the same letters, respec-
tively. Let g=Y%-+q (resp. £+ D) be the decompositions of g into +1 and
— 1 eigenspaces for ¢ (resp. §). Fix a maximal abelian subspace ain p( g
and let a* denote the dual space of . Fora e a*, putg’={Yeg;[Z, Y]
=2(Z)Y for any Z e a}. Then the set ¥={1 ¢ a*; g*{0}, 15~0} defines
a root system with the inner product induced by the Killing form ¢ , > of
g, and the Weyl group W of X is identified with the normalizer N (x) of
a in K modulo the centralizer Z .(a) of a in K. (Cf. [Ro], [OS2], [Sc] etc.)
On the other hand the normalizer Ny, (@) of ¢ in KN H modulo the
centralizer Z . x(a) of a in KN H is denoted by W(a; H), which is a sub-
group of W. For each element w of W we fix a representative w in N (a)
so that w € Nyqg(a) if we W(a; H). Choose a fundamental system &=
{aty, -+ -, a;} of 2, where the number /=dim a is called the split rank of
the symmetric space X, and let ¥+ denote the corresponding set of all
positive roots in 3. Let P, denote the parabolic subgroup of G with the
Langlands decomposition P,=M_,A,N, so that M,A, is the centralizer of
a in G and the Lie algebra n,of N, equals >, »+a%
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Now we introduce a product manifold ¥=GXR'X W. Let x=
(g, 1, ) be an element of X. Then we put sgn x=sgn ¢, which is an ele-
ment of {—1,0,1}*. Here sgnt==(sgnt, ---,sgnt) with r=(t, -- -, £,
e R! and for an s ¢ R we define sgns=1 (resp. — 1, 0) if s >0 (resp. s <0,
s=0). Moreover we put O,={a;; t;7-0} and 2, = ,c0, R)(1 2 and
denote by W, the subgroup of W generated by reflections with respect to
a in @, Then we define a parabolic subalgebra

. Pe=(m,+ 0,4+ er, 89+ D ncs+-5,0"

of g and its Langlands decomposition p,=m,+a,+1n, so that a,Caq,.
The corresponding parabolic subgroup of G is denoted by P, and P,=
M_,A,N, is the corresponding Langlands decomposition of P,. Then it is
clear that P, is the closure of P,W P, in G. Moreover we define a closed
subgroup P(x) of G by

(1.2 P(x)=(M,NwHw)A,N,
and put
(1.3) a(x)=a(t)=exp (— 2., log|t,| H)).

Here and hereafter {H,, - - -, H,} denotes the dual basis of the fundamental
system ¥, that is, H; ¢ a and «,(H,;)=0,, for i, j=1, . .-, L

Definition 1.1. We say two elements x=(g, ¢, w) and x’=(g’, ¢/, w’).
of X is equivalent if and only if the following three conditions hold:

(1) sgnx=sgnx’.
(i) W(a; HywW,=W(a; Hyw'W,..
(i) ga(x)P(x)=g'a(xYM,Nw Hw)A,N,.

Lemma 1.2. Let x=(g, t, w) and x'=(g’, t’, w') be elements of X
with sgn x=sgn x’. Then we have

(1.4) W,=W,..

Suppose x and X' satisfy the above condition (ii). Then there exist
u, v e Wia; Hy and v, v' € W, and m, m’ e Z (a) with awom=u'w't'm’.
In this case we have

(1.5) (Um)~'P(xX)om=(0'm’')" ' P(x"Yo'm’
and the condition (iii) in Definition 1.1 is equivalent to

(1.6) ga(x)P(x)om=g’a(x"P(x0'm’.
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Proof. The first statement (1.4) is clear by definition and therefore
the existence of u, v/, v, v/, m and m’ with the condition in the lemma is
also clear. Since T, U/, m, m’ € M, and u, v’ ¢ H, we have (vm)~*(M,N
wHWYOom= M, N (Om) " '‘wHwom=M,N (@ ‘@wv'm’) Ha ‘' wv'm =
M NWOm)  Hw'o'm' =0'm') (M, N w'Hw)v'm’, which means (1.5).
In the same way we have P(x")o'm/(Tm) ' =v'm/(tm)'P(x) =(M,N0'm’-
@m)" W Hw)A,N, =M, N Ww) '‘uHw)A,N,=(M,N W *Hw)A,N, and
therefore the last statement in the lemma is clear. Q.E.D.

This lemma assures that Definition 1.1 really gives an equivalence
relation, which we write x ~x’. The quotient space of X by this equiva-
lence relation is denoted by X and becomes a topological space with the
quotient topology. Let z: X—X be the natural projection. Then an
action of G on X is defined by g,z(g, t, w)=r(g,g, t, w) for g, e G.

Remark 1.3. (i) The map = is factorized into the natural projection
of X onto the product space G X R'X (W(a; H)\W) and a map # of this
space onto X.

(i) If X is a Riemannian symmetric space of the non-compact type,
then H=K, W(a; H)= W and therefore the G-space X is isomorphic to
the G-space constructed in [O1] (or in [Sc, Chapter 4]) but not isomorphic
to the one in [OS1, Chapter 2].

To define an analytic structure on X we prepare some notation. Let
a, be a maximal abelian subspace of p containing a and let 3(a,) be the
restricted root system corresponding to the pair (g, a,). Then the Weyl
group W(a,) of 3(a,) is isomorphic to the group N(a,)/M, where N(a,)
(resp. M) are the normalizer (resp. centralizer) of a, in K.

Lemma 1.4 ([OS2]). (i) «a, is g-stable.

(ii)  W(a)&(Ng(a,) N Ng(@)/(Nx(a,) N Z (a)).

@iii) Wi(a; H)‘:(NKnH(ap) N NKnH(a))/(NKﬂH(ap) NZ gau(®),
SN g na2(@)/(N e z(@) N Z g 2()).

Proof. (i) Let Yea, Then [¢Y, a]=0[Y, a(a)] =alY, a] = {0}.
Hence the element ¢ Y — Y of p (N q centralizes a, which implies¢Y—Y e a
because a is a maximal abelian subspace of pNq. Therefore ¢Y e a,.

(i) We will show that any w e W has a representative g in Ng(a,) N
Ng(a), which implies (ii). Put aj=Ad (w)(a,), p'={Y e p; [¥, Z]=0 for
all Zea} and G'={ge G; Ad(g)(Z)=Z for all Ze a}. Since a, and a;
are maximal abelian subspaces of p’ and G'=Z(a)exp p’ is a Cartan de-
composition of the reductive group G’, there exists an element z of Z . (a)
with Ad (z)(a;)=a,. Then g=zW is a required representative of w.
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(iii) Replacing G and 9 by H and HNp, we can prove the first
isomorphism in the same way as in (ii). Let g e Ng,x(a,). Then a,=
Ad (g)()=Ad (g)(a,Nf+a). Since Ad(g)(a,NH)CY and Ad(g)(@) g,
we have Ad (g)(a)=a,N:q=a. This means the second isomorphism in (jii).

Q.E.D.

Lemma 1.4 assures that we can assume that the representatives w of
the elements w of W satisfy Ad (W)(a,)=a,. Let g(o) be the reductive Lie
algebra generated by {g(a,; 2); 1 € X(a,) with 2|a==0}, where g(a,; )=
{Yeg;[Y, Z]=A(Z)Y for all Ze a,}, and put m(o)={X e m,; [X, Y]=0
for all Y e g(o)}. We denote by G(s) and M(c), the analytic subgroups
of G corresponding to g(¢) and m(e), respectively, and put

M(o)=M(s), Ad;' (Ad (K) Nexp (ad (v — 1a,))).

Then the representative w normalizes G(s) and M (¢) for any w ¢ W and we
have the following lemma from [OS2, Lemma 8.12] (M (¢)=U(e)M°T°Z"°
under the notation there).

Lemma 1.5. (i) m,=ni(o)+g(o)
and this is a decomposition into the direct sum of ideals of m,.
(ii) Ge)CH and M(g)C M.
(i) M,=M(@)G(o).
(iv) M, /[(M,Nw  Hw)y<M/(MNw 'HWw)
M@/ (M) w Hw).
We put

awzzajGGxRHj’
a,=(,NY+> er-o, RH,,
ax)={Yea;{Y, Zy=0 forall Ze a,},

n(x) = Zae E;’gaa
n,=0(n,), n;=~0mn, and nx) =4n)).

Then a, is the Lie algebra of 4, and the following
1.7 a,=a’+a,=ax)+a,,
(1.83) n,=n(x)+1n,

are decomposition into direct sums and we have
(1.9) <az, a(x)y=0,

(1.10) [n(x), n]Cn,.
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Let A%, N(x), N;, N; and N(x)~ be the analytic subgroupé of G corre-
sponding to a”, n(x), n;, n; and n(x)-, respectively. Then we have

Lemma 1.6. Fix an element x= (g, t, w) of X and consider the map

P N7 X (M(a)/(M (o) N O~ 'w Hwo) X A*)—>G/P(x)
(n, m, a) ;——>gnu;ﬁaz7—‘P(x)

Jor any ve W,, where m e M(o) is a representative of m.

(i) The map p}, is well-defined and gives an analytic diffeomorphism
onto an open subset of G/P(x).

(i) U,ew, Imp? is dense in G/P(x) and for v, v’ e W,

Im p)=1Im p}’ if wov'"'w='e W(a; H),
ImpiNImpd' =@  if wou'~'w=' ¢ W(a; H).

Proof. We may assume g=e and moreover w= e by replacing ¢ and
H by ¢’ and w~'Hw, respectively, where ¢’(y) =w'e(wyw ")w for y e G.

(i) By the same reason as above we may assume U=e because M,,
A, and N, are stable under the inner automorphism defined by o-'. Ttis
clear that the map p? is well-defined.

First we will prove that p? is injective. So we suppose that n,m,a;h,ain;
= nymyashyagn; for some n; e Ny, m;e M(o), a;e A%, hye M,N\H, d;e A,
and n} e N, (j=1,2). Then there exist u; € N(x)~ and u} € N, with n,=
wiu; (=1, 2) because N;=N;N(x)~ (cf. (1.8) and (1.10)). Since h,a);=
ash; (j=1,2) and A,=A4°4,=Ax)A, (cf. (1.7)), we can find b, e A(x)
and b} e A, which satisfy a,a;=>5b,b; (j=1,2). Thus we have u;-u,b,mh,-
b} n{=u}- u,b,;myh, - b} - n;, which implies w]=u;, u,bmh,=u,b,m,h, b,=D>b),
and n{=n; because u;b,;m;h; e M, and because the natural map of N, X
M, X A, XN, to G is injective. Now the following Lemma 1.7 means b,
=b,, u;=u, and mh,=m,h,. Thus we have n,=uju,=uu,=n, and m,=
my(hohY) with hhy'=m;'m, e M(s)N H. Moreover since a;a;=b,b;= b,b;
= a,a;, the decomposition (1.7) says a,=d,.

Next we will prove that p? is a submersion. For the proof it is suf-
ficient to show that the natural map of Ny X M(e) X A*X P(x) to G is a
submersion. By using [OS1, Lemma 1.8], this follows from the fact that
a®+p(x) and m(e)+ a®+ p(x) are subalgebras of g and that n; +m(s)+
a®+p(x)=g. Here the last equality holds because ni(e)-+ a4+ p(x) Dm(o)
+a®*+g(e)+a,=m,+a, and p(x)+n; Dm, N Hh+n,+n;Dn,+u;.

(i) Put U°=N;M(0)A*v~'P(x), which is an open subset of G by
the above argument. Also by the proof of (i) we can conclude
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U =N;(N(X)~AX)M ()5~ (M, N H)A,N,.

The following lemma 1.7 says that U ¢y N(X)"AX)M(c)o~'(M,N H) is
dense in M, and therefore U, U” is dense in G because the natural map
of Ny X M, X A, XN, to G defines an analytic homeomorphism onto an
open dense subset of G. This proves that U , ¢y, Im p? is dense in G/P(x).

If vv'-*e W(a; HYN W, then T0'~' e M(e)(M,N H) and it is clear
that Im p2=1Im p?’. Now assume Im p2NImp? £ @. Then by the argu-
ment in the proof of (i) shows the existence of u; e N(x)~, b; e A(x), m; e
M(o) and h, e M, N H (j=1, 2) satisfying u,b,m,0~'h,= a,b,m;0’*h,. Then
by Lemma 1.7 we have m,07'h,=m,0’'h,, which means m; 'm0’ ~'=
hh;t e H and hence vv'~' e W(a; H). Q.E.D.

Lemma 1.7. (i) Letn;e N(x), a,e A(x), m;e M, N N(a) and h;
e M,NH(j=1,2). Ifnamh=namh, then ny=n, and a,= a,.

(ii) The set U ,ew N(X)AX)M (0)0(M, N H) is open dense in M,.

(iii)y The above statements (i) and (ii) hold even if we replace N(x) by
N(x)~.

Proof. (i) This is proved in the same way as in the proof of [OS],
Lemma 1.9]. Hence we omit the proof.

(ii) Since m,=u(x)+ a(x)+m(e)+(m,NH) and since nlx)+ a(x)
and n(x)+a(x)+m(e) are subalgebras, the set N(x)A(X)M (o) (M, N H) is
open in M, (cf. [OS1, Lemma 1.8]). Moreover since T normalizes
N(x)A(x)M (¢) for any ve W,, the set N(xX)A(x)M(¢)o(M,N H) is also
open in M.

Put mg=[m,, m,], let M} be the analytic subgroup of M, correspond-
ing to ms, and let W/ be the quotient group of the normalizer of a in M}
N K by the centralizer of a in M:N K, which is isomorphic to W,. Then
P(x)*=N(x)AX)M,N M;) is a parabolic subgroup of M? and therefore it
follows from [Ma] that the set Uj= U , ¢y, P(x)*u(M;N H) is open dense
in M3, where u are representatives of u. For v e W, we have

N(x)A)M(a)o(M,N H)=N(x)A(x)M (6)oG(e)M,N H)
=NX)AX)M,o(M,N H).
Therefore the set U, ¢y N(x)A(x)M(c)o(M,N H) contains M,U;. Since

Us is dense in M3 and M,= M M}, the set M, U is dense in M,
(iii) This is proved in the same way as above. Q.E.D.

Foree {—1,0, 1} and ¢ € R*, we put R'={s e R'; sgn s=¢}, P(e)=
(M,N H)A,N, and a(t)=a(e, t, €) with x=(e,¢,e¢) e X and (e, 1, ¢) ¢ X =
GXR'XW. We introduce a map
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1.1 #: N; X M(c) X R—>G/P(c)
(n, mk,u 1) k—>nm:11(t)P(s).

Lemma 1.6 implies that the map # is a submersion.

We fix a basis {X, - - -, X} of n, so that X, e g*® with some «(i) ¢
2t fori=1, ..., L, where L=dim n,. Also we fix a basis {ZI, - Z}
of m, so that {Z,, ---, Z,.} is a basis of m(¢) and {Z,,,, - -+, Z,}is a
basis of g(s), where L’ dim m, and L”=dim m(s). Moreover we put !’ =
dim a, and choose H,,,, - - -, Hy.e a,NY so that {H,, ---, H, H;,y, - -,
H,} is a basis of a,. We put X_,=—0o(X,). Then {X_l, e, X }isa
basis of n; and {X,, - -, X, X o, -+, X 1, Zy, -+, Z,, Hy, ---, Hpu}isa
basis of g.

Lemma 1.8. For Yeg,ee{—1,0,1} and p=(n,m, t) e N; X M(c)
X R the vector field Y, on G[P(e) corresponding to the action of
exp sY(s e R) satisfies

(¥)ecp=d 35 (et omy=O+ c; () Ad ()X,
3 (etlm)Z,— 3 e, = 2)).

Here X_, and Z, are identified with left invariant vector fields on N, and
M(a), respectively, and t*=t1E . . .t2HD for an element A of the complexi-
fication aF of a*. We define t“” W=1if A(H,)=0. Moreover the analytic
Sunctions ¢}, ¢7, ¢} and c, on G are defined by

(1) Ad@)" V=3 (e @)X+ 7 (X )+ z: HRZ,+ 3 ),

forgeG.

Proof. We put x=(e, ¢, €) ¢ X and denote by p(c) the Lie algebra of
P(g), which equals (m, N §)+a,+n,. Forse R satisfying |s|< 1 we write

(1.13) exp (sY)nma(t) e nexp N(s)-mexp M(s)-a(t) exp A(s)- P(e)

with N(s) e n;, M(s) e m{e)Nq and A(s) € a®*. We multiply the above
equation from the left with (nma(¢))~* and differentiate the expression with
respect to s at s=0. Then we have

(1.14)  Ada(t)~ Ad (nm)~'Y

=Ad a(t)" Ad (m)"ffg(O)—l—Ad a(t)"dM

(0)+-—(0) mod p(e).
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On the other hand, for f ¢ R! and m ¢ M(g) we have
(1.15) Ad a(t) ' X, =1 Ad a(t)"'X_, mod p(e).

In fact, if X, e n,, then 11, Cp(e) and t**®=0. And if X| ¢ n,, then X, e
m, and ¢(Ad a(?)"' X)) =o(*®| X)) = — [t*D|X_,= — 1D Ad a(t)"'X _,,
which means (1.15).

Putting g=nm and applying Ad a(z)~* to (1.12), we have

Ada(t)* Ad (nm)'Y=Ad a(t)“(f_‘_‘ (cmm)X,~+c;(mm)X_)
+ i cUnm)Z,+ i} ¢, (nm) H,,)
=1 k=1
=Ad a(t)”(i (e (mm)t* O X_,+c7(nm)X_,)
L 1
+ 3 CmZ,+ Y c,c(nm)H,C> mod p(e).
J= =1
Comparing this with (1.14), we have
dN L oty | e
IV (0= Ad ()3 (et my= -+ ez, ),
‘;—A;[ 0)= f_} ci(mm)Z, mod m(e)Nh,
=1
—dA—(O)E }l: cy(mm)H, mod a,.
dt i=1

Identifying R! with A® by the map a(¢), the vector field on 4% defined by

H, e a” corresponds to the operator — £,(9/0t,). Hence we have the lemma.
Q.E.D.

For every ge G and we W, we put U =xz(gN; M(c) X R X {w}).
Then Lemma 1.6 shows the bijectivity of the continuous map

(1.16) $v: N; X(M(@)/(M (o) N w ' HW) X R'—>U"(CX)
(I’Z, },unj’ t) r—)ﬂuzgnm, t, W).

For brevity we put U*=N; X(M(@@)/(M(@)Nw 'Hw)) X R.. Then we
have

Lemma 1.9. Fixg, g’ e Gandw, w e W.
(i) For an element Y of g the local 1-parameter group of trans-
Jormations (¢y) ' eexp(sY)o gy of U” (se R, |s|K1) defines an analytic

&
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vector field.

(i) The map (¢g) " o gy of (37) '(Uy N UY) onto (¢2) " (UrNUY)
defines an analytic diffeomorphism between the open subset of U® onto that
of U¥’.

(iii) @y is a homeomorphism onto an open subset UY of X.

Proof. (i) We may assume w=e. It follows from Lemma 1.6 that
the local 1-parameter group defines an analytic vector field Y(¢) on N X
M(o)/(M@)NWw 'Hw)) X R for any ee {—1,0,1}’. Then Lemma 1.8
shows that these vector fields Y(e) piece together and define an analytic
vector field on UY.

(ii) We have only to show that (%) o ¢ is analytic because the map
is bijective and its inverse is of the same form. Moreover we may assume
g’=e because (¢2) o gr=(gv) ' o pr-1,. We fix an arbitrary point p=
(n,, m,, t,) of the domain of the map (¢¥")' o ¢¥ and put x=(gn,m,, t,, w)

e Xand p'= (), m, t})=(¢?") " o $2(p) € U*". We will show that the map
is analytic in a neighborhood of p.

First we assume that w'=w and g e N; M (0)A*. Put g=nm,a, with
n,e N;,m e M(o) and q,e A®. Since (gnm, t, w)=(nm,a,nm, t, w) ~
(nym,an(m,a) - 'mm, ait,w) for ne N;,me M(s), e R* and we W, we
have (¢¥)"" o ¢5(n, m, t)=(n;man(ma,)"', mym, a,t), where

at=(exp{—ay, loga)t, - - -, exp{—ay, loga,>t).

Hence the map is analytic.

Next we consider the case where w'=w and p’=p=(e, 1, ¢) with an
ee{—1,0,1}. Here 1 is the residue class of e in M(c)/(M(c) N\ W HW).
Then g € P(x). It follows from Lemma 1.9 (i) that there exist neighbor-
hoods V of the origin in p(x) and U, of p in U® such that for any Ye V
and s e [0, 1], the map (¢¥)~* o exp (sY) o #¥ defines an analytic diffeomorph-
ism of U, onto a neighborhood of p. Since (¢¥)"'cexp (sY)og¥|U,=
(@2)! o p%pisyy | Up, We have the claim if g € exp V. On the other hand any
g € P(x) can be written in the form g=g,g,- - -g; with g, e M@)Nw'Hw
and g, eexp V (j=1, - --, k). Here k is a suitable positive integer. Then
the relation

(@) o ge=((ge) "o gg) o (F) "o gg) o - - - o ()" 2 i)

holds in the domain of the right hand side. Since (¢})~" o ¢y, are analytic
in some neighborhoods of p in U® and map the point p to the same point
for i=0, - -, k, we have the claim.

Now consider the case where w'=#w, g=e¢ and p=(e, 1,¢). Then

under the notation in Lemma 1.2 we have p’= (e, 1, ¢) when g’=0'm'm-'5"!,
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which we will assume in this case. Put R'={re R'; sgnt,=e¢, if ¢,0}.
We will prove that (¢2)'og¢y is analytic in the set U“(e)=N; X
(M (0)/(M(s) N\ w*Hw)) X R.. Forany (n, m, t) e U”(e), we put ”’=g’~'ng’
and a(¢) =g’*a(t)g’. Let t’ be the element of R, satisfying a(t')=a(t)’
and let m’ be the residue class of g’~'mg’ in M(c)/(M (¢) N W ~*Hw') with
a representative 77 of m. Then it follows from Lemma 1.2 that (¢¥)~*
¢¥(n, m, t)=(', m’, t’). Hence if the correspondence which maps ¢ to ¢/
as above is analytic on R%, we can conclude the claim. Put

I={ie{l, ---,I};e,=0}and J={1, - - -, [} — L

Then we have

Vot = o+ > mbay, ifiel
ked
v’v“aj=kze}rm’;cxk ifjed

because v'v~" belongs to W, which is generated by the reflections with re-
spect to ; with je J. Here mf and m* are integers. Thus we have

ti=sgnt,-exp {—a;, log (g’ *a(t)g’))
=sgn t,-exp{—a,;, Ad (g’ ) —logl|t,| H,)>
ty#0

=sgnt,-exp{v'va,, t};) log|t,| H,>

{tilﬂtk""fl ifiel,
_ kedJ
sgnt, | ]| ifield.
ked

Since #,==0 if ¢ B! and k e J, we have the claim.

We consider the general case. We put g, = (nm,a(,))", g.=g: g 'ggr%
&=0'm'm~'0-! under the notation in Lemma 1.2, g,=n{ma(t}), ¥, =
(@) o (g2 for i=1,2, = (@) o (g?) and y,=(g") o (g). Then
(@) o gg=10 U0 Y20 Yy It follows from what we have proved that
this map is analytic in a neighborhood of p because +(p)=/(e, 1, sgn x)
and g, e P(x).

(iii) Let ¥ be an open subset of U™ and let (g7, ¢/, w’) be a point of
o (g2(V)). Put Q=(g2)'(UgNg2(V)). Then 2 is open in U and
contains (e, 1, t’). Therefore we can find neighborhoods ¥V, of the origin
in g and ¥, of ¢, in R* so that (¢%) " o exp (sY) o ¢(e, 1, ') is contained in
Qforany s 0, 1], Ye V, and ¢ e V,, from which it follows that exp ")
X le{w’}Cn“(qSZ,’(V)) This implies that z~'(¢5(})) is open in X and
hence ¢2(¥) is open in X. We have proved that 2 is an open map and
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we have the lemma. Q.E.D.

Lemma 1.9 shows that we can define an analytic structure on X
through the maps ¢} so that they define analytic diffeomorphisms onto
open subsets U¥ of X. Then we have

Theorem 1.10. (i) X is a connected compact real analytic manifold
without boundaries and U ;¢ g, ,cw UP is an open covering of X such that oy
are real analytic diffeomorphisms.

(ii) The action of G on X is analytic and the G-orbital structure is of
normal crossing type in the sense of [O1, Remark 6).

(iii) The orbit Gr(x) for a point x in X is isomorphic to G/P(x) and
the orbital decomposition of X is of the form

X=U.ci-rontvew@mmmwe,GlP(e, ¢ U) (disjoint union),

where (6)=/(e, ¢, €) € X and U is a representative of v.

(iv) There are just 2' open orbits and they are isomorphic to G/H.
The number of compact orbits in X equals that of the elements of the coset
W(a; H)\W and the orbits are contained in the closure of every open orbit.

Proof. The definition of X and Lemma 1.9 prove (i), (ii) and (iii)
except the connectedness, compactness and Hausdorff separation axiom
for X. But the connectedness is clear because z(G'X R' X {e}) is connected
and contains any open orbit.

Put U= U, U”. It follows from Lemma 1.6 (i), (1.5) and (1.6)
that the intersection of U and any G-orbit in X is open dense in the orbit.
Hence for x, ¢ X (j=1, 2), the sets V,={g ¢ G; gx, e U} are open dense
in G and therefore we can choose an element g of G with g='x; e U for j=
1, 2. Then x; € gU= U ,» Uy. Since Lemma 1.6 (ii) also says that U=
Uy ifw e W(a; Hwand UPNUY =@ (ltherwise, the set gU satisfies the
separation axiom. Since gU is open in X, two points x; and X, can be
separated by their disjoint open neighborhoods.

Since G=KAH (cf. [F]), G=U ,cwKA . WwH. Here 4, ={exp X; X
e a with &(X)=0 for all « € 2*}, which equals {exp (—>, (logt))H,);
(t, - -+, t,) € (0, 1J'}. - Hence Definition 1.1, (1.5) and (1.6) prove that the
compact set z(KX[—1, 1] X W) contains all open G-orbits in X. This
means the compact set is dense in X and therefore it must coincide with X.

Let x=(g, ¢, w) and x'=(g’, t’, w’) be elements in X. Suppose Gr(x)
and Gr(x") is open in X. Then sgn ¢ and sgn ¢/ belong to {—1, 1}* and if
sgn t=sgn ¢/, then Gr(x)=Gr(x’). Hence the statement (iv) is clear from
(iii). Q.E.D.

The orbits which are not open in X are called boundary orbits in X.
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The compact boundary orbits are called distinguished boundaries of the
open orbits and the open orbits are isomorphic to G/H.

We give a lemma concerning the action of G on X which will be used
later. Let ge G and we W and put Qy=(¢2)(U N UY). For any
(n, m, t) e 2% we define an element H(g, n, m, t) of a by

1.17) gnma(t) € N; M(c)a(t) exp H(g, n, m, t)(M, N\ w 'HW)N,,

where x=(nm, t, w) € X. Moreover we put (v'(g, n, m, t), m'(g, n, m, t),
t'(g, n, m, 1))=(¢¥)"(g(¢¥(n, m, t))), which is denoted by (n, m, £)°. Then

(1.18) ti=t,exp{—a, H(g, n,m,t)) fori=1, ---, L
Lemma 1.11. Let (n, m, t) € 23 and assume t,=0. Then

{exp {—a, H(g, n,mt)y  ifj=i,
0 if ji.

ot}
(g, n,m, t)=
o, (& )

(1.19)

Proof. The following identity follows from the definition of H(g, n,
m,t):

(1.20) H(g'g,n,m, t)=H(g,n,m, t)+ H(g’, (n, m, t)%)

for (n, m, t) € Q2N QY.

If ge M,, then (1.19) is clear because ¢;=¢, and H(g, n, m, t)=0.
On the other hand it follows from (1.20) that the lemma holds for g’g on
Q¢ N 02y, if it holds for g’ and g. Then by the same argument as in the
proof of Lemma 1.9 (ii) we may assume that g=expsY with Y e g and
s < 1.

Let v be the orthogonal projection of g onto a with respect to the
Killing form. Then from (1.17) we have (d/ds) H(exp sY, n, m, t)|,_,=
v(Ad (nAia(t))"'Y)=v(Ad(n")Y). Combining this with (1.20), we see that
u=exp{—a,;, H(expsY, n, m, t)) satisfies

(1.21) %: — e, WAd((exp sY, n, m, 1))~ Y)u.

Suppose ¢, >0, - - -, ¢,>>0. Then the above statement and (1.21) imply

that ¢/ (exp sY, n, m, t) also satisfies (1.21) and that

_d_(afé
ds

): — ety (Ad (W (exp sY, 1, m, 1))-1Y)) O
2, a,

—<oci, aitv(Ad (m(expsY,n,m, t))* Y)>t§.
j
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By analyticity this means that the function (9¢/a¢,) (exp sY, ¢, n, m)|,,_,
also satisfies (1.21). Hence by putting g=exp sY, the both sides of the
equation (1.19) satisfy the same differential equation (1.21) and have the
same initial value at s=0. This implies (1.19). Q.E.D.

§ 2. Invariant differential operators

For a real Lie algebra b we denote by b, the complexification of b
and for a real or complex Lie subalgebra u of g, we denote by S(u) and
U(u) the symmetric algebra and the universal enveloping algebra of w/,
respectively, where 1’ is the complex Lie subalgebra of g, generated by u.
For a non-negative integer m, we put U™(u)=A(S™(u)), where S™(u) is
the set of homogeneous elements of degree m in S(u) and A is the sym-
metrization of S(u) onto U(u). Moreover we put U, (u1)=Br, U4u).
Then U, (u)/U, (1) is isomorphic to S™(11). For a subset b of g,, S(u)*
(resp. U(u)®) the subalgebras of b-invariants of S(u) (resp. U(w)).

Now retain the notation in Section 1. The complex linear extensions
of the involution ¢ and # on g, are also denoted by the same letters. Let
i be a maximal abelian subspace of q containing a. By [0S2, Lemma 2.4]
we have [}, a,]=0 and we can choose a Cartan subalgebra | of g which
contains both { and a,. Then the pairs (a,, {,), (@., i) and (@., («,),) de-
fine root systems, which we denote by 2(j), 2(i) and 3(a,), respectively,
and we can define compatible orders for 3(j), 2(j), 3(a,) and 3 (cf. [0S2,
§3.8]). We denote by 2(j)*, 2(j)* and 3(a,)* the corresponding sets of
positive roots and by W(j), W(}) and W(a,) the corresponding Weyl
groups, respectively. Moreover we put p=4%3,.55+a. Then p is an
element of the complexification {¥ of the dual space of j.

Let 11, be the nilpotent subalgebra of g, corresponding to X(j)* and
put fi,=o(1n,). From the Iwasawa decomposition g,=1.+i.+5. with
respect to ¢ we have the decomposition into the direct sum

@D U@@=n.U(m.+i)dU({HDUQ)).

Let 6 be the projection of U(g) to U(j) with respect to this decomposition
and 7 the algebra automorphism of U(j) defined by 7(¥)=Y— p(Y) for
Yei Let Z(g) be the center of U(g) and U(g)® the centralizer of §) in
U(g). Then the map =70 d induces the Harish-Chandra isomorphism

22 71 U@E'/(U@E)'N U@Y—1()),

where I(j) is the set of W (j)-invariant elements of U(j). We remark here
that 7(U(g)" N U,(@)=1(}) N Un()).

Lemma 2.1. For any he H, Ad(h) acts trivially on the algebra
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U@'1(u@nu@n-

Proof. First note that Ad (k) really acts on the algebra because

Ad (Wh=Y. Put £,=T7 o Ad (h)o7-'. By [Hel] the quotient field of 7(Z(g))
coincides with that of 7(j). Hence for any D e I(j) there exist D, and D,
in 7(Z(g)) which satisfies D,D=D, and D,#0. Then D,=,(D,)=&,(D.D)
= k,(D )k, (D)= D,x,(D), which means r,(D)=D. This implies the lemma.
Q.E.D.

Let D(G/H) (resp. D(G/G?)) denote the algebras of invariant differ-
ential operators on G/H (resp. G/G;). Then D(G/G:) is naturally iso-
morphic to the algebra U(q)"/(U(g)*N U(g)h) and Lemma 2.1 assures that
D(G/H) is also isomorphic to this. Hence by identifying these algebras
we have the algebra isomorphism

2.3) 7: D(G/H)—">1(})
and the natural projection
2.4 I': U@@Y—>D(G/H)

which satisfy r=701".

By the Killing form ¢ , ) of g we identify the complexification {¥ of
the dual space of | with j, and then a* and ¥ are identified with subspaces
of .. Let¥(H)={al, - - -, )} be the fundamental system of 3(f)*, where
I’ is the rank of the symmetric space G/H. We put

g.(; V={Yeg.; [Z, Y]=2(2)Y forall Ze{}  for 1e 2()",
m(f)={Y e Y,; [Z, Y]=0for all Z e }.

For each subset F of ¥'(j), we define (cf. [Sc, §3.2]):

(Fy=2()N2uer R

ap={Yei,; a(Y)=0 forall e F}

af={Yei,; a(¥Y)=0 for all « € ¥'({)— F}
a(F)={Y¢ej,;<{Z Y>=0 forall Ze az}

M=) herm+—r :(i; @) and fy=o(z)
WF)=2 hexm+na 8(i; @) and  A(F)=a(n(F))
mp=1(F)+m{)+alF)+n(F)

pr=mpt+ap+ny

We={we W({); wY=Y for all Ye ag}.
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Let g, denote the orthocompliment of m,N Y, in §,. Then g, decomposes
as g, =T+ mz+az+q and it follows that

(2.5) U(@)=1,U(fz+ar+mn)DU(my+ an)DU(Q)qy.

Let 3, be the projection of U(g) to U(m,-+ap) with respect to this de-
composition. Then §, maps U(g)® (resp. U(g)§) into U(mz4 ay)"#Nbe
(resp. U(mz+az)(mzN1,)) because n N Y, normalizes fi, and q,. Hence
dp induces the map

(2.6) U@ (U@'NU(®h)
—>U(mp+ap)"*"e/(U(mp+ap)" 0% N U(mp+ an)(mz N he)).

Let 67 be the projection of U(my+ay) to U(f) with respect the decom-
position

@7 Ulp+a)=10(F)U@EF)+j)JOUHDU(ms+ar)(mz N he).

Then §=4§% o d;. Let 7 be the algebra automorphism of U(mz-+ay) de-
fined by (Y +Z)=Y-+Z—p(Z) for Y e my and Z e a;. Denoting px(Z)
=14 traceg (ad(Z) | n(F)) for Z e j, we define an algebra automorphism 7*
of U(j) so that 7 (Z)=Z—px(Z). We put 7'p=1nz0 35y and 77 =y 0 §7.
Then

(2.8) T=Y"o7p.

Let U(j)"* denote the set of W-invariant elements of U(j). Then as in
the case of 7, the map r¥ induces the algebra isomorphism

2.9 T7Umetan)" " (Ume+an)"" O Ume+az)(meNY))
> U{"~.

Lemma 2.2. Let J be an ideal ‘of U(}) which is generated by some

homogeneous elements p,, - - -, p, in I(§). Then there exist finite elements
D, ..., D, in U(g)® which satisfy

k
(2.10) 7(Dy) e Z;I(j)pi Jorj=1,---,n

and moreover the following condition:

Let m be a non-negative integer and F a subset of (). Then for any
element q of JNU,(DNU@z+ a0, there exist elements Q,, - -, Q,
of U(mp-+apy)"r"™ such that

@2.11) z 0,D,—57X(q) € FpU(Rp+Mp+az)+ U@,
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(2'12) QJ'DJ' € Um(g) fOl" J= 13 v, R

Proof. By Lemma 2.3 below, we have d,, ---,d, e I(j) and ¢q,, - - -,
g, € U(}) such that g=3,49,d, and ¢,d; e U, (7). Replacing g, by (1/4 W)
> wews Wq;, We may assume g; are W-invariant. We can choose D, e
U(g)and Q; e U(tip+ay)"*" with 7(D;)=d; and 1¥ o 9x(Q;)=q; (cf. (2.3)
and (2.9)). Moreover we can assume Q,D; e U,(g). Since [Q,, fi]C
f,U(mp-+ az), we have 7,(Q,D,)=1(Q )7 (D;) by definition. Owing to
the algebra isomorphism 7%, we have ¥¥ o 7,(Q,D,)=7"(AQ )7 (D)=
17 one(Q))- 77 o To(D,)=q,d, because 7,(Q;) and 7x(D;) € U(mp+az)"*"".
Therefore 771 -(>;0,D;—77*(q)))=0, which means

Tr (ZijDj_“y]—l(q)) € U(mF+aF)(mF N f))

because of (2.9). On the other hand the definition of 7, proves >,Q,D;
— () —7:(2,0,D0,—77'(q)) € TpU(Ap+mp+az)+ U(g)h. Hence the
lemma holds. Q.E.D.

Lemma 2.3. Let J be an ideal of U(§) generated by some elements
P - P in I(1). Then there exist finite elements d,, - - -, d, of >, I(Dp;
which satisfy the following:

For any element g of JN\ U,(}), there exist q,, - - -, q, € U(j) such that
q=>.,4,4; and q,d, e U,(}) for i=1, -- -, n.

Proof. Let H(j) be the set of harmonic polynomials in U(j) corre-
sponding to W (). Then U(j)=H({)®I(j), which implies J=H({®
(i IGp). Put J,=UMHN 2 I({p,. Since U,())=2.(HHNU,-.(1)
UGN UL(1), we have

2.13) INUn()= 33 (HGN Up- (DS,

Let S(j)” % be the set of W (j)-invariant elements of S(f) and put J=
@:0J,)J,-1. Then J defines an ideal of S(7)" . Since S(})" ¢ is noetherian,
there exist homogeneous generators d,, - --,d, of J. Let d, ---,d, be
the elements of >, I(j)p, whose residue classes equal d,, - - -, d,, respec-
tively. Then for any g e J,, we can find ¢q,, - - -, g, € I(j) by the induction
ony so that g=>3,q,d; and q,d; e U/(j). Combining this with (2.13), we
have the claim in the lemma. Q.E.D.

Now we want to study G-invariant differential operators on the G-
manifold X constructed in Section 1. Let {w,, - - -, w,} be a complete set
of representatives of the coset W(a; H)\ W, where

2.14) r=[W: W(a; H)].



Realization of Symmetric Spaces 621

Then [0OS2, Corollray 7.10] assures that we may assume w,=e and

(215) Ad (Wj)i: i, Ad (w])l — I', Ad (Wj)ap-: (I,p
and w,(X(1);)=2(F); for j=1, .-, r

where 2(§)f = {a e 2())*; a|a=0}. Using the decomposition U(g)=
i, U(ft,+ 1)@ UGDDPU(g) Ad (w;Y)h, in place of (2.1), we can define an
isomorphism 7/ of D(G/w;'Hw,) onto I(j) in the same way as 7. For each
ee{—1,1} we put X,==a(GX R;X W). Then X, is isomorphic to G/H.
Moreover for each w e W we define the map

(2.16) & Glw Hw—X,cX
w w
gw  Hw—>r(g, e, w) forged.

Since Ad (w~*) defines an isomorphism of U(g)® onto U(g)24®~%, it in-
duces an isomorphism of D{(G/H) onto D{G/w~'Hw), which is also denoted
by Ad(w™"). Let 7, be the automorphism of U(g) defined by

l
2.17) 7.(V)=1] WY forewe 2YU{0} and Yeg~
i=1

Since ¢, preserves Ad (w; b, it induces an automorphism of D(G/w; Hw,),
which is also denoted by ..

Lemma 2.4. (i) 7. (D)=D for any D e D{(G/w;"Hw,).
(i) 7o Ad(w;H)(D)=T(D) for any D e D(G/H).

Proof. (i) Since r, preserves Ad (w;")h, and #,, and is trivial on
i., we have (i) from the definition of the isomorphism 77.

(ii) Let G? be the analytic subgroup of the adjoint group of g, cor-
responding to FNH++v/—=1ENQ+vV—1(pNH+(pNq) and let K* be
the analytic subgroup of G corresponding to (N )4+ —1(pN5). Then
K?is a maximal compact subgroup of G¢ and the Weyl group W(j) is
naturally identified with the normalizer of af in K¢ modulo centralizer of
al in K¢, where al=+—1GNH-+(Np). Since Ad (w,) defines an element
of W(3), [W, Proposition 1.1.3.3] assures that there exists an element k in
K? such that Ad (W) |, =k|]..

Let u be an element of Z(g) and «’ an element of U(j) defined by u—
u e i, U@+ U(@)Y,. Then u—k(u') e k(@ U(g))+ U(g)h, because k(u)=u
and k(6,)=0,. Applying Ad (w;") to this relation, we have u—u’ e 7, U(g)
+ U(g) Ad (w;1h,. This means that the map 7/ o Ad (w;") o 7" is trivial
on 7(Z(g)). Since the map is an algebra automorphism of 7(j) and the
quotient field of 7(Z(g)) coincide with that of I(j), we can conclude that
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the map is trivial on I(j). Q.E.D.

Let D(X) denote the ring of G-invariant differential operators on X
whose coefficients are real analytic functions. Then we have

Theorem 2.5. There exists a surjective algebra isomorphism

7: D(X)—>I()

w
DT oz, o () (D] X)),
which does not depend on e ¢ {—1, 1} and j=1, -- -, r.

Proof. Fix an element u € I(§). Then the differential operator D{=
o, o7 Yu) on X, is G-invariant and it follows from Lemma 2.4 that
Di= 7o (M) (W)= ¢ o (F) 7 oTo (77 (W) = &/ o Ad (w7 )7 (). Com-
paring this with (2.16) and Lemma 1.2 and the definition of X, we see that
D does not depend on j, so we define a G-invariant differential operator
Dy on U= U, ¢(_11p X, by

(2.18) Dy|X.=cior, o (7)) (u)
foree {—1, 1} and j=1, ..., L

To get the theorem we have only to show that D, has an analytic
extension on X because U is open dense in X. Since X= (J ,cq,1<,< U2
(cf. Theorem 1.10 (i)), the proposition follows if D, | UN Uy’ has an ana-
Iytic extension on Uy’ for any g € G and any j=1, - - -, L

Let p; denote the submersion of N; M (s)A4 onto the open subset U
Uy defined by pg(nma)=rnr(gnm, (c,a™=, - - -, e,a™*), w;) for ne N7, me
M(g) and ae A. Let u, be an element of U(g)4¢@; "% which corresponds
to (7)"'(u) and let v be an element of U(n; +m(o)+a) with u,—u} e
U(g) Ad (iw;)b. Then for any C=-function ¢ on X, we have

(2.19) uy($ o pg)=(Dy¢) ° Py
where u} acts on ¢ o p; from the right.
Let
L L 1
(2.20) Y=31CX_+ C/Z,+ 3 CiH,
=1 J=1 k=1

be an element of n;4-m(s)+a under the notation just before Lemma
1.8. Since Ad(@)X_,=a*DX_, for ae A4, the action of ¥ on the Lie
group N7 M(a)A from the right is expressed as the following vector field
on Ny X M(g)X A:
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L o
(2.21) S1Ca® Ad (m)X_+ . C/Z,+ i CiH,.
=1 J=1 k=1

Identifying R’ with 4 by the map R’ > t—a(t)=exp (— >, log|t,| H,) € 4,
we have the corresponding expression

L L 14
(2.22) 3 C |t @D | Ad ()X + S CYZ,— 3] c,;tk_af_
i1 iz =1 f

k

on N; X M(s)X R.. Applying z, to Y, we have the expression for z.(Y)

L L l
(2.23) STCO Ad (m)X_,+ 3 CYZ,—3 Clt 0
=1 j=1 k=1 ot,,
in place of Y. This vector field has analytic extension on N7 X M(c) X R*
and is moreover independent of .
The above statement holds for any Y e n; +ni(o)-+a. Hence the

similar statement holds for ' ¢ U(n; + n1(c)+ a) and therefore the operator
D, |UN U has an analytic extension on U (cf. (2.19)). Q.E.D.

Now we review systems of differential equations with regular singu-
larities defined in [O4]. Let M be an (/-+n)-dimensional real analytic
manifold with a local coordinate system (¢, x)=(¢#,, - - -, ¢, x;, - - -, X,,) and
let N, - - -, N, be hypersurfaces of M such that each N, is defined by the
equation #,=0. We put N=N,N---NN,, D,=(3/3x,, - - -, d/ox,), D,=
(8/ot,, - - -, 0/0t), 9= tja/atji d= (9 -+, &) and tD, = (t,0/0x,, 1,0/0,,
..., 10/0x,). Let Zbe an open subset of C?, let @, be the sheaf of
holomorphic functions on Z and let ;.27 (resp. 5.27,) be the sheaves of
real analytic functions on M (resp. N) with holomorphic parameter 1 in
Z. Moreover let ,2, be the sheaf of differential operators on X whose
coefficients are sections of ,.7,. We consider the system of differential
equations

M: P4, x,t, D, DHu=0 (=1, ---, L)

with one unknown function u, where P, are sections of ,2,. We remark
that if there is no holomorphic parameter we write 7, @, etc. in place
of , A u, 2D, €tC., respectively.

Let ,27 denote the subRing of ;2 , whose sections P are of the form

224) P=Sa09+d] X b .00 1, X)9°DE
aEN?

j=laeNTgeN®

where a, € ;. y, b; 05 € 75 3, 9*=95- - - 97t and Di=(9/9x,)**- - - (8/9x,)"".
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Let C[s] denote the polynomial ring over C with / indeterminants s,, - - -,
s, and put ,.of y[s]= ;o yQC[s] and O,[s]=0,RC[s]. Then we have an
algebra homomorphism ¢, of 2% onto <7 ,[s] defined by ¢.(P) (4, x, 5)
=>.,a,(4, x)s* for P of the form (2.24).

For any point of N we assume that there exist sections @, ---, Q..
of ;25N > 2P xP, over a neighborhood of the point which satisfy the
following three conditions:

Put ¢,=04(Q,) and J=37,0,[slq;.

Then

(2.25) g; do not depend on x for j=1, - - ., n".
(2.26) @,[s]/J is a free 0,-Module of rank r, where r is a certain non-
negative integer.

(2.27) For any g e J there exist a section Q of ,23,N > 1,29 P, so that
6.(Q)=¢q and ord Q=deg q. Here deg f means the degree of fe
0,[s] with respect to s and ord O means the order of a differential
operator Q.

Then the system .# is said to have regular singularities in the weak
sense along the set of walls {&,, - - -, N,} with the edge N. The solutions
5,(D=(s,.,(2), - - -, s,,(2) of the indicial equation

(2.28) A q,2,8)=0 forj=1,..., 1

are called characteristic exponents. They are indexed by ve {1, - -, r}
because .# has r solutions including their multiplicities. For simplicity we
moreover assume

(2.29) s, ,(2) are holomorphic with respect to 1 forv=1, --.,rand i=
1, .-

Remark 2.6. By the coordinate transformation ¢;~—1% (1<{i</) with
a large positive integer k, the operators Q, e 27 change into the form
0,4, t,x,9,tD,). In[O4] we defined systems of differential equations
with regular singularities and assumed there that Q, are of the form
0,2,1,x,9,tD,). Hence here we say that the system .# has regular
singularities ““in the weak sense”. We note that each characteristic ex-
ponent s,(2) changes into ks,(1) by the coordinate transformation. The
other assumptions are little stronger than the ones given in [O4]. But the
assumptions here are sufficient for our purpose.
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To define the boundary value map for solutions of .# we assume the
following condition:

(2.30) For any point of each wall N, we can find a section R, of
2 1z2 xP; over a neighborhood of the point such that R, is of the
form

R;= 3 dl(d, x)%+ > ;b 44, t, x)9D}
ag N a€NI BENT
and the coefficient @} ... m; o,....n(4, X) Of 974 does not vanish for
any 2 and x, where m,=ord R,.

Now we consider the system of differential equations
2.3D) N Pu=0 fori=1, ---, L

on the manifold X, where P, e D(X). We say that 4" is D(X)-finite if the
dimension of D(X )3 D(X)P, is finite. It is equivalent to say that there
exist /’/(=rank G/H) algebraically independent elements in {P,, - - -, P,}.

We fixanee {—1,0,1} and a we W so that e ¢ {—1, 1}*. Then the
set X, ,=na(G X {e} X {w}) is one of the boundary orbits in X PutI(e)=
fie{l, -, 1};6,=0} and X ,={rn(g, ', w); g ¢ G, ;=0 and ¢)=¢, if ¢,
#0} for i e I(¢).

Theorem 2.7. Assume the system A on X is D(X)-finite. Then for
anyee{—1,0,1Y—{—1, 1} and any we W, A" has regular singularities
in the weak sense along the set of walls {X ;i e I(e)} with the edge X, ,,
and satisfies the condition (2.30). The indicial equation equals

— L e
N (p—kg;) s )(@)=0  forall ge Ua)N ]Z:l UMDT(P;)
with a,= ceryRHy,. Here (90— 3 ;¢ 1(05:000) 18 the algebra homomorphism
of U(J) to the polynomial ring of s, (i e 1(c)) induced by

i3 Y—(p— Ze};‘(‘ )siozi)(Y).

Proof. We may assume w=w, with a suitable je {1, ---,r}. We
will prove in the case where w=e. The proof in the general case is also
obtained in the following argument by replacing ) and H by Ad (w;1)}
and w;'Hw,, respectively.

Fix any g e G. By the map ¢ (cf. (1.16)) we identify N X (M (¢)/(M(0)
N H))X R* with the open subset U of X. As we have seen in the proof
of Theorem 2.5, any element v of Un;)QU(m(e)+ a)"" defines a
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differential operator on U; through the map ¢ and the expression (2.23)
for Y e n; +ni(e)-+a.

Put p,=7(P,) and J=3_, U(j)p,. Since the assumption is equivalent to
the condition that U(j)/J is of finite dimension, the dimension of the space
U(a)/(JN U(a,)) is also finite. Let g be an element of JN U(a,). Put
F={a e ¥(); «|a.=0}. Then fi,C(n;), and fip+mz+a,D(n;+m,+
a,),. Then Lemma 2.2 says that there exist D,, ..., D, e U(g)® and S,
eoe, S, e Umptap)"r"® so that (D)) e J, S,D; e Uy, (g) and

2.32) ; S,D,—7(q) € ApU(ftp+ g+ a,)-+ U@

Let S} and Dj be elements of U(n;)QU(m(e)+a)"’" so that S,—S;
and D,— D} belong to U(g}(hNm(s)+). Then we have

(2.33) i SiD;—n"(q) e T UM)@U(mo)+ )" "+ U(g)h

because (S;—S))D, e U(g)h. Let Q be the differential operator on Uy
corresponding to >,S/D;. Then clearly Q € 3,9 ,P; and ord O=deggq.
Since 1*® e > 1 ety if X_,4 € Tip, it follows from the expression
(2.23) that the operator Q is of the form (2.24) and ¢ (Q)(s)=
—ClieroSiadn ' (g). (We remark that 0,=C and that ¢, (i € I(¢)) corre-
spond to #,, - - -, 1, in (2.24). Hence if e=(0, - - -, 0), the correspondence
is straightforward.)

Let {g,, - - +, q,} be a basis of JN U(a,) and let Q, be the differential
operators on Ug which are constructed as above corresponding to g,, re-
spectively. Then it is clear that Q,, - - -, Q, satisfy the conditions (2.25),
(2.26) and (2.27) and that the indicial equation equals .# given in Theorem
2.7.

If we consider the case where X, ,, is a hypersurface, it is also clear
that the system .4 satisfies the condition (2.30). Q.E.D.

Let 2 € {*. We define an algebra homomorphism %; of D(X) to C
by X(D)=A(7(D)). Then X,=%, if and only if 2’ ¢ W({)A4. In most cases
we only consider the system

(2.34) My (D—X(DYu=0  for all D e D(X).
The following proposition gives the characteristic exponents of .#,.
Proposition 2.8. Retain the notation in Thorem 2.7 and put W(e)=

we W(H; wla.=id}, J=3c;  UD(p—2A(p)) and J=U(a,)NJ. Then
any solution of the equation
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My (p— e;( )siai)(q)=0 forallgel.

is equal to 5,(A)=(5w,:(A))icr, With a suitable we W), where 8. :(D)=
{p—wa, H;>. Moreover the multiplicity of the solution s,(2) is a positive
integer which is not larger than (W (e)\{v € W(); Spu(2)=s5,(D}).

Proof. Replacing s; by 5,4 p(H;), we may assume p=0. PutJ'=
{ge U®F); wA)(g)=0for we W(j)}. Then clearly J'DJ.

First consider the case where the stabilizer of 1 in W (j) is trivial.
Then dim U(§)/J'=#W(j). Let H(§) be the space of harmonic polynomials
in U(j) corresponding to W(f). Then U(})=H(HXI(}) and dim H(f)=
#W(5). This means dim U(§)/J=#W (})(=dim U(j)/J’) and therefore J=
J’ because J'DJ. Hence J={q e U(a.); (wA)(g)=0 for w e W(})}, which
implies the lemma and every root of .Z, is simple.

Consider the general case. Then there exist a positive number m so
that the condition g e J implies g™ ¢ J’. Therefore the condition ge J
implies g™ e J’N U(a,). Hence s,(2) are roots of .#Z, and every root of
A ; equals s,,(2) with a suitable w e W(j). The remaining problem is to
estimate the multiplicities of roots.

We have only to estimate the multiplicity of the root s,(2) by replac-
ing 2 by wA. We choose u e ¥ so that the stabilizer of 14 pf in W (j) is
trivial for any ¢ e C with 0<|[¢|<1. PutJ,=3 ;U@ (p— @A+ pt)(p))
and Ji={g e U(}); W+ pt))(g)=0for w e W(j)}. We also choose Z e a,
so that for every w e W(j) the condition {w, Z>={4, Z) implies 5,(2)=
5,(2) and put py(t)=[Twew,(Z— W@+ put), Z}). Then py(t) is contained
in J;. Since J;=J, if 0<|#|<1, p(t) e J, for any ¢ e C with |#|<{1. Put
Wi={we WQ{); <wi, Z)=(2, Z}}, Wo=W({H—W: and p()=[]wvew:
(Z—{w@+pt), Z3)) for i=1, 2. Let @,[Z] denote the ring of polynomials
of Z with coefficients in the ring @, of convergent power series of . Then
there exist g,(¢) and ¢,(¢) in 0,[Z] such that p,()q,(¢)+p.(¢)g,(2)=1. Put
r,()=p,(t)q.(¢). Then the elements r,(¢)ry(z), r(t)*—r(t) and ry(2)* —ry(t)
are contained in J, for |¢|K 1.

For any p e U(j) we put ¢,(p)= 2.2+ pt)(fi)h, by using the expres-
sion p=>"; f;h, with f; € I({) and h, e H(j). Then for any ¢, 4, defines a
map of U(j) onto H(j) with the kernel J,, and dim ¢, (U(a.)) equals
dim U(a,)/(J,N U(a,)), which also equals the number of roots of .4, ,,
including their multiplicities. Putting ¢{(p)=¢,(r;(t)p) for i=1,2, p e U(j)
and te C, we have ¢,=¢;+ @i, i © b =i» §; © ;= ¢; and ¢; o §;=¢; o $; =0.
Hence the multiplicities of the root s,(2) is given dim ¢y(r(0)U(a.)). On
the other hand if 0<|#|« 1, then dim ¢,(r(2)U(a.))= #{s.,(A+pt); w e Wy}
because all roots of .#;,,, are simple in this case. Since s,(2+4 pt)=
Su(A+pt) if w' e W(e)w and since dim ¢y(r(0)U(a.))<dim ¢,(r,(t)U(a.))
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if |t]« 1, we have dim ¢y(r(0)U (a.)) < #(W (e)\ W)). Q.E.D.
In the first step of the proof of Proposition 2.8 we have obtained.

Corollary 2.9. If an element 2 of i¥ is regular (i.e. wA+2 for any
w e W(5) with w=e), then all solutions of .4, are simple.

§ 3. Boundary value maps

First we define G-modules attached to G-orbits in X. Retain the
notation in Section 1 and Section 2. Recall {w,, - - -, w,} is a complete set
of representatives of the coset W(a; H)\W. Foranyee{0,1} andje
{1, -+, r} we put X/ =n(GX {e} X {w,}) (CX). Then X7 is isomorphic to
G/P(x) with x=(e, &, w,) € X. In (1.2) the subgroup P(x) is defined by

P(xy=(M . Nw;"Hw,)A,N,.

For simplicity we put P/=P(x), M, =M,, M=M O\w;'Hw,, A,.=A4,,
N.=N, and N;=Nj in the case x=(e, ¢, w,) and denote by p7, m,, m/,
a., . and n; the corresponding Lie algebras. Moreover we put j.=a. N j.
Note that any G-orbit in X is isomorphic to G/P; with suitable ¢ and j.
The space #(G) of hyperfunctions on G is naturally left G-module by

G X B(G)—>%B(G)
(& SO )x)=F(g"'%).

The induced action of Y e g on #(G) is also denoted by #,. For any p e
(Go)F let B(X!; L,) be the space of hyperfunctions f on G satisfying

G.D Slgmanmy=a"f(g)

for all ge G,me M/,ac A, and ne N,. Then #(X!;L,) is a G-sub-
module of #(G) and canonically identified with the space of hyperfunction
valued sections of the line bundle L, on G/P/ associated with the character
¢, of P/ given by

3.2) ot (man)=a’"*.
Here we remark

Lemma 3.1. o(Y)=0  forany Yea,NY

and

0(2)=5troad (Z)|n,\moe),  forany ZeiNt.
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Proof. Let Yea,. SincelY, n(o)]={0}, p(Y)=2%trad (¥)|n,+n(o)
=3trad (Y)|n,. Combining this with ¢(n,)=1,, we have p(¢(¥))=
—p(Y). Henceif Yea,NY, po(Y)=—p(Y) and therefore p(¥)=0. Let
Z e iN{. Since 0(n,)=1i, and 6(Z)=Z (resp. o(n, N g(¢),) =1, N g(c), and
0(Z)= —Z), we have similarly trad (Z)|n,=0 (resp. trgad (Z)|n,N g(o),
=0). Hence owing to the direct sum decomposition 1,=(n, N m(s),)--
(n.Ngl0).)+(,),, we have p(Z)=14 trpad (Z) | n, =% trgad (Z2) | n, N m(o),.

Q.E.D.

For an open subset U of X/ we denote by #(U; L,) the space of hy-
perfunction sections of the line bundle L, over U.

Let D(X7) denote the algebra of M/-invariant differential operators
on the symmetric space M,/M}. Since Ad(M,)|m,=Int(m,), we have
the isomorphism

(3.3) 1: DIX))—>1(j(e)

as in the case where e=(1, - - -, 1) (cf. Lemma 2.1 and (2.3)). Here j(e)=
{Yei;<Y,Zy=0for all Ze i} and I(j(e)) is the set of W -invariants in
U(i(e)) with F={ax € ¥(}); «|j.=0}. (fj=1, the map 7/ is defined by the
restriction of 7% in (2.9).) Since M, normalizes N, and centralizes A4,, the
action of M/-invariant elements of U(m,) on #(G) from the right leaves
the space #(X/; L,) invariant. Hence the elements of D(X/) define dif-
ferential operators on #(X/; L,) which commute with the left action of G.
For any ideal J’ of D(X?) we define a system of differential equations

(3.4 M': Du=0 forall D e J’

on #(X/; L,) and denote by #(X{; L,; .#’) the G-submodule of Z(X/; L,)
consisting of the solutions of the system .#’. Similarly we define a g-sub-
module #(U; L,: M4').

We identify the symmetric space X=G/H with the open G-orbit
o(GX(1, -+, DX W) of X. Let J be an ideal of finite codimension in
D(X) and let #(X; #") denote the space of hyperfunction solutions of the
system

(3.5) N Du=0  forallDelJ

defined on the symmetric space X. We remark that 4" can be written in
the form (2.31) with suitable P,, - - -, P, because J is finitely generated.
For any u e (j.)f we have an algebra homomorphism z, of U(f) onto
U(j(e)) which satisfies z,(Y) equals p(Y) if Y e {, and Y if Y e j(¢). Then
the map ¢,=({)"'oi,o7 defines an algebra homomorphism of D(X) to
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D(X?). LetJ, ., denote the ideal of D(X7) generated by z#(f ). Then we can
define the induced system

(3.6) - N, Du=0  forall DelJ,

on X7 associated to 4. We note that J, is also of finite codimension in
D(XD).

Owing to Theorem 2.7 we can define boundary value map of
BX; N). Leti, ---, 2, be the solutions of the indicial equation ./ in
Theorem 2.7 including their multiplicities. Here 4,=(2, ;) € C" by putting
n=4%I(e) and 2, are called the characteristic exponents. Then for any
point p of X7 we have a boundary value map

3.7 g B,: BX; N)—>H(U,)

attached to each characteristic exponent 4,, where U, is an open neigh-
borhood of p in X7 and #(U,) is the space of hyperfunctions on U,. The
definition of §, is given in [O4, §4]. We give some properties of §,.
There exist a neighborhood ¥ of U, in X so that if ue Z(X; A")
satisfies B,(w)=0 for y=1, - - -, m, then u is identically zero on VN X (cf.
[O4, Thorem 4.4]).
Assume B,(u) are analytic for y=1, - - -, m. Then u has an expression

(3.8) u(t, X)=3" a,(t, ¥)t>q, (log 1)

v=1
in VN X and is called ideally analytic at p (cf. [O4, Theorem 5.3]). Here
(¢, x) is a local coordinate system with #==(¢,);¢;(, so that X is defined by
t,>0 for all i e I(¢), X/ is defined by #,=0 for all i e I(e), a,(¢, x) are real
analytic functions on ¥V and g, (log ¢) are polynomials of log ¢, (i € 1(¢)).
Moreover if

(3.9) %(zy—zu,) ¢ N*  foranyyand v with vy,

then ¢,=1 and B,(u)(x)=4,(0, x). Here we put N={0,1,2, ---}. The
expression (3.8) is the same one given in [Ha] or [CM] but here we obtain
(3.8) under much weaker assumption (cf. [O4, Theorem 5.2]).

We may assume I(e)={1, - - -, n} without loss of generarity. Then
we can define a semi-order for 8, - - -, B, which has the following pro-
perties (cf. [O4, Theorem 4.5]):

(3.10) If ,>p,, then _;_(z,—zy,) e N™.
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(3.11) Define a line bundle
LA)=(Tt, D)@ - - @ (Thy, K)o

xi x] I
over X/ under the notation in Theorem 2.7. For an open subset U of X7,

let Z(U; L(4,)) denote the space of hyperfunction sections of L(4,) over U.
Moreover we define

BU, X; N),={ue BX; A); B, u)=0 on a neighborhood of
every point of U for any v/ with g8,,<{8,}.

Then for any u € Z(U, X; A"),, the definition of the hyperfunction section

B.(u)(dt)> = B,(u)(dty - - - (dt )

does not depend on the choice of local coordinate systems. In other
words we can define the following map

B.: #U, X; N),—>Z(U; L(4,)).

Put ¢;=1}"fori=1, - - -, n with a positive integer k and consider the
coordinate system (¢/, x)=(¢1, - - -, ¢}, x). Then Lemma 1.8 and the proof
of Lemma 1.9 (i) say that the vector field ¥ on X corresponding to an
element Y of g defines an analytic vector field under the coordinate system
(¢, x). Moreover Lemma 2.4 (i) and the proof of Proposition 2.5 (cf.
(2.16) and (2.23)) say that any P e D(X) defines an analyic differential
operator under the coordinate system (¢/, x) If k is sufficiently large, the
system /" has regular singularities along X7, and the characteristic expo-
nents are (k/2)4,, - - -, (k/2)2,, under the coordinate system (cf. Remark
2.6). Here we can also choose k so that (k/2)A,—(k/2),. ¢ N™if $(2,—2,,)
¢ N™ because there are only finite 2,. This corresponds to the conditions
(3.9) and (3.10). Applying the results in [O4] to .4 under this coordinate
system, we define the map S, mentioned above.

Since G acts on X and preserves each X i,w, there is a natural action
of G on L(2,) given by

(3.12) Pt (o= (Ao (e

under the coordinate ¢¥(n, m, t) and ¢u(n’, m’, t’), respectively, where
w=w, and g, g’,yeG with g'=yg and (n,m, 1), (W', m',t')e N7 X
(M(@)/(M(@@)Nw*Hw) X R (cf. Theorem 1.10 (i)). Thus for any ge G
we have a commutative diagram
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2, X; N, 25awW; L)
(3.13) l l
B(gU, X: /), 2(5U; L)

and the map B, in (3.13) is a g-homomorphism.

Lemma 3.2. Define p1 e (3,)¥ by

(3.14) p= (o= S 2 I

Then the line bundles L(4,) and L, on X/ are isomorphic and the isomorphism
is G-equivariant.

Proof. Retain the notation just before the lemma. Then the relation
w(n, m, )=¢%(n', m’, ') is equivalent to (', m’, t')=(p¥) " o §2An, m, t)
with g”’=g’'g. It follows from Lemma 1.11 that

dti=exp { —a,, H(g", n, m, t))dt, on X/
for i=1, ..., n under the notation there. Hence
(dtiyr»=exp (——ii A,.{es, H(g", n, m, t)>)(dti)”" on X/.
The definition of H(g"”, n, m, t) means
g'nma(t) e wm'a(t) exp H(g", n, m, t)YM{N.,.
Since log a(t) and log a(¢’) are killed by «,, - - -, «, and since
i(a(t)'m' ~n' " g nma(t))y=exp {o—p, H(g", n, m, 1),
(3.15) (@t ye=1i(a(t’)\m’ —'n' g’ gnma(t)) ' (dt)*
if = (o— S Ayt o
On the other hand, by definition L, is G X C modulo the equivalence
relation (xb, ¢) ~(x, z5(b)c) for x e G, b ¢ P/ and c € C. Therefore
(3.16)  (g'wm'a(t’), 1) ~(gnma(t), w3(a(t’)'m'~'n' ~'g’ ~gnmal(t))).
Thus the lemma follows from (3.12), (3.15) and (3.16). Q.E.D.

By Lemma 3.2 we identify L(2,) with L,, where g is given by (3.14).
Therefore we may replace L(2,) by L, in the commutative diagram (3.13).
Next we consider the system of differential equations which are satis-
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fied by the boundary values, which is studied in [O4, §6]. Use the local
coordinate system (¢, x)=(¢,, - -+, t,, X}, - - -, X,,) as before. Then [O4,
Theorem 6.1 (ii)] says that if u(¢, x) € (U, X; A"), satisfies a differential
equation

P(t, x, t0/t,, - - -, t,0/0t,, 6/0x,, - - -, 80X, Ju(t, x)=0,
then the boundary value B,(u)(x) satisfies the induced equation
P(Os X, Zv,li R} Zy,n’ a/axb Tty a/axn’)ﬁu(u)(x)—:o'

We apply the above statement to all P in J. Let P be an Ad (w;Hh-
invariant element of U(g) corresponding to P. Then the expression of P
in the local coordinate system is obtained from (2.23). In fact P is a sum
of the products of vector fields of the form (2.23). The induced equation
is given by changing #*® to t*®|, _..._,._o and #,9/t, to 2, , for k=1, - - -, n
in the expression (2.23). Then the term X _, vanishes if X_; € n;.

Put F={a e ¥(j); «|i.50} and suppose w,=e. Then the above
statement says that the induced equation coincides with the differential
operator corresponding to 7, o §,(P) (cf. (2.5)). Here 7, denotes an algebra
homomorphism of U(mz-+az) to U(my) which is identity on U(my) and
satisfies 7,(H,)=—4,, for k=1, --.,n. This implies 770z, 00,(P)=
7,077 00,(P)=17,0n5 o 7(P)=1,07(P). Since 7,00,(P) is a (mzNY)-
invariant element of U(m;) and since the map 7¥ induces an algebra iso-
morphism 77 of D(X?) onto U(j(e))”* (cf. (2.9)) the induced equation
corresponds to ¢,(P). Hence the boundary value ,(u) satisfies the induced
system (3.6). The above argument is also valid in the case where w;=e.
Thus we have the main theorem in this section.

Theorem 3.3. Let X! be a boundary component contained in the
closure of X in X and let U be an open subset of X!. Let A be the system
(3.5) of differential equations defined by an ideal J of finite codimension in
D(X). Then the boundary map B, defines a commutative diagram

B, X; M), 253 L H)
(3.16) ,,gl -
B(@U, X; N ),L%(gU 5L N

for g € G and the map B, in (3.16) is U(g)-equivariant. Here y is defined by
(3.14) and N, is the induced system (3.6) associated to p.

Remark 3.4. (i) If U=X/, then we have a G-equivariant map j,:
BXL, X3 N),—~RBX]; L).
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(ii) Fixy. Then if $(2,,—2,) ¢ N* for-v' e{l, .-, m—y, B(X],
X; N),=BX; N). ‘

(iii) For any non-zero u e #(X; A7) there exist at least one v e
{1, - - -, m} such that u e (X7, X; A"), and B,(u)5=0. - This is proved as
follows:

Suppose 8,(u)=0 for all 3,. Then there exist an open neighborhood
V of X7 in X so that u| TN X=0. Since V is independent of u (cf. [04,
Theorem 4.4]) and since §,(z (1)) =7 (,(1))=0, we have = (u)| VN X=0
for all g € G and therefore u=0. Hence if u3=0, there exist g, with ,(v)
#0. Then any minimal element of {8,; 8,(#)==0} with respect to the semi-
order is the required one.

§ 4. Principal series

In the preceding section we construct some G-modules attached to
boundary components of X. The G-modules attached to the distinguished
boundaries are most important, which lead us a concept of (most
continuous) principal series for X. When X is a group manifold, this
coincides with the usual principal series defined in [Hal]. First we give a
proposition which will be useful for the study of principal series for X.

Proposition 4.1. We can choose the complete set {w,, ---,w,} of
representatives of W(a; H)\W(a) and the representatives W, ¢ Ng(a) of w,
for j=1, « - -, r with W,=e such that they satisfy both (2.15) and

“.1) m@) NAd (w;Hh=m(e) N} forj=1,---,r

Proof. We can assume that w; and w; satisfy (2.15) (cf. [OS2,
Corollary 7.10]). Put m(s),=[m(s), m(e)]. Since Ad (w,)m(c)=m(s),
Ad (w,)"'¢ Ad (w,) induce involutive automorphisms of m(g),. Applying
Lemma 4.2 below to these involutions, we find Z, e jN\ m(o), such that
Ad (exp Z,)~' Ad (w,) "o Ad (w,) Ad (exp Z,)X=0X for all X ¢ m(c),. Re-
placing w, by W, exp Z,, we can moreover assume Ad (w,)"'c Ad (w,)X=
oX for Xem(g),, Hence if Xe Ad(w,)'(m(s),NY), we have ¢X=
Ad (7)) Ad (w,)X=X and so Ad (w,)"'(m(0), N h) = m(0),NY. Since
1N m(e) N b is the orthogonal complement of { in 1+ a, with respect to the
Killing form, it is stable under the map Ad (w,)~' (cf. (2.15)). Hence
m(e) NAd (w,)~§=Ad (w,)~*(m(0) N §)= Ad (w,)~(m(e), N §+1 N m(e) N
h=m@),. NH+iNm@e) N h=m@@) N Y. Q.E.D.

Lemma 4.2. Let u be a compact semisimple Lie algebra and let o,
and o, be two involutive automorphisms of u. Put q;={X e u; ¢,(X)=—X}
for j=1 and 2. Suppose there exists an abelian subalgebra 1 of 1 such that
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t is a maximal abelian subspace of q, and also that of q,. Then there exists
an element Z of t such that (exp ad (Z))o, =0, (exp ad (Z)).

Proof. We extend ¢, and ¢, to complex linear involutions of the
complexification u, of u. Let I be a maximal abelian subalgebra of u
which contains {. We remark that ¢,|f,=g,|f,. If {=t, the lemma coin-
cides with [He, Ch. IX, Theorem 3.4]. We will proceed in the same way
as in the proof of the theorem.

Let 4 be the set of non-zero roots of u, with respect to f, and suppose
4 is ordered so that if @ € 4* and «|t+£0, then —g,(a) e 4*. Let {X;
a ¢ 4} be a Weyl basis of u, mod ¥, with respect to 1. Then

o'j(Xa) = aa,jX«rj(a)

where a, ;a, ;=1 and |a, ;|=1 for e e 4 and j=1, 2 (cf. [He, Ch. IX,
Corollary 2.4]) Let Z be an element of f, such that

“4.2) Ay =0a,,eXp Ko, Z

for any simple root o for 4*. Then Z e T because la,,|=1.

Suppose «, 8, a+Bed. Then a,,p ;X uip=0,X. Xgl=[0,(X.),
0, (XI=[a., ;X > Bp, 1 X0 1] = G, 185, 11X s Xoyepp]- Sinee oy(1)=0(7) for
all 7 e 4, we have

4.3) aa+ﬂ,1/aa+ﬂ,2:(aa,l/aa,Z)(a,B.l/a,B,Z)'

This implies (4.2) for all « ¢ 4* by induction. Since a_, ,a, ;=1, we have
(4.2) for all @ ¢ 4. ‘
Suppose 1 e 4 satisfies 7[t=0. Since ¢;(¥)=7 and ¢}=1, it is clear
that ¢,(X,)=2X, or ¢,(X)=—X, If ¢/(X)=—X, then X, e (q,). and
[Y, X,]=7(Y)X,=0 for Y e 1,. which contradicts to the fact that t, is a
maximal abelian subspace of (q;),. Hence ¢,(X,)=X, andso a,,=1. Next
suppose « is a simple root in 4* with «|tz£0. Then —o(a)=p+ > m7,,
where m;, are non-negative integers and 8 and 7, are simple roots in 4*
with B]t=0 and 7,|t=0. Since a,, ;=1, we have a,/a,,=a, /a,, by
using (4.3). Hence if «, 8 and 7 are simple roots for 4* with «|t=8|t
and 7|t=0, then a, ,/a, ;=a,/a,, and &, ,/a, ,=1. This assures that we
can choose Z e t. Then forany « e 4, o, (exp ad (Z))X,=0a, (expLa, Z))X,
=,z (exp {a, Z)) X, yy= Ay (exp—Lt, ZD) X, oy = (exp ad (Z))de,1 X,y ()
=(exp ad (Z))o,X,. This implies the lemma. Q.E.D.

For k=1, - .-, r let II, be the set of equivalence classes of finite
dimensional irreducible representations of P, with (P, w;'Hw,)-fixed
vectors and put [I=U7_, II,. Let(z, E,) be a representation of P, be-
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longing to a class in /7,. Then there exist an element x ¢ g and a finite
dimensional irreducible representation & of M(g) with a non-zero (M (o)
N w;1Hw,)-fixed vector such that

“4.4) r(mxan)= a*~*£(m)

for any me M(c), x e G(o), ae A, and ne N, (cf. Lemma 3.1 and [W,
Lemma 5.5.1.3]).

Let M(o); denote the set of equivalence classes of irreducible unitary
representations of M(c) with non-zero (M(o)N w;'Hw,)-fixed vectors.
Then

(4.5) I~ M(o)s X a*

by the correspondence (4.4).
Here and hereafter in this section the surfix k and the superfix &
always mean a positive integer between 1 and r.

Definition 4.3. Let (¢, E,) be a representation of P, belonging to a
class in IT and let ¥V, be a vector bundle over G/P, associated to . Then
the G-module #(G/P,; V.) of hyperfunction sections of ¥V, is called the
space (of hyperfunction sections of a representation of G) belonging to the
(most continuous) principal series for G/H. The isomorphic class of G-
modules containing #(G/P,; V,) will be called a member of the principal
series for G/H and it is uniquely defined by the class in I containing .

Let &£ e M(o); and p e af such that they correspond to ¢ through
(4.5). Then we write V.=V, , in Definition 4.3. Let d(£) be the dimen-
sion of E, and let m—&(m)=(a,,(m)) (i, j=1, - - -, d(£)) be a unitary matrix
representation of M (g) corresponding to & Let Z(G)*®? be the space of
column vectors of hyperfunctions on G with length d(¢). Then the space
#(G/P,; V,,,) can be regarded as the space of functions f in #(G)?*© which
satisfy

(4.6) flgmxan)=a*~*&(m™")f(g)

forany ge G, me M(c), x e G(o),aec A, and ne N,.

Next we will study the set 7. For a Lie group G’ we denote by G’
or G’ the set of equivalence classes of finite dimensional irreducible re-
presentations of G’. Put

@.7) Z(4,)=Ad;! (Ady(K) Nexp ad (v —Ta,).

Then the group J=Z(4,) exp{ is the centralizer of { in G and called the
Cartan subgroup of G with the Lie algebra {. Let (£, 1) € M(0); X a¥ and
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let 7 e IT, which is related to (&, ) as above. Let & be an equivalent class
of irreducible representations of Z(4,)X M(s), which corresponds to &
through the natural map of Z(4,)X M(s), onto M(s). Since the finite
group Z(A,) centralizes M (o),, it follows from the following lemma 4.4
that M(o) is identified with the subset of Z(4,)X M(s), whose members
have non-zero vectors fixed by {(g, g7'); g € Z(4,)N M(c)}. Thus we have

(4.8) IT,~{r e (Z(4,) X M(c), X A)"; [¢| H}: 1]>0} with
Hi={(g:, 82 ¢) € Z(4,) X M(0), X 4; 8,8, € Wy "HW,}.

Lemma 4.4. Let (n, E) be a finite dimensional irreducible represen-
tation of a Lie group G’, H' a normal subgroup of G’ and E, a minimal H'-
invariant subspace of E with dim E,>0. If (x|H’, E,) is a trivial represen-
tation, all the elements of E are fixed by H'’ and therefore r is regarded as
an irreducible representation of the quotient group G’[H’. On the other
hand, if Zg(HH'=G', (x| H’, E) is isomorphic to the direct sum of finite
copies of (x| H', E,). Here Z,(H")={g e G'; gh=hg for all he H'}.

Proof. Let E’ be the union of H’-invariant subspaces E’’ of E such
that (z, E”) is isomorphic to (=, E,). It is esay to see that E’ is G-
invariant. Hence the lemma. Q.E.D.

Let §, ¢ 2(A,,) and d& e M(g), such that they correspond to z e IT,
through (4.8). We identify d¢& with the highest weight of the correspooding
representation of ni(s) with respect to 2(j);. Since (m(s), m(@)NY)is a
symmetric pair and 2(§); is a corresponding positive restricted root
system, the element d& of (j N m(s))* belongs to t* by denoting

4.9) t=jnt

(cf. Theorem 4.5). Let E° be the correspondin~g subspace of highest weight
vectors in E,. Then dim E°=dim g, and (¢ |J, E?) is an irreducible repre-
sentation of J and we have

Theorem 4.5. (i) The above correspondence gives the bijection

(4.10) w*: II,—=>1T,,
w w .
t —>(c|J, E?)
with
I={¢eJ™; [C|TNWw Hw,: 11>0 and {d¢, a)y>0 for any a € 2(j);}

and d{ is the element of i* which satisfies T.,,=exp{dC, Z) for the
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representation r belonging to L e J™. 3
Gi) [c] M©@)NwgiHw,: 1]=[0*() | JN w5 Hw,: 1]=1 for all ¢ ¢ II,.

Now we prepare two lemmas to prove the theorem.

Lemma 4.6. Let (M(o)N H), be the identity component of M(c) (N H.
Then

(4.11) M@)NH=(M(@)N HNZ(A,) exp t)(M (o) "\ H),.

Proof. Fix an arbitrary me M(e)N H. Put M’'= M(o)/Z(A4,) and
denote by m the residue class of m in M’. We remark that M’ is a com-
pact connected Lie group with the Lie algebra m(s). Since M(g) and
Z(A,) are g-stable, ¢ induces an involution ¢/ on M’. Let Z’ be the identity
component of the centralizer of 7 in M’. Then m e Z’ because i is
contained in a maximal torus in M’. Since ¢/(m)=m, Z’ is ¢’-stable. Let
t’ be a ¢’/-stable maximal abelian subspace of the Lie algebra of Z’. Then
the maximal abelian subgroup expt’ of Z’ contains 7. Hence there exist
X, em(e)NY and X, e m(g) N q such that [X,, X;]=0 and m=exp(X,+ X))
in M’. Moreover since maximal abelian subspaces of m(g) q are con-
jugate under the action of Ad exp (m(s)N §), we can find a X, in m(e)NYH
such that Adexp(y,)X;et.  Hence exp(X)mexp(—X)exp(—X,) e
expt in M’ and the element z=exp (X)m exp (— X)) exp (— X,) of M(c) is
contained in HNZ(4,)expt. Therefore we have me (M(o)N H),zX
(M (o) H),, which equals z(M (¢) N H), because (M (c) N H), is a normal
subgroup of M(c)N H. Thus we can conclude that the left hand side
of (4.11) is contained in the right hand side of (4.11). The converse
inclusion relation is obvious. Q.E.D.

The author obtained the following lemma and Proposition 4.8 in co-
operate with J. Sekiguchi and H. Midorikawa. Hence the author expresses
his gratitude to them.

Lemma 4.7. If G is a simple Lie group, then the dimension of any
irreducible representation belonging to II, equals one.

Proof. We assume k=1 without loss of generality. First we remark
that if G is a real form of a complex Lie group G,, the lemma is clear be-
cause J is abelian. Hence we may assume that G is not isomorphic to a
real form of a complex Lie group.

Let G be the universal covering group of G and x the natural projec-
tion of G onto G. Let Z, be the subgroup of the center of G such that the
Lie group G,= G/Z, is isomorphic to a real form of a simply connected
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complex Lie group. The involution ¢ of the Lie algebra g defines involu-
tions on G and G,, which are denoted by the same letter . Moreover the
fixed point group G° of G with respect to ¢ is known to be connected.

Now consider the case where G has a finite center. Then it is known
that Z,~Z, PutZ,={e,z}. Since Z, is g-stable, o(z)=2z. Let{ be an
irreducible representation of J belonging to a class in I7,. Then  naturally
defines an irreducible representation of z-(J), which will be denoted by £.
Since 7~'(H) contains the analytic subgroup of G with the Lie algebra 5,
7~(JN H) contains Z, and therefore { has a non-zero vector fixed by Z,.
This means that | Z,=1d and that £ induces an irreducible representation
of the abelian group J]Z,. Hence £ and ¢ are one-dimensional representa-
tions.

Next consider the case that G has an infinite center. Put ¥=[f, ¥] and
let ¢, denote the center of f. Then it is known that the analytic subgroup
K’ of G, with the Lie algebra ¥’ is simply connected and therefore K’ is
identified with the analytic subgroup of G. Let , be the natural projection
of G onto G,.Let z, and z, be arbitrary elements of #-(Z(4,)). Then there

-exist X, ec, and k, e K’ such that z;=k, exp X, in G for j=1 and 2.
Since 7,(r'(Z(4,))) is abelian, k,k.x, (exp Xr, (exp Xp)=r,(k, exp X))z, -
(ky exp Xy) = m,(k, exp Xy)r (k, exp X)) = kokz, (exp X (exp X;) and there-
fore kk,=kyk, and z,z,=z,z,. Thus we see that z7'(Z(4,)) is abelian and
so is Z(4,). Since J=2z (4,) exp1i, J is also abelian and the lemma is clear.

Q.E.D.

As a corollary of the proof of Lemma 4.7 we have

Proposition 4.8. Let (g, ) be a symmetric pair with a real simple Lie
algebra g and let ¢ be the corresponding involution. Suppose the center of a
a-stable maximal compact Lie algebra ¥ is zero or contained in §). Let G,
be a simply connected Lie group with the Lie algebra g and let G and H be
the analytic subgroups of G, with the Lie algebra g and Y, respectively. Then
G/H is simply conneted.

Proof. Use the notation in the proof of Lemma 4.7. Then G/G” is
simply connected and G° is connected. First suppose f is semisimple. If
G is isomorphic to G, we have nothing to prove. Therefore we suppose
moreover that G is not isomorphic to G. Then G/Z,~G and Z,cG".
This implies G°/Z,~H and G/H~ G/G°, which is simply connected. Next
suppose the cener ¢, of ¥ is not zero and ¢,CY). Then K/(KNH)=
K'/(K'N H). Since K’ is simply connected, so is K’/(K’)* and the group
(Ky={g e K’; 6(g)=g} is connected. Hence K'N H=(K’)’. On the
other hand K/(KN H) is homotopic to G/H (cf. [B]), it is also simply con-
nected. ' Q.E.D.
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Proof of Theorem 4.5. We may assume k=1 without loss of gener-
ality. Let (z, E.) be an irreducible representation of M(g) belonging to a
class in II,. Let E¥ be the space of vectors in E, fixed by M(e) N H and
let p, be the projection of E. onto the space E? of highest weight vectors
of the representation of M(g),. Since the map p, commutes with the
action of =(J), each element of p,(EZ) is fixed by (/N H).

Put E,=E!®..-®E" Here E! are M(c),-invariant minimal non-
trivial subspaces, r|E¢ are equivalent to dé and n=dim §, under the
notation just before the theorem. Then p,(EY)CE?: Let (,) be the inner
product on E, so that z| M(¢) is unitary. If ¢ is a non-zero vector fixed
by (M(¢)N H), and v* is a non-zero vector in E*N E?, then u* and v* are
unique to within scalar factors. Moreover we have (!, v*)=40 (cf. the
proof of [W, Theorem 3.3.1.1]). Hence p,(u*)= C,;v* with suitable non-zero
C,eCfori=1, -..,n. Thus p,| E¥ is injective and the map »* in the
theorem is well-defined. On the other hand it is clear that the map o* is
injective because (¢|J, E°) determines the representations &, and d&.

Let (£, E) be an irreducible representation of J which belongs to a
classin I7,. Since J=2Z (4,) exp i, we can find an irreducible representation
(%, E) of Z(A4,)X M(s), exp ] such that the space of highest weight vectors
of (| M(a),, E) coincides with E and that #,(v)={,(v) for any g € Z(4,)
Uexp]and anyv e E. Let§ e Z(4,)" and d& e M(s); such that # belongs
to the class (3, d§) e Z(4,)" X M(0), =(Z(4,)X M(0),)". Put Z'=
{(gs &) € Z(4,)Xexp]; g.8,=¢}. Since the element of E is fixed by #,
with any g e Z’, any element of E is fixed by Z’ (cf. Lemma 4.4). Hence
(#, E) induces an irreducible representation of M (¢), which we will denote
by (z, E). Next we will prove that (z, £) has a non-zero (M (s) N\ H)-fixed
vector. The proof of [W, Theorem 3.3.1.1] says that there the representa-
tion of M(g), belonging to d¢ has a non-zero (M(s) N H),-fixed vector
unique up to a scalar factor. By the same reason for the injectivity of p,
the map

4.12) Py E— E
w (W)
v Mj e (V)dh
(M(s)NH)o

is also injective, where dh is the normalized Haar measure of (M (¢) N H),.
Let ze HNZ(A4,)exp] and let v be a non-zero element of E fixed by
JN H. Since the map (M (¢) N H), > h—H = zhz~! defines an automorphism
of (M(o)N H), and dh=dk, we have

e (pu@) = [c.en(0)d= f fh,rxv)dh':jfh,(v)dhepﬁ(v).
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Moreover since p,(v) is also fixed by (M (¢) N H),, it follows from Lemma
4.6 that E has a non-zero vector fixed by M(c)N H.

Thus we have proved that the map o* is bijective and moreover that
[z| M(e)N H: 11=[w*(z)|JN H: 1] for any ¢ e II,. To complete the proof
of the theorem, it is sufficient to show

(4.13) C|FNH:1]<2  foranyleJ".

Let G be a covering group of G such that ¢ can be lifted to an involution
of G and let © be the projection of G onto G. Since any £ e J~ naturally
defines an element e z7'(J)™ and [Z|JNH: N=[|z"'(JNH): 1], we
have only to show that [/|z~'(J)N G: 1]1<2 for any £’ e (z~!(J))"~ where
G is the analytic subgroup of G with the Lie algebra §. Let g=g,+ - - -
+ gy be the decomposition of g into simple Lie algebras and let G, be the
analytic subgroup of G with the Lie algebra g, for any i=1, --., N.
Putting G=G,X - - - X Gy, we can reduce the proof of (4.13) in the case
when (g, ) is an irreducible symmetric pair. If G is simple, then Lemma
4.7 gives the proof. Hence assume (G, H) is irreducible and G is not
simple. Then G=G’X G’ and we can assume g(g, g.)= (g, &) for (g, &)
e G'XG'. Thus J=J'xJ,Jn H={(g,g); geJ’} with a Cartan sub-
group J’ of G’ and therefore (4.13) is clear. Q.E.D.

Put J,=JN K and
(4.14) My =1{Cedg; [C1TxNWwi Hw,: 11>0 and
d¢, ay>0 for all @ € X(§)7}.

Then we have the natural isomorphism I o= Il X a¥ because J=
Jrexpa, Here d( is the element of (jN¥)¥ corresponding to £ in (4.14).
Now we have

Theorem 4.9. (i) Let m be a positive integer. Then the restrictions
of representations to subgroups induce the bijective maps between the fol-
lowing sets of equivalence classes of representations:

(4.15) (6eM,;[8|M,NH: 1]=m}.
(4.16) {6 € Zx(a); [] Ze(@)N H: 1]=m}.
4.17) {6e M; [6|MNH: 1]=m}.

(4.18) {6 € M(o): [0| M(0)N H: 1]=m}.

Moreover restricting to the space of highest weight vectors with respect to
3¢, the above sets are isomorphic to
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(4.19) (6ete; [0) TN H: 1]=m).

(ii) The sets in (i) are empty if m>1.
(iii) The statements in (i) and (i) also hold even if we replace H by
Wy Hw, for k=1, -, r

Proof. Note that M,= M (0)G(c), M) C M Zy(a), Gle)C H and
G(v) is a normal subgroup of M,. Then the theorem follows from Lemma
4.4 and Theorem 4.5. Q.E.D.

We are going to define another realization of principal series for G/H
as G-submodules of #(G) which we will relate to G-modules constructed
in Section 3. Let (z, E,) be a representation of P, belonging to a class in
11, and X, the corresponding character. We fix a Hermitian inner product
(,) on E, by which 7| M(c) is unitary. Let (z*, E,) be the contragradient
representation of (¢, E,). Then
(4.20) Z(G|P,; V)= {ﬁ > fi®u;; fie #(G), v, e E, and

nite sum

2. [i(@)®v, =3 filgx)®r,(v,) for any g € G and x ¢ P,}

by definition. We fix an (M(¢) N w;'Hw,)-fixed vector u, so normalized
that (u,, u,)=1 and we define the G-homomorphism

4.21) e B(GIP,; V)—>AB(G)
w w
Zﬁ@vi '—)Z (v’b u‘z)ﬁ'
Put Q,=(M,Nw;*Hw,)A,N, and define a G-submodule of #(G):

(4.22) B(G/Qw; Ly={f € Z(G); f (g)=X,(e)JM( )f (gm)X(m)dm and
S(ghun)=f(g)a* ¢ for any he M,NWw,'HW,, ac A, and ne N},
where the element p e af is determined by ¢ through (4.5). Then we have

Theorem 4.10. The map p* induces the isomorphism between G-
modules:

(4.23) P B(GIP,; V)——>H(G|Qy; L.)
Its inverse is given by

(4.24) Q(G/Qk, L )—)%(G/P“ V)

f@) 1) j Fem@c,(u)dm.
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Here dm is the Haar measure on M (c) with fdm: 1.

Proof. Let 3. f,Qu, e #(G/P,; V). Then for any ge G, h e M(o)
Nwy;'Hw,, x € Glg),ae A, and ne N,, we have > (v, u,)fi(ghxan)=
Z (T(h'can) —l(vi)’ ur)f;(g):: Z(Tﬂ(hzan) —l(vi)’ Th(ur))f;(g) = a'u—PZ(Ui’ ut).fi(g)

Moreover we have
j S (vss u,)ﬁ(gmﬂ,(m)dm:fz(rm-l(vi), ) f(g)1.(m)dm

- Z( X (M) -1(v;)dm, u,>ﬁ(g)
=€) 2 (v, u) fi(g)-

Hence we see that the image of p* is contained in #(G/Q,; L,).
Fix an orthonormal basis u,, - - -, u, of E, with u;=u,. Here d=1X.(e).
Put M,=M (o) N\ w;'Hw, for simplicity and put a,,(m)=(c,(u,), u;) for
me M(g) and i, j=1, - .-, d. Then by the Peter-Weyl theory we have
a;(m)= aji(m—l)’

J‘aij(m)mdm—_— {d—l if @, j)=(s, 1),

0 if (i, ))=#(s, 1)

and since it follows from Theorem 4.5 that any (M (o) N w; Hw,)-fixed
element of E, is a scalar multiple of u,, we have

f . dumi)dh= f . a0, )= (Tm f . el uj) =0

fori=2, -..,d. Here dh is the Haar measure on M, with Idh: 1.
Let 3 f.(g)®u, be any element of #(G/P,; V,). Then

45 P A@U)=d [ 3 e, 1) figm) @ m
—d5(g) ®f(rm-1(ui), )2 1t) dm
= XS (&)@ 4™ o i

——-dzi,jﬁ(g)@)( [ Wm)alxm)dm)uj
= Zfz(g Qu;.
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On the other hand for any f(g) € #(G/Q;, L.) and 1<i<d, we have
[ femaumdn={ |  semhaimimd
M(a) My J M(s)

ZI L) dmek a,(mh)dh
—0

and therefore
220 a0 =pt(d[ flem@zutu) dm)
—d [ f(gm)(eu(u), udm
—d | f(gma,(m)dm
— df F(gm) (au(m)+ - - -+, (m))dm

=dff<gm)x,<m)dm
= f(g). Q.E.D.

Since the G-module #(G/Q,; L,) is determined by the class 7 e I,
containing 7z, we sometimes write Z(G/Q,; L.) or #(G/Q;; L) in place of
AB(G/Q,; L,), where {=w,(7) e Il;. We sometimes fix a representation be-
longing to each class in IT, and identify them. For any { ¢ I1}, let d{ be
the element of ¥ under the notation in Theorem 4.5. Then clearly d¢ e i*
and we can define the map

(4.25) I —>iF
w W

Now recall the notation in Section 3. Here we are concerned with
compact boundary components of G/H. Hence we put e=0=(0, ---,0)
e{—1,0,1}. Then M,=M,, M}=M,Nw;*'HW,, A.=A,, N.=N,, P}
=04, i.=0a, j(e)=t and X =G/Q,. In this case the isomorphism (3.3)
becomes

(4.26) i DXH—I(1).

Let J’ be any finite codimensional ideal of D(X¥) and let y be any element
of a*. We consider the system of differential equations
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4.27) M Du=0 for all D e J’

on #(X§; L,) as in Section 3. We put

(4.28) V(M)y=1{¢ e t}; TE(D)(&)=0 for any D e J'}.

Then V(.#")X {1} is a finite subset of 1} X af ~ j¥ and we have
Theorem 4.11.  Under the above notation the G-homomorphism

(4.29) S B(G[Qx; L) —> B(XS; L,; M)

LEM, A’ CEeV ()X {p}
w w
) —> f=2.f
is well-defined and bijective. The inverse map is obtained by

ri: BX7; Ly M) —>B(GQw; L)
w

w

f(®) —>(ri(Ng)= X;(e)fm)f (gm)x (m)dm.

Here ¥ is the character of the representation of P, which corresponds to
Cell,~II, by Theorem 4.5.

Proof. The space #(K) of hyperfunctions on K has a natural
topology as the dual of the space «/(K) of real analytic functions on K
and any + ¢ #(K) has the expansion

W=, 3 10|, vlemtimydm

in this topology. Here X, denotes the character corresponding to & e
M(o)". Considering the restriction on K, #(X{; L,; #') is identified with
a closed subspace of Z(K).

Letf e #(X{; L,; #'). Then

fzae 2 T

M(a)™

(4.30)
f(g)= X"(e)Jm.,)f (gm)x,(m=")dm.

Since I Fgmbiyly(m=")dm = j Flgmyty(hm=")dm = j fgmyls(m~"h)dm  for
any h e M(g) N Wy Hw,, we have

Fie)=14@)[ , fam)gm dm
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with

Bs(m)= Xs(mh)dh
M (o) N Wi *HDy,
and f;=¢,=0 if [6|M(e)Nw;'Hw,: 1]=0. Moreover for any De
U(m(e))™’ "% we have

OAE=16@ [, flem)(Dgi)om™)dbm.

Soppose f;2c0. Now we apply Lemma 4.12 to Dg,. Lemma 4.12
can be obviously extended to the case where G is a compact connected
Lie group and moreover to the case where the symmetric pair in the lemma
equals (M(o), M(o) N\ Wi Hw,) because M(c)=Z(A,)M(c), and Z(4,)
centralizes M(c),. Owing to Lemma 1.5, Lemma 2.1 and Lemma 3.1, we
have D¢,=z{(D)(d5+ p|1.)¢; for any

D e U(m(o)" " /(U (m(@))" "N U(m(a))(m(o) N ) = D(XH),

where dé e t¥ is the highest weight corresponding to 6. Hence Df=
>l (D)(d3+ | 1)f; for any D e DXY).

By the uniqueness of the expansion (4.30), we can conclude that
=0 if [6| M(e) N w5 Hw,: 11=0 or dd+p|t, ¢ V(A’). Now if e II}
(=II,~M(o); X a¥) corresponds to (J, p) € M(s)" X a¥, then X (m)=1X,(m)
for any m € M (¢) and therefore r#(f)= f;». Moreover it is easy to see that
rEorf=rfand rforf=0if {+{. Hence the theorem is clear =~ Q.E.D.

The following lemma used in the above proof is well-known. But we
will give its proof in order to formulate it in our notation.

Lemma 4.12. Suppose that G is compact and G/H is a compact sym-
metric space. Let § ¢ G with [§|H: 1150 and let X; be the corresponding

character. Then the zonal spherical function ¢5(g)=jxa(gh)dh satisfies
4.31) D¢, =T(D)dé+p|t)ps for any D e D(G/H).

Here dh is the Haar measure on H with jdh:l and dj e i¥ is the highest

weight corresponding to d.

Proof. First we remark t=1 and d6 e / —11*. Let (z, E) be a re-
presentation of G belonging to § and fix a Hermitian inner product (, )
on E such that (z, E) is unitary. Let u,, - - -, u, be an orthonormal basis
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of E such that u, is a H-fixed vector and let u, ¢ E be the highest weight
vector with respect to 3(})*. Let G, be a complex Lie group with the Lie
algebra g, such that G is a maximal compact subgroup of G,. Recall that
1, is a nilpotent subalgebra of g, corresponding to 2(§)* and fi,=a(n,)
(cf. §2). Moreover we remark that if X;4+/—1X, e nn, with elements X,
and X, of g, then X,—+ —1X, ¢ fi,.

Put 4,(g)=(m (1), #;). Then +(g) is extended to a holomorphic
function on G, which is denoted by the same letter, and we have

Vs (exp (X) exp (Y) exp (£))=exp dé(U)

for any X e fi,, Yet, and Z ¢ §), because do(— U)=dd(U)if U e . Hence
for D e U(g) we have (Dvr,) (exp (X) exp (¥))=T(D)(d' s (exp (X) exp(Y))
by putting d’6=d5+p|t,. Therefore if D e U(g)’, we have (Dg;)(z)=
T(DY(dd)\riz) for any z e {exp (X) exp(Y)exp(Z); Xefi,, Yet, and Z e
b.}. Hence Dyr;=T(D)d’'8), for any D e D(G/H) because it holds on a
neighborhood of the identity in G,.

Now we remark that ¢,(g)=_(r(u,), u,). Since u, € >, ,Cr,uy, dg)
belongs to the C-linear span of left translations of +,(g) by x e G. Hence
D¢;=T(D)(d'd)¢, for any D e D(G/H). Q.E.D.

We have a direct consequence of Theorem 4.11:
Corollary 4.13. For an element (3, 1) € 1} X aF we define the system
N Du=zHD)(n, u Jor any D ¢ D(X¥)
of differential equations on #(X{; L,). Moreover putting

W) ={nev—11*; (&, a)>0 for any a € 2(5)* and exp (p—p, ¥ )=0
for any Y e t satisfying exp Y € wi;'Hw,},

we have

BXE; Ly N)—>RBXE; L,; M)
1€V (LN NTL)E

Especially B(XE; L,; M)={0} if V(AINBR)=2.

Remark 4.14. By a theorem due to E. Cartan and S. Helgason (cf.
[W, Theorem 3.3.1.1]) the condition 5e V(4) N W(); implies that
{p—p, ad/{a, a) is a non-negative integer for any o € 2(f);.

Finally we give the following theorem which was announced in [O1]
and [02].
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Theorem 4.15. Let J be a finite codimensional ideal of the ring
D(G/H) of the invariant differential operators on G/H and let B(G]H; N")
be the space of hyperfunction solutions of the system

A Du=0 for all DeJ

on G/H. Then there exist finite elements ¢, - - -, ty € Il and G-invariant
subspaces V(0), - -+, V(n) of B(G/H; A") such that V(0)= {0}, V(N)=
B(G/H; A") and that the quotient space V(i)/V(i—1) is G-isomorphic to a
G-invariant subspace of the principal series #(G/P,;V,) for any ie
{1, ---, N}

The above theorem is easily obtained by combining Remark 3.4,
Theorem 4.10, Theorem 4.11 and Corollary 4.13. Much more explicit
imbedding theorem will be given in [O5].

Remark 4.16. When we consider the space of K-finite solutions of
A" in Theorem 4.15, we conclude that the space is a Harish-Chandra
module and every irreducible subquotient of the Harish-Chandra module
is a submodule of the Harish-Chandra module corresponding to a certain
principal series for G/H. This is clear because the principal series for G/H
is a G-invariant subspace of a usual principal series for G.

In the case when the center C of G is infinite and #(C/CN H) is also
infinite, the space of K-finite solutions of .4#” in the above statement should
be replaced by U(g)-module V generated by a K-finite solution of A4". In
fact, in this case, the left hand side of (4.29) is an infinite direct sum. But
since the K-type of V is discrete, only the finite summands are related to
V and we have the same statement for ¥ even if C is infinite.

Remark 4.17. Let G’ be a connected real semisimple Lie group. Put
G=G"XG", 0(g1, 8)=(g &) and H={(g, g) ¢ G; g e G’}. Then the sym-
metric space G/H is naturally identified with the group manifold G’. We
call this case a group case.

Then M(o)=M’'XM’, Glo)={e}, A,={(a,a™)e G;ac A }and N,=
{(n,6/(n)) e G; ne N’}. Here G'=K’A,N’ is an Iwasawa decomposition
of G’, ¢ is the corresponding Cartan involution of G’ etc. We denote an
object for G’ by the symbol with dash of the corresponding object for G.
An irreducible representation of M with a non-zero (M(s)N H)-fixed
vector is a direct tensor product of an irreducible representation & of M’
and its contragradient representation &*. Hence the representation of G
belonging to the principal series for G/H is identified with the representa-
tion of G’ X G’ induced from the representation
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((man, m'a’w’) e Em)a*~*" £¥(m’)a’ —="* -

for (mya, n,m’, a', nye M/ X A, XN X M"X A, XN’

of P/ X P’/. Here £ is an irreducible representation of M’, 2 is an element
of (a)¥ and w* is the longest element of the Weyl group of the symmetric
space G’/K’. Hence the representation is the direct tensor product of a
representation belonging to the principal series of G’ and its contragradient.
We remark that we consider both left and right actions of G’ on the func-
tions on G,
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