Advanced Studies in Pure Mathematics 14, 1988 Representations of Lie Groups, Kyoto, Hiroshima, 1986 pp. 541-559

Closure Relations for Orbits on Affine Symmetric Spaces under the Action of Minimal Parabolic Subgroups

Toshihiko Matsuki

§1. Introduction

Let G be a connected Lie group, σ an involutive automorphism of G and H a subgroup of G such that $G_0^{\sigma} \subset H \subset G^{\sigma}$ where $G^{\sigma} = \{x \in G | \sigma x = x\}$ and G_0^{σ} is the connected component of G^{σ} containing the identity. Then the factor space $H \setminus G$ is called an affine symmetric space. We assume that G is real semisimple throughout this paper.

Let P^0 be a minimal parabolic subgroup of G. Then a parametrization of the double coset decomposition $H \setminus G/P^0$ is given in [1] and [2]. In this paper we study the closure relations for the double coset decomposition.

The result of this paper can be stated as follows. Let g be the Lie algebra of G and σ the automorphism of g induced from the automorphism σ of G. Let θ be a Cartan involution of g such that $\sigma\theta = \theta\sigma$. Let $g=\mathfrak{h}+\mathfrak{q}$ (resp. $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$) be the decomposition of g into the +1 and -1 eigenspaces for σ (resp. θ).

Let x be an arbitrary element of G. By Theorem 1 in [1], there exists an $h \in G_0^{\sigma}$ such that $P = hxP^0x^{-1}h^{-1}$ can be written as

$$P = P(\mathfrak{a}, \Sigma^+) = Z_G(\mathfrak{a}) \exp \mathfrak{n}$$

where α is a σ -stable maximal abelian subspace of \mathfrak{p} , Σ^+ is a positive system of the root system Σ of the pair (\mathfrak{g}, α), $Z_{\mathfrak{g}}(\alpha)$ is the centralizer of α in Gand $\mathfrak{n} = \sum_{\alpha \in \Sigma^+} \mathfrak{g}(\alpha; \alpha)$. ($\mathfrak{g}(\alpha; \alpha) = \{X \in \mathfrak{g} | [Y, X] = \alpha(Y)X$ for all $Y \in \alpha\}$.) Since $(HXP^0)^{\mathfrak{c}t} = (HP)^{\mathfrak{c}t}hx$, we have only to study $(HP)^{\mathfrak{c}t}$.

Let K be the analytic subgroup of G for \sharp and put $H^a = (K \cap H)$. exp ($\mathfrak{p} \cap \mathfrak{q}$). Then $H^a \setminus G$ is called the affine symmetric space associated to $H \setminus G$ ([1]). For a subset S of G, we put $S^{op} = \{y \in G \mid (H^a y P)^{cl} \cap S \neq \emptyset\}$. Then it is clear that S^{op} is the minimal H^a -P invariant open subset of G containing S since the number of H^a -P double cosets in G is finite. For each root α in Σ , put $\alpha^{\alpha} = \{Y \in \alpha \mid \alpha(Y) = 0\}$, put $L_{\alpha} = Z_G(\alpha^{\alpha})$ and choose an element w_{α} of $N_K(\alpha)$ such that Ad $(w_{\alpha})|_{\alpha}$ is the reflection with respect to α .

Received April 6, 1987.

Theorem. Let C denote the σ -stable convex closed cone in α defined by $C = \{Y \in \alpha \mid \alpha(Y) \ge 0 \text{ for all } \alpha \in \Sigma^+ \cap \sigma \Sigma^+\}$. Fix an element Y_0 of $C \cap \mathfrak{H}$ such that $\alpha \in \Sigma$ and $\alpha(Y_0) = 0$ implies $\alpha|_{\alpha \cap \mathfrak{H}} = 0$. Let w be the element of W defined by the condition

$$w\Sigma^{+} = \{ \alpha \in \Sigma^{+} \mid \alpha(Y_{0}) \geq 0 \} \cup \{ \alpha \in -\Sigma^{+} \mid \alpha(Y_{0}) > 0 \}.$$

Let $w = w_{\alpha_1} \cdots w_{\alpha_n}$ be a minimal expression of w by the reflections with respect to simple roots $\alpha_1, \dots, \alpha_n$ in Σ^+ . Put $w^{(i)} = w_{\alpha_1} \cdots w_{\alpha_i}$ $(i=0, \dots, n)$, $L_1 = Z_G(\mathfrak{a} \cap \mathfrak{h})$, $\mathfrak{l}_1 = \mathfrak{d}_{\mathfrak{g}}(\mathfrak{a} \cap \mathfrak{h})$ and $\mathfrak{l} = [\mathfrak{l}_1, \mathfrak{l}_1]$. Let L be the analytic subgroup of G for \mathfrak{l} . Then we have the followings.

(i)
$$(Hw^{(i-1)}P)^{cl} = (Hw^{(i)}P)^{cl}L_{a_i}$$

and $(H^a w^{(i-1)}P)^{op} = (H^a w^{(i)}P)^{op}L_{a_i}$ for $i=1, \dots, n$
(ii) $(HP)^{cl} = (HwP)^{cl}(Pw^{-1}P)^{cl}$

and
$$(H^a P)^{op} = (H^a w P)^{op} (Pw^{-1}P)^{cl}$$

(iii)

$$(HwP)^{cl} = H((L \cap H)(L \cap P))^{cl}wP$$

and $(H^awP)^{op} = H^a((L \cap H^a)(L \cap P))^{op}wP.$

Here

$$((L \cap H^{a})(L \cap P))^{op} = \{ y \in L \mid ((L \cap H^{a})y(L \cap P))^{cl} \cap (L \cap H^{a})(L \cap P) \neq \emptyset \}.$$

(iv) $(HP)^{cl} = H((L \cap H)(L \cap P))^{cl}w(Pw^{-1}P)^{cl}$
and $(H^{a}P)^{op} = H^{a}((L \cap H^{a})(L \cap P))^{op}w(Pw^{-1}P)^{cl}.$

(v) $(L \cap H)(L \cap P)$ is open in L and $(L \cap H^a)(L \cap P)$ is closed in L.

(vi) Let D (resp. D') be an arbitrary H-P double coset (resp. H^a -P double coset) contained in $(HP)^{c1}$ (resp. $(H^aP)^{op}$). Then there exist elements $y_i \in (Hw^{(i)}P)^{c1}$ (resp. $(H^aw^{(i)}P)^{op}$) for $i=0, \dots, n$ satisfying the following four conditions.

(a) $\alpha_i = \operatorname{Ad}(y_i)\alpha$ is σ -stable and $y_i \in K$ for $i=0, \dots, n$.

(b) $Hy_0P = D$ and $y_n \in ((L \cap H)(L \cap P))^{cl}w$ (resp. $H^ay_0P = D'$ and $y_n \in ((L \cap H^a)(L \cap P))^{op}w$).

(c) Let α'_i be the root in $\Sigma(\alpha_i)$ defined by $\alpha'_i = \alpha_i \circ \operatorname{Ad}(y_i)^{-1}$ for $i=1, \dots, n$. If $\mathfrak{g}(\alpha_i; \alpha'_i) \cap \mathfrak{q} = \{0\}$, then $y_{i-1} = y_i$ or $y_i w_{\alpha_i}$. If $\mathfrak{g}(\alpha_i; \alpha'_i) \cap \mathfrak{q} \neq \{0\}$, then $y_{i-1} = y_i, y_i w_{\alpha_i}, y_i c_{\alpha_i}$ or $y_i c_{\alpha_i}^{-1}$. Here c_{α_i} is an element of L_{α_i} defined by $c_{\alpha_i} = y_i^{-1} c'_{\alpha_i} y_i, c'_{\alpha_i} = \exp(\pi/2)(X + \theta X)$ with an $X \in \mathfrak{g}(\alpha_i; \alpha'_i) \cap \mathfrak{q}$ satisfying $2\langle \alpha'_i, \alpha'_i \rangle B(X, \theta X) = -1$. (B(,) is the Killing form on \mathfrak{g} and \langle , \rangle is the inner product on α_i^* induced from B(,).)

(d) dim $Hy_{i-1}P \ge \dim Hy_iP$ (resp. dim $H^ay_{i-1}P \le \dim H^ay_iP$) for $i=1, \dots, n$. Moreover if $y_{i-1}=y_ic_{a_i}$ or $y_ic_{a_i}^{-1}$ in (c), then dim $Hy_{i-1}P >$ $\dim Hy_iP \text{ (resp. } \dim H^ay_{i-1}P < \dim H^ay_iP \text{).}$

(viii) Let D (resp. D') be an arbitrary closed H-P double coset (open H^{a} -P double coset) in G. Then

$$D \subset (HP)^{el} \Longleftrightarrow D \subset HRwW_{a_n} \cdots W_{a_1}P$$

(resp. $D' \subset (H^aP)^{op} \Longleftrightarrow D' \subset H^aR'wW_{a_n} \cdots W_{a_1}P$).

Here R (resp. R') is the union of all the closed $L \cap H - L \cap P$ double cosets (open $L \cap H^a - L \cap P$ double cosets) in L and $W_{\alpha_i} = \{1, w_{\alpha_i}\}$ for $i = 1, \dots, n$. Moreover let y be an element of K such that Ad (y) α is σ -stable and that HyP is closed in G. (Then $H^a yP$ is open in G by Corollary of [1] § 3.) Then

$$HyP \subset (HP)^{cl} \Longleftrightarrow H^a yP \subset (H^aP)^{op}.$$

(At the end of this section, we have

$$HyP \subset (HP)^{cl} \iff H^a yP \subset (H^aP)^{op}$$

for any H-P double coset HyP in G as a corollary of Theorem. Here $y \in K$ is chosen so that Ad $(y)\alpha$ is α -stable.)

Remark. (i) Since L is a connected semisimple Lie subgroup of G such that $\sigma L = \theta L = L$, we can apply Theorem to the double coset decompositions $L \cap H \setminus L/L \cap P$ and $L \cap H^a \setminus L/L \cap P$.

(ii) If the number of the open $L \cap H - L \cap P$ double cosets in L is one (then the number of the closed $L \cap H^a - L \cap P$ double cosets in L is one by Corollary of [1] § 3), for instance when G is a complex semisimple Lie group and σ is a complex linear involution, then it is clear from Theorem (v) that

$$((L \cap H)(L \cap P))^{cl} = ((L \cap H^a)(L \cap P))^{op} = L.$$

In [3], T.A. Springer studied the double coset decomposition $H \setminus G/P$ for algebraic groups G over algebraically closed fields. He also studied closure relations in Section 6 of his paper. So the formula for $(HP)^{ct}$ in Theorem (iv) and the description of H-P double cosets contained in $(HP)^{ct}$ in Theorem (vi) are essentially the same as his results (except that $y_{i-1} = y_i$ or $y_i w_{a_i}$ when $g(\alpha_i; \alpha'_i) \cap q^a \neq \{0\}$) when G is a complex Lie group and σ is a complex linear involution.

(iii) When the number of the open $L \cap H - L \cap P$ double cosets in L is not one, we can find by Theorem (vii) all the $L \cap H - L \cap P$ double cosets (resp. $L \cap H^a - L \cap P$ double cosets) contained in $((L \cap H)(L \cap P))^{ct}$ (resp. $((L \cap H^a)(L \cap P))^{op})$ in the following way. Let $(L \cap H)y(L \cap P)$

(resp. $(L \cap H^a)y(L \cap P)$) be an arbitrary $L \cap H - L \cap P$ double coset (resp. $L \cap H^a - L \cap P$ double coset) in L. We may assume that Ad (y)a is σ -stable and that $y \in K$ by [1] Theorem 1. Then considering L, $L \cap H$ and $y(L \cap P)y^{-1}$ as G, H^a and P in Theorem (vii), respectively, we can see whether $(L \cap H)(L \cap P)y^{-1}$ (resp. $(L \cap H^a)(L \cap P)y^{-1})$ is contained in $((L \cap H)y(L \cap P)y^{-1})^{op}$ (resp. $(L \cap H^a)y(L \cap P)y^{-1})^{cl}$) or not. So we can see whether $(L \cap H)y(L \cap P)$ (resp. $(L \cap H^a)y(L \cap P)$) is contained in $((L \cap H)(L \cap P))^{cl}$ (resp. $(L \cap H^a)(L \cap P)^{op}$) or not.

(iv) Let y be an element of $L \cap K$ such that Ad (y)a is σ -stable. Then it follows from the above consideration in (iii) and from the latter half of Theorem (vii) that

$y \in ((L \cap H)(L \cap P))^{cl} \iff y \in ((L \cap H^a)(L \cap P))^{op}.$

(v) When $G = G' \times G'$, $H = \{(x, x) | x \in G'\}$ and $P = P' \times P'$ with a connected semisimple Lie group G' and a minimal parabolic subgroup P' $= P(\alpha', \Sigma'^+)$ of G', the double coset decomposition $H \setminus G/P$ can be naturally identified with the Bruhat decomposition $P' \setminus G'/P' \simeq W(\alpha')$. In this case it is known as Bruhat ordering on $W(\alpha')$ that $(P'wP')^{cl} = P'L'_{r_1} \cdots L'_{r_n}P' = PW_{r_1} \cdots W_{r_n}P'$. Here $L'_r = Z_{G_1}(\alpha'')$, $\alpha'' = \{Y \in \alpha' | \gamma(Y) = 0\}$ for $\gamma = \Sigma'$, $w = w_{r_1} \cdots w_{r_n}$ is a reduced expression of $w \in W(\alpha')$ by reflections w_{r_1} , \cdots , w_{r_n} with respect to simple roots $\gamma_1, \cdots, \gamma_n$ in Σ'^+ and $W_{r_i} = \{1, w_{r_i}\}$ for $i = 1, \dots, n$.

In general if the number of $K \cap H$ -conjugacy classes of σ -stable maximal abelian subspaces of \mathfrak{p} is one, then it follows from [1] Theorem 2 that $y_{i-1} = y_i$ or $y_i w_{a_1}$ in Theorem (vi) and that $(L \cap H)(L \cap P) = (L \cap H^a)(L \cap P)$ = L. Hence it follows from Theorem (iv) and Theorem (vi) that

$$(HP)^{cl} = HwPL_{\alpha_n} \cdots L_{\alpha_1} = HwW_{\alpha_n} \cdots W_{\alpha_1}P$$

and that

$$(H^a P)^{op} = H^a W P L_{a_n} \cdots L_{a_n} = H^a W W_{a_n} \cdots W_{a_n} P.$$

So we can say that Theorem (vi) is a generalization of Bruhat ordering.

As in Corollary 2 of [1] Theorem 1, there exists a natural one-to-one correspondence between $H \setminus G/P$ and $H^a \setminus G/P$ given by $HyP \rightarrow H^a yP$ if Ad (y)a is σ -stable and $y \in K$. From Remark (iv) and from Theorem (vi) we have the following.

Corollary. Let D be an arbitrary H-P double coset and choose a $y \in D \cap K$ so that Ad $(y)\alpha$ is σ -stable. Then $HyP \subset (HP)^{c^1}$ if and only if $H^{\alpha}P \subset (H^{\alpha}yP)^{c^1}$.

In the proof of the first six assertions in Theorem, a generalization (Lemma 3) of [4] Lemma 5.1 plays an essential role. The proof of Theorem (vii) is reduced to the following proposition which will be proved in Section 5.

Proposition. For any closed H-P double coset D and for any open H-P double coset D', we have $D \subset (D')^{cl}$.

The author would like to thank J. Sekiguchi because the simple proof of Proposition given in Section 5 is due to him, while the original proof by the author was very complicated.

§ 2. Notations and preliminaries

Let Z denote the ring of integers and R the field of real numbers. For a set S with a map $\tau: S \rightarrow S$, we write $S^r = \{x \in S | \tau x = x\}$. For a topological group G_1 , we denote by $(G_1)_0$ the connected component of G_1 containing the identity.

Let G_1 be a topological group, H_1 and H_2 be closed subgroups of G_1 and S be a subset of G_1 . Then we denote by S^{cl} the closure of S in G_1 and we put $S^{op}(H_2 \setminus G_1/H_1) = \{x \in G_1 \mid (H_2 x H_1)^{cl} \cap S \neq \emptyset\}$. If the number of H_2 - H_1 double cosets in G_1 is finite, then it is clear that $S^{op}(H_2 \setminus G_1/H_1)$ is the minimal H_2 - H_1 invariant open subset of G_1 containing S. If S is H_2 - H_1 invariant, then S^{cl} is also H_2 - H_1 invariant. Since we study double coset decompositions, it is natural to use the symbol $S^{op}(H_2 \setminus G/H_1)$ only when S is H_2 - H_1 invariant.

The following general lemma will be used in Section 4 when $H_3 = (H_2)_0$.

Lemma 1. Let G_1 , H_1 and H_2 be as above. Let H_3 be a normal subgroup of H_2 and S a subset of G_1 such that $H_3SH_1=S$. Suppose that the number of H_3 - H_1 double cosets in G_1 is finite. Then we have the followings.

- (i) $(H_2S)^{cl} = H_2S^{cl}$.
- (ii) $(H_2S)^{op}(H_2\backslash G_1/H_1) = H_2S^{op}(H_3\backslash G_1/H_1).$

Proof. (i) Since $H_2S \subset H_2S^{cl} \subset (H_2S)^{cl}$, we have only to prove that H_2S^{cl} is closed in G_1 . Since H_3 is normal in H_2 , we have

$$H_2S^{cl} = \bigcup_{g \in H_2} g(H_3S)^{cl} = \bigcup_{g \in H_2} (H_3gS)^{cl}.$$

Since the number of H_3 - H_1 double cosets in G_1 is finite, the right hand side of this formula is a union of a finite number of closed sets. Hence H_2S^{cl} is closed in G_1 .

(ii) Since the number of H_3 - H_1 double cosets in G_1 is finite, $(H_iS)^{op}(H_i \setminus G_1/H_1)$ is the minimal H_i -invariant open subset of G_1 containing H_iS for i=2, 3. Clearly $H_2S^{op}(H_3 \setminus G_1/H_1)$ is an H_2 - H_1 invariant open subset of G_1 such that $H_2S \subset H_2S^{op}(H_3 \setminus G_1/H_1) \subset (H_2S)^{op}(H_2 \setminus G_1/H_1)$. Hence the assertion holds. Q.E.D.

Let G be a connected real semisimple Lie group, σ an involutive automorphism of G and H a subgroup of G satisfying $G_0^{\sigma} \subset H \subset G^{\sigma}$. Then the factor space $H \setminus G$ is called an affine symmetric space.

Let g be the Lie algebra of G and σ the automorphism of g induced from the automorphism σ of G. Fix a Cartan involution θ of g such that $\sigma\theta = \theta\sigma$. Let $g = \mathfrak{h} + \mathfrak{q}$, $g = \mathfrak{h}^a + \mathfrak{q}^a$ and $g = \mathfrak{k} + \mathfrak{p}$ denote the +1 and -1eigenspace decompositions for σ , $\sigma\theta$ and θ , respectively. Let $B: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbf{R}$ be the Killing form on g.

Let K denote the analytic subgroup of G for \mathfrak{k} . Put $H^a = (K \cap H)$. exp $(\mathfrak{p} \cap \mathfrak{q})$. Then $H^a \setminus G$ is called the affine symmetric space associated to $H \setminus G$. We remark here that a property for an affine symmetric space $H \setminus G$ also holds for $H^a \setminus G$. (We can replace H, \mathfrak{h} , \mathfrak{q} and σ by H^a , \mathfrak{h}^a , \mathfrak{q}^a and $\sigma\theta$, respectively.) This is an important technique frequently used in this paper.

Let \hat{s} be a subalgebra of g, S a subgroup of G, t an abelian subspace of \mathfrak{p} and \mathfrak{t}^* the space of real linear forms on t. Then we put $\hat{s}(\mathfrak{t}; \alpha) = \{X \in \hat{s} | [Y, X] = \alpha(Y)X$ for all $Y \in \mathfrak{t}\}$ for any $\alpha \in \mathfrak{t}^*$ and put $\Sigma(\hat{s}; \mathfrak{t}) = \{\beta \in \mathfrak{t}^* - \{0\} | \hat{s}(\mathfrak{t}; \beta) \neq \{0\}\}$. Let $Z_s(\mathfrak{t})$ (resp. $N_s(\mathfrak{t})$) denote the centralizer (normalizer) of \mathfrak{t} in S and put $W_s(\mathfrak{t}) = N_s(\mathfrak{t})/Z_s(\mathfrak{t})$. Write $\mathfrak{z}_s(\mathfrak{t}) = \hat{s}(\mathfrak{t}; 0)$.

When t is maximal abelian in \mathfrak{p} , it is wellknown that $\Sigma(\mathfrak{t}) = \Sigma(\mathfrak{g}; \mathfrak{t})$ satisfies the axioms of a root system and that $W(\mathfrak{t}) = W_{\mathfrak{K}}(\mathfrak{t})$ is the Weyl group of $\Sigma(\mathfrak{t})$. In this case we choose an element $w_{\alpha} \in N_{\mathfrak{K}}(\mathfrak{t})$ for each $\alpha \in \Sigma(\mathfrak{t})$ so that the restriction of Ad (w_{α}) to t is the reflection with respect to α . (All the statements in this paper are independent of the choice of w_{α} .)

When the real rank of G is one, we can describe the closure relations which we want to study in this paper as follows.

Lemma 2. Let α be a maximal abelian subspace of \mathfrak{P} . Suppose that dim $\alpha = 1$ and that $\alpha \subset \mathfrak{h}$. Let α be a reduced root in $\Sigma = \Sigma(\mathfrak{g}; \alpha)$ and put $P = Z_{\mathfrak{g}}(\alpha) \exp \mathfrak{n}$ with $\mathfrak{n} = \mathfrak{g}(\alpha; \alpha) + \mathfrak{g}(\alpha; 2\alpha)$. Suppose that $\mathfrak{g}(\alpha; \alpha) \cap \mathfrak{q} \neq \{0\}$ and fix an element $c_{\mathfrak{a}}$ of K defined by $c_{\mathfrak{a}} = \exp(\pi/2)(X + \theta X)$ with $X \in \mathfrak{g}(\alpha; \alpha) \cap \mathfrak{q}$ satisfying $2\langle \alpha, \alpha \rangle B(X, \theta X) = -1$. Then we have the followings.

(i) $G = HP \cup Hw_{\alpha}P \cup Hc_{\alpha}P \cup Hc_{\alpha}^{-1}P$.

(ii) The double cosets HP and $Hw_{\alpha}P$ are closed in G and the double cosets $Hc_{\alpha}P$ and $Hc_{\alpha}^{-1}P$ are open in G.

Closure Relations for Orbits

(iii) dim $HP = \dim Hw_{\alpha}P = \dim G - \dim (\mathfrak{n} \cap \mathfrak{q}).$

(iv) $H_0P = H_0w_{\alpha}P$ if and only if $\mathfrak{n} \cap \mathfrak{h} \neq \{0\}$.

(v) $H_0 c_{\alpha} P = H_0 c_{\alpha}^{-1} P$ if and only if dim $(\mathfrak{n} \cap \mathfrak{q}) \geq 2$.

(vi) $(Hc_{\alpha}P)^{cl} = Hc_{\alpha}P \cup HP \cup Hw_{\alpha}P$ and $(Hc_{\alpha}^{-1}P)^{cl} = Hc_{\alpha}^{-1}P \cup HP \cup Hw_{\alpha}P$.

Proof. (i) Since $\{\phi, \{X\}\}\$ is a complete set of representatives of $W(\mathfrak{a})$ -conjugacy classes of \mathfrak{q} -orthogonal systems of Σ , the assertion follows from [1] Theorem 3.

(ii) follows from Proposition 1 and Proposition 2 in [1].

(iii) follows from Lemma 7 in Section 5. (It is easy to give a direct proof of (iii).)

(iv) If $\mathfrak{n} \subset \mathfrak{q}$, then $\overline{\mathfrak{n}} = \mathfrak{g}(\mathfrak{a}; -\alpha) + g(\mathfrak{a}; -2\alpha)$ is also contained in \mathfrak{q} since $\theta \mathfrak{q} = \mathfrak{q}$. Hence $\mathfrak{h} \subset \mathfrak{l}$, $N_{K \cap H_0}(\mathfrak{a}) = Z_{K \cap H_0}(\mathfrak{a})$ and therefore $H_0P \cap H_0w_aP$ $= \phi$ by [1] Theorem 1. Conversely suppose that $\mathfrak{n} \cap \mathfrak{h} \neq \{0\}$. Since α or 2α is contained in $\Sigma(\mathfrak{h}; \mathfrak{a})$ and since $W_{K \cap H_0}(\mathfrak{a})$ is the Weyl group of $\Sigma(\mathfrak{h}; \mathfrak{a})$, we have $w_a Z_K(\mathfrak{a}) \cap H_0 \neq \phi$. Hence $H_0P = H_0w_aP$.

(v) Suppose that dim $(\mathfrak{n} \cap \mathfrak{q}) = 1$. Then dim $(\mathfrak{p} \cap \mathfrak{q}) = 1$ since $\mathfrak{p} \subset \overline{\mathfrak{n}} + \mathfrak{a} + \mathfrak{n}$ and since $\mathfrak{a} \subset \mathfrak{h}$. Hence $\mathfrak{a}' = \operatorname{Ad}(c_a)\mathfrak{a} = \mathfrak{p} \cap \mathfrak{q}$ and the adjoint action of $K \cap H_0 = (K \cap H)_0$ on \mathfrak{a}' is trivial. Therefore $N_{K \cap H_0}(\mathfrak{a}') = Z_{K \cap H_0}(\mathfrak{a}')$ and $H_0c_aP \cap H_0c_a^{-1}P = \emptyset$ by [1] Theorem 1. Suppose that dim $(\mathfrak{n} \cap \mathfrak{q}) \geq 2$. Then dim $HP = \dim Hw_aP \leq \dim G - 2$ by (iii). Hence $G - HP - Hw_aP$ is connected, and therefore $H_0c_aP = H_0c_a^{-1}P$.

(vi) If $HP = Hw_{\alpha}P$ or $Hc_{\alpha}P = Hc_{\alpha}^{-1}P$, then the assertions are trivial. So we may assume that dim n = 1 by (iv) and (v). Then G/P is diffeomorphic to a circle, the two closed H_0 -orbits H_0P and $H_0w_{\alpha}P$ are distinct points on the circle, and the two open H_0 -orbits $H_0c_{\alpha}P$ and $H_0c_{\alpha}^{-1}P$ are the remaining open arcs. Thus the assertions are clear. Q.E.D.

Lemma 2'. Retain the assumptions and notations in Lemma 2. Then we have the followings.

(i) $G = H^a P \cup H^a w_a P \cup H^a c_a P \cup H^a c_a^{-1} P$.

(ii) The double cosets $H^a P$ and $H^a w_{\alpha} P$ are open in G and the double cosets $H^a c_{\alpha} P$ and $H^a c_{\alpha}^{-1} P$ are closed in G.

(iii) dim $H^a c_a P = \dim H^a c_a^{-1} P = \dim G - \dim (\mathfrak{n} \cap \mathfrak{h}) - 1$.

(iv) $H_0^a = H_0^a w_a P$ if and only if $\mathfrak{n} \cap \mathfrak{h} \neq \{0\}$.

(v) $H_0^a c_a P = H_0^a c_a^{-1} P$ if and only if dim $(\mathfrak{n} \cap \mathfrak{q}) \geq 2$.

(vi) $(H^a P)^{cl} = H^a P \cup H^a c_a P \cup H^a c_a^{-1} P$ and $(H^a w_a P)^{cl} = H^a w_a P \cup H^a c_a^{-1} P$.

Proof. The assertions (i), (iv) and (v) follow from Corollary 2 of [1] Theorem 1. (ii) follows from Corollary of [1] Section 3. (vi) is proved as

in the proof of Lemma 2.

(iii) is proved as follows. Since $\mathfrak{p} \subset \overline{\mathfrak{n}} + \mathfrak{a} + \mathfrak{n}$ and since $\mathfrak{a} \subset \mathfrak{p} \cap \mathfrak{h}$, we have dim $(\mathfrak{n} \cap \mathfrak{h}) = \dim (\mathfrak{p} \cap \mathfrak{h}) - 1$. On the other hand since $\mathfrak{p} \subset \operatorname{Ad} (c_a)\overline{\mathfrak{n}} + \operatorname{Ad} (c_a)\mathfrak{a} + \operatorname{Ad} (c_a)\mathfrak{n}$ and since $\operatorname{Ad} (c_a)\mathfrak{a} \subset \mathfrak{p} \cap \mathfrak{q} = \mathfrak{p} \cap \mathfrak{h}^a$, we have dim (Ad $(c_a)\mathfrak{n} \cap \mathfrak{q}^a) = \dim (p \cap \mathfrak{q}^a) = \dim (\mathfrak{p} \cap \mathfrak{h})$. Hence it follows from Lemma 7 in Section 5 that dim $Hc_aP = \dim Hc_a^{-1}P = \dim G - \dim(\operatorname{Ad}(c_a)\mathfrak{n} \cap \mathfrak{q}^a) = \dim (\mathfrak{n} \cap \mathfrak{h}) - 1$. Q.E.D.

§ 3. Lemmas for the main theorem

We use the following notations throughout this section. Let α be a maximal abelian subspace of p such that $\sigma \alpha = \alpha$, Σ^+ a positive system of the root system $\Sigma = \Sigma(\alpha)$ and P the minimal parabolic subgroup of G defined by

$$P = Z_{a}(\alpha) \exp \alpha$$

where $n = \sum_{\beta \in \Sigma^+} g(\alpha; \beta)$. Let Ψ denote the set of all the simple roots in Σ^+ . Let α be a root in Ψ and put $\alpha^{\alpha} = \{Y \in \alpha \mid \alpha(Y) = 0\}, L_{\alpha} = Z_G(\alpha^{\alpha}), \mathfrak{l}_{\alpha} = \mathfrak{Z}_{\beta}(\alpha^{\alpha}), \mathfrak{n}_{\alpha} = \sum_{\beta \in \Sigma^+ - \{\alpha, 2\alpha\}} g(\alpha; \beta), P_{\alpha} = L_{\alpha} \exp \mathfrak{n}_{\alpha}, \mathfrak{P}_{\alpha} = \mathfrak{l}_{\alpha} + \mathfrak{n}_{\alpha} \text{ and } \mathfrak{n}(\alpha) = g(\alpha; \alpha) + g(\alpha; 2\alpha)$. Then P_{α} is a parabolic subgroup of G containing P. Let \mathfrak{l}_{α}^s be the subalgebra of \mathfrak{g} generated by $\mathfrak{n}(\alpha) + \mathfrak{n}(\alpha)$ and L_{α}^s the analytic subgroup of G for \mathfrak{l}_{α}^s . For a subset S of G, write $S^{op} = S^{op}(H^{\alpha} \setminus G/P)$.

First we have the following lemma which is a generalization of [4] Lemma 5.1.

Lemma 3. There are six cases (depending on the choice of α , Σ^+ and α) for the decomposition of the set HP_{α} into H-P double cosets as follows.

(A) If $\sigma \alpha \neq \pm \alpha$ and $\sigma \alpha \notin \Sigma^+$, then $HP_{\alpha} = HP \cup Hw_{\alpha}P$, dim $Hw_{\alpha}P = \dim HP - \dim \mathfrak{n}(\alpha)$ and $Hw_{\alpha}P \subset (HP)^{cl}$.

(B) If $\sigma \alpha \neq \pm \alpha$ and $\sigma \alpha \in \Sigma^+$, then $HP_{\alpha} = HP \cup Hw_{\alpha}P$, dim $Hw_{\alpha}P = \dim HP + \dim \mathfrak{n}(\alpha)$ and $HP \subset (Hw_{\alpha}P)^{cl}$.

(C) If $\sigma \alpha = \alpha$ and $\mathfrak{g}(\alpha; \alpha) \cap \mathfrak{q} = \{0\}$, then $HP_{\alpha} = HP$.

(D) The case when $\sigma \alpha = \alpha$ and $\mathfrak{g}(\mathfrak{a}; \alpha) \cap \mathfrak{q} \neq \{0\}$. Define an element $c_{\alpha} \in L^{s}_{\alpha}$ by $c_{\alpha} = \exp(\pi/2)(X + \theta X)$ with an $X \in \mathfrak{g}(\mathfrak{a}; \alpha) \cap \mathfrak{q}$ satisfying $2\langle \alpha, \alpha \rangle$ $\cdot B(X, \theta X) = -1$. Then Ad $(c_{\alpha})\mathfrak{a} = \operatorname{Ad}(c_{\alpha}^{-1})\mathfrak{a}$ is σ -stable,

$$HP_{\alpha} = HP \cup Hw_{\alpha}P \cup Hc_{\alpha}P \cup Hc_{\alpha}^{-1}P,$$

dim $Hc_{\alpha}P = \dim Hc_{\alpha}^{-1}P = \dim HP + \dim (\mathfrak{n}(\alpha) \cap \mathfrak{q})$
 $= \dim Hw_{\alpha}P + \dim (\mathfrak{n}(\alpha) \cap \mathfrak{q}),$
 $(Hc_{\alpha}P)^{cl} \supset HP \cup Hw_{\alpha}P, \qquad (Hc_{\alpha}^{-1}P)^{cl} \supset HP \cup Hw_{\alpha}P,$
 $HP = Hw_{\alpha}P \qquad if \mathfrak{n}(\alpha) \cap \mathfrak{h} \neq \{0\},$

548

Closure Relations for Orbits

and $Hc_{\alpha}P = Hc_{\alpha}^{-1}P$ if dim $(\mathfrak{n}(\alpha) \cap \mathfrak{q}) \geq 2$.

(E) If $\sigma \alpha = -\alpha$ and $g(\alpha; \alpha) \cap q^{\alpha} = \{0\}$, then $HP_{\alpha} = HP$.

(F) The case when $\sigma \alpha = -\alpha$ and $\mathfrak{g}(\alpha; \alpha) \cap \mathfrak{q}^a \neq \{0\}$. Define an element $c_a \in L^s_a$ by $c_a = \exp(\pi/2)(X + \theta X)$ with an $X \in \mathfrak{g}(\alpha; \alpha) \cap \mathfrak{q}^a$ satisfying $2\langle \alpha, \alpha \rangle \cdot B(X, \theta X) = -1$. Then Ad $(c_a)\alpha = \operatorname{Ad}(c_a^{-1})\alpha$ is σ -stable,

$$HP_{\alpha} = HP \cup Hw_{\alpha}P \cup Hc_{\alpha}P \cup Hc_{\alpha}^{-1}P,$$

dim $Hc_{\alpha}P = \dim Hc_{\alpha}^{-1}P = \dim HP - \dim (\mathfrak{n}(\alpha) \cap \mathfrak{h}^{a}) - 1$
 $= \dim Hw_{\alpha}P - \dim (\mathfrak{n}(\alpha) \cap \mathfrak{h}^{a}) - 1,$
 $(HP)^{cl} \supset Hc_{\alpha}P \cup Hc_{\alpha}^{-1}P, \qquad (Hw_{\alpha}P)^{cl} \supset Hc_{\alpha}P \cup Hc_{\alpha}^{-1}P,$
 $HP = Hw_{\alpha}P \qquad if \ \mathfrak{n}(\alpha) \cap \mathfrak{h}^{a} \neq \{0\},$
 $Hc_{\alpha}P = Hc_{\alpha}^{-1}P \qquad if \ \dim (\mathfrak{n}(\alpha) \cap \mathfrak{g}^{a}) > 2.$

and

Proof. Since the statements are independent of the choice of w_{α} in $N_{\kappa}(\alpha)$, we may assume that $w_{\alpha} \in L_{\alpha}^{s}$. Let p be the projection of P_{α} onto L_{α} with respect to the Langlands decomposition $P_{\alpha} = L_{\alpha} \exp n_{\alpha}$. Then we have natural bijections

$$(3.1) H \setminus HP_{a}/P \xleftarrow{\sim} P_{a} \cap H \setminus P_{a}/P \xrightarrow{\sim} J \setminus L_{a}/L_{a} \cap P$$

where $J = p(P_{\alpha} \cap H)$. Since $(L_{\alpha})_{0} = L_{\alpha}^{s} Z_{(L_{\alpha})_{0}}(\alpha)$ and since $Z_{(L_{\alpha})_{0}}(\alpha) \subset P$, we have $L_{\alpha}^{s}/L_{\alpha}^{s} \cap P \simeq (L_{\alpha})_{0}/(L_{\alpha})_{0} \cap P$. Since $L_{\alpha} \cap P$ intersects with every connected component of L_{α} , we have $(L_{\alpha})/(L_{\alpha})_{0} \cap P \simeq L_{\alpha}/L_{\alpha} \cap P$. Hence we have a natural surjection

$$(3.2) L_{\alpha}^{s} \cap J \setminus L_{\alpha}^{s} / L_{\alpha}^{s} \cap P \longrightarrow J \setminus L_{\alpha} / L_{\alpha} \cap P.$$

Let i be the Lie algebra of J.

(A) Let X be an element of $\theta \mathfrak{n}(\alpha)$. Then $X + \sigma X \in \mathfrak{P}_{\alpha} \cap \mathfrak{h}$ since $-\sigma \alpha \in \Sigma^+$. Hence $X = p(X + \sigma X) \subset \mathfrak{f}$ since $-\sigma \alpha \in \Sigma^+ - \{\alpha, 2\alpha\}$. Thus we have

$$\theta \mathfrak{n}(\alpha) \subset \mathfrak{l}^s_{\alpha} \cap \mathfrak{j}.$$

By the Bruhat decomposition of L^s_{α} , we have

$$L_a^s = D(1) \cup D(w_a)$$
 and $D(w) \subset D(1)^{cl}$

where $D(x) = (L^s_{\alpha} \cap J)x(L^s_{\alpha} \cap P)$ for $x \in L^s_{\alpha}$. Hence by (3.1) and (3.2),

$$HP_{\alpha} = HP \cup Hw_{\alpha}P$$
 and $Hw_{\alpha}P \subset (HP)^{cl}$.

Since $\sigma \alpha \neq \pm \alpha$, we have $w_{\alpha} \notin W_{K \cap H}(\alpha)$ and therefore $HP \neq Hw_{\alpha}P$ by [1]

Theorem 1. Hence $D(1) \neq D(w_{\alpha})$ and it follows from the naturality of (3.1) and (3.2) that

$$\dim HP - \dim Hw_{\alpha}P = \dim D(1) - \dim D(w_{\alpha})$$
$$= \dim \mathfrak{n}(\alpha).$$

(B) By a similar argument as in (A), we have

 $\mathfrak{n}(\alpha) \subset \mathfrak{l}^s_{\alpha} \cap \mathfrak{j}.$

By the Bruhat decomposition of L^s_{α} , we have

 $L_{\alpha}^{s} = D(1) \cup D(w_{\alpha})$ and $D(1) \subset D(w_{\alpha})^{cl}$

where $D(x) = (L^s_{\alpha} \cap J)x(L^s_{\alpha} \cap P)$ for $x \in L^s_{\alpha}$. Hence by (3.1) and (3.2),

 $HP_{\alpha} = HP \cup Hw_{\alpha}P$ and $HP \subset (Hw_{\alpha}P)^{cl}$.

Since $HP \neq Hw_{\alpha}P$ and $D(1) \neq D(w_{\alpha})$ as in (A),

 $\dim Hw_{\alpha}P - \dim HP = \dim D(w_{\alpha}) - \dim D(1)$ $= \dim \mathfrak{n}(\alpha).$

(C) Since $\mathfrak{l}_{\alpha}^{s}$ is generated by $\mathfrak{g}(\alpha; \alpha) + \mathfrak{g}(\alpha; -\alpha)$, $\mathfrak{l}_{\alpha}^{s}$ is contained in \mathfrak{h} . Hence $HP_{\alpha} = HP$ by (3.1) and (3.2).

(D) Since $L^s_{\alpha} \cap H \subset L^s_{\alpha} \cap J$, we have a natural surjection

$$(3.3) L_{\alpha}^{s} \cap H \setminus L_{\alpha}^{s}/L_{\alpha}^{s} \cap P \longrightarrow J \setminus L_{\alpha}/L_{\alpha} \cap P$$

by (3.2). Since dim $(l_{\alpha}^{s} \cap \alpha) = 1$ and $l_{\alpha}^{s} \cap \alpha \subset \mathfrak{h}$, it follows from Lemma 2 (i) and (vi) that $L_{\alpha}^{s} = D(1) \cup D(w_{\alpha}) \cup D(c_{\alpha}) \cup D(c_{\alpha}^{-1})$, $D(c_{\alpha})^{cl} = D(c_{\alpha}) \cup D(1) \cup D(w_{\alpha})$ and $D(c_{\alpha}^{-1})^{cl} = D(c_{\alpha}^{-1}) \cup D(1) \cup D(w_{\alpha})$. Here $D(x) = (L_{\alpha}^{s} \cap H)x(L_{\alpha}^{s} \cap P)$ for $x \in L_{\alpha}^{s}$. Hence by (3.1) and (3.3),

$$HP_{\alpha} = HP \cup Hw_{\alpha}P \cup Hc_{\alpha}P \cup Hc_{\alpha}^{-1}P, \quad (Hc_{\alpha}P)^{cl} \supset HP \cup Hw_{\alpha}P$$

and $(Hc_{\alpha}^{-1}P)^{cl} \supset HP \cup Hw_{\alpha}P.$

Since $\operatorname{Ad}(c_{\alpha})a$ is not $K \cap H$ -conjugate to a, $(HP \cup Hw_{\alpha}P) \cap (Hc_{\alpha}P \cup Hc_{\alpha}^{-1}P) = \emptyset$ by [1] Theorem 1. Thus we have

$$\dim Hc_{\alpha}P = \dim Hc_{\alpha}^{-1}P = \dim HP + \dim (\mathfrak{n}(\alpha) \cap \mathfrak{q})$$
$$= \dim Hw_{\alpha}P + \dim (\mathfrak{n}(\alpha) \cap \mathfrak{q})$$

since dim $D(1) = \dim D(w_{\alpha}) = \dim D(c_{\alpha}) - \dim (\mathfrak{n}(\alpha) \cap \mathfrak{q}) = \dim D(c_{\alpha}^{-1}) - \dim (\mathfrak{n}(\alpha) \cap \mathfrak{q})$ by Lemma 2 (iii). The remaining assertions are clear from

550

Lemma 2 (iv) and (v).

(E) Since l_{α}^{s} is generated by $g(\alpha; \alpha) + g(\alpha; -\alpha)$, l_{α}^{s} is contained in \mathfrak{h}^{a} . Hence $l_{\alpha}^{s} \cap \mathfrak{t} \subset l_{\alpha}^{s} \cap \mathfrak{h}$ and $L_{\alpha}^{s} = (L_{\alpha}^{s} \cap H)(L_{\alpha}^{s} \cap P)$ by the Iwasawa decomposition of L_{α}^{s} . Therefore $HP_{\alpha} = HP$ by (3.1) and (3.2).

(F) Clearly (3.3) is also valid in this case. Note that dim $(l_{\alpha}^{s} \cap \alpha) = 1$ and that $l_{\alpha}^{s} \cap \alpha \subset \mathfrak{q}$. Consider $L_{\alpha}^{s}, L_{\alpha}^{s} \cap H$ and σ as G, H^{α} and $\sigma\theta$ in Lemma 2', respectively. Then we have $L_{\alpha}^{s} = D(1) \cup D(w_{\alpha}) \cup D(c_{\alpha}) \cup D(c_{\alpha}^{-1}), D(1)^{ct}$ $= D(1) \cup D(c_{\alpha}) \cup D(c_{\alpha}^{-1})$ and $D(w_{\alpha})^{ct} = D(w_{\alpha}) \cup D(c_{\alpha}) \cup D(c_{\alpha}^{-1})$ by Lemma 2' (i) and (vi). Here $D(x) = (L_{\alpha}^{s} \cap H)x(L_{\alpha}^{s} \cap P)$ for $x \in L_{\alpha}^{s}$ and c_{α} is defined in the statement of (F). Hence

$$HP_{\alpha} = HP \cup Hw_{\alpha}P \cup Hc_{\alpha}P \cup Hc_{\alpha}^{-1}P, \quad (HP)^{cl} \supset Hc_{\alpha}P \cup Hc_{\alpha}^{-1}P$$

and
$$(Hw_{\alpha}P)^{cl} \supset Hc_{\alpha}P \cup Hc_{\alpha}^{-1}P$$

by (3.1) and (3.3). We have $(HP \cup Hw_{\alpha}P) \cap (Hc_{\alpha}P \cup Hc_{\alpha}^{-1}P) = \emptyset$ by the same reason as in (D). Hence

$$\dim Hc_{\alpha}P = \dim Hc_{\alpha}^{-1}P = \dim HP - \dim (\mathfrak{n}(\alpha) \cap \mathfrak{h}^{\alpha}) - 1$$
$$= \dim Hw_{\alpha}P - \dim (\mathfrak{n}(\alpha) \cap \mathfrak{h}^{\alpha}) - 1$$

since dim $D(c_{\alpha}) = \dim D(c_{\alpha}^{-1}) = \dim D(1) - \dim (\mathfrak{n}(\alpha) \cap \mathfrak{h}^{\alpha}) - 1 = \dim D(w_{\alpha})$ $-\dim (\mathfrak{n}(\alpha) \cap \mathfrak{h}^{\alpha}) - 1$ by Lemma 2' (iii). The remaining assertions are clear from Lemma 2' (iv) and (v). Q.E.D.

Lemma 4. The following three conditions on Σ^+ are equivalent.

(i) If $\alpha \in \Sigma^+$ and $\sigma \alpha \neq -\alpha$, then $\sigma \alpha \in \Sigma^+$.

(ii) If $\alpha \in \Psi$ and $\sigma \alpha \neq -\alpha$, then $\sigma \alpha \in \Sigma^+$.

(iii) There exists a $Y \in \alpha \cap \mathfrak{h}$ such that $\alpha(Y) > 0$ for all $\alpha \in \Sigma^+$ satisfying $\sigma \alpha \neq -\alpha$.

Proof. (i) \Rightarrow (ii) is trivial.

(ii) \Rightarrow (i). Every root β in Σ^+ can be written as $\beta = \sum_{\alpha \in \Psi} n_\alpha \alpha$ with some nonnegative integers n_α . Put $\Psi_- = \{\alpha \in \Psi | \sigma \alpha = -\alpha\}$ and $\Psi_0 = \{\alpha \in \Psi | \sigma \alpha \neq -\alpha\}$. Then we have

(3.4)
$$\sigma\beta = -\sum_{\alpha \in \Psi} n_{\alpha}\alpha + \sum_{\alpha \in \Psi} n_{\alpha}\sigma\alpha.$$

It follows from the assumption that

(3.5)
$$\sum_{\alpha \in \Psi_0} n_\alpha \sigma \alpha \in \sum_{\alpha \in \Psi} Z_+ \alpha$$

where $Z_{+} = \{n \in \mathbb{Z} | n \ge 0\}$. Suppose that $\sigma \beta \ne -\beta$. Then

(3.6)
$$\sigma\beta \notin \sum_{\alpha \in \Psi} Z\alpha.$$

Write $\sigma\beta = \sum_{\alpha \in \Psi} n'_{\alpha} \alpha \ (n'_{\alpha} \in \mathbb{Z})$. Then it follows from (3.4), (3.5) and (3.6) that $n'_{\alpha} > 0$ for some $\alpha \in \Psi_0$. If $\sigma\beta$ is a negative root then $n'_{\alpha} \le 0$ for all $\alpha \in \Psi$. Hence $\sigma\beta \in \Sigma^+$.

(i) \Rightarrow (iii). Let X be an element of a such that $\alpha(X) > 0$ for all $\alpha \in \Sigma^+$. Then $Y = X + \sigma X$ is a desired element.

(iii) \Rightarrow (i). If $\alpha \in \Sigma^+$ and $\sigma \alpha \neq -\alpha$, then $\sigma \alpha(Y) = \alpha(Y) > 0$ by (iii). Hence $-\sigma \alpha$ is not contained in Σ^+ by (iii) and therefore $\sigma \alpha \in \Sigma^+$.

Definition. A positive system Σ^+ of the root system $\Sigma = \Sigma(\alpha)$ is said to be σ -compatible if one of the equivalent three conditions in Lemma 4 is satisfied.

Suppose that Σ^+ is not σ -compatible. Then by the above definition, there exists a simple root α of Σ^+ such that $\sigma \alpha \notin \Sigma^+$ and that $\sigma \alpha \neq -\alpha$.

Lemma 5. Let α be a simple root of Σ^+ such that $\sigma \alpha \notin \Sigma^+$ and that $\sigma \alpha \neq -\alpha$. Then (i) $(HP)^{cl} = (Hw_{\alpha}P)^{cl}L_{\alpha}$ and (ii) $(H^aP)^{op} = (H^aw_{\alpha}P)^{op}L_{\alpha}$.

Proof. (i) By Lemma 3 (A), $HP_{\alpha} = HP \cup Hw_{\alpha}P$ and $Hw_{\alpha}P \subset (HP)^{cl}$. Hence $(HP)^{cl} = (HP_{\alpha})^{cl}$. Since $HP_{\alpha} \subset (Hw_{\alpha}P)^{cl}P_{\alpha} \subset (HP_{\alpha})^{cl}$, we have only to prove that $(Hw_{\alpha}P)^{cl}P_{\alpha} = (Hw_{\alpha}P)^{cl}L_{\alpha}$ is closed in *G*. Since G/P is compact, $(Hw_{\alpha}P)^{cl}/P$ is a compact subset of G/P. Consider the natural map of G/P onto G/P_{α} . Then the image $(Hw_{\alpha}P)^{cl}P_{\alpha}$ of $(Hw_{\alpha}P)^{cl}/P$ by this map is compact. Hence $(Hw_{\alpha}P)^{cl}P_{\alpha}$ is closed in *G*.

(ii) By Lemma 3 (B), $H^a P_a = H^a P \cup H^a w_a P$ and $H^a P \subset (H^a w_a P)^{ct}$. Hence $H^a w_a P \subset (H^a P)^{op}$ and so $(H^a P)^{op} = (H^a P_a)^{op}$. Since $H^a P_a \subset (H^a w_a P)^{op} L_a \subset (H^a P_a)^{op}$ and since $(H^a w_a P)^{op} L_a$ is open in G, we have $(H^a P)^{op} = (H^a P_a)^{op} = (H^a w_a P)^{op} L_a$. Q.E.D.

§ 4. Proof of Theorem

In this section we prove Theorem in Section 1.

Proof. (i) Put $\beta_i = w^{(i-1)}\alpha_i$ for $i=1, \dots, n$. Then we will first prove that

(4.1)
$$\sigma\beta_i \neq \pm \beta_i \text{ and } \sigma\beta_i \notin w^{(i-1)}\Sigma^+.$$

Put $\Sigma_0^+ = \{ \alpha \in \Sigma^+ | \frac{1}{2} \alpha \notin \Sigma \}$ (the set of reduced roots in Σ^+). Then $w^{(i)} \Sigma_0^+ = (\Sigma_0^+ - \{\beta_1, \dots, \beta_i\}) \cup \{-\beta_1, \dots, -\beta_i\}$ for $i=1, \dots, n$. We also have $\beta_i(Y_0) < 0$ for $i=1, \dots, n$ by the definition of w. Hence by the choice of Y_0 , we have $\sigma\beta_i \notin \Sigma^+$ (which implies $\sigma\beta_i \neq \beta_i$). On the other hand, we have $\sigma\beta_i \notin \{-\beta_1, \dots, -\beta_{i-1}\}$ since $\beta_i(Y_0) = (\sigma\beta_i)(Y_0) < 0$ for any $i=1, \dots,$

n. Thus we have proved that $\sigma\beta_i \notin w^{(i-1)}\Sigma_0^+$ which clearly implies that $\sigma\beta_i \notin w^{(i-1)}\Sigma^+$. The remaining assertion $\sigma\beta_i \neq -\beta_i$ is clear from $\sigma Y_0 = Y_0$ and $\beta_i(Y_0) < 0$.

Put $P^{(i)} = w^{(i)}P(w^{(i)})^{-1}$ and define L_{β_i} as in Section 3 for $i=1, \dots, n$. (For any $\beta \in \Sigma$, put $\alpha^{\beta} = \{Y \in \alpha \mid \beta(Y) = 0\}$ and $L_{\beta} = Z_{\beta}(\alpha^{\beta})$.) Then by (4.1) and Lemma 5 (i), we have

$$(HP^{(i-1)})^{cl} = (Hw_{\beta_i}P^{(i-1)})^{cl}L_{\beta_i}$$

and therefore $(Hw^{(i-1)}P)^{cl} = (Hw^{(i)}P)^{cl}L_{a_i}$ for $i=1, \dots, n$ since $L_{\beta_i} = w^{(i-1)}L_{a_i}(w^{(i-1)})^{-1}$.

The latter formula can be proved by Lemma 5 (ii) in a similar way.

(ii) follows directly from (i) because $(Pw^{-1}P)^{cl} = PL_{a_n} \cdots L_{a_l}$.

(iii) Since $L_1 = Z_G(Y_0)$ by the choice of Y_0 , we can define a parabolic subgroup P_1 of G containing $P^{(n)}$ by $P_1 = L_1 \exp \mathfrak{n}_1$, $\mathfrak{n}_1 = \sum_{r \in \Sigma, r(Y_0) > 0} \mathfrak{g}(\alpha; \tilde{r})$. Since L_1 and \mathfrak{n}_1 are σ -stable, it is easy to show that $P_1 \cap H = (L_1 \cap H) \cdot \exp(\mathfrak{n}_1 \cap \mathfrak{h})$. Since $P_1 \cap H_0$ is the parabolic subgroup of H_0 defined by $Y_0 \in \alpha \cap \mathfrak{h}$, $H_0/P_1 \cap H_0$ is compact. Hence H_0P_1 is closed in G and so HP_1 is also closed in G by Lemma 1.

Let p be the projection of P_1 onto L_1 with respect to the Langlands decomposition $P_1 = L_1 \exp n_1$. Considering the natural bijections

$$H \setminus HP_1/P^{(n)} \longleftrightarrow P_1 \cap H \setminus P_1/P^{(n)} \xrightarrow{\sim} L_1 \cap H \setminus L_1/L_1 \cap P^{(n)},$$

we have

$$(4.2) (HP^{(n)})^{cl} = H((L_1 \cap H)(L_1 \cap P^{(n)}))^{cl}P^{(n)}$$

since HP_1 is closed in G.

Let Z be the center of $(L_1)_0$. Since $(L_1)_0 = LZ$ and since $Z \subset P^{(n)}$, we have $L/L \cap P^{(n)} \simeq (L_1)_0/(L_1)_0 \cap P^{(n)}$. Since $L_1 \cap P^{(n)}$ intersects with every connected component of L_1 , we have $(L_1)_0/(L_1)_0 \cap P^{(n)} \simeq L_1/L_1 \cap P^{(n)}$. So we have natural bijections

$$L/L \cap P^{(n)} \xrightarrow{\sim} L_1/L_1 \cap P^{(n)}$$

and

$$(L \cap H)_{0} \setminus L/L \cap P^{(n)} \xrightarrow{\sim} (L_{1} \cap H)_{0} \setminus L_{1}/L_{1} \cap P^{(n)}$$

since $(L_1 \cap H)_0 = (L \cap H)_0 (Z \cap H)_0$ and since $Z \subset P^{(n)}$. Hence we have

$$((L_1 \cap H)(L_1 \cap P^{(n)}))^{cl}$$

$$= (L_1 \cap H)((L_1 \cap H)_0(L_1 \cap P^{(n)}))^{cl}$$

= $(L_1 \cap H)((L \cap H)_0(L \cap P^{(n)}))^{cl}(L_1 \cap P^{(n)})$
= $(L_1 \cap H)((L \cap H)(L \cap P^{(n)}))^{cl}(L_1 \cap P^{(n)})$

by Lemma 1.

From (4.2) and (4.3) we get the formula for $(HwP)^{cl}$. (Note that $L \cap P^{(n)} = L \cap P$ since $w\Sigma^+ \cap \Sigma(\mathfrak{l}; \mathfrak{a}) = \Sigma^+ \cap \Sigma(\mathfrak{l}; \mathfrak{a})$.)

The formula for $(H^a w P)^{\circ p}$ is proved as follows. First we have $P_1 \cap$ $H^a = L_1 \cap H^a$ since $P_1 \cap \sigma \theta P_1 = L_1$. Next we will prove that $H^a P_1$ is open in G. We have only to prove that $\mathfrak{h}^a + \mathfrak{P}_1 = \mathfrak{g}$. (\mathfrak{P}_1 is the the Lie algebra of P_1 .) Let γ be a root in Σ such that $\gamma(Y_0) < 0$ and X an element of $\mathfrak{g}(\alpha; \gamma)$. Then

$$X = (X + \sigma \theta X) - \sigma \theta X \in \mathfrak{h}^a + \mathfrak{g}(\mathfrak{a}; \sigma \theta \gamma) \subset \mathfrak{h}^a + \mathfrak{P}_1$$

since $(\sigma\theta\tilde{\tau})(Y_0) = -\tilde{\tau}(Y_0) > 0$. Since $g = \mathfrak{P}_1 + \sum_{r \in \mathfrak{L}, r(Y_0) < 0} \mathfrak{g}(\alpha; \tilde{\tau})$, we have $g = \mathfrak{h}^a + \mathfrak{P}_1$. Considering the natural bijections

$$H^{a} \setminus H^{a} P_{1} / P^{(n)} \longleftarrow P_{1} \cap H^{a} \setminus P_{1} / P^{(n)} \xrightarrow{\sim} P_{1} \cap H^{a} \setminus L_{1} / L_{1} \cap P^{(n)},$$

we have

(4.4)
$$(H^{a}P^{(n)})^{op}(H^{a}\backslash G/P^{(n)}) = H^{a}(((L_{1}\cap H^{a})(L_{1}\cap P^{(n)}))^{op}(L_{1}\cap H^{a}\backslash L_{1}/L_{1}\cap P^{(n)}))P^{(n)}$$

since $H^a P_1$ is open in G.

By a similar argument as that for (4.3), we have

(4.5)
$$((L_1 \cap H^a)(L_1 \cap P^{(n)}))^{op}(L_1 \cap H^a \setminus L_1/L_1 \cap P^{(n)})$$
$$= (L_1 \cap H^a)(((L \cap H^a)(L \cap P^{(n)}))^{op}(L \cap H^a \setminus L/L \cap P^{(n)}))(L_1 \cap P^{(n)}).$$

From (4.4) and (4.5) we get the desired formula for $(H^a w P)^{op}$ since $L \cap P^{(n)} = L \cap P$.

(iv) follows from (ii) and (iii).

(v) Since $l \cap a$ is a maximal abelian subspace of $l \cap p$ contained in $l \cap p \cap q$, it follows from Proposition 1 and Proposition 2 in [3] that $(L \cap H)(L \cap P)$ is open in L and that $(L \cap H^a)(L \cap P)$ is closed in L.

(vi) By (ii) we can choose a sequence D_0, \dots, D_n of *H-P* double cosets (resp. D'_0, \dots, D'_n of H^a -*P* double cosets) satisfying the following four conditions.

- (1) $D_0 = D$ (resp. $D'_0 = D'$).
- (2) $D_i \subset (Hw^{(i)}P)^{cl}$ (resp. $D'_i \subset (H^a w^{(i)}P)^{op}$).
- (3) $D_i L_{\alpha_i} \supset D_{i-1}$ (resp. $D'_i L_{\alpha_i} \supset D'_{i-1}$).

(4) If $D_{i-1} \subset (Hw^{(i)}P)^{cl}$, then $D_i = D_{i-1}$. (resp. If $D'_{i-1} \subset (H^a w^{(i)}P)^{op}$, then $D'_i = D'_{i-1}$.)

We choose representatives y_i of D_i (resp. D'_i) for $i=0, \dots, n$ in the following inductive procedure.

We can choose $y_n \in D_n \cap ((L \cap H)(L \cap P))^{c_i} w$ (resp. $D'_n \cap ((L \cap H^a)(L \cap P))^{o_p} w$) so that $\alpha_n = \operatorname{Ad}(y_n)\alpha$ is σ -stable by [1] Theorem 1. Suppose that we have chosen $y_n \in D_n$ (resp. D'_n), \cdots , $y_i \in D_i$ (resp. D'_i). Then we choose $y_{i-1} \in D_{i-1}$ as follows. If $D_{i-1} = D_i$ (resp. $D'_{i-1} = D'_i$), then we put $y_{i-1} = y_i$. So we may assume that $D_{i-1} \not\subset (Hw^{(i)}P)^{c_i}$ (resp. $D'_{i-1} \not\subset (H^aw^{(i)}P)^{c_i}$). Then $W'_{i-1} = y_i Py_i^{-1}$, $P'_{\alpha_i} = y_i PL_{\alpha_i}y_i^{-1}$ and $w'_{\alpha_i} = y_i w_{\alpha_i}y_i^{-1}$. Then

$$D_{i-1} \subset D_i L_{\alpha_i} = H y_i P L_{\alpha_i} = H P'_{\alpha_i} y_i$$

(resp. $D'_{i-1} \subset D'_i L_{\alpha_i} = H^a y_i P L_{\alpha_i} = H^a P'_{\alpha_i} y_i$).

Since $D_{i-1} \cap (Hw^{(i)}P)^{cl} = \emptyset$ (resp. $D'_{i-1} \cap (H^a w^{(i)}P) = \emptyset$) and since $D_i \subset (Hw^{(i)}P)^{cl}$ (resp. $D'_i \subset (H^a w^{(i)}P)^{op}$), we have

(4.6)
$$D_{i-1}y_i^{-1} \subset HP'_{a_i} - (HP')^{c_i}$$
$$(\text{resp. } D'_{i-1}y_i^{-1} \subset H^a P'_{a_i} - (H^a P')^{o_p} (H^a \setminus G/P')).$$

Now we apply Lemma 3 to $(H \setminus G, P', P'_{\alpha_i})$ (resp. $(H^a \setminus G, P', P'_{\alpha_i})$).

First suppose that $g(a_i; \alpha'_i) \cap q = \{0\}$. Then it follows from (4.6) and from the five cases except (D) in Lemma 3 (resp. from the five cases except (F) in Lemma 3) that

$$D_{i-1}y_i^{-1} = Hw'_{a_i}P'$$
 (resp. $D'_{i-1}y_i^{-1} = H^a w'_{a_i}P'$)

and

$$\dim Hw'_{a}P' \ge \dim HP' \qquad (\text{resp. }\dim H^aw'_{a}P' \le \dim H^aP').$$

(In the cases (B), (C) and (E) (resp. (A), (C) and (E)), we get $HP'_{a_i} \subset (HP')^{c_i}$ (resp. $H^a P'_{a_i} \subset (H^a P')^{o_p} (H^a \backslash G/P')$), a contradiction to (4.6).) Hence $D_{i-1} = Hy_i w_{a_i} P$ (resp. $D'_{i-1} = H^a y_i w_{a_i} P$) and dim $D_{i-1} \ge \dim^* D_i$ (resp. dim $D'_{i-1} \le \dim D'_i$). We put $y_{i-1} = y_i w_{a_i}$. (Then $a_{i-1} = a_i$.)

Next suppose that $g(a_i; \alpha'_i) \cap q \neq \{0\}$. Then it follows from (4.6) and from Lemma 3 (D) (resp. Lemma 3 (F)) that

$$D_{i-1}y_i^{-1} = Hw'_{a_i}P', \quad Hc'_{a_i}P' \text{ or } Hc'_{a_i}^{-1}P'$$

(resp. $D'_{i-1}y_i^{-1} = H^a w'_{a_i}P', \quad H^a c'_{a_i}P' \text{ or } H^a c'_{a_i}^{-1}P'$)

and that dim $HP' = \dim Hw'_{a_i}P' < \dim Hc'_{a_i}P' = \dim Hc'_{a_i}P'$ (resp. dim $H^aP' = \dim H^aw'_{a_i}P' > \dim H^ac'_{a_i}P' = \dim H^ac'_{a_i}P'$). Hence $D_{i-1} = Hy_i w_{\alpha_i} P, \quad Hy_i c_{\alpha_i} P \quad \text{or} \quad Hy_i c_{\alpha_i}^{-1} P$ (resp. $D'_{i-1} = H^a y_i w_{\alpha_i} P, \quad H^a y_i c_{\alpha_i} P \quad \text{or} \quad H^a y_i c_{\alpha_i}^{-1} P$)

and dim $Hy_i P = \dim Hy_i w_{a_i} P < \dim Hy_i c_{a_i} P = \dim Hy_i c_{a_i}^{-1} P$ (resp. dim $H^a y_i P = \dim H^a y_i w_{a_i} P > \dim H^a y_i c_{a_i} P = \dim H^a y_i c_{a_i}^{-1} P$). Thus we can choose a representative y_{i-1} of D_{i-1} (resp. D'_{i-1}) such that $y_{i-1} = y_i w_{a_i}$, $y_i c_{a_i}$ or $y_i c_{a_i}^{-1}$. It is clear from the choice of c_{a_i} that $\alpha_{i-1} = \operatorname{Ad}(y_{i-1})\alpha$ is σ -stable.

(vii) Let D(resp. D') be a closed H-P double coset (resp. an open H^a -P double coset) contained in $HRwW_{\alpha_n}\cdots W_{\alpha_1}P$ (resp. $H^aR'wW_{\alpha_n}\cdots W_{\alpha_1}P$). We have $R \subset ((L \cap H)(L \cap P))^{cl}$ (resp. $R' \subset ((L \cap H^a)(L \cap P))^{op})$ by (v) and Proposition in Section 1. Hence we have $D \subset (HP)^{cl}$ (resp. $D' \subset (H^aP)^{op}$) by (iv).

Conversely let D (resp. D') be a closed H-P double coset (resp. an open H^a -P double coset) contained in $(HP)^{ei}$ (resp. $(H^aP)^{op}$). Let y_0, \dots, y_n be as in (vi). Since all the closed H-P double cosets in G have the same dimension by Lemma 7 in Section 5 (resp. since all the open H^a -P double cosets in G have the same dimension), it follows from (vi) (d) that Hy_iP is closed (resp. H^ay_iP is open) in G for $i=0, \dots, n$ and that $y_{i-1}=y_i$ or $y_iw_{\alpha_i}$ for $i=1, \dots, n$. Clearly $(L \cap H)y_nw^{-1}(L \cap P)$ is closed (resp. $(L \cap H^a)y_nw^{-1}(L \cap P)$ is open) in L. Hence we have

$$D = Hy_0 P \subset HRw W_{a_n} \cdots W_{a_1} P$$

(resp. $D' = H^a y_0 P \subset H^a R' w W_{a_n} \cdots W_{a_1} P$).

Put $U = \{y \in K | \text{Ad}(y)a \text{ is } \sigma\text{-stable}\}$ and $U_0 = \{y \in U | HyP \text{ is closed in } G\}$. $(U_0 = \{y \in U | H^a yP \text{ is open in } G\}$ by Colollary of [1] § 3). Then by the above result, we have the followings for $y \in U_0$.

(4.7)
$$HyP \subset (HP)^{e_1} \iff$$
 There exists a $y_0 \in (R \cap U) \otimes W_{\alpha_n} \cdots \otimes W_{\alpha_1}$
such that $HyP = Hy_0P$.

(4.8) $H^a y P \subset (H^a P)^{op} \iff$ There exists a $y_0 \in (R' \cap U) w W_{\alpha_n} \cdots W_{\alpha_1}$ such that $H^a y P = H^a y_0 P$.

On the other hand it follows from Corollary 2 of [1] Theorem 1 and Corollary of [1] Section 3 that

$$(4.9) R \cap U = R' \cap U$$

and that if $y, y_0 \in U$, then

Hence for $y \in U_0$, we have

$$HyP \subset (HP)^{cl} \iff H^a yP \subset (H^aP)^{op}$$

by (4.7), (4.8), (4.9) and (4.10).

§ 5. Proof of Proposition

Let HxP^0 be an arbitrary closed $H-P_0$ double coset in G. Then by [1] Proposition 2, there exists an $h \in H$ such that $P = hxP^0x^{-1}h^{-1}$ can be written as

$$P = P(\mathfrak{a}_0, \Sigma^+).$$

Here α_0 is a σ -stable maximal abelian subspace of \mathfrak{p} such that $\alpha_0^{\sigma} = \alpha_0 \cap \mathfrak{h}$ is maximal abelian in $\mathfrak{p} \cap \mathfrak{h}$ and Σ^+ is a σ -compatible positive system (Definition following Lemma 4) of $\Sigma = \Sigma(\mathfrak{g}; \alpha_0)$. Then we have only to prove that $D^{cl} \supset HP$ for any open *H*-*P* double coset *D* in *G*. Put $\Sigma^{\sigma\theta} =$ $\{\alpha \in \Sigma \mid \sigma\theta\alpha = \alpha\}$. Let \mathfrak{l} be the subalgebra of \mathfrak{g} generated by $\{\mathfrak{g}(\alpha_0; \alpha) \mid \alpha \in \Sigma^{\sigma\theta}\}$ and *L* the corresponding analytic subgroup in *G*. Let \mathfrak{P} denote the Lie algebra of *P*.

Lemma 6. (i) $g(\alpha_0; \alpha) \subset \mathfrak{h}^a$ for all $\alpha \in \Sigma^{\sigma\theta}$. (Hence $\mathfrak{l} \subset \mathfrak{h}^a$ and $L \subset H^a$.)

(ii) $l \subset \mathfrak{h} + \mathfrak{P}$ and $L \subset HP$.

Proof. Since $g(\alpha_0; \alpha)$ is $\sigma\theta$ -stable, we have only to prove that $g(\alpha_0; \alpha) \cap q^a = \{0\}$. Suppose that there exists a nonzero element X of $g(\alpha_0; \alpha) \cap q^a$. Then $X - \theta X$ is an element of $\mathfrak{p} \cap q^a = \mathfrak{p} \cap \mathfrak{h}$ commuting with α_0^{σ} . But this contradicts to the assumption that α_0^{σ} is maximal abelian in $\mathfrak{p} \cap \mathfrak{h}$.

(ii) We have only to prove that $L \subset HP$. Since $\theta|_L$ is a Cartan involution of L and since $L \cap P$ is a minimal parabolic subgroup of L, we have

$$L = (L \cap K)(L \cap P)$$

by the Iwasawa decomposition of L. On the other hand, we have $L \cap K$ = $L \cap K \cap H^a = L \cap K \cap H$ since $L \subset H^a$ by (i). Hence $L \subset HP$. Q.E.D.

Next we will prove the following lemma which we used in Section 2 and Section 4.

Lemma 7. Put $\overline{\Sigma} = \{\overline{\alpha} \mid \alpha \in \Sigma, \ \overline{\alpha} \neq 0\}$ and $\overline{\Sigma}^+ = \{\overline{\alpha} \mid \alpha \in \Sigma^+, \ \overline{\alpha} \neq 0\}$ where $\overline{\alpha}$ is the restriction of α to α_0^{σ} . Then

Q.E.D.

$$\dim HP = \dim G - \Sigma_{\lambda \in \overline{\Sigma}^+} \dim (\mathfrak{g}(\mathfrak{a}_0^{\sigma}; \alpha) \cap \mathfrak{q})$$
$$= \dim G - \frac{1}{2} \sum_{\lambda \in \overline{\Sigma}} \dim (\mathfrak{g}(\mathfrak{a}_0^{\sigma}; \alpha) \cap \mathfrak{q}).$$

Especially all the closed H-P double cosets in G have the same dimension.

Proof. By Lemma 6 (ii), we have

$$\mathfrak{h}+\mathfrak{P}=\mathfrak{P}+\mathfrak{l}+\sum_{\lambda\in-\overline{\Sigma}^+}(\mathfrak{g}(\mathfrak{a}_0^{\sigma};\alpha)\cap\mathfrak{h})$$

and therefore

$$\dim H_0 P = \dim (\mathfrak{h} + \mathfrak{P}) = \dim G - \sum_{\lambda \in \overline{\Sigma}^+} \dim (\mathfrak{g}(\mathfrak{a}_0^{\sigma}; \alpha) \cap \mathfrak{q})$$
$$= \dim G - \frac{1}{2} \sum_{\lambda \in \overline{\Sigma}} \dim (\mathfrak{g}(\mathfrak{a}_0^{\sigma}; \alpha) \cap \mathfrak{q})$$

since dim $(\mathfrak{g}(\mathfrak{a}_0^{\sigma}; \alpha) \cap \mathfrak{q}) = \dim (\mathfrak{g}(\mathfrak{a}_0^{\sigma}; -\alpha) \cap \mathfrak{q})$ for $\lambda \in \overline{\Sigma}$. Since $HP = \bigcup_{y \in H} yH_0P = \bigcup_{y \in H} H_0yP$ is a finite union of H_0 -P double cosets having the same dimension, we have the desired formula for dim HP. Q.E.D.

Lemma 8 (J. Sekiguchi). Put $\overline{N} = \exp(\sum_{\alpha \in \Sigma} g(\alpha_0; -\alpha))$. Let D be an arbitrary H-P double coset in G. Then

$$D^{cl} \supset HP \iff D \cap \overline{N}P \neq \emptyset.$$

(**Remark.** Proposition follows from this lemma since \overline{NP} is dense in G.)

Proof. \Rightarrow is clear since \overline{NP} is open in *G*. Suppose that $D \cap \overline{NP} \neq \emptyset$. \emptyset . Then $D \cap \overline{N} \neq \emptyset$. Let $x \in D \cap \overline{N}$ and write $x = \exp \sum_{\alpha \in \Sigma^+} X_{-\alpha}$ with $X_{-\alpha} \in \mathfrak{g}(\mathfrak{a}_0; -\alpha)$. By Lemma 4, we can choose an element $Y \in \mathfrak{a}_0^{\sigma}$ so that $\alpha(Y) > 0$ for all $\alpha \in \Sigma^+ - \Sigma^{\sigma\theta}$. Put $a_t = \exp tY$ for $t \in \mathbb{R}$. Then

$$a_t x a_t^{-1} = \exp \sum_{\alpha \in \Sigma^+} e^{-\alpha(Y)t} X_{-\alpha} \in D \cap \overline{N}$$

(since $a_t \in H \cap P$) and it follows from the choice of Y that

$$x_{\infty} = \lim_{t \to \infty} a_t x a_t^{-1} = \exp \sum_{\alpha \in \Sigma^+ \cap \Sigma^{\sigma\theta}} X_{-\alpha} \in L.$$

Hence $D^{el} \cap L \ni x_{\infty}$ and therefore $D^{el} \cap HP \neq \emptyset$ by Lemma 6 (ii). Since $HD^{el}P = D^{el}$, we have $D^{el} \supset HP$. Q.E.D.

References

- T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan, 31 (1979), 331-357.
- W. Rossmann, The structure of semisimple symmetric spaces, Canad. J. Math., 31 (1979), 157-180.

- [3] T. A. Springer, Some results on algebraic groups with involutions, Advanced Studies in Pure Math., 6 (1985), 525-543.
- [4] D. A. Vogan, Irreducible characters of semisimple Lie groups III. Proof of Kazhdan-Lusztig conjecture in the integral case, Invent. Math., 71 (1983), 381-417.

Department of Mathematics College of General Education Tottori University Tottori, 680 Japan