Closure Relations for Orbits on Affine Symmetric Spaces under the Action of Minimal Parabolic Subgroups

Toshihiko Matsuki

§ 1. Introduction

Let G be a connected Lie group, σ an involutive automorphism of G and H a subgroup of G such that $G_{0}^{\sigma} \subset H \subset G^{\sigma}$ where $G^{\sigma}=\{x \in G \mid \sigma x=x\}$ and G_{0}^{σ} is the connected component of G^{σ} containing the identity. Then the factor space $H \backslash G$ is called an affine symmetric space. We assume that G is real semisimple throughout this paper.

Let P^{0} be a minimal parabolic subgroup of G. Then a parametrization of the double coset decomposition $H \backslash G / P^{0}$ is given in [1] and [2]. In this paper we study the closure relations for the double coset decomposition.

The result of this paper can be stated as follows. Let \mathfrak{g} be the Lie algebra of G and σ the automorphism of g induced from the automorphism σ of G. Let θ be a Cartan involution of \mathfrak{g} such that $\sigma \theta=\theta \sigma$. Let $\mathfrak{g}=\mathfrak{h}+\mathfrak{q}$ (resp. $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$) be the decomposition of \mathfrak{g} into the +1 and -1 eigenspaces for σ (resp. θ).

Let x be an arbitrary element of G. By Theorem 1 in [1], there exists an $h \in G_{0}^{\sigma}$ such that $P=h x P^{0} x^{-1} h^{-1}$ can be written as

$$
P=P\left(\mathfrak{a}, \Sigma^{+}\right)=Z_{G}(\mathfrak{a}) \exp \mathfrak{n}
$$

where \mathfrak{a} is a σ-stable maximal abelian subspace of \mathfrak{p}, Σ^{+}is a positive system of the root system Σ of the pair $(\mathfrak{g}, \mathfrak{a}), Z_{G}(\mathfrak{a})$ is the centralizer of \mathfrak{a} in G and $\mathfrak{n}=\sum_{\alpha \in \Sigma+} \mathfrak{g}(\mathfrak{a} ; \alpha) . \quad(\mathfrak{g}(\mathfrak{a} ; \alpha)=\{X \in \mathfrak{g} \mid[Y, X]=\alpha(Y) X$ for all $Y \in \mathfrak{a}\}$.) Since $\left(H x P^{0}\right)^{c l}=(H P)^{c l} h x$, we have only to study $(H P)^{c l}$.

Let K be the analytic subgroup of G for \mathfrak{f} and put $H^{a}=(K \cap H)$. $\exp (\mathfrak{p} \cap \mathfrak{q})$. Then $H^{a} \backslash G$ is called the affine symmetric space associated to $H \backslash G([1])$. For a subset S of G, we put $S^{o p}=\left\{y \in G \mid\left(H^{a} y P\right)^{c l} \cap S \neq \varnothing\right\}$. Then it is clear that $S^{o p}$ is the minimal $H^{a}-P$ invariant open subset of G containing S since the number of $H^{a}-P$ double cosets in G is finite. For each root α in Σ, put $\mathfrak{a}^{\alpha}=\{Y \in \mathfrak{a} \mid \alpha(Y)=0\}$, put $L_{\alpha}=Z_{G}\left(\mathfrak{a}^{\alpha}\right)$ and choose an element w_{α} of $N_{K}(\mathfrak{a})$ such that $\left.\operatorname{Ad}\left(w_{\alpha}\right)\right|_{\alpha}$ is the reflection with respect to α.

Theorem. Let C denote the σ-stable convex closed cone in \mathfrak{a} defined by $C=\left\{Y \in \mathfrak{a} \mid \alpha(Y) \geq 0\right.$ for all $\left.\alpha \in \Sigma^{+} \cap \sigma \Sigma^{+}\right\}$. Fix an element Y_{0} of $C \cap \mathfrak{b}$ such that $\alpha \in \Sigma$ and $\alpha\left(Y_{0}\right)=0$ implies $\left.\alpha\right|_{\text {aП }}=0$. Let w be the element of W defined by the condition

$$
w \Sigma^{+}=\left\{\alpha \in \Sigma^{+} \mid \alpha\left(Y_{0}\right) \geq 0\right\} \cup\left\{\alpha \in-\Sigma^{+} \mid \alpha\left(Y_{0}\right)>0\right\} .
$$

Let $w=w_{\alpha_{1}} \cdots w_{\alpha_{n}}$ be a minimal expression of w by the reflections with respect to simple roots $\alpha_{1}, \cdots, \alpha_{n}$ in Σ^{+}. Put $w^{(i)}=w_{\alpha_{1}} \cdots w_{\alpha_{i}}(i=0, \cdots, n)$, $L_{1}=Z_{G}(\mathfrak{a} \cap \mathfrak{G}), \mathfrak{Y}_{1}=\mathfrak{J}_{\mathfrak{g}}(\mathfrak{a} \cap \mathfrak{G})$ and $\mathfrak{C}=\left[\mathfrak{C}_{1}, \mathfrak{Y}_{1}\right]$. Let L be the analytic subgroup of G for \mathfrak{C}. Then we have the followings.

$$
\begin{gather*}
\left(H w^{(i-1)} P\right)^{c l}=\left(H w^{(i)} P\right)^{c l} L_{\alpha_{i}} \tag{i}\\
\text { and } \begin{array}{c}
\left(H^{a} W^{(i-1)} P\right)^{o p}=\left(H^{a} W^{(i)} P\right)^{o p} L_{\alpha_{i}} \quad \text { for } i=1, \cdots, n . \\
(H P)^{c l}=(H w P)^{c l}\left(P w^{-1} P\right)^{c l} \\
\text { and }\left(H^{a} P\right)^{o p}=\left(H^{a} w P\right)^{o p}\left(P w^{-1} P\right)^{c l}
\end{array}
\end{gather*}
$$

$$
\begin{array}{ll}
& (H w P)^{c l}=H((L \cap H)(L \cap P))^{c l} w P \tag{iii}\\
\text { and } \quad\left(H^{a} w P\right)^{o p}=H^{a}\left(\left(L \cap H^{a}\right)(L \cap P)\right)^{o p} w P .
\end{array}
$$

Here
$\left(\left(L \cap H^{a}\right)(L \cap P)\right)^{o p}=\left\{y \in L \mid\left(\left(L \cap H^{a}\right) y(L \cap P)\right)^{c l} \cap\left(L \cap H^{a}\right)(L \cap P) \neq \varnothing\right\}$.

$$
\begin{equation*}
(H P)^{c l}=H((L \cap H)(L \cap P))^{c l} w\left(P w^{-1} P\right)^{c l} \tag{iv}
\end{equation*}
$$

and $\quad\left(H^{a} P\right)^{o p}=H^{a}\left(\left(L \cap H^{a}\right)(L \cap P)\right)^{o p} w\left(P w^{-1} P\right)^{c l}$.
(v) $(L \cap H)(L \cap P)$ is open in L and $\left(L \cap H^{a}\right)(L \cap P)$ is closed in L.
(vi) Let $D\left(r e s p . D^{\prime}\right)$ be an arbitrary $H-P$ double coset (resp. $H^{a}-P$ double coset) contained in $(H P)^{c l}\left(\right.$ resp. $\left.\left(H^{a} P\right)^{o p}\right)$. Then there exist elements $y_{i} \in\left(H w^{(i)} P\right)^{c l}\left(\right.$ resp. $\left.\left(H^{a} w^{(i)} P\right)^{o p}\right)$ for $i=0, \cdots, n$ satisfying the following four conditions.
(a) $\mathfrak{a}_{i}=\operatorname{Ad}\left(y_{i}\right) \mathfrak{a}$ is σ-stable and $y_{i} \in K$ for $i=0, \cdots, n$.
(b) $H y_{0} P=D$ and $y_{n} \in((L \cap H)(L \cap P))^{c l} w$ (resp. $H^{a} y_{0} P=D^{\prime}$ and $\left.y_{n} \in\left(\left(L \cap H^{a}\right)(L \cap P)\right)^{o p} w\right)$.
(c) Let α_{i}^{\prime} be the root in $\Sigma\left(\mathfrak{a}_{i}\right)$ defined by $\alpha_{i}^{\prime}=\alpha_{i} \circ \operatorname{Ad}\left(y_{i}\right)^{-1}$ for $i=1$, \cdots, n. If $\mathfrak{g}\left(\mathfrak{a}_{i} ; \alpha_{i}^{\prime}\right) \cap \mathfrak{q}=\{0\}$, then $y_{i-1}=y_{i}$ or $y_{i} w_{\alpha_{i}} . \quad$ If $\mathfrak{g}\left(\mathfrak{a}_{i} ; \alpha_{i}^{\prime}\right) \cap \mathfrak{q} \neq\{0\}$, then $y_{i-1}=y_{i}, y_{i} w_{\alpha_{i}}, y_{i} c_{\alpha_{i}}$ or $y_{i} c_{\alpha_{i}}^{-1}$. Here $c_{\alpha_{i}}$ is an element of $L_{\alpha_{i}}$ defined by $c_{\alpha_{i}}=y_{i}^{-1} c_{\alpha_{i}}^{\prime} y_{i}, c_{\alpha_{i}}^{\prime}=\exp (\pi / 2)(X+\theta X)$ with an $X \in \mathfrak{g}\left(\mathfrak{a}_{i} ; \alpha_{i}^{\prime}\right) \cap \mathfrak{q}$ satisfying $2\left\langle\alpha_{i}^{\prime}, \alpha_{i}^{\prime}\right\rangle B(X, \theta X)=-1 . \quad(B($,$) is the Killing form on \mathfrak{g}$ and \langle,$\rangle is the$ inner product on \mathfrak{a}_{i}^{*} induced from $\left.B().,\right)$
(d) $\operatorname{dim} H y_{i-1} P \geq \operatorname{dim} H y_{i} P\left(r e s p . \operatorname{dim} H^{a} y_{i-1} P \leq \operatorname{dim} H^{a} y_{i} P\right)$ for $i=1, \cdots, n$. Moreover if $y_{i-1}=y_{i} c_{\alpha_{i}}$ or $y_{i} c_{\alpha_{i}}^{-1}$ in (c), then $\operatorname{dim} H y_{i-1} P>$
$\operatorname{dim} H y_{i} P\left(r e s p . \operatorname{dim} H^{a} y_{i-1} P<\operatorname{dim} H^{a} y_{i} P\right)$.
(viii) Let D (resp. D^{\prime}) be an arbitrary closed H-P double coset (open $H^{a}-P$ double coset) in G. Then

$$
\begin{gathered}
D \subset(H P)^{c l} \Longleftrightarrow D \subset H R w W_{\alpha_{n}} \cdots W_{\alpha_{1}} P \\
\left(\text { resp. } D^{\prime} \subset\left(H^{a} P\right)^{o p} \Longleftrightarrow D^{\prime} \subset H^{a} R^{\prime} w W_{\alpha_{n}} \cdots W_{\alpha_{1}} P\right) .
\end{gathered}
$$

Here R (resp. R^{\prime}) is the union of all the closed $L \cap H-L \cap P$ double cosets (open $L \cap H^{a}-L \cap P$ double cosets) in L and $W_{\alpha_{i}}=\left\{1, w_{\alpha_{i}}\right\}$ for $i=1, \cdots, n$. Moreover let y be an element of K such that $\operatorname{Ad}(y) \mathfrak{a}$ is σ-stable and that HyP is closed in G. (Then $H^{a} y P$ is open in G by Corollary of [1] § 3.) Then

$$
H y P \subset(H P)^{c l} \Longleftrightarrow H^{a} y P \subset\left(H^{a} P\right)^{o p} .
$$

(At the end of this section, we have

$$
H y P \subset(H P)^{c l} \Longleftrightarrow H^{a} y P \subset\left(H^{a} P\right)^{o p}
$$

for any H-P double coset HyP in G as a corollary of Theorem. Here $y \in K$ is chosen so that $\operatorname{Ad}(y) \mathfrak{a}$ is α-stable.)

Remark. (i) Since L is a connected semisimple Lie subgroup of G such that $\sigma L=\theta L=L$, we can apply Theorem to the double coset decompositions $L \cap H \backslash L / L \cap P$ and $L \cap H^{a} \backslash L / L \cap P$.
(ii) If the number of the open $L \cap H-L \cap P$ double cosets in L is one (then the number of the closed $L \cap H^{a}-L \cap P$ double cosets in L is one by Corollary of [1] §3), for instance when G is a complex semisimple Lie group and σ is a complex linear involution, then it is clear from Theorem (v) that

$$
((L \cap H)(L \cap P))^{c l}=\left(\left(L \cap H^{a}\right)(L \cap P)\right)^{o p}=L
$$

In [3], T.A. Springer studied the double coset decomposition $H \backslash G / P$ for algebraic groups G over algebraically closed fields. He also studied closure relations in Section 6 of his paper. So the formula for $(H P)^{c l}$ in Theorem (iv) and the description of $H-P$ double cosets contained in $(H P)^{c l}$ in Theorem (vi) are essentially the same as his results (except that $y_{i-1}=y_{i}$ or $y_{i} w_{\alpha_{i}}$ when $\left.\mathfrak{g}\left(\mathfrak{a}_{i} ; \alpha_{i}^{\prime}\right) \cap \mathfrak{q}^{a} \neq\{0\}\right)$ when G is a complex Lie group and σ is a complex linear involution.
(iii) When the number of the open $L \cap H-L \cap P$ double cosets in L is not one, we can find by Theorem (vii) all the $L \cap H-L \cap P$ double cosets (resp. $L \cap H^{a}-L \cap P$ double cosets) contained in $((L \cap H)(L \cap P))^{c l}$ (resp. $\left.\left(\left(L \cap H^{a}\right)(L \cap P)\right)^{o p}\right)$ in the following way. Let $(L \cap H) y(L \cap P)$
(resp. $\left.\left(L \cap H^{a}\right) y(L \cap P)\right)$ be an arbitrary $L \cap H-L \cap P$ double coset (resp. $L \cap H^{a}-L \cap P$ double coset) in L. We may assume that $\operatorname{Ad}(y) \mathfrak{a}$ is σ-stable and that $y \in K$ by [1] Theorem 1. Then considering $L, L \cap H$ and $y(L \cap P) y^{-1}$ as G, H^{a} and P in Theorem (vii), respectively, we can see whether $(L \cap H)(L \cap P) y^{-1} \quad$ (resp. $\left.\left(L \cap H^{a}\right)(L \cap P) y^{-1}\right)$ is contained in $\left((L \cap H) y(L \cap P) y^{-1}\right)^{o p}$ (resp. $\left.\left(\left(L \cap H^{a}\right) y(L \cap P) y^{-1}\right)^{c l}\right)$ or not. So we can see whether $(L \cap H) y(L \cap P)$ (resp. $\left(L \cap H^{a}\right) y(L \cap P)$) is contained in $((L \cap H)(L \cap P))^{c l}\left(\operatorname{resp} .\left(L \cap H^{a}\right)(L \cap P)^{o p}\right)$ or not.
(iv) Let y be an element of $L \cap K$ such that $\operatorname{Ad}(y) \mathfrak{a}$ is σ-stable. Then it follows from the above consideration in (iii) and from the latter half of Theorem (vii) that

$$
y \in((L \cap H)(L \cap P))^{c l} \Longleftrightarrow y \in\left(\left(L \cap H^{a}\right)(L \cap P)\right)^{o p} .
$$

(v) When $G=G^{\prime} \times G^{\prime}, H=\left\{(x, x) \mid x \in G^{\prime}\right\}$ and $P=P^{\prime} \times P^{\prime}$ with a connected semisimple Lie group G^{\prime} and a minimal parabolic subgroup P^{\prime} $=P\left(\mathfrak{a}^{\prime}, \Sigma^{\prime+}\right)$ of G^{\prime}, the double coset decomposition $H \backslash G / P$ can be naturally identified with the Bruhat decomposition $P^{\prime} \backslash G^{\prime} \mid P^{\prime} \simeq W\left(\mathfrak{a}^{\prime}\right)$. In this case it is known as Bruhat ordering on $W\left(\mathfrak{a}^{\prime}\right)$ that $\left(P^{\prime} w P^{\prime}\right)^{c l}=P^{\prime} L_{r_{1}}^{\prime} \cdots$ $L_{\gamma_{n}}^{\prime} P^{\prime}=P W_{r_{1}} \cdots W_{r_{n}} P^{\prime}$. Here $L_{r}^{\prime}=Z_{G_{1}}\left(\mathfrak{a}^{\prime \eta}\right), \mathfrak{a}^{\prime \gamma}=\left\{Y \in \mathfrak{a}^{\prime} \mid \gamma(Y)=0\right\}$ for $\gamma=$ $\Sigma^{\prime}, w=w_{r_{1}} \cdots w_{r_{n}}$ is a reduced expression of $w \in W\left(\mathfrak{a}^{\prime}\right)$ by reflections $w_{r_{1}}$, $\cdots, w_{r_{n}}$ with respect to simple roots $\gamma_{1}, \cdots, \gamma_{n}$ in $\Sigma^{\prime+}$ and $W_{r_{i}}=\left\{1, w_{r_{i}}\right\}$ for $i=1, \cdots, n$.

In general if the number of $K \cap H$-conjugacy classes of σ-stable maximal abelian subspaces of \mathfrak{p} is one, then it follows from [1] Theorem 2 that $y_{i-1}=y_{i}$ or $y_{i} w_{\alpha_{1}}$ in Theorem (vi) and that $(L \cap H)(L \cap P)=\left(L \cap H^{a}\right)(L \cap P)$ $=L$. Hence it follows from Theorem (iv) and Theorem (vi) that

$$
(H P)^{c l}=H w P L_{\alpha_{n}} \cdots L_{\alpha_{1}}=H w W_{\alpha_{n}} \cdots W_{\alpha_{1}} P
$$

and that

$$
\left(H^{a} P\right)^{o p}=H^{a} w P L_{\alpha_{n}} \cdots L_{\alpha_{1}}=H^{a} w W_{\alpha_{n}} \cdots W_{\alpha_{1}} P
$$

So we can say that Theorem (vi) is a generalization of Bruhat ordering.
As in Corollary 2 of [1] Theorem 1, there exists a natural one-to-one correspondence between $H \backslash G / P$ and $H^{a} \backslash G / P$ given by $H y P \rightarrow H^{a} y P$ if $\operatorname{Ad}(y) \mathfrak{a}$ is σ-stable and $y \in K$. From Remark (iv) and from Theorem (vi) we have the following.

Corollary. Let D be an arbitrary $H-P$ double coset and choose a $y \in$ $D \cap K$ so that $\operatorname{Ad}(y) \mathfrak{a}$ is σ-stable. Then $H y P \subset(H P)^{c l}$ if and only if $H^{a} P$ $\subset\left(H^{a} y P\right)^{c l}$.

In the proof of the first six assertions in Theorem, a generalization (Lemma 3) of [4] Lemma 5.1 plays an essential role. The proof of Theorem (vii) is reduced to the following proposition which will be proved in Section 5.

Proposition. For any closed H-P double coset D and for any open H - P double coset D^{\prime}, we have $D \subset\left(D^{\prime}\right)^{c l}$.

The author would like to thank J. Sekiguchi because the simple proof of Proposition given in Section 5 is due to him, while the original proof by the author was very complicated.

§ 2. Notations and preliminaries

Let Z denote the ring of integers and \boldsymbol{R} the field of real numbers. For a set S with a map $\tau: S \rightarrow S$, we write $S^{\tau}=\{x \in S \mid \tau x=x\}$. For a topological group G_{1}, we denote by $\left(G_{1}\right)_{0}$ the connected component of G_{1} containing the identity.

Let G_{1} be a topological group, H_{1} and H_{2} be closed subgroups of G_{1} and S be a subset of G_{1}. Then we denote by $S^{c l}$ the closure of S in G_{1} and we put $S^{o p}\left(H_{2} \backslash G_{1} / H_{1}\right)=\left\{x \in G_{1} \mid\left(H_{2} x H_{1}\right)^{c l} \cap S \neq \varnothing\right\}$. If the number of $H_{2}-H_{1}$ double cosets in G_{1} is finite, then it is clear that $S^{o p}\left(H_{2} \backslash G_{1} / H_{1}\right)$ is the minimal $H_{2}-H_{1}$ invariant open subset of G_{1} containing S. If S is $H_{2}-H_{1}$ invariant, then $S^{c l}$ is also $H_{2}-H_{1}$ invariant. Since we study double coset decompositions, it is natural to use the symbol $S^{o p}\left(H_{2} \backslash G / H_{1}\right)$ only when S is $H_{2}-H_{1}$ invariant.

The following general lemma will be used in Section 4 when $H_{3}=$ $\left(H_{2}\right)_{0}$.

Lemma 1. Let G_{1}, H_{1} and H_{2} be as above. Let H_{3} be a normal subgroup of H_{2} and S a subset of G_{1} such that $H_{3} S_{1}=S$. Suppose that the number of $H_{3}-H_{1}$ double cosets in G_{1} is finite. Then we have the followings.
(i) $\left(H_{2} S\right)^{c l}=H_{2} S^{c l}$.
(ii) $\quad\left(H_{2} S\right)^{o p}\left(H_{2} \backslash G_{1} / H_{1}\right)=H_{2} S^{o p}\left(H_{3} \backslash G_{1} / H_{1}\right)$.

Proof. (i) Since $H_{2} S \subset H_{2} S^{c l} \subset\left(H_{2} S\right)^{c l}$, we have only to prove that $H_{2} S^{c l}$ is closed in G_{1}. Since H_{3} is normal in H_{2}, we have

$$
H_{2} S^{c l}=\bigcup_{g \in H_{2}} g\left(H_{3} S\right)^{c l}=\bigcup_{g \in H_{2}}\left(H_{3} g S\right)^{c l} .
$$

Since the number of $H_{3}-H_{1}$ double cosets in G_{1} is finite, the right hand side of this formula is a union of a finite number of closed sets. Hence $H_{2} S^{c l}$ is closed in G_{1}.
(ii) Since the number of $H_{3}-H_{1}$ double cosets in G_{1} is finite, $\left(H_{i} S\right)^{o p}\left(H_{i} \backslash G_{1} / H_{1}\right)$ is the minimal H_{i}-invariant open subset of G_{1} containing $H_{i} S$ for $i=2$, 3. Clearly $H_{2} S^{o p}\left(H_{3} \backslash G_{1} / H_{1}\right)$ is an $H_{2}-H_{1}$ invariant open subset of G_{1} such that $H_{2} S \subset H_{2} S^{o p}\left(H_{3} \backslash G_{1} / H_{1}\right) \subset\left(H_{2} S\right)^{o p}\left(H_{2} \backslash G_{1} / H_{1}\right)$. Hence the assertion holds.
Q.E.D.

Let G be a connected real semisimple Lie group, σ an involutive automorphism of G and H a subgroup of G satisfying $G_{0}^{\sigma} \subset H \subset G^{\sigma}$. Then the factor space $H \backslash G$ is called an affine symmetric space.

Let g be the Lie algebra of G and σ the automorphism of g induced from the automorphism σ of G. Fix a Cartan involution θ of g such that $\sigma \theta=\theta \sigma$. Let $\mathfrak{g}=\mathfrak{h}+\mathfrak{q}, \mathfrak{g}=\mathfrak{h}^{a}+\mathfrak{q}^{a}$ and $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ denote the +1 and -1 eigenspace decompositions for $\sigma, \sigma \theta$ and θ, respectively. Let $B: g \times g \rightarrow \boldsymbol{R}$ be the Killing form on g.

Let K denote the analytic subgroup of G for \mathfrak{f}. Put $H^{a}=(K \cap H)$. $\exp (p \cap q)$. Then $H^{a} \backslash G$ is called the affine symmetric space associated to $H \backslash G$. We remark here that a property for an affine symmetric space $H \backslash G$ also holds for $H^{a} \backslash G$. (We can replace $H, \mathfrak{h}, \mathfrak{q}$ and σ by $H^{a}, \mathfrak{h}{ }^{a}, \mathfrak{q}^{a}$ and $\sigma \theta$, respectively.) This is an important technique frequently used in this paper.

Let \mathfrak{F} be a subalgebra of \mathfrak{g}, S a subgroup of G, t an abelian subspace of \mathfrak{p} and t^{*} the space of real linear forms on t. Then we put $\xi(t ; \alpha)=$ $\{X \in 引 \mid[Y, X]=\alpha(Y) X$ for all $Y \in \ddagger\}$ for any $\alpha \in t^{*}$ and put $\Sigma(弓 ; \mathfrak{t})=$ $\left\{\beta \in \mathrm{t}^{*}-\{0\} \mid \xi(\mathrm{t} ; \beta) \neq\{0\}\right\}$. Let $Z_{S}(\mathrm{t})\left(\right.$ resp. $\left.N_{S}(\mathrm{t})\right)$ denote the centralizer (normalizer) of t in S and put $W_{S}(\mathrm{t})=N_{S}(\mathrm{t}) / Z_{S}(\mathrm{t})$. Write $\bar{\delta}_{s}(\mathrm{t})=\xi(\mathrm{t} ; 0)$.

When t is maximal abelian in \mathfrak{p}, it is wellknown that $\Sigma(\mathrm{t})=\Sigma(\mathfrak{g} ; \mathfrak{t})$ satisfies the axioms of a root system and that $W(\mathrm{t})=W_{K}(\mathrm{t})$ is the Weyl group of $\Sigma(\mathrm{t})$. In this case we choose an element $w_{\alpha} \in N_{K}(\mathrm{t})$ for each $\alpha \in \Sigma(t)$ so that the restriction of $\operatorname{Ad}\left(w_{\alpha}\right)$ to t is the reflection with respect to α. (All the statements in this paper are independent of the choice of w_{α}.)

When the real rank of G is one, we can describe the closure relations which we want to study in this paper as follows.

Lemma 2. Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p}. Suppose that $\operatorname{dim} \mathfrak{a}=1$ and that $\mathfrak{a} \subset \mathfrak{b}$. Let α be a reduced root in $\Sigma=\Sigma(\mathfrak{g} ; \mathfrak{a})$ and put $P=Z_{G}(\mathfrak{a}) \exp \mathfrak{H}$ with $\mathfrak{n}=g(\mathfrak{a} ; \alpha)+\mathfrak{g}(\mathfrak{a} ; 2 \alpha)$. Suppose that $\mathfrak{g}(\mathfrak{a} ; \alpha) \cap \mathfrak{q} \neq\{0\}$ and fix an element c_{α} of K defined by $c_{\alpha}=\exp (\pi / 2)(X+\theta X)$ with $X \in$ $\mathfrak{g}(\mathfrak{a} ; \alpha) \cap \mathfrak{q}$ satisfying $2\langle\alpha, \alpha\rangle B(X, \theta X)=-1$. Then we have the followings.
(i) $G=H P \cup H w_{\alpha} P \cup H c_{\alpha} P \cup H c_{\alpha}^{-1} P$.
(ii) The double cosets $H P$ and $H w_{\alpha} P$ are closed in G and the double cosets $H c_{\alpha} P$ and $H c_{\alpha}^{-1} P$ are open in G.
(iii) $\operatorname{dim} H P=\operatorname{dim} H w_{\alpha} P=\operatorname{dim} G-\operatorname{dim}(\mathfrak{n} \cap q)$.
(iv) $H_{0} P=H_{0} w_{\alpha} P$ if and only if $\mathfrak{n} \cap \mathfrak{G} \neq\{0\}$.
(v) $H_{0} c_{\alpha} P=H_{0} c_{\alpha}^{-1} P$ if and only if $\operatorname{dim}(\mathfrak{n} \cap \mathfrak{q}) \geq 2$.
(vi) $\quad\left(H c_{\alpha} P\right)^{c l}=H c_{\alpha} P \cup H P \cup H w_{\alpha} P$ and $\left(H c_{\alpha}^{-1} P\right)^{c l}=H c_{\alpha}^{-1} P \cup H P \cup$ $H w_{\alpha} P$.

Proof. (i) Since $\{\phi,\{X\}\}$ is a complete set of representatives of $W(\mathfrak{a})$-conjugacy classes of \mathfrak{q}-orthogonal systems of Σ, the assertion follows from [1] Theorem 3.
(ii) follows from Proposition 1 and Proposition 2 in [1].
(iii) follows from Lemma 7 in Section 5. (It is easy to give a direct proof of (iii).)
(iv) If $\mathfrak{n \subset q}$, then $\overline{\mathfrak{n}}=\mathfrak{g}(\mathfrak{a} ;-\alpha)+g(\mathfrak{a} ;-2 \alpha)$ is also contained in \mathfrak{q} since $\theta \mathfrak{q}=\mathfrak{q}$. Hence $\mathfrak{G} \subset \mathfrak{l}, N_{K \cap H_{0}}(\mathfrak{a})=Z_{K \cap H_{0}}(\mathfrak{a})$ and therefore $H_{0} P \cap H_{0} w_{\alpha} P$ $=\phi$ by [1] Theorem 1. Conversely suppose that $\mathfrak{n} \cap \mathfrak{G} \neq\{0\}$. Since α or 2α is contained in $\Sigma(\mathfrak{h} ; \mathfrak{a})$ and since $W_{K \cap H_{0}}(\mathfrak{a})$ is the Weyl group of $\Sigma(\mathfrak{h} ; \mathfrak{a})$, we have $w_{\alpha} Z_{K}(\mathfrak{a}) \cap H_{0} \neq \phi$. Hence $H_{0} P=H_{0} w_{\alpha} P$.
(v) Suppose that $\operatorname{dim}(\mathfrak{n} \cap \mathfrak{q})=1$. Then $\operatorname{dim}(\mathfrak{p} \cap \mathfrak{q})=1$ since $\mathfrak{p} \subset \overline{\mathfrak{n}}+$ $\mathfrak{a}+\mathfrak{n}$ and since $\mathfrak{a} \subset \mathfrak{h}$. Hence $\mathfrak{a}^{\prime}=\operatorname{Ad}\left(c_{\alpha}\right) \mathfrak{a}=\mathfrak{p} \cap \mathfrak{q}$ and the adjoint action of $K \cap H_{0}=(K \cap H)_{0}$ on \mathfrak{a}^{\prime} is trivial. Therefore $N_{K \cap H_{0}}\left(\mathfrak{a}^{\prime}\right)=Z_{K \cap H_{0}}\left(\mathfrak{a}^{\prime}\right)$ and $H_{0} c_{\alpha} P \cap H_{0} c_{\alpha}^{-1} P=\varnothing$ by [1] Theorem 1. Suppose that $\operatorname{dim}(\mathfrak{n} \cap \mathfrak{q}) \geq 2$. Then $\operatorname{dim} H P=\operatorname{dim} H w_{\alpha} P \leq \operatorname{dim} G-2$ by (iii). Hence $G-H P-H w_{\alpha} P$ is connected, and therefore $H_{0} c_{\alpha} P=H_{0} c_{\alpha}^{-1} P$.
(vi) If $H P=H w_{\alpha} P$ or $H c_{\alpha} P=H c_{\alpha}^{-1} P$, then the assertions are trivial. So we may assume that $\operatorname{dim} \mathfrak{H}=1$ by (iv) and (v). Then G / P is diffeomorphic to a circle, the two closed H_{0}-orbits $H_{0} P$ and $H_{0} w_{\alpha} P$ are distinct points on the circle, and the two open H_{0}-orbits $H_{0} c_{\alpha} P$ and $H_{0} c_{\alpha}^{-1} P$ are the remaining open arcs. Thus the assertions are clear. Q.E.D.

Lemma 2'. Retain the assumptions and notations in Lemma 2. Then we have the followings.
(i) $G=H^{a} P \cup H^{a} w_{\alpha} P \cup H^{a} c_{\alpha} P \cup H^{a} c_{\alpha}^{-1} P$.
(ii) The double cosets $H^{a} P$ and $H^{a} w_{\alpha} P$ are open in G and the double cosets $H^{a} c_{\alpha} P$ and $H^{a} c_{\alpha}^{-1} P$ are closed in G.
(iii) $\operatorname{dim} H^{a} c_{\alpha} P=\operatorname{dim} H^{a} c_{\alpha}^{-1} P=\operatorname{dim} G-\operatorname{dim}(\mathfrak{n} \cap \mathfrak{G})-1$.
(iv) $H_{0}^{a}=H_{0}^{a} w_{\alpha} P$ if and only if $\mathfrak{n} \cap \mathfrak{h} \neq\{0\}$.
(v) $H_{0}^{a} c_{\alpha} P=H_{0}^{a} c_{\alpha}^{-1} P$ if and only if $\operatorname{dim}(\mathfrak{n} \cap \mathfrak{q}) \geq 2$.
(vi) $\left(H^{a} P\right)^{c l}=H^{a} P \cup H^{a} c_{\alpha} P \cup H^{a} c_{\alpha}^{-1} P$ and $\left(H^{a} w_{\alpha} P\right)^{c l}=H^{a} w_{\alpha} P \cup$ $H^{a} c_{\alpha} P \cup H^{a} c_{\alpha}^{-1} P$.

Proof. The assertions (i), (iv) and (v) follow from Corollary 2 of [1] Theorem 1. (ii) follows from Corollary of [1] Section 3. (vi) is proved as
in the proof of Lemma 2.
(iii) is proved as follows. Since $\mathfrak{p \subset \overline { n }}+\mathfrak{a}+\mathfrak{n}$ and since $\mathfrak{a} \subset \mathfrak{p} \cap \mathfrak{h}$, we have $\operatorname{dim}(\mathfrak{n} \cap \mathfrak{h})=\operatorname{dim}(\mathfrak{p} \cap \mathfrak{h})-1$. On the other hand since $\mathfrak{p} \subset$ $\operatorname{Ad}\left(c_{\alpha}\right) \overline{\mathfrak{r}}+\operatorname{Ad}\left(c_{\alpha}\right) \mathfrak{a}+\operatorname{Ad}\left(c_{\alpha}\right) \mathfrak{n}$ and since $\operatorname{Ad}\left(c_{\alpha}\right) \mathfrak{a} \subset \mathfrak{p} \cap \mathfrak{q}=\mathfrak{p} \cap \mathfrak{h}^{a}$, we have $\operatorname{dim}\left(\operatorname{Ad}\left(c_{\alpha}\right) \mathfrak{n} \cap \mathfrak{q}^{a}\right)=\operatorname{dim}\left(p \cap \mathfrak{q}^{\alpha}\right)=\operatorname{dim}(\mathfrak{p} \cap \mathfrak{h})$. Hence it follows from Lemma 7 in Section 5 that $\operatorname{dim} H c_{\alpha} P=\operatorname{dim} H c_{\alpha}^{-1} P=\operatorname{dim} G-\operatorname{dim}\left(\operatorname{Ad}\left(c_{\alpha}\right) \mathfrak{n}\right.$ $\left.\cap \mathfrak{q}^{a}\right)=\operatorname{dim} G-\operatorname{dim}(\mathfrak{n} \cap \mathfrak{h})-1$.
Q.E.D.

§ 3. Lemmas for the main theorem

We use the following notations throughout this section. Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{p} such that $\sigma \mathfrak{a}=\mathfrak{a}, \Sigma^{+}$a positive system of the root system $\Sigma=\Sigma(\mathfrak{a})$ and P the minimal parabolic subgroup of G defined by

$$
P=Z_{G}(\mathfrak{a}) \exp \mathfrak{n}
$$

where $\mathfrak{n}=\sum_{\beta \in \Sigma+} \mathfrak{g}(\mathfrak{a} ; \beta)$. Let Ψ denote the set of all the simple roots in Σ^{+}. Let α be a root in Ψ and put $\mathfrak{a}^{\alpha}=\{Y \in \mathfrak{a} \mid \alpha(Y)=0\}, L_{\alpha}=Z_{G}\left(\mathfrak{a}^{a}\right), \mathfrak{V}_{\alpha}$ $=\mathfrak{J}_{\mathfrak{g}}\left(\mathfrak{a}^{\alpha}\right), \mathfrak{n}_{\alpha}=\sum_{\beta \in \Sigma+-\{\alpha, 2 \alpha\}} \mathfrak{g}(\mathfrak{a} ; \beta), P_{\alpha}=L_{\alpha} \exp \mathfrak{n}_{\alpha}, \mathfrak{B}_{\alpha}=\mathfrak{l}_{\alpha}+\mathfrak{n}_{\alpha}$ and $\mathfrak{n}(\alpha)=$ $\mathfrak{g}(\mathfrak{a} ; \alpha)+\mathfrak{g}(\mathfrak{a} ; 2 \alpha)$. Then P_{α} is a parabolic subgroup of G containing P. Let $\mathfrak{l}_{\alpha}^{s}$ be the subalgebra of \mathfrak{g} generated by $\mathfrak{n}(\alpha)+\theta \mathfrak{n}(\alpha)$ and L_{α}^{s} the analytic subgroup of G for $\mathfrak{C}_{\alpha}^{s}$. For a subset S of G, write $S^{o p}=S^{o p}\left(H^{a} \backslash G / P\right)$.

First we have the following lemma which is a generalization of [4] Lemma 5.1.

Lemma 3. There are six cases (depending on the choice of \mathfrak{a}, Σ^{+}and α) for the decomposition of the set $H P_{\alpha}$ into $H-P$ double cosets as follows.
(A) If $\sigma \alpha \neq \pm \alpha$ and $\sigma \alpha \notin \Sigma^{+}$, then $H P_{\alpha}=H P \cup H w_{\alpha} P, \operatorname{dim} H w_{\alpha} P=$ $\operatorname{dim} H P-\operatorname{dim} \mathfrak{n}(\alpha)$ and $H w_{\alpha} P \subset(H P)^{c l}$.
(B) If $\sigma \alpha \neq \pm \alpha$ and $\sigma \alpha \in \Sigma^{+}$, then $H P_{\alpha}=H P \cup H w_{\alpha} P, \operatorname{dim} H w_{\alpha} P=$ $\operatorname{dim} H P+\operatorname{dim} \mathfrak{n}(\alpha)$ and $H P \subset\left(H w_{\alpha} P\right)^{c l}$.
(C) If $\sigma \alpha=\alpha$ and $\mathfrak{g}(\mathfrak{a} ; \alpha) \cap \mathfrak{q}=\{0\}$, then $H P_{\alpha}=H P$.
(D) The case when $\sigma \alpha=\alpha$ and $\mathfrak{g}(\mathfrak{a} ; \alpha) \cap \mathfrak{q} \neq\{0\}$. Define an element $c_{\alpha} \in L_{\alpha}^{s}$ by $c_{\alpha}=\exp (\pi / 2)(X+\theta X)$ with an $X \in \mathfrak{g}(\mathfrak{a} ; \alpha) \cap_{q}$ satisfying $2\langle\alpha, \alpha\rangle$ $\cdot B(X, \theta X)=-1$. Then $\operatorname{Ad}\left(c_{\alpha}\right) a=\operatorname{Ad}\left(c_{\alpha}^{-1}\right) \mathfrak{a}$ is σ-stable,

$$
\begin{aligned}
& H P_{\alpha}=H P \cup H w_{\alpha} P \cup H c_{\alpha} P \cup H c_{\alpha}^{-1} P, \\
& \operatorname{dim} H c_{\alpha} P=\operatorname{dim} H c_{\alpha}^{-1} P=\operatorname{dim} H P+\operatorname{dim}(\mathfrak{n}(\alpha) \cap \mathfrak{q}) \\
& \quad=\operatorname{dim} H w_{\alpha} P+\operatorname{dim}(\mathfrak{n}(\alpha) \cap \mathfrak{q}), \\
& \left(H c_{\alpha} P\right)^{c l} \supset H P \cup H w_{\alpha} P, \quad\left(H c_{\alpha}^{-1} P\right)^{c l} \supset H P \cup H w_{\alpha} P, \\
& H P=H w_{\alpha} P \quad \text { if } \mathfrak{n}(\alpha) \cap \mathfrak{h} \neq\{0\},
\end{aligned}
$$

and

$$
H c_{\alpha} P=H c_{\alpha}^{-1} P \quad \text { if } \operatorname{dim}(\mathfrak{n}(\alpha) \cap \mathfrak{q}) \geq 2
$$

(E) If $\sigma \alpha=-\alpha$ and $\mathfrak{g}(\mathfrak{a} ; \alpha) \cap \mathfrak{q}^{a}=\{0\}$, then $H P_{\alpha}=H P$.
(F) The case when $\sigma \alpha=-\alpha$ and $\mathfrak{g}(\mathfrak{a} ; \alpha) \cap \mathfrak{q}^{a} \neq\{0\}$. Define an element $c_{\alpha} \in L_{\alpha}^{s}$ by $c_{\alpha}=\exp (\pi / 2)(X+\theta X)$ with an $X \in \mathfrak{g}(\mathfrak{a} ; \alpha) \cap \mathfrak{q}^{\alpha}$ satisfying $2\langle\alpha, \alpha\rangle$ $\cdot B(X, \theta X)=-1$. Then $\operatorname{Ad}\left(c_{\alpha}\right) \mathfrak{a}=\operatorname{Ad}\left(c_{\alpha}^{-1}\right) \mathfrak{a}$ is σ-stable,

$$
\begin{aligned}
& H P_{\alpha}=H P \cup H w_{\alpha} P \cup H c_{\alpha} P \cup H c_{\alpha}^{-1} P, \\
& \operatorname{dim} H c_{\alpha} P=\operatorname{dim} H c_{\alpha}^{-1} P=\operatorname{dim} H P-\operatorname{dim}\left(\mathfrak{n}(\alpha) \cap \mathfrak{G}^{a}\right)-1 \\
& =\operatorname{dim} H w_{\alpha} P-\operatorname{dim}\left(\mathfrak{n}(\alpha) \cap \mathfrak{G}^{a}\right)-1, \\
& (H P)^{c l} \supset H c_{\alpha} P \cup H c_{\alpha}^{-1} P, \quad\left(H w_{\alpha} P\right)^{c l} \supset H c_{\alpha} P \cup H c_{\alpha}^{-1} P, \\
& H P=H w_{\alpha} P \quad \text { if } \mathfrak{n}(\alpha) \cap \mathfrak{h}^{a} \neq\{0\}, \\
& \text { and } \quad H c_{\alpha} P=H c_{\alpha}^{-1} P \quad \text { if } \operatorname{dim}\left(\mathfrak{n}(\alpha) \cap \mathfrak{q}^{a}\right) \geq 2 \text {. }
\end{aligned}
$$

Proof. Since the statements are independent of the choice of w_{α} in $N_{K}(\mathfrak{a})$, we may assume that $w_{\alpha} \in L_{\alpha}^{s}$. Let p be the projection of P_{α} onto L_{α} with respect to the Langlands decomposition $P_{\alpha}=L_{\alpha} \exp \mathfrak{n}_{\alpha}$. Then we have natural bijections

$$
\begin{equation*}
H \backslash H P_{\alpha} / P \underset{\sim}{\sim} P_{\alpha} \cap H \backslash P_{\alpha} / P \underset{p}{\sim} J \backslash L_{\alpha} / L_{\alpha} \cap P \tag{3.1}
\end{equation*}
$$

where $J=p\left(P_{\alpha} \cap H\right)$. Since $\left(L_{\alpha}\right)_{0}=L_{\alpha}^{s} Z_{\left(L_{\alpha) 0}\right.}(\mathfrak{a})$ and since $Z_{\left(L_{\alpha) 0}\right)}(\mathfrak{a}) \subset P$, we have $L_{\alpha}^{s} / L_{\alpha}^{s} \cap P \simeq\left(L_{\alpha}\right)_{0} /\left(L_{\alpha}\right)_{0} \cap P$. Since $L_{\alpha} \cap P$ intersects with every connected component of L_{α}, we have $\left(L_{\alpha}\right) /\left(L_{\alpha}\right)_{0} \cap P \simeq L_{\alpha} / L_{\alpha} \cap P$. Hence we have a natural surjection

$$
\begin{equation*}
L_{\alpha}^{s} \cap J \backslash L_{\alpha}^{s} / L_{\alpha}^{s} \cap P \longrightarrow J \backslash L_{\alpha} / L_{\alpha} \cap P \tag{3.2}
\end{equation*}
$$

Let j be the Lie algebra of J.
(A) Let X be an element of $\theta \mathfrak{n}(\alpha)$. Then $X+\sigma X \in \mathfrak{P}_{\alpha} \cap \mathfrak{h}$ since $-\sigma \alpha$ $\in \Sigma^{+}$. Hence $X=p(X+\sigma X) \subset j$ since $-\sigma \alpha \in \Sigma^{+}-\{\alpha, 2 \alpha\}$. Thus we have

$$
\theta \mathfrak{n}(\alpha) \subset \mathfrak{l}_{\alpha}^{s} \cap \mathfrak{j} .
$$

By the Bruhat decomposition of L_{α}^{s}, we have

$$
L_{\alpha}^{s}=D(1) \cup D\left(w_{\alpha}\right) \quad \text { and } \quad D(w) \subset D(1)^{c l}
$$

where $D(x)=\left(L_{\alpha}^{s} \cap J\right) x\left(L_{\alpha}^{s} \cap P\right)$ for $x \in L_{\alpha}^{s}$. Hence by (3.1) and (3.2),

$$
H P_{\alpha}=H P \cup H w_{\alpha} P \quad \text { and } \quad H w_{\alpha} P \subset(H P)^{c l} .
$$

Since $\sigma \alpha \neq \pm \alpha$, we have $w_{\alpha} \notin W_{K \cap H}(\mathfrak{a})$ and therefore $H P \neq H w_{\alpha} P$ by [1]

Theorem 1. Hence $D(1) \neq D\left(w_{\alpha}\right)$ and it follows from the naturality of (3.1) and (3.2) that

$$
\begin{aligned}
\operatorname{dim} H P-\operatorname{dim} H w_{\alpha} P & =\operatorname{dim} D(1)-\operatorname{dim} D\left(w_{\alpha}\right) \\
& =\operatorname{dim} \mathfrak{n}(\alpha)
\end{aligned}
$$

(B) By a similar argument as in (A), we have

$$
\mathfrak{n}(\alpha) \subset \mathfrak{l}_{\alpha}^{s} \cap \mathfrak{i} .
$$

By the Bruhat decomposition of L_{α}^{s}, we have

$$
L_{\alpha}^{s}=D(1) \cup D\left(w_{\alpha}\right) \quad \text { and } \quad D(1) \subset D\left(w_{\alpha}\right)^{c l}
$$

where $D(x)=\left(L_{\alpha}^{s} \cap J\right) x\left(L_{\alpha}^{s} \cap P\right)$ for $x \in L_{\alpha}^{s}$. Hence by (3.1) and (3.2),

$$
H P_{\alpha}=H P \cup H w_{\alpha} P \quad \text { and } \quad H P \subset\left(H w_{\alpha} P\right)^{c t}
$$

Since $H P \neq H w_{\alpha} P$ and $D(1) \neq D\left(w_{\alpha}\right)$ as in (A),

$$
\begin{aligned}
\operatorname{dim} H w_{\alpha} P-\operatorname{dim} H P & =\operatorname{dim} D\left(w_{\alpha}\right)-\operatorname{dim} D(1) \\
& =\operatorname{dim} \mathfrak{n}(\alpha)
\end{aligned}
$$

(C) Since $\mathfrak{\bigvee}_{\alpha}^{s}$ is generated by $\mathfrak{g}(\mathfrak{a} ; \alpha)+\mathfrak{g}(\mathfrak{a} ;-\alpha), \mathfrak{l}_{\alpha}^{s}$ is contained in \mathfrak{h}. Hence $H P_{\alpha}=H P$ by (3.1) and (3.2).
(D) Since $L_{\alpha}^{s} \cap H \subset L_{\alpha}^{s} \cap J$, we have a natural surjection

$$
\begin{equation*}
L_{\alpha}^{s} \cap H \backslash L_{\alpha}^{s} / L_{\alpha}^{s} \cap P \longrightarrow J \backslash L_{\alpha} / L_{\alpha} \cap P \tag{3.3}
\end{equation*}
$$

by (3.2). Since $\operatorname{dim}\left(\Upsilon_{\alpha}^{s} \cap \mathfrak{a}\right)=1$ and $\mathfrak{Y}_{\alpha}^{s} \cap \mathfrak{a} \subset \mathfrak{h}$, it follows from Lemma 2 (i) and (vi) that $L_{\alpha}^{s}=D(1) \cup D\left(w_{\alpha}\right) \cup D\left(c_{\alpha}\right) \cup D\left(c_{\alpha}^{-1}\right), D\left(c_{\alpha}\right)^{c l}=D\left(c_{\alpha}\right) \cup D(1) \cup$ $D\left(w_{\alpha}\right)$ and $D\left(c_{\alpha}^{-1}\right)^{c l}=D\left(c_{\alpha}^{-1}\right) \cup D(1) \cup D\left(w_{\alpha}\right)$. Here $D(x)=\left(L_{\alpha}^{s} \cap H\right) x\left(L_{\alpha}^{s} \cap P\right)$ for $x \in L_{\alpha}^{s}$. Hence by (3.1) and (3.3),

$$
\begin{aligned}
& H P_{\alpha}=H P \cup H w_{\alpha} P \cup H c_{\alpha} P \cup H c_{\alpha}^{-1} P, \quad\left(H c_{\alpha} P\right)^{c l} \supset H P \cup H w_{\alpha} P \\
& \text { and } \quad\left(H c_{\alpha}^{-1} P\right)^{c l} \supset H P \cup H w_{\alpha} P .
\end{aligned}
$$

Since $\operatorname{Ad}\left(c_{\alpha}\right) \mathfrak{a}$ is not $K \cap H$-conjugate to $\mathfrak{a},\left(H P \cup H w_{\alpha} P\right) \cap\left(H c_{\alpha} P \cup H c_{\alpha}^{-1} P\right)$ $=\varnothing$ by [1] Theorem 1. Thus we have

$$
\begin{aligned}
\operatorname{dim} H c_{\alpha} P=\operatorname{dim} H c_{\alpha}^{-1} P & =\operatorname{dim} H P+\operatorname{dim}(\mathfrak{n}(\alpha) \cap \mathfrak{q}) \\
& =\operatorname{dim} H w_{\alpha} P+\operatorname{dim}(\mathfrak{n}(\alpha) \cap \mathfrak{q})
\end{aligned}
$$

since $\operatorname{dim} D(1)=\operatorname{dim} D\left(w_{\alpha}\right)=\operatorname{dim} D\left(c_{\alpha}\right)-\operatorname{dim}(\mathfrak{n}(\alpha) \cap \mathfrak{q})=\operatorname{dim} D\left(c_{\alpha}^{-1}\right)-$ $\operatorname{dim}(\mathfrak{n}(\alpha) \cap \mathfrak{q})$ by Lemma 2 (iii). The remaining assertions are clear from

Lemma 2 (iv) and (v).
(E) Since $\mathfrak{l}_{\alpha}^{s}$ is generated by $\mathfrak{g}(\mathfrak{a} ; \alpha)+\mathfrak{g}(\mathfrak{a} ;-\alpha), \mathfrak{l}_{\alpha}^{s}$ is contained in \mathfrak{h}^{a}. Hence $\mathfrak{l}_{\alpha}^{s} \cap \mathfrak{f} \subset \mathfrak{l}_{\alpha}^{s} \cap \mathfrak{h}$ and $L_{\alpha}^{s}=\left(L_{\alpha}^{s} \cap H\right)\left(L_{\alpha}^{s} \cap P\right)$ by the Iwasawa decomposition of L_{α}^{s}. Therefore $H P_{\alpha}=H P$ by (3.1) and (3.2).
(F) Clearly (3.3) is also valid in this case. Note that $\operatorname{dim}\left(\mathfrak{l}_{\alpha}^{s} \cap \mathfrak{a}\right)=1$ and that $\mathfrak{Y}_{\alpha}^{s} \cap a \subset q$. Consider $L_{\alpha}^{s}, L_{\alpha}^{s} \cap H$ and σ as G, H^{a} and $\sigma \theta$ in Lemma 2^{\prime}, respectively. Then we have $L_{\alpha}^{s}=D(1) \cup D\left(w_{\alpha}\right) \cup D\left(c_{\alpha}\right) \cup D\left(c_{\alpha}^{-1}\right), D(1)^{c l}$ $=D(1) \cup D\left(c_{\alpha}\right) \cup D\left(c_{\alpha}^{-1}\right)$ and $D\left(w_{\alpha}\right)^{c l}=D\left(w_{\alpha}\right) \cup D\left(c_{\alpha}\right) \cup D\left(c_{\alpha}^{-1}\right)$ by Lemma 2^{\prime} (i) and (vi). Here $D(x)=\left(L_{\alpha}^{s} \cap H\right) x\left(L_{\alpha}^{s} \cap P\right)$ for $x \in L_{\alpha}^{s}$ and c_{α} is defined in the statement of (F). Hence

$$
\begin{aligned}
& H P_{\alpha}=H P \cup H w_{\alpha} P \cup H c_{\alpha} P \cup H c_{\alpha}^{-1} P, \quad(H P)^{c l} \supset H c_{\alpha} P \cup H c_{\alpha}^{-1} P \\
& \text { and } \quad\left(H w_{\alpha} P\right)^{c l} \supset H c_{\alpha} P \cup H c_{\alpha}^{-1} P
\end{aligned}
$$

by (3.1) and (3.3). We have $\left(H P \cup H w_{\alpha} P\right) \cap\left(H c_{\alpha} P \cup H c_{\alpha}^{-1} P\right)=\varnothing$ by the same reason as in (D). Hence

$$
\begin{aligned}
\operatorname{dim} H c_{\alpha} P=\operatorname{dim} H c_{\alpha}^{-1} P & =\operatorname{dim} H P-\operatorname{dim}\left(\mathfrak{n}(\alpha) \cap \mathfrak{h}^{a}\right)-1 \\
& =\operatorname{dim} H w_{\alpha} P-\operatorname{dim}\left(\mathfrak{n}(\alpha) \cap \mathfrak{h}^{a}\right)-1
\end{aligned}
$$

since $\operatorname{dim} D\left(c_{\alpha}\right)=\operatorname{dim} D\left(c_{\alpha}^{-1}\right)=\operatorname{dim} D(1)-\operatorname{dim}\left(\mathfrak{n}(\mathfrak{a}) \cap \mathfrak{G}^{a}\right)-1=\operatorname{dim} D\left(w_{\alpha}\right)$ $-\operatorname{dim}\left(\mathfrak{n}(\mathfrak{a}) \cap \mathfrak{G}^{a}\right)-1$ by Lemma 2^{\prime} (iii). The remaining assertions are clear from Lemma 2^{\prime} (iv) and (v).
Q.E.D.

Lemma 4. The following three conditions on Σ^{+}are equivalent.
(i) If $\alpha \in \Sigma^{+}$and $\sigma \alpha \neq-\alpha$, then $\sigma \alpha \in \Sigma^{+}$.
(ii) If $\alpha \in \Psi$ and $\sigma \alpha \neq-\alpha$, then $\sigma \alpha \in \Sigma^{+}$.
(iii) There exists a $Y \in \mathfrak{a} \cap \mathfrak{G}$ such that $\alpha(Y)>0$ for all $\alpha \in \Sigma^{+}$satisfying $\sigma \alpha \neq-\alpha$.

Proof. (i) \Rightarrow (ii) is trivial.
(ii) \Rightarrow (i). Every root β in Σ^{+}can be written as $\beta=\sum_{\alpha \in \Psi} n_{\alpha} \alpha$ with some nonnegative integers n_{α}. Put $\Psi_{-}=\{\alpha \in \Psi \mid \sigma \alpha=-\alpha\}$ and $\Psi_{0}=$ $\{\alpha \in \Psi \mid \sigma \alpha \neq-\alpha\}$. Then we have

$$
\begin{equation*}
\sigma \beta=-\sum_{\alpha \in \Psi_{-}} n_{\alpha} \alpha+\sum_{\alpha \in \Psi_{0}} n_{\alpha} \sigma \alpha . \tag{3.4}
\end{equation*}
$$

It follows from the assumption that

$$
\begin{equation*}
\sum_{\alpha \in \Psi_{0}} n_{\alpha} \sigma \alpha \in \sum_{\alpha \in \Psi} \boldsymbol{Z}_{+} \alpha \tag{3.5}
\end{equation*}
$$

where $Z_{+}=\{n \in Z \mid n \geq 0\}$. Suppose that $\sigma \beta \neq-\beta$. Then

$$
\begin{equation*}
\sigma \beta \notin \sum_{\alpha \in \Psi_{-}} Z \alpha . \tag{3.6}
\end{equation*}
$$

Write $\sigma \beta=\sum_{\alpha \in \Psi} n_{\alpha}^{\prime} \alpha\left(n_{\alpha}^{\prime} \in Z\right)$. Then it follows from (3.4), (3.5) and (3.6) that $n_{\alpha}^{\prime}>0$ for some $\alpha \in \Psi_{0}$. If $\sigma \beta$ is a negative root then $n_{\alpha}^{\prime} \leq 0$ for all $\alpha \in \Psi$. Hence $\sigma \beta \in \Sigma^{+}$.
(i) \Rightarrow (iii). Let X be an element of \mathfrak{a} such that $\alpha(X)>0$ for all $\alpha \in \Sigma^{+}$. Then $Y=X+\sigma X$ is a desired element.
(iii) \Rightarrow (i). If $\alpha \in \Sigma^{+}$and $\sigma \alpha \neq-\alpha$, then $\sigma \alpha(Y)=\mathfrak{a}(Y)>0$ by (iii). Hence $-\sigma \alpha$ is not contained in Σ^{+}by (iii) and therefore $\sigma \alpha \in \Sigma^{+}$.
Q.E.D.

Definition. A positive system Σ^{+}of the root system $\Sigma=\Sigma(\mathfrak{a})$ is said to be σ-compatible if one of the equivalent three conditions in Lemma 4 is satisfied.

Suppose that Σ^{+}is not σ-compatible. Then by the above definition, there exists a simple root α of Σ^{+}such that $\sigma \alpha \notin \Sigma^{+}$and that $\sigma \alpha \neq-\alpha$.

Lemma 5. Let α be a simple root of Σ^{+}such that $\sigma \alpha \notin \Sigma^{+}$and that $\sigma \alpha \neq-\alpha . \quad$ Then (i) $(H P)^{c l}=\left(H w_{\alpha} P\right)^{c l} L_{\alpha}$ and (ii) $\left(H^{a} P\right)^{o p}=\left(H^{a} w_{\alpha} P\right)^{o p} L_{\alpha}$.

Proof. (i) By Lemma 3 (A), $H P_{\alpha}=H P \cup H w_{\alpha} P$ and $H w_{\alpha} P \subset(H P)^{c l}$. Hence $(H P)^{c l}=\left(H P_{\alpha}\right)^{c l}$. Since $H P_{\alpha} \subset\left(H w_{\alpha} P\right)^{c l} P_{\alpha} \subset\left(H P_{\alpha}\right)^{c l}$, we have only to prove that $\left(H w_{\alpha} P\right)^{c l} P_{\alpha}=\left(H w_{\alpha} P\right)^{c l} L_{\alpha}$ is closed in G. Since G / P is compact, $\left(H w_{\alpha} P\right)^{c l} / P$ is a compact subset of G / P. Consider the natural map of G / P onto G / P_{α}. Then the image $\left(H w_{\alpha} P\right)^{c l} P_{\alpha} / P_{\alpha}$ of $\left(H w_{\alpha} P\right)^{c l} / P$ by this map is compact. Hence $\left(H w_{\alpha} P\right)^{c l} P_{\alpha}$ is closed in G.
(ii) By Lemma 3 (B), $H^{a} P_{\alpha}=H^{a} P \cup H^{a} w_{\alpha} P$ and $H^{a} P \subset\left(H^{a} w_{\alpha} P\right)^{c l}$. Hence $H^{a} w_{\alpha} P \subset\left(H^{a} P\right)^{o p}$ and so $\left(H^{a} P\right)^{o p}=\left(H^{a} P_{\alpha}\right)^{o p}$. Since $H^{a} P_{\alpha} \subset$ $\left(H^{a} w_{\alpha} P\right)^{o p} L_{\alpha} \subset\left(H^{a} P_{\alpha}\right)^{o p}$ and since $\left(H^{a} w_{\alpha} P\right)^{o p} L_{\alpha}$ is open in G, we have $\left(H^{a} P\right)^{o p}=\left(H^{a} P_{\alpha}\right)^{o p}=\left(H^{a} w_{\alpha} P\right)^{o p} L_{\alpha}$.
Q.E.D.

§ 4. Proof of Theorem

In this section we prove Theorem in Section 1.
Proof. (i) Put $\beta_{i}=w^{(i-1)} \alpha_{i}$ for $i=1, \cdots, n$. Then we will first prove that

$$
\begin{equation*}
\sigma \beta_{i} \neq \pm \beta_{i} \quad \text { and } \quad \sigma \beta_{i} \notin w^{(i-1)} \Sigma^{+} \tag{4.1}
\end{equation*}
$$

Put $\Sigma_{0}^{+}=\left\{\alpha \in \Sigma^{+} \left\lvert\, \frac{1}{2} \alpha \notin \Sigma\right.\right\}$ (the set of reduced roots in Σ^{+}). Then $w^{(i)} \Sigma_{0}^{+}$ $=\left(\Sigma_{0}^{+}-\left\{\beta_{1}, \cdots, \beta_{i}\right\}\right) \cup\left\{-\beta_{1}, \cdots,-\beta_{i}\right\}$ for $i=1, \cdots, n$. We also have $\beta_{i}\left(Y_{0}\right)<0$ for $i=1, \cdots, n$ by the definition of w. Hence by the choice of Y_{0}, we have $\sigma \beta_{i} \notin \Sigma^{+}$(which implies $\sigma \beta_{i} \neq \beta_{i}$). On the other hand, we have $\sigma \beta_{i} \notin\left\{-\beta_{1}, \cdots,-\beta_{i-1}\right\}$ since $\beta_{i}\left(Y_{0}\right)=\left(\sigma \beta_{i}\right)\left(Y_{0}\right)<0$ for any $i=1, \cdots$,
n. Thus we have proved that $\sigma \beta_{i} \notin w^{(i-1)} \Sigma_{0}^{+}$which clearly implies that $\sigma \beta_{i} \notin w^{(i-1)} \Sigma^{+} . \quad$ The remaining assertion $\sigma \beta_{i} \neq-\beta_{i}$ is clear from $\sigma Y_{0}=Y_{0}$ and $\beta_{i}\left(Y_{0}\right)<0$.

Put $P^{(i)}=w^{(i)} P\left(w^{(i)}\right)^{-1}$ and define $L_{\beta_{i}}$ as in Section 3 for $i=1, \cdots, n$. (For any $\beta \in \Sigma$, put $\mathfrak{a}^{\beta}=\{Y \in \mathfrak{a} \mid \beta(Y)=0\}$ and $L_{\beta}=Z_{G}\left(\mathfrak{a}^{\beta}\right)$.) Then by (4.1) and Lemma 5 (i), we have

$$
\left(H P^{(i-1)}\right)^{c l}=\left(H w_{\beta_{i}} P^{(i-1)}\right)^{c l} L_{\beta_{i}}
$$

and therefore $\left(H w^{(i-1)} P\right)^{c l}=\left(H w^{(i)} P\right)^{c l} L_{\alpha_{i}}$ for $i=1, \cdots, n$ since $L_{\beta_{i}}=$ $w^{(i-1)} L_{\alpha_{i}}\left(w^{(i-1)}\right)^{-1}$.

The latter formula can be proved by Lemma 5 (ii) in a similar way.
(ii) follows directly from (i) because $\left(P w^{-1} P\right)^{c l}=P L_{\alpha_{n}} \cdots L_{\alpha_{1}}$.
(iii) Since $L_{1}=Z_{G}\left(Y_{0}\right)$ by the choice of Y_{0}, we can define a parabolic subgroup P_{1} of G containing $P^{(n)}$ by $P_{1}=L_{1} \exp \mathfrak{n}_{1}, \mathfrak{n}_{1}=\sum_{r \in \Sigma, \gamma\left(Y_{0}\right)>0} g(\mathfrak{a} ; \gamma)$. Since L_{1} and \mathfrak{n}_{1} are σ-stable, it is easy to show that $P_{1} \cap H=\left(L_{1} \cap H\right)$. $\exp \left(\mathfrak{n}_{1} \cap \mathfrak{h}\right)$. Since $P_{1} \cap H_{0}$ is the parabolic subgroup of H_{0} defined by Y_{0} $\in \mathfrak{a} \cap \mathfrak{G}, H_{0} / P_{1} \cap H_{0}$ is compact. Hence $H_{0} P_{1}$ is closed in G and so $H P_{1}$ is also closed in G by Lemma 1.

Let p be the projection of P_{1} onto L_{1} with respect to the Langlands decomposition $P_{1}=L_{1} \exp \mathfrak{n}_{1}$. Considering the natural bijections

$$
H \backslash H P_{1} / P^{(n)} \underset{\sim}{\sim} P_{1} \cap H \backslash P_{1} / P^{(n)} \underset{p}{\sim} L_{1} \cap H \backslash L_{1} / L_{1} \cap P^{(n)}
$$

we have

$$
\begin{equation*}
\left(H P^{(n)}\right)^{c l}=H\left(\left(L_{1} \cap H\right)\left(L_{1} \cap P^{(n)}\right)\right)^{c l} P^{(n)} \tag{4.2}
\end{equation*}
$$

since $H P_{1}$ is closed in G.
Let Z be the center of $\left(L_{1}\right)_{0} . \quad$ Since $\left(L_{1}\right)_{0}=L Z$ and since $Z \subset P^{(n)}$, we have $L / L \cap P^{(n)} \simeq\left(L_{1}\right)_{0} /\left(L_{1}\right)_{0} \cap P^{(n)}$. Since $L_{1} \cap P^{(n)}$ intersects with every connected component of L_{1}, we have $\left(L_{1}\right)_{0} /\left(L_{1}\right)_{0} \cap P^{(n)} \simeq L_{1} / L_{1} \cap P^{(n)}$. So we have natural bijections

$$
L / L \cap P^{(n)} \xrightarrow{\sim} L_{1} / L_{1} \cap P^{(n)}
$$

and

$$
(L \cap H)_{0} \backslash L / L \cap P^{(n)} \xrightarrow{\sim}\left(L_{1} \cap H\right)_{0} \backslash L_{1} / L_{1} \cap P^{(n)} .
$$

since $\left(L_{1} \cap H\right)_{0}=(L \cap H)_{0}(Z \cap H)_{0}$ and since $Z \subset P^{(n)}$. Hence we have

$$
\begin{equation*}
\left(\left(L_{1} \cap H\right)\left(L_{1} \cap P^{(n)}\right)\right)^{c l} \tag{4.3}
\end{equation*}
$$

$$
\begin{aligned}
& =\left(L_{1} \cap H\right)\left(\left(L_{1} \cap H\right)_{0}\left(L_{1} \cap P^{(n)}\right)\right)^{c l} \\
& =\left(L_{1} \cap H\right)\left((L \cap H)_{0}\left(L \cap P^{(n)}\right)\right)^{c l}\left(L_{1} \cap P^{(n)}\right) \\
& =\left(L_{1} \cap H\right)\left((L \cap H)\left(L \cap P^{(n)}\right)\right)^{c l}\left(L_{1} \cap P^{(n)}\right)
\end{aligned}
$$

by Lemma 1 .
From (4.2) and (4.3) we get the formula for $(H w P)^{c l}$. (Note that $L \cap P^{(n)}=L \cap P$ since $\left.w \Sigma^{+} \cap \Sigma(\mathfrak{l} ; \mathfrak{a})=\Sigma^{+} \cap \Sigma(\mathfrak{l} ; \mathfrak{a}).\right)$

The formula for $\left(H^{a} w P\right)^{o p}$ is proved as follows. First we have $P_{1} \cap$ $H^{a}=L_{1} \cap H^{a}$ since $P_{1} \cap \sigma \theta P_{1}=L_{1}$. Next we will prove that $H^{a} P_{1}$ is open in G. We have only to prove that $\mathfrak{G}^{a}+\mathfrak{F}_{1}=\mathfrak{g}$. $\quad\left(\mathfrak{F}_{1}\right.$ is the the Lie algebra of P_{1}.) Let γ be a root in Σ such that $\gamma\left(Y_{0}\right)<0$ and X an element of $g(a ;$ γ). Then

$$
X=(X+\sigma \theta X)-\sigma \theta X \in \mathfrak{h}^{a}+\mathfrak{g}(\mathfrak{a} ; \sigma \theta \gamma) \subset \mathfrak{h}^{a}+\mathfrak{B}_{1}
$$

since $(\sigma \theta \gamma)\left(Y_{0}\right)=-\gamma\left(Y_{0}\right)>0$. Since $\mathfrak{g}=\mathfrak{P}_{1}+\sum_{r \in \Sigma, \gamma\left(Y_{0}\right)<0} \mathfrak{G}(\mathfrak{a} ; \gamma)$, we have $\mathfrak{g}=\mathfrak{h}^{a}+\mathfrak{P}_{1}$. Considering the natural bijections

$$
H^{a} \backslash H^{a} P_{1} / P^{(n)} \underset{\sim}{\sim} P_{1} \cap H^{a} \backslash P_{1} / P^{(n)} \underset{p}{\sim} L_{1} \cap H^{a} \backslash L_{1} / L_{1} \cap P^{(n)}
$$

we have

$$
\begin{align*}
& \left(H^{a} P^{(n)}\right)^{o p}\left(H^{a} \backslash G / P^{(n)}\right) \tag{4.4}\\
= & H^{a}\left(\left(\left(L_{1} \cap H^{a}\right)\left(L_{1} \cap P^{(n)}\right)\right)^{o p}\left(L_{1} \cap H^{a} \backslash L_{1} / L_{1} \cap P^{(n)}\right)\right) P^{(n)}
\end{align*}
$$

since $H^{a} P_{1}$ is open in G.
By a similar argument as that for (4.3), we have

$$
\begin{align*}
& \left(\left(L_{1} \cap H^{a}\right)\left(L_{1} \cap P^{(n)}\right)\right)^{o p}\left(L_{1} \cap H^{a} \backslash L_{1} / L_{1} \cap P^{(n)}\right) \tag{4.5}\\
= & \left(L_{1} \cap H^{a}\right)\left(\left(\left(L \cap H^{a}\right)\left(L \cap P^{(n)}\right)\right)^{o p}\left(L \cap H^{a} \backslash L / L \cap P^{(n)}\right)\right)\left(L_{1} \cap P^{(n)}\right) .
\end{align*}
$$

From (4.4) and (4.5) we get the desired formula for $\left(H^{a} w P\right)^{o p}$ since $L \cap P^{(n)}=L \cap P$.
(iv) follows from (ii) and (iii).
(v) Since $\mathfrak{l} \cap \mathfrak{a}$ is a maximal abelian subspace of $\mathfrak{l} \cap \mathfrak{p}$ contained in $\mathfrak{l} \cap \mathfrak{p} \cap \mathfrak{q}$, it follows from Proposition 1 and Proposition 2 in [3] that $(L \cap H)(L \cap P)$ is open in L and that $\left(L \cap H^{a}\right)(L \cap P)$ is closed in L.
(vi) By (ii) we can choose a sequence D_{0}, \cdots, D_{n} of $H-P$ double cosets (resp. $D_{0}^{\prime}, \cdots, D_{n}^{\prime}$ of $H^{a}-P$ double cosets) satisfying the following four conditions.
(1) $D_{0}=D\left(\right.$ resp. $\left.D_{0}^{\prime}=D^{\prime}\right)$.
(2) $D_{i} \subset\left(H w^{(i)} P\right)^{c l}$ (resp. $D_{i}^{\prime} \subset\left(H^{a} w^{(i)} P\right)^{o p}$).
(3) $D_{i} L_{\alpha_{i}} \supset D_{i-1}\left(\right.$ resp. $\left.D_{i}^{\prime} L_{\alpha_{i}} \supset D_{i-1}^{\prime}\right)$.
(4) If $D_{i-1} \subset\left(H w^{(i)} P\right)^{c l}$, then $D_{i}=D_{i-1}$. (resp. If $D_{i-1}^{\prime} \subset\left(H^{a} w^{(i)} P\right)^{o p}$, then $D_{i}^{\prime}=D_{i-1}^{\prime}$.)

We choose representatives y_{i} of D_{i} (resp. D_{i}^{\prime}) for $i=0, \cdots, n$ in the following inductive procedure.

We can choose $y_{n} \in D_{n} \cap((L \cap H)(L \cap P))^{c \iota} w$ (resp. $D_{n}^{\prime} \cap\left(\left(L \cap H^{a}\right)\right.$ $\left.(L \cap P))^{o p} w\right)$ so that $\mathfrak{a}_{n}=\operatorname{Ad}\left(y_{n}\right) \mathfrak{a}$ is σ-stable by [1] Theorem 1. Suppose that we have chosen $y_{n} \in D_{n}$ (resp. D_{n}^{\prime}), $\cdots, y_{i} \in D_{i}$ (resp. D_{i}^{\prime}). Then we choose $y_{i-1} \in D_{i-1}$ as follows. If $D_{i-1}=D_{i}$ (resp. $D_{i-1}^{\prime}=D_{i}^{\prime}$), then we put $y_{i-1}=y_{i}$. So we may assume that $D_{i-1} \not \subset\left(H w^{(i)} P\right)^{c l}$ (resp. $D_{i-1}^{\prime} \not \subset$ $\left.\left(H^{a} w^{(i)} P\right)^{o p}\right)$. Put $P^{\prime}=y_{i} P y_{i}^{-1}, P_{\alpha_{i}}^{\prime}=y_{i} P L_{\alpha_{i}} y_{i}^{-1}$ and $w_{\alpha_{i}}^{\prime}=y_{i} w_{\alpha_{i}} y_{i}^{-1}$. Then

$$
\begin{aligned}
D_{i-1} \subset D_{i} L_{\alpha_{i}} & =H y_{i} P L_{\alpha_{i}}=H P_{\alpha_{i}}^{\prime} y_{i} \\
\text { (resp. } D_{i-1}^{\prime} \subset D_{i}^{\prime} L_{\alpha_{i}} & \left.=H^{a} y_{i} P L_{\alpha_{i}}=H^{a} P_{\alpha_{i}}^{\prime} y_{i}\right) .
\end{aligned}
$$

Since $D_{i-1} \cap\left(H w^{(i)} P\right)^{c l}=\varnothing$ (resp. $D_{i-1}^{\prime} \cap\left(H^{a} w^{(i)} P\right)=\varnothing$) and since $D_{i} \subset$ $\left(H w^{(i)} P\right)^{c l}\left(\right.$ resp. $D_{i}^{\prime} \subset\left(H^{a} w^{(i)} P\right)^{o p}$), we have

$$
\begin{align*}
& D_{i-1} y_{i}^{-1} \subset H P_{\alpha_{i}}^{\prime}-\left(H P^{\prime}\right)^{c l} \tag{4.6}\\
&\text { (resp. } \left.D_{i-1}^{\prime} y_{i}^{-1} \subset H^{a} P_{\alpha_{i}}^{\prime}-\left(H^{a} P^{\prime}\right)^{o p}\left(H^{a} \backslash G / P^{\prime}\right)\right)
\end{align*}
$$

Now we apply Lemma 3 to $\left(H \backslash G, P^{\prime}, P_{\alpha_{i}}^{\prime}\right)$ (resp. $\left(H^{a} \backslash G, P^{\prime}, P_{\alpha_{i}}^{\prime}\right)$).
First suppose that $\mathfrak{g}\left(\mathfrak{a}_{i} ; \alpha_{i}^{\prime}\right) \cap \mathfrak{q}=\{0\}$. Then it follows from (4.6) and from the five cases except (D) in Lemma 3 (resp. from the five cases except (F) in Lemma 3) that

$$
D_{i-1} y_{i}^{-1}=H w_{\alpha_{i}}^{\prime} P^{\prime} \quad\left(\text { resp. } D_{i-1}^{\prime} y_{i}^{-1}=H^{a} w_{\alpha_{i}}^{\prime} P^{\prime}\right)
$$

and
$\operatorname{dim} H w_{\alpha_{i}}^{\prime} P^{\prime} \geq \operatorname{dim} H P^{\prime} \quad\left(r e s p . \operatorname{dim} H^{a} w_{\alpha_{i}}^{\prime} P^{\prime} \leq \operatorname{dim} H^{a} P^{\prime}\right)$.
(In the cases (B), (C) and (E) (resp. (A), (C) and (E)), we get $H P_{\alpha_{i}}^{\prime} \subset$ $\left(H P^{\prime}\right)^{c l}$ (resp. $H^{a} P_{\alpha_{i}}^{\prime} \subset\left(H^{a} P^{\prime}\right)^{o p}\left(H^{a} \backslash G / P^{\prime}\right)$), a contradiction to (4.6).) Hence $D_{i-1}=H y_{i} w_{a_{i}} P\left(\operatorname{resp} . D_{i-1}^{\prime}=H^{a} y_{i} w_{a_{i}} P\right)$ and $\operatorname{dim} D_{i-1} \geq \operatorname{dim}{ }^{\prime} D_{i}$ (resp. $\operatorname{dim} D_{i-1}^{\prime} \leq \operatorname{dim} D_{i}^{\prime}$). We put $y_{i-1}=y_{i} w_{\alpha_{i}} . \quad$ (Then $\mathfrak{a}_{i-1}=\mathfrak{a}_{i}$.)

Next suppose that $\mathfrak{g}\left(\mathfrak{a}_{i} ; \alpha_{i}^{\prime}\right) \cap \mathfrak{q} \neq\{0\}$. Then it follows from (4.6) and from Lemma 3 (D) (resp. Lemma 3 (F)) that

$$
\begin{aligned}
D_{i-1} y_{i}^{-1} & =H w_{\alpha_{i}}^{\prime} P^{\prime}, \quad H c_{\alpha_{i}}^{\prime} P^{\prime} \quad \text { or } H c_{\alpha_{i}}^{\prime-1} P^{\prime} \\
\left(\text { resp. } D_{i-1}^{\prime} y_{i}^{-1}\right. & \left.=H^{a} w_{\alpha_{i}}^{\prime} P^{\prime}, \quad H^{a} c_{\alpha_{i}}^{\prime} P^{\prime} \text { or } H^{a} c_{\alpha_{i}}^{\prime-1} P^{\prime}\right)
\end{aligned}
$$

and that $\operatorname{dim} H P^{\prime}=\operatorname{dim} H w_{\alpha_{i}}^{\prime} P^{\prime}<\operatorname{dim} H c_{\alpha_{i}}^{\prime} P^{\prime}=\operatorname{dim} H c_{\alpha_{i}}^{\prime-1} P^{\prime} \quad$ (resp. $\left.\operatorname{dim} H^{a} P^{\prime}=\operatorname{dim} H^{a} w_{\alpha_{i}}^{\prime} P^{\prime}>\operatorname{dim} H^{a} c_{\alpha_{i}}^{\prime} P^{\prime}=\operatorname{dim} H^{a} c_{\alpha_{i}}^{\prime-1} P^{\prime}\right)$. Hence

$$
\begin{aligned}
D_{i-1} & =H y_{i} w_{\alpha_{i}} P, \quad H y_{i} c_{\alpha_{i}} P \quad \text { or } H y_{i} c_{\alpha_{i}}^{-1} P \\
\left(\operatorname{resp} . D_{i-1}^{\prime}\right. & \left.=H^{a} y_{i} w_{\alpha_{i}} P, H^{a} y_{i} c_{\alpha_{i}} P \text { or } H^{a} y_{i} c_{\alpha_{i}}^{-1} P\right)
\end{aligned}
$$

and $\quad \operatorname{dim} H y_{i} P=\operatorname{dim} H y_{i} w_{\alpha_{i}} P<\operatorname{dim} H y_{i} c_{\alpha_{i}} P=\operatorname{dim} H y_{i} c_{\alpha_{i}}^{-1} P \quad$ (resp. $\left.\operatorname{dim} H^{a} y_{i} P=\operatorname{dim} H^{a} y_{i} w_{\alpha_{i}} P>\operatorname{dim} H^{a} y_{i} c_{\alpha_{i}} P=\operatorname{dim} H^{a} y_{i} c_{\alpha_{i}}^{-1} P\right)$. Thus we can choose a representative y_{i-1} of $D_{i-1}\left(\right.$ resp. $\left.D_{i-1}^{\prime}\right)$ such that $y_{i-1}=y_{i} w_{\alpha_{i}}$, $y_{i} c_{\alpha_{i}}$ or $y_{i} c_{\alpha_{i}}^{-1}$. It is clear from the choice of $c_{\alpha_{i}}$ that $\mathfrak{a}_{i-1}=\operatorname{Ad}\left(y_{i-1}\right) \mathfrak{a}$ is σ-stable.
(vii) Let $D\left(\right.$ resp. D^{\prime}) be a closed $H-P$ double coset (resp. an open $H^{a}-P$ double coset) contained in $H R w W_{\alpha_{n}} \cdots W_{\alpha_{1}} P$ (resp. $H^{a} R^{\prime} w W_{\alpha_{n}} \cdots$ $\left.W_{\alpha_{1}} P\right)$. We have $R \subset((L \cap H)(L \cap P))^{c l}\left(\right.$ resp. $\left.R^{\prime} \subset\left(\left(L \cap H^{a}\right)(L \cap P)\right)^{o p}\right)$ by (v) and Proposition in Section 1. Hence we have $D \subset(H P)^{c l}$ (resp. D^{\prime} $\left.\subset\left(H^{a} P\right)^{o p}\right)$ by (iv).

Conversely let $D\left(\right.$ resp. $\left.D^{\prime}\right)$ be a closed $H-P$ double coset (resp. an open $H^{a}-P$ double coset) contained in $(H P)^{c l}$ (resp. $\left.\left(H^{a} P\right)^{o p}\right)$. Let y_{0}, \cdots, y_{n} be as in (vi). Since all the closed $H-P$ double cosets in G have the same dimension by Lemma 7 in Section 5 (resp. since all the open $H^{a}-P$ double cosets in G have the same dimension), it follows from (vi) (d) that $H y_{i} P$ is closed (resp. $H^{a} y_{i} P$ is open) in G for $i=0, \cdots, n$ and that $y_{i-1}=y_{i}$ or $y_{i} w_{\alpha_{i}}$ for $i=1, \cdots, n$. Clearly $(L \cap H) y_{n} w^{-1}(L \cap P)$ is closed (resp. ($L \cap H^{a}$) $y_{n} w^{-1}(L \cap P)$ is open) in L. Hence we have

$$
\begin{aligned}
D & =H y_{0} P \subset H R w W_{\alpha_{n}} \cdots W_{\alpha_{1}} P \\
\left(\text { resp. } D^{\prime}\right. & \left.=H^{a} y_{0} P \subset H^{a} R^{\prime} w W_{\alpha_{n}} \cdots W_{\alpha_{1}} P\right) .
\end{aligned}
$$

Put $U=\{y \in K \mid \operatorname{Ad}(y) \mathfrak{a}$ is σ-stable $\}$ and $U_{0}=\{y \in U \mid H y P$ is closed in $G\}$. ($U_{0}=\left\{y \in U \mid H^{a} y P\right.$ is open in $\left.G\right\}$ by Colollary of [1] $\left.\S 3\right)$. Then by the above result, we have the followings for $y \in U_{0}$.

$$
\begin{align*}
H y P \subset(H P)^{c l} \Longleftrightarrow & \text { There exists a } y_{0} \in(R \cap U) w W_{\alpha_{n}} \cdots W_{\alpha_{1}} \tag{4.7}\\
& \text { such that } H y P=H y_{0} P . \\
H^{a} y P \subset\left(H^{a} P\right)^{o p} \Longleftrightarrow & \text { There exists a } y_{0} \in\left(R^{\prime} \cap U\right) w W_{\alpha_{n}} \cdots W_{\alpha_{1}} \tag{4.8}\\
& \text { such that } H^{a} y P=H^{a} y_{0} P .
\end{align*}
$$

On the other hand it follows from Corollary 2 of [1] Theorem 1 and Corollary of [1] Section 3 that

$$
\begin{equation*}
R \cap U=R^{\prime} \cap U \tag{4.9}
\end{equation*}
$$

and that if $y, y_{0} \in U$, then

$$
\begin{equation*}
H y P=H y_{0} P \Longleftrightarrow H^{a} y P=H^{a} y_{0} P \tag{4.10}
\end{equation*}
$$

Hence for $y \in U_{0}$, we have

$$
H y P \subset(H P)^{c l} \Longleftrightarrow H^{a} y P \subset\left(H^{a} P\right)^{o p}
$$

by (4.7), (4.8), (4.9) and (4.10).
Q.E.D.

§ 5. Proof of Proposition

Let $H x P^{0}$ be an arbitrary closed $H-P_{0}$ double coset in G. Then by [1] Proposition 2, there exists an $h \in H$ such that $P=h x P^{0} x^{-1} h^{-1}$ can be written as

$$
P=P\left(\mathfrak{a}_{0}, \Sigma^{+}\right)
$$

Here \mathfrak{a}_{0} is a σ-stable maximal abelian subspace of \mathfrak{p} such that $\mathfrak{a}_{0}^{\sigma}=\mathfrak{a}_{0} \cap \mathfrak{h}$ is maximal abelian in $\mathfrak{p} \cap \mathfrak{h}$ and Σ^{+}is a σ-compatible positive system (Definition following Lemma 4) of $\Sigma=\Sigma\left(g ; a_{0}\right)$. Then we have only to prove that $D^{c l} \supset H P$ for any open $H-P$ double coset D in G. Put $\Sigma^{\sigma \theta}=$ $\{\alpha \in \Sigma \mid \sigma \theta \alpha=\alpha\}$. Let \mathfrak{l} be the subalgebra of g generated by $\left\{g\left(\mathfrak{a}_{n} ; \alpha\right) \mid \alpha \in \Sigma^{\sigma \theta}\right\}$ and L the corresponding analytic subgroup in G. Let \mathfrak{B} denote the Lie algebra of P.

Lemma 6. (i) $\mathfrak{g}\left(\mathfrak{a}_{0} ; \alpha\right) \subset \mathfrak{h}^{a}$ for all $\alpha \in \Sigma^{\sigma \theta}$. (Hence $\mathfrak{l} \subset \mathfrak{h}^{a}$ and $L \subset$ H^{a}.)

Proof. Since $\mathfrak{g}\left(\mathfrak{a}_{0} ; \alpha\right)$ is $\sigma \theta$-stable, we have only to prove that $g\left(\mathfrak{a}_{0} ; \alpha\right)$ $\cap \mathfrak{q}^{a}=\{0\}$. Suppose that there exists a nonzero element X of $\mathfrak{g}\left(\mathfrak{a}_{0} ; \alpha\right) \cap \mathfrak{q}^{a}$. Then $X-\theta X$ is an element of $\mathfrak{p} \cap \mathfrak{q}^{a}=\mathfrak{p} \cap \mathfrak{G}$ commuting with $\mathfrak{a}_{0}^{\sigma}$. But this contradicts to the assumption that $\mathfrak{a}_{0}^{\sigma}$ is maximal abelian in $\mathfrak{p} \cap \mathfrak{h}$.
(ii) We have only to prove that $L \subset H P$. Since $\left.\theta\right|_{L}$ is a Cartan involution of L and since $L \cap P$ is a minimal parabolic subgroup of L, we have

$$
L=(L \cap K)(L \cap P)
$$

by the Iwasawa decomposition of L. On the other hand, we have $L \cap K$ $=L \cap K \cap H^{a}=L \cap K \cap H$ since $L \subset H^{a}$ by (i). Hence $L \subset H P$. Q.E.D.

Next we will prove the following lemma which we used in Section 2 and Section 4.

Lemma 7. Put $\bar{\Sigma}=\{\bar{\alpha} \mid \alpha \in \Sigma, \bar{\alpha} \neq 0\}$ and $\bar{\Sigma}^{+}=\left\{\bar{\alpha} \mid \alpha \in \Sigma^{+}, \bar{\alpha} \neq 0\right\}$ where $\bar{\alpha}$ is the restriction of α to $\mathfrak{a}_{0}^{\sigma}$. Then

$$
\begin{aligned}
\operatorname{dim} H P & =\operatorname{dim} G-\Sigma_{\lambda \in \bar{\Sigma}+} \operatorname{dim}\left(\mathfrak{g}\left(\mathfrak{a}_{0}^{\sigma} ; \alpha\right) \cap \mathfrak{q}\right) \\
& =\operatorname{dim} G-\frac{1}{2} \sum_{\lambda \in \bar{\Sigma}} \operatorname{dim}\left(\mathfrak{g}\left(\mathfrak{a}_{0}^{\sigma} ; \alpha\right) \cap \mathfrak{q}\right) .
\end{aligned}
$$

Especially all the closed $H-P$ double cosets in G have the same dimension.
Proof. By Lemma 6 (ii), we have

$$
\mathfrak{h}+\mathfrak{P}=\mathfrak{P}+\mathfrak{l}+\sum_{x \in-\bar{\Sigma}+}\left(\mathfrak{g}\left(\mathfrak{a}_{0}^{\sigma} ; \alpha\right) \cap \mathfrak{h}\right)
$$

and therefore

$$
\begin{aligned}
\operatorname{dim} H_{0} P=\operatorname{dim}(\mathfrak{h}+\mathfrak{P}) & =\operatorname{dim} G-\sum_{\lambda \in \bar{\Sigma}+} \operatorname{dim}\left(\mathfrak{g}\left(\mathfrak{a}_{0}^{\sigma} ; \alpha\right) \cap \mathfrak{q}\right) \\
& =\operatorname{dim} G-\frac{1}{2} \sum_{\lambda \in \bar{\Sigma}} \operatorname{dim}\left(\mathfrak{g}\left(\mathfrak{a}_{0}^{\sigma} ; \alpha\right) \cap \mathfrak{q}\right)
\end{aligned}
$$

since $\operatorname{dim}\left(\mathfrak{g}\left(\mathfrak{a}_{0}^{\sigma} ; \alpha\right) \cap \mathfrak{q}\right)=\operatorname{dim}\left(\mathfrak{g}\left(\mathfrak{a}_{0}^{\sigma} ;-\alpha\right) \cap \mathfrak{q}\right)$ for $\lambda \in \bar{\Sigma}$. Since $H P=$ $\cup_{y \in H} y H_{0} P=\cup_{y \in H} H_{0} y P$ is a finite union of $H_{0}-P$ double cosets having the same dimension, we have the desired formula for $\operatorname{dim} H P$. Q.E.D.

Lemma 8 (J. Sekiguchi). Put $\bar{N}=\exp \left(\sum_{\alpha \in \Sigma+} \mathfrak{g}\left(\mathfrak{a}_{0} ;-\alpha\right)\right)$. Let D be an arbitrary $H-P$ double coset in G. Then

$$
D^{c l} \supset H P \Longleftrightarrow D \cap \bar{N} P \neq \varnothing .
$$

(Remark. Proposition follows from this lemma since $\bar{N} P$ is dense in G.)

Proof. \Rightarrow is clear since $\bar{N} P$ is open in G. Suppose that $D \cap \bar{N} P \neq$ \varnothing. Then $D \cap \bar{N} \neq \varnothing$. Let $x \in D \cap \bar{N}$ and write $x=\exp \sum_{\alpha \in \Sigma+} X_{-\alpha}$ with $X_{-\alpha} \in \mathfrak{g}\left(\mathfrak{a}_{0} ;-\alpha\right)$. By Lemma 4, we can choose an element $Y \in \mathfrak{a}_{0}^{\sigma}$ so that $\alpha(Y)>0$ for all $\alpha \in \Sigma^{+}-\Sigma^{\sigma \theta}$. Put $a_{t}=\exp t Y$ for $t \in \boldsymbol{R}$. Then

$$
a_{t} x a_{t}^{-1}=\exp \sum_{\alpha \in \Sigma+} e^{-\alpha(Y) t} X_{-\alpha} \in D \cap \bar{N}
$$

(since $a_{t} \in H \cap P$) and it follows from the choice of Y that

$$
x_{\infty}=\lim _{t \rightarrow \infty} a_{t} x a_{t}^{-1}=\exp \sum_{\alpha \in \Sigma+\Sigma^{\prime \sigma \theta}} X_{-\alpha} \in L .
$$

Hence $D^{c l} \cap L \ni x_{\infty}$ and therefore $D^{c l} \cap H P \neq \varnothing$ by Lemma 6 (ii). Since $H D^{c l} P=D^{c l}$, we have $D^{c l} \supset H P$.
Q.E.D.

References

[1] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan, 31 (1979), 331-357.
[2] W. Rossmann, The structure of semisimple symmetric spaces, Canad. J. Math., 31 (1979), 157-180.
[3] T. A. Springer, Some results on algebraic groups with involutions, Advanced Studies in Pure Math., 6 (1985), 525-543.
[4] D. A. Vogan, Irreducible characters of semisimple Lie groups III. Proof of Kazhdan-Lusztig conjecture in the integral case, Invent. Math., 71 (1983), 381-417.

Department of Mathematics
College of General Education
Tottori University
Tottori, 680
Japan

