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A Description of Discrete Series for 
Semisimple Symmetric Spaces II 

Toshihiko Matsuki 

§ 1. Introduction 

In [F], Flensted-Jensen constructed countably many discrete series 
for a semisimple symmetric space G/ H when 

(1.1) rank(G/H)=rank(K/K n H). 

Conversely, [OMI] proved that (1.1) holds if there exist discrete series for 
G/H. Moreover [OMI] constructed Harish-Chandra modules Bi which 
parametrize all the discrete series for G/H, where j runs through finite 
indices and J. runs through lattice points contained in a positive Wey! 
chamber. In this paper, we give a necessary condition for j and J. so 
that the module Bj is nontrivial. In the subsequent paper [OM2], we 
will prove that the condition also assures Bf =i=={O}. We remark that our 
results also covers "limits of discrete series" for G / H. In the appendix, 
we give a certain simplification of the proof of a main result in [OMI]. 
To state the precise result in this paper, we prepare some notations. 

Let B be a semisimple Lie algebra and a an involution (automor
phism of order 2) of B· Fix a Cartan involution e of B such that a0=0a. 
Let B=9+q (resp. B=f+P) be the decomposition of B into the +I and 
-1 eigenspaces for a (resp. 0). Let Be denote the complexification of 
g and put 

fd=f n fj+J=T (P n fj), 
9a= t n 9+-1=1 (t n q), 

Ba= fa+Pa= 9a+ qa. 

pa =-l=I (t n q)+ p n q, 

qa=-l=I (P n fj)+P n q, 

Let Ge be a connected complex Lie group with Lie algebra Be, and let 
G, K, H, ca, Ka, Ha, He and Kc be the analytic subgroups of Ge corre
sponding to B, f, fj, B\ fd, fja, 9c and fc, respectively. 

In [OMI], we studied the discrete series for G/H and proved that 
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rank (G/H)=rank (K/Kn H) if there exist discrete series for G/H. So we 
may choose a maximal abelian subspace aµ of i:,c1 contained in i:,c1 n ijc1 
( =-v=T (f n q)). Let 2 denote the root system of the pair (gc1, aµ) and 
fix a positive system 2+ of 2. Let M be the centrailzer of aµ in Gc1 
and put Aµ=exp aµ, n+ = I:aex+gc1(aµ; a), N+ =exp n+, p=½ I:aex+maa, 
p,=½ I:aex+m:a where gc1(aµ; a)={X e gc1 \ [Y, X]=a(Y)Xfor all Ye aµ}, 
ma=dimgc1(aµ; a) and m;=dim(gc1(aµ; a)nij'') for a e 2. Then P= 
MAµN+ is a minimal parabolic subgroup of Gc1. For). e (aµ)1, we define 
the space of hyperfunction sections of class 1 principal series for Gc1: 

f!J(Gc1/ P; L,)={fe f!J(Gc1)\f(xman)=aHf(x) 

for x e Gc1, me M, a e Aµ and n e N+} 

where a•-P = e<•-p,Iog a>. 
Let M* denote the normalizer of aµ in Kc1 and W =M*/M the Weyl 

group of 2. Then by [Ml] § 3 Proposition 2, we can choose elements 
W1=1, w2, ···,wmof M* such that {Hc1w1P\j=l, ···,m} is the set of 
all the closed Hc1_p double cosets in Gc1 (Hc1wiP =i=Hc1wJP if i =f=. j). Put 

BJ ={f e f!J(Gc1/P; L,) \ suppfcHc1wJP and f transforms according 
to a finite dimensional representation of Hc1 which can be 
extended to a holomorphic representation of K,}. 

In [OMl], we proved that all the K-finite functions of all the discrete 
sreies for G/H are given by (rr 1 o [!J,)B1 (j = 1, · · ·, m,). e LK/KnH- p 
+2pi, ()., a) >O for all a e 2+) where r;: d K(G/H)~d Ha(Gc1/Kc1) is the 
Flensted-Jensen's isomorphism, [!J,: f!J(Gc1/ P; L,)~d(Gc1/K"; v1tn is the 
Poisson transform and LK!KnH is the lattice in a; generated by the 
highest weights of finite-dimensional representations of K having a Kn H
:fixed vector. (See [OMl] for precise notations.) In [OMl] § 1, we 
announced a proposition which describes the condition for B{=i={O}. One 
of the aim of this paper is to prove a part of the following theorem 
which is a revised version of the proposition. (There was a mistake in 
the formulation of the proposition. See the remark following Theorem 
1.1.) 

Since f!J(Gc1/ P; L,)c::'.f!J(Gc1/w1Pw;1; Lw-1.) by the identification xw1P 
J 

-+xw1Pw-;1 of Gc1/ P and Ga/w;Pw-;1, we have only to study m for any 
choice of the positive system 2+ of 2. Put µ,=A+p-2pi, m;=ma-m; 
and m~=m;-m; (a e 2). Let Z denote the ring of integers. 

Theorem 1.1. Suppose that 

(1.2) 
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and that 

(1.3) (.1, a)>0 for all a e .J:+. 

Then B½=i={0} if and only if the following condition (P) holds. 
(P) Let {/31, ···,.Bk} be a sequence of roots in .J:+ satisfying the fol

lowing conditions (i) and (ii). Then 

(µ}., .Bk)>0. 

(i) .S, is a simple root in the set {a e .J:+ I (a, /31)= ···=(a, .SH) 
=0}. 

(ii) Put n,= Z:aexncp;+zfii+···+Zfl,-iim~. Then n, <mp, for i = 1, · · ·, 
k-1 andnk=mpk· 

We will prove in this paper that B½=i={0} implies the condition (P). 
The converse assertion will be proved in a subsequent paper [OM2]. 

Remark. (i) The condition (P) for k= 1 is equivalent to the 
condition 

(1.4) (µ,, a)>0 for any simple root a in ,J;+ satisfying ga(ap; a)cfja 

(the condition (a) in [OMl] Theorem (iii)). [OMl] § 1 Proposition is 
false even for k= 1. There is a counter example when 1: is of type B2 

and /31 is the long simple root. The condition (a') in the proposition 
should be replaced by the condition (P). 

(ii) Suppose the conditions (1.2), (1.3) and (1.4). If (µ}., a) >0 
holds for all a e 1:(ga; ap) + ( = 1:(qa; ap) n I+), for example when 1: is 
irreducible and is of type Ai (1>2), Di, Ei or G2 (cf. [OMl] Lemma 10), 
then B½=i={0} by [OMl] § 1 Remark 2 (i) (Flensted-Jensen's construction 
of discrete series for G/H in [F]). Hence the conditions (1.2), (1.3) and 
(1.4) imply the condition (P)'in this case. 

(iii) When I is of type Ci, then we will show in [OM2] that the 
conditions (1.2), (1.3) and (1.4) imply the condition (P) and B½=i={O}. 

(iv) Suppose that 1: is of type Bi, BCi · or F4• Then we will prove 
in [OM2] that B½=i={0} if the conditions (1.2), (1.3), (1.4) and the following 
(1.5) holds. 

(1.5) The condition (P) holds for the sequence {/31, • • ·, .Bk} consisting 
only of short roots. 

(v) If I is of type Bi or BCi and {/31, • • ·, .Bk} consists only of short 
roots, then the condition (ii) in [OMl] Proposition is equivalent to the 
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condition (ii) in Theorem 1.1. (This is the reason why the authors were 
not aware of the miswriting in [OMI] Proposition.) 

After writing [OMI], Oshima [O] found a theorem describing the 
precise asymptotic behavior of spherical functions on G/H. By this 
theorem of Oshima, we have only to prove the following lemma to prove 
Theorem 1 in [OMI] § 4 instead of Lemma 3 in [OMI], which we an
nounced in [OMI] p. 389 as "(iii) we have obtained a simpler proof of 
Theorem 1 which does not require case-by-case checking, which will 
appear in another paper." (We spent 16 pages to prove Lemma 3 in 
[OMI] by case-by-case checking.) 

Let a: be a maximal abelian subspace of j:Jd such that a= a: n qd is 
maximal abelian in j:Jd n qa. Let 1:(a:t be a aO-compatible positive 
system of 1:(a:) and pd the minimal parabolic subgroup of Gd defined by 
the pair (a:, 1:(a:)+). Let y be an element of Kd such that Ad(y)a:=aµ 
and that .J:+={aoAd(y)- 1 \ael:(a:t}. Then P=yPdy- 1• Let 1:(a)+ 
denote the positive system of the root system 1:(a) consisting of the 
nonzero restrictions of roots in 1:(a:)+. Let {a1, • • ·, a 10} denote the set 
of simple roots in 1:(a)+ and {(»1, • • ·, cu10} the dual basis of {a,, · · ·, a 10}. 

Lemma 1.2. Let A be an element of(a:)* such that <A, a)>-:O for all 
a E 1:(a:)+ and x be an element of Gd. Suppose that one of the following 
three conditions is satisfied. 

( i) rank(G/H)-=farank(K/K n H). 
(ii) fldxPd is not closed in Gd. 
(iii) rank(G/K)=rank(K/Kn H) and there is a j (1 <j ::;;;,m) such 

that fldxPd=HdwiyPd and that <l, a)=O for a simple root a of X(a:t 
satisfying Ad(wiy)gd(a:; a) n qd-=fa{O}. 

Then there exists a w e W(a:) (the Wey! group of 1:(a:)) such that 
(a) Hdx(PdwPd)" 1 contains inner points in Gd and that (b) (<w- 12, cu,), ... , 
<w-12, cu10)) ~ (-oo, 0)1°. 

We will give a simple proof of this lemma in Appendix. 

§ 2. Hd-P double cosets in Gd 

Let t be a maximal abelian subspace of j:Jd, ±* the space of real 
linear forms on t and § a subalgebra of gd. Then we put ?J(t; a)= 
{Xe?J\[Y,X]=a(Y)X for all Yet} for ad* and X(?J;t)={ae±*-
{O} I 0(±; a)-=fa{O}}. Then 2 =2(gd; aµ). 

Put 2t={a E ];'+\a~ X}. Let D be an Hd-P double coset in Gd. 
Then we define a number N(D) by 

N(D)=½#((X:) 0 n 0(2;) 0)+½dim(Ad(y)aµ n fjd) 
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where y E Kd is a representative of D such that Ad(y)uv is a-stable and 
(S;) 0={a o Ad(y)- 1 E S(ga; Ad(y)uv) I a E St}. By [Ml] Theorem 1, we 
can see that the definition of N(D) does not depend on the choice of 
y E Kd. 

Lemma 2.1. Let D and D' be Ha_p double cosets in ca. 
( i) If D'cDPrfor a simple root r in _r+ (Pr=PU Pw 7P). Then 

N(D')-N(D)=sgn(dim D-dim D'). 

Here sgn is the usual signature function with the range { - 1, 0, 1}. 
(ii) Jfw E W satisfies l(w)<JN(D)-N(D')I- Then 

D(PwP)ci n D' = 0-

Here l(w)=#(St n -wSt) is the length ofw. 

Proof (i) follows easily from the argument in [M2] Lemma 3. 
(ii) is clear from (i) because (PwP) 01 =P 71P72 • • ·Pr,,w, for a minimal ex
pression W=Wr 1 W72 • • •Wr,,w,· (r1, · · ·, rl(w) are simple roots in _r+.) 

Let j3 be a simple root of _r+ such that m-;; >0. Choose an element 
Xfi of gd(uv; /3)n qd so that 2<f3, j3)B(Xfi, aXfi) =-1 and put cfi = 
exp(n-/2)(Xfi+aXfi), u;'=Ad(cfi)uv (cf. [Ml] §2). Then u;'=u;'nfjd+ 
u;' n qd, u;1 n Uv = u;' n fjd and dim(u;' n qa) = 1. Let Yfi be the element 
of Uv defined by B(Y, ~ 8)=j3(Y) (YE Uv)- Then Y;=Ad(cfi)Yfi generates 
the one-dimensional space u;' n qd. 

Let w1 be the element of W satisfying 

w1.r+ ={re .r I <r, f3> >0} u {re .r+ I <r, /3)=0}. 

Put P" = c fi w1Pw11c"j;1. Let L, (resp. f 1) be the centralizer of Y; in Gd 
(resp. gd). Put r = [f1, f 1] and let L be the analytic subgroup of Gd for r. 
Let P 1 (resp. lj31) be the parabolic subgroup of ca (resp. subalgebra of gd) 
defined by the element Y; (i.e. )j3,= I:; 0 ;;, 0{X E gd I [Y;, X]=cX}). Then 
we have the following natural maps ([M2] § 4) 

Ln Hd\L/Ln P"--+L1n Hd\L1/L1n P"?--P1n Hd\P1/P" 
q p (2.1) 

given by the inclusions L--+L,, P 1--+HaP 1 and the projection p: P 1--+L1 
with respect to the Langlands decomposition P1 = L 1 exp n 1• Here n1 is 
the nilpotent radical of lj31 and q is surjective. 
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Lemma 2.2. ( i) HdP 1 is open in Gd. 
(ii) (L n Hd) (L n P") is closed in L. 
(iii) N(Hdcfiw 1P)=N(HdP)-l(wfiw1). 
(iv) N(D)<N(HdP)-l(wfiw 1) for any Hd-P double coset D con

tained in HdP 1cfiwi-
( v) N(D)<N(HdP)-l(wfiw 1) for any Hd-P double coset D con

tained in HdP 1cfiw1 such that dimD>dimHdcfiw 1P. 

Proof (i) ljd+lf31=ljd+)f3 1+e\131=gd since eY;=-Y;. Hence 
Hd P 1 is open in Ga. 

(ii) Since a;' n ljd C [ n \f3" and since a;' n ljd is a maximal abelian 
subspace offnpd, (LnHd)(LnP") is closed in L by [Ml]§ 3. 

(iii) Since # ((S~wJo n O(S~wJo) = # ((S~w,)o n S(f 1; a;')) = # St -
2l(w1)-l by the definition of w1, we have N(Hdcfiw 1P)=N(HdP)-l(w 1) 
-1 =N(HdP)-l(wfiw1) 

(iv) By (2.1), we can choose a representative y of D such that ye 
(Ln Kd)cfiw1 and that at=Ad(y)av is a-stable. Since Pv= yPy- 1cP 1, 
we have PvnePvcP 1neP 1=L 1 and therefore 

(2.2) 

#((S;) 0 n 0(S;)o)< #((S;)o n S(f1; an) 

= #((S~w,)o n S(f 1 ; a;)) 

= #St-2l(w 1)- l. 

Hence N(D)<N(HdP)-l(wfiw 1). 
(v) Let y be as above. Then dimD-dimHdcfiw 1P=dim (Ln Hd) 

(LnPv)-dim(LnHd)(LnP") by (2.1). Thus the assertion follows 
from (2.2) since the equality holds in (2.2) only when at n r c ljd 
(8(LnHd)(LnPv) is closed in L by [Ml]§ 3 Proposition 2) and since 
all the closed (L n Hd)-(L n Py) double cosets in L have the same dimen
sion (cf. [M2] § 5 Lemma 7). Q.E.D. 

For a root a e S(av), define a root a" of S(gd; a;') by a"= 
a o Ad(cfi)- 1• Then the positive system S([)+ =S([; a;')+= {a" e S([; a;')\ a 
e .J:+} of S([; a;') corresponds to the minimal parabolic subgroup 

LnP" of L because of the choice of w1• Put ma"=dimgd(a;'; a), m;,,= 
dim(gd(a;'; a") n ljd), m-;;,, = ma,,-m;,, and m~,, = m;,,-m-;;,, for a" E 

S([; a;'). Put pL=½ I:a"EZ(l)+ma"a" and pf=½ I:a"El'(l)+m;,a". 

Lemma 2.3. ( i) Let a be an element of a; such that <a, [3)=0. 
Then I:rexnca+Rfi>m~=m~,,. (We put m~,,=0 when a$ S. R is the field 
of real numbers.) 

(ii) (2pt-p)\,,,n 1=2pf- pL. 
p 
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Proof ( i) Put V = .Z::rESn(a+Rfi) gd(ap; r). Then .Z:::rE.l.'n(a+R.S) m~= 
dim( V n ll)- dim( V n qd). On the other hand, it is clear that V = 
.Z:::r"o <•;'in <•"+Rfi"l gd(a;'; r"). Since 0gd(a;'; a"+ cf3") = gd(a;'; a" - cf3"), 
we have 

dim((gd(a;'; a"+ cf3")+ gd(a;'; a" - cf3")) n l)d) 

= dim((ga(a;'; a"+ cf3")+ gd(a;'; a" - c/3")) n qd) 

(ii) Since 2pt - p= .Z:::aE z + m~ and since .Sn (r + Rf3)c.S+ if r e _s+ 
-{B, 2(3}, the assertion follows easily from ( i ). Q.E.D. 

§ 3. Proof of Ei=t=-{O}=}(P) 

Suppose that m=t=-{O} and let {/31, • • ·, /3k} be a sequence of roots 
satisfying the conditions ( i) and (ii) in (P). Then we want to prove that 
(µ)., f3k)>O. We will prove this assertion by induction on the rank l of 
gd, 

If k= 1, then the condition (ii) implies that ga(aP; f31)cl)d. In this 
case we have already proved in (OMl] Theorem (iii) (a) that (µ)., {31)= 
(l-p, /31)?0. 

So we may assume that k>l. Then we have gd(aP; /31)(2'.:qa. Write 
f3 = {31 and define c.a, a;', w1, P1, L and P" as in § 2. 

Put µ=w; 1wfi}. and U=Gd-Uw'<w.aw,Hd(Pw'P)c 1• Then applying 
[O] Lemma 3.2 to a nonzero function f in m, we get a function g e 
86na(U/P; Lµ) such that suppg= un Ha(Pw.aw1P)°1. Here 86na(U/P; Lµ) 
is the space of Ha-finite hyperfunctions h on the open subset U of Ga 
satisfying h(xman) = aµ-ph(x) for any (x, m, a, n) E UXMXAXN and 
the hyperfunction g is given as the image off E m by the "local intertwin
ing operator" corresponding to w-1w.a, 

(3.1) 

(3.2) 

On the other hand, by Lemma 2.1 (ii) and Lemma 2.2 we have 

and that 

(3.3) every Ha_p double coset contained in HaP 1c.aw1 nHd(Pw.aw1P)°1 
has the same dimension as Hac.aw1P. 
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So by (3.1), (3.2) and (3.3), we can define the restriction g' of g to 
HdP 1cpw1 such that suppg'::)Hdcpw 1P and that dim suppg'=dimHdcpw 1P. 

Putg"(x)=g'(xcpw 1) for xeHdP 1 and µ"=µ0Ad(cpw 1)- 1 e(a;')*. 
Then g" e &lad(HdP 1/P"; Lµ,,) and supp g"::)HdP". Since P 1 =LP" 
and since g" is left Hd-finite and right P"-finite, we can define g"JL e 
&ILnnd(L/LnP"; Lµ,,) so that supp g"jL::)(LnHd)(LnP") and that 
dim supp g"JL=dim (L n Hd)(L n P"). (If necessary, we take a left Hd
translation of g" instead of g" itself.) 

Define the roots ~~', · · ·, ~~ of 1:([; a;') as in § 2. Then it follows 
from Lemma 2.3 (i) that 

Thus the sequence {~~', · · · , ~n of roots in l:(r)+ satisfies the conditions 
( i) and (ii) in (P) for the Lie algebra L So the assumption of induction 
implies 

because of the existence of the hyperfunction g" IL on L which we con
sidered above. It is clear that A la" n 1 = µ" J.,, n 1 from the definition of µ". 

p p 

Thus we have 

by Lemma 2.3 (ii) and therefore we have proved that the condition (P) is 
satisfied. Q.E.D. 

Appendix. 

Proof of Lemma 1.2. By [Ml] Theorem 1, there exist an he Hd and 
ape Pd such that x' =hxp e Kd and that a;=Ad(x')at is a-stable. If 
either of the conditions ( i) or (ii) is satisfied, then 

(A.1) 

by [Ml] § 3 Proposition 2. The case (iii) is reduced to the case (ii) by a 
similar argument as in [OMl] § 5. So we may assume (A.I) in the 
followings. 

We may moreover assume that a;n qdca by [Ml] Theorem 2. Put 
t = dim(a; n qd) and choose an orthogonal basis { Y1, ••• , Y1} of at so that 
{ Yi, · · ·, Yi} and { Y1, • • ·, Y10} are the basis of a; n qd and a, respectively. 
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Let w1 be the element of W(a:) such that w1.S(a:)+ is the lexicographic 
order defined by the sequence { Y1, • • ·, Y1}. (i.e. a e w12(a:)+ if and only 
if there exists a u (1:::;:u:::;:l) such that a(Y 1)= · · · =a(Yu_ 1)=0 and 
that a(Yu)>O.) Since w12(a:)+ is a0-compatible, Hdw 1Pd is open in Gd 
by [Ml] § 3 Proposition 1. Let w2 be the element of W(a:) such that 
w22(a:)+=-w 12(a:)+. Then Hdw 2Pd is also open in Gd. 

By the choice of w1, there exists an i (1 < i < 10) such that w1wi e 
a; n qd. There also exists a j (1 < j < 10) such that w2w J = - w1wi. 

First consider the case (A, Ad(x'- 1w1)wi) >O. Choose w3 e W(a:) so 
that Ad(w31x'- 1w1)wi is dominant for .S(a:)+. Then w11x'w 3 is contained 
in the parabolic subgroup P.,, of Gd defined by the element wi e aca:. 
Hence 

(A.2) 

There exists a wf e W(a:) such that 

(A.4) wf<w 3 and that w3Pdw4Pdc(Pdwfw 4Pd)°1. 

Put w=wfw 4 • Then we have 

by (A.2) and (A.4). On the other hand, 

by (A.2) and (A.3). 

(w- 12, wi)=(w 41wf- 12, w;) 

=(2, w;wi) 

>(2, W3Wi) 

=(2, Ad(x'- 1w1)wi) 

>0 

In the case that (2, Ad(x'- 1w1)wi) <O, we can prove the assertion 
by the same argument as above because (A, Ad(x'- 1w2)w) >O. Q.E.D. 
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