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A Description of Discrete Series for 
Semisimple Symmetric Spaces II 

Toshihiko Matsuki 

§ 1. Introduction 

In [F], Flensted-Jensen constructed countably many discrete series 
for a semisimple symmetric space G/ H when 

(1.1) rank(G/H)=rank(K/K n H). 

Conversely, [OMI] proved that (1.1) holds if there exist discrete series for 
G/H. Moreover [OMI] constructed Harish-Chandra modules Bi which 
parametrize all the discrete series for G/H, where j runs through finite 
indices and J. runs through lattice points contained in a positive Wey! 
chamber. In this paper, we give a necessary condition for j and J. so 
that the module Bj is nontrivial. In the subsequent paper [OM2], we 
will prove that the condition also assures Bf =i=={O}. We remark that our 
results also covers "limits of discrete series" for G / H. In the appendix, 
we give a certain simplification of the proof of a main result in [OMI]. 
To state the precise result in this paper, we prepare some notations. 

Let B be a semisimple Lie algebra and a an involution (automor­
phism of order 2) of B· Fix a Cartan involution e of B such that a0=0a. 
Let B=9+q (resp. B=f+P) be the decomposition of B into the +I and 
-1 eigenspaces for a (resp. 0). Let Be denote the complexification of 
g and put 

fd=f n fj+J=T (P n fj), 
9a= t n 9+-1=1 (t n q), 

Ba= fa+Pa= 9a+ qa. 

pa =-l=I (t n q)+ p n q, 

qa=-l=I (P n fj)+P n q, 

Let Ge be a connected complex Lie group with Lie algebra Be, and let 
G, K, H, ca, Ka, Ha, He and Kc be the analytic subgroups of Ge corre­
sponding to B, f, fj, B\ fd, fja, 9c and fc, respectively. 

In [OMI], we studied the discrete series for G/H and proved that 
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rank (G/H)=rank (K/Kn H) if there exist discrete series for G/H. So we 
may choose a maximal abelian subspace aµ of i:,c1 contained in i:,c1 n ijc1 
( =-v=T (f n q)). Let 2 denote the root system of the pair (gc1, aµ) and 
fix a positive system 2+ of 2. Let M be the centrailzer of aµ in Gc1 
and put Aµ=exp aµ, n+ = I:aex+gc1(aµ; a), N+ =exp n+, p=½ I:aex+maa, 
p,=½ I:aex+m:a where gc1(aµ; a)={X e gc1 \ [Y, X]=a(Y)Xfor all Ye aµ}, 
ma=dimgc1(aµ; a) and m;=dim(gc1(aµ; a)nij'') for a e 2. Then P= 
MAµN+ is a minimal parabolic subgroup of Gc1. For). e (aµ)1, we define 
the space of hyperfunction sections of class 1 principal series for Gc1: 

f!J(Gc1/ P; L,)={fe f!J(Gc1)\f(xman)=aHf(x) 

for x e Gc1, me M, a e Aµ and n e N+} 

where a•-P = e<•-p,Iog a>. 
Let M* denote the normalizer of aµ in Kc1 and W =M*/M the Weyl 

group of 2. Then by [Ml] § 3 Proposition 2, we can choose elements 
W1=1, w2, ···,wmof M* such that {Hc1w1P\j=l, ···,m} is the set of 
all the closed Hc1_p double cosets in Gc1 (Hc1wiP =i=Hc1wJP if i =f=. j). Put 

BJ ={f e f!J(Gc1/P; L,) \ suppfcHc1wJP and f transforms according 
to a finite dimensional representation of Hc1 which can be 
extended to a holomorphic representation of K,}. 

In [OMl], we proved that all the K-finite functions of all the discrete 
sreies for G/H are given by (rr 1 o [!J,)B1 (j = 1, · · ·, m,). e LK/KnH- p 
+2pi, ()., a) >O for all a e 2+) where r;: d K(G/H)~d Ha(Gc1/Kc1) is the 
Flensted-Jensen's isomorphism, [!J,: f!J(Gc1/ P; L,)~d(Gc1/K"; v1tn is the 
Poisson transform and LK!KnH is the lattice in a; generated by the 
highest weights of finite-dimensional representations of K having a Kn H­
:fixed vector. (See [OMl] for precise notations.) In [OMl] § 1, we 
announced a proposition which describes the condition for B{=i={O}. One 
of the aim of this paper is to prove a part of the following theorem 
which is a revised version of the proposition. (There was a mistake in 
the formulation of the proposition. See the remark following Theorem 
1.1.) 

Since f!J(Gc1/ P; L,)c::'.f!J(Gc1/w1Pw;1; Lw-1.) by the identification xw1P 
J 

-+xw1Pw-;1 of Gc1/ P and Ga/w;Pw-;1, we have only to study m for any 
choice of the positive system 2+ of 2. Put µ,=A+p-2pi, m;=ma-m; 
and m~=m;-m; (a e 2). Let Z denote the ring of integers. 

Theorem 1.1. Suppose that 

(1.2) 
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and that 

(1.3) (.1, a)>0 for all a e .J:+. 

Then B½=i={0} if and only if the following condition (P) holds. 
(P) Let {/31, ···,.Bk} be a sequence of roots in .J:+ satisfying the fol­

lowing conditions (i) and (ii). Then 

(µ}., .Bk)>0. 

(i) .S, is a simple root in the set {a e .J:+ I (a, /31)= ···=(a, .SH) 
=0}. 

(ii) Put n,= Z:aexncp;+zfii+···+Zfl,-iim~. Then n, <mp, for i = 1, · · ·, 
k-1 andnk=mpk· 

We will prove in this paper that B½=i={0} implies the condition (P). 
The converse assertion will be proved in a subsequent paper [OM2]. 

Remark. (i) The condition (P) for k= 1 is equivalent to the 
condition 

(1.4) (µ,, a)>0 for any simple root a in ,J;+ satisfying ga(ap; a)cfja 

(the condition (a) in [OMl] Theorem (iii)). [OMl] § 1 Proposition is 
false even for k= 1. There is a counter example when 1: is of type B2 

and /31 is the long simple root. The condition (a') in the proposition 
should be replaced by the condition (P). 

(ii) Suppose the conditions (1.2), (1.3) and (1.4). If (µ}., a) >0 
holds for all a e 1:(ga; ap) + ( = 1:(qa; ap) n I+), for example when 1: is 
irreducible and is of type Ai (1>2), Di, Ei or G2 (cf. [OMl] Lemma 10), 
then B½=i={0} by [OMl] § 1 Remark 2 (i) (Flensted-Jensen's construction 
of discrete series for G/H in [F]). Hence the conditions (1.2), (1.3) and 
(1.4) imply the condition (P)'in this case. 

(iii) When I is of type Ci, then we will show in [OM2] that the 
conditions (1.2), (1.3) and (1.4) imply the condition (P) and B½=i={O}. 

(iv) Suppose that 1: is of type Bi, BCi · or F4• Then we will prove 
in [OM2] that B½=i={0} if the conditions (1.2), (1.3), (1.4) and the following 
(1.5) holds. 

(1.5) The condition (P) holds for the sequence {/31, • • ·, .Bk} consisting 
only of short roots. 

(v) If I is of type Bi or BCi and {/31, • • ·, .Bk} consists only of short 
roots, then the condition (ii) in [OMl] Proposition is equivalent to the 
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condition (ii) in Theorem 1.1. (This is the reason why the authors were 
not aware of the miswriting in [OMI] Proposition.) 

After writing [OMI], Oshima [O] found a theorem describing the 
precise asymptotic behavior of spherical functions on G/H. By this 
theorem of Oshima, we have only to prove the following lemma to prove 
Theorem 1 in [OMI] § 4 instead of Lemma 3 in [OMI], which we an­
nounced in [OMI] p. 389 as "(iii) we have obtained a simpler proof of 
Theorem 1 which does not require case-by-case checking, which will 
appear in another paper." (We spent 16 pages to prove Lemma 3 in 
[OMI] by case-by-case checking.) 

Let a: be a maximal abelian subspace of j:Jd such that a= a: n qd is 
maximal abelian in j:Jd n qa. Let 1:(a:t be a aO-compatible positive 
system of 1:(a:) and pd the minimal parabolic subgroup of Gd defined by 
the pair (a:, 1:(a:)+). Let y be an element of Kd such that Ad(y)a:=aµ 
and that .J:+={aoAd(y)- 1 \ael:(a:t}. Then P=yPdy- 1• Let 1:(a)+ 
denote the positive system of the root system 1:(a) consisting of the 
nonzero restrictions of roots in 1:(a:)+. Let {a1, • • ·, a 10} denote the set 
of simple roots in 1:(a)+ and {(»1, • • ·, cu10} the dual basis of {a,, · · ·, a 10}. 

Lemma 1.2. Let A be an element of(a:)* such that <A, a)>-:O for all 
a E 1:(a:)+ and x be an element of Gd. Suppose that one of the following 
three conditions is satisfied. 

( i) rank(G/H)-=farank(K/K n H). 
(ii) fldxPd is not closed in Gd. 
(iii) rank(G/K)=rank(K/Kn H) and there is a j (1 <j ::;;;,m) such 

that fldxPd=HdwiyPd and that <l, a)=O for a simple root a of X(a:t 
satisfying Ad(wiy)gd(a:; a) n qd-=fa{O}. 

Then there exists a w e W(a:) (the Wey! group of 1:(a:)) such that 
(a) Hdx(PdwPd)" 1 contains inner points in Gd and that (b) (<w- 12, cu,), ... , 
<w-12, cu10)) ~ (-oo, 0)1°. 

We will give a simple proof of this lemma in Appendix. 

§ 2. Hd-P double cosets in Gd 

Let t be a maximal abelian subspace of j:Jd, ±* the space of real 
linear forms on t and § a subalgebra of gd. Then we put ?J(t; a)= 
{Xe?J\[Y,X]=a(Y)X for all Yet} for ad* and X(?J;t)={ae±*-­
{O} I 0(±; a)-=fa{O}}. Then 2 =2(gd; aµ). 

Put 2t={a E ];'+\a~ X}. Let D be an Hd-P double coset in Gd. 
Then we define a number N(D) by 

N(D)=½#((X:) 0 n 0(2;) 0)+½dim(Ad(y)aµ n fjd) 
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where y E Kd is a representative of D such that Ad(y)uv is a-stable and 
(S;) 0={a o Ad(y)- 1 E S(ga; Ad(y)uv) I a E St}. By [Ml] Theorem 1, we 
can see that the definition of N(D) does not depend on the choice of 
y E Kd. 

Lemma 2.1. Let D and D' be Ha_p double cosets in ca. 
( i) If D'cDPrfor a simple root r in _r+ (Pr=PU Pw 7P). Then 

N(D')-N(D)=sgn(dim D-dim D'). 

Here sgn is the usual signature function with the range { - 1, 0, 1}. 
(ii) Jfw E W satisfies l(w)<JN(D)-N(D')I- Then 

D(PwP)ci n D' = 0-

Here l(w)=#(St n -wSt) is the length ofw. 

Proof (i) follows easily from the argument in [M2] Lemma 3. 
(ii) is clear from (i) because (PwP) 01 =P 71P72 • • ·Pr,,w, for a minimal ex­
pression W=Wr 1 W72 • • •Wr,,w,· (r1, · · ·, rl(w) are simple roots in _r+.) 

Let j3 be a simple root of _r+ such that m-;; >0. Choose an element 
Xfi of gd(uv; /3)n qd so that 2<f3, j3)B(Xfi, aXfi) =-1 and put cfi = 
exp(n-/2)(Xfi+aXfi), u;'=Ad(cfi)uv (cf. [Ml] §2). Then u;'=u;'nfjd+ 
u;' n qd, u;1 n Uv = u;' n fjd and dim(u;' n qa) = 1. Let Yfi be the element 
of Uv defined by B(Y, ~ 8)=j3(Y) (YE Uv)- Then Y;=Ad(cfi)Yfi generates 
the one-dimensional space u;' n qd. 

Let w1 be the element of W satisfying 

w1.r+ ={re .r I <r, f3> >0} u {re .r+ I <r, /3)=0}. 

Put P" = c fi w1Pw11c"j;1. Let L, (resp. f 1) be the centralizer of Y; in Gd 
(resp. gd). Put r = [f1, f 1] and let L be the analytic subgroup of Gd for r. 
Let P 1 (resp. lj31) be the parabolic subgroup of ca (resp. subalgebra of gd) 
defined by the element Y; (i.e. )j3,= I:; 0 ;;, 0{X E gd I [Y;, X]=cX}). Then 
we have the following natural maps ([M2] § 4) 

Ln Hd\L/Ln P"--+L1n Hd\L1/L1n P"?--P1n Hd\P1/P" 
q p (2.1) 

given by the inclusions L--+L,, P 1--+HaP 1 and the projection p: P 1--+L1 
with respect to the Langlands decomposition P1 = L 1 exp n 1• Here n1 is 
the nilpotent radical of lj31 and q is surjective. 
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Lemma 2.2. ( i) HdP 1 is open in Gd. 
(ii) (L n Hd) (L n P") is closed in L. 
(iii) N(Hdcfiw 1P)=N(HdP)-l(wfiw1). 
(iv) N(D)<N(HdP)-l(wfiw 1) for any Hd-P double coset D con­

tained in HdP 1cfiwi-
( v) N(D)<N(HdP)-l(wfiw 1) for any Hd-P double coset D con­

tained in HdP 1cfiw1 such that dimD>dimHdcfiw 1P. 

Proof (i) ljd+lf31=ljd+)f3 1+e\131=gd since eY;=-Y;. Hence 
Hd P 1 is open in Ga. 

(ii) Since a;' n ljd C [ n \f3" and since a;' n ljd is a maximal abelian 
subspace offnpd, (LnHd)(LnP") is closed in L by [Ml]§ 3. 

(iii) Since # ((S~wJo n O(S~wJo) = # ((S~w,)o n S(f 1; a;')) = # St -
2l(w1)-l by the definition of w1, we have N(Hdcfiw 1P)=N(HdP)-l(w 1) 
-1 =N(HdP)-l(wfiw1) 

(iv) By (2.1), we can choose a representative y of D such that ye 
(Ln Kd)cfiw1 and that at=Ad(y)av is a-stable. Since Pv= yPy- 1cP 1, 
we have PvnePvcP 1neP 1=L 1 and therefore 

(2.2) 

#((S;) 0 n 0(S;)o)< #((S;)o n S(f1; an) 

= #((S~w,)o n S(f 1 ; a;)) 

= #St-2l(w 1)- l. 

Hence N(D)<N(HdP)-l(wfiw 1). 
(v) Let y be as above. Then dimD-dimHdcfiw 1P=dim (Ln Hd) 

(LnPv)-dim(LnHd)(LnP") by (2.1). Thus the assertion follows 
from (2.2) since the equality holds in (2.2) only when at n r c ljd 
(8(LnHd)(LnPv) is closed in L by [Ml]§ 3 Proposition 2) and since 
all the closed (L n Hd)-(L n Py) double cosets in L have the same dimen­
sion (cf. [M2] § 5 Lemma 7). Q.E.D. 

For a root a e S(av), define a root a" of S(gd; a;') by a"= 
a o Ad(cfi)- 1• Then the positive system S([)+ =S([; a;')+= {a" e S([; a;')\ a 
e .J:+} of S([; a;') corresponds to the minimal parabolic subgroup 

LnP" of L because of the choice of w1• Put ma"=dimgd(a;'; a), m;,,= 
dim(gd(a;'; a") n ljd), m-;;,, = ma,,-m;,, and m~,, = m;,,-m-;;,, for a" E 

S([; a;'). Put pL=½ I:a"EZ(l)+ma"a" and pf=½ I:a"El'(l)+m;,a". 

Lemma 2.3. ( i) Let a be an element of a; such that <a, [3)=0. 
Then I:rexnca+Rfi>m~=m~,,. (We put m~,,=0 when a$ S. R is the field 
of real numbers.) 

(ii) (2pt-p)\,,,n 1=2pf- pL. 
p 
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Proof ( i) Put V = .Z::rESn(a+Rfi) gd(ap; r). Then .Z:::rE.l.'n(a+R.S) m~= 
dim( V n ll)- dim( V n qd). On the other hand, it is clear that V = 
.Z:::r"o <•;'in <•"+Rfi"l gd(a;'; r"). Since 0gd(a;'; a"+ cf3") = gd(a;'; a" - cf3"), 
we have 

dim((gd(a;'; a"+ cf3")+ gd(a;'; a" - cf3")) n l)d) 

= dim((ga(a;'; a"+ cf3")+ gd(a;'; a" - c/3")) n qd) 

(ii) Since 2pt - p= .Z:::aE z + m~ and since .Sn (r + Rf3)c.S+ if r e _s+ 
-{B, 2(3}, the assertion follows easily from ( i ). Q.E.D. 

§ 3. Proof of Ei=t=-{O}=}(P) 

Suppose that m=t=-{O} and let {/31, • • ·, /3k} be a sequence of roots 
satisfying the conditions ( i) and (ii) in (P). Then we want to prove that 
(µ)., f3k)>O. We will prove this assertion by induction on the rank l of 
gd, 

If k= 1, then the condition (ii) implies that ga(aP; f31)cl)d. In this 
case we have already proved in (OMl] Theorem (iii) (a) that (µ)., {31)= 
(l-p, /31)?0. 

So we may assume that k>l. Then we have gd(aP; /31)(2'.:qa. Write 
f3 = {31 and define c.a, a;', w1, P1, L and P" as in § 2. 

Put µ=w; 1wfi}. and U=Gd-Uw'<w.aw,Hd(Pw'P)c 1• Then applying 
[O] Lemma 3.2 to a nonzero function f in m, we get a function g e 
86na(U/P; Lµ) such that suppg= un Ha(Pw.aw1P)°1. Here 86na(U/P; Lµ) 
is the space of Ha-finite hyperfunctions h on the open subset U of Ga 
satisfying h(xman) = aµ-ph(x) for any (x, m, a, n) E UXMXAXN and 
the hyperfunction g is given as the image off E m by the "local intertwin­
ing operator" corresponding to w-1w.a, 

(3.1) 

(3.2) 

On the other hand, by Lemma 2.1 (ii) and Lemma 2.2 we have 

and that 

(3.3) every Ha_p double coset contained in HaP 1c.aw1 nHd(Pw.aw1P)°1 
has the same dimension as Hac.aw1P. 
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So by (3.1), (3.2) and (3.3), we can define the restriction g' of g to 
HdP 1cpw1 such that suppg'::)Hdcpw 1P and that dim suppg'=dimHdcpw 1P. 

Putg"(x)=g'(xcpw 1) for xeHdP 1 and µ"=µ0Ad(cpw 1)- 1 e(a;')*. 
Then g" e &lad(HdP 1/P"; Lµ,,) and supp g"::)HdP". Since P 1 =LP" 
and since g" is left Hd-finite and right P"-finite, we can define g"JL e 
&ILnnd(L/LnP"; Lµ,,) so that supp g"jL::)(LnHd)(LnP") and that 
dim supp g"JL=dim (L n Hd)(L n P"). (If necessary, we take a left Hd­
translation of g" instead of g" itself.) 

Define the roots ~~', · · ·, ~~ of 1:([; a;') as in § 2. Then it follows 
from Lemma 2.3 (i) that 

Thus the sequence {~~', · · · , ~n of roots in l:(r)+ satisfies the conditions 
( i) and (ii) in (P) for the Lie algebra L So the assumption of induction 
implies 

because of the existence of the hyperfunction g" IL on L which we con­
sidered above. It is clear that A la" n 1 = µ" J.,, n 1 from the definition of µ". 

p p 

Thus we have 

by Lemma 2.3 (ii) and therefore we have proved that the condition (P) is 
satisfied. Q.E.D. 

Appendix. 

Proof of Lemma 1.2. By [Ml] Theorem 1, there exist an he Hd and 
ape Pd such that x' =hxp e Kd and that a;=Ad(x')at is a-stable. If 
either of the conditions ( i) or (ii) is satisfied, then 

(A.1) 

by [Ml] § 3 Proposition 2. The case (iii) is reduced to the case (ii) by a 
similar argument as in [OMl] § 5. So we may assume (A.I) in the 
followings. 

We may moreover assume that a;n qdca by [Ml] Theorem 2. Put 
t = dim(a; n qd) and choose an orthogonal basis { Y1, ••• , Y1} of at so that 
{ Yi, · · ·, Yi} and { Y1, • • ·, Y10} are the basis of a; n qd and a, respectively. 
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Let w1 be the element of W(a:) such that w1.S(a:)+ is the lexicographic 
order defined by the sequence { Y1, • • ·, Y1}. (i.e. a e w12(a:)+ if and only 
if there exists a u (1:::;:u:::;:l) such that a(Y 1)= · · · =a(Yu_ 1)=0 and 
that a(Yu)>O.) Since w12(a:)+ is a0-compatible, Hdw 1Pd is open in Gd 
by [Ml] § 3 Proposition 1. Let w2 be the element of W(a:) such that 
w22(a:)+=-w 12(a:)+. Then Hdw 2Pd is also open in Gd. 

By the choice of w1, there exists an i (1 < i < 10) such that w1wi e 
a; n qd. There also exists a j (1 < j < 10) such that w2w J = - w1wi. 

First consider the case (A, Ad(x'- 1w1)wi) >O. Choose w3 e W(a:) so 
that Ad(w31x'- 1w1)wi is dominant for .S(a:)+. Then w11x'w 3 is contained 
in the parabolic subgroup P.,, of Gd defined by the element wi e aca:. 
Hence 

(A.2) 

There exists a wf e W(a:) such that 

(A.4) wf<w 3 and that w3Pdw4Pdc(Pdwfw 4Pd)°1. 

Put w=wfw 4 • Then we have 

by (A.2) and (A.4). On the other hand, 

by (A.2) and (A.3). 

(w- 12, wi)=(w 41wf- 12, w;) 

=(2, w;wi) 

>(2, W3Wi) 

=(2, Ad(x'- 1w1)wi) 

>0 

In the case that (2, Ad(x'- 1w1)wi) <O, we can prove the assertion 
by the same argument as above because (A, Ad(x'- 1w2)w) >O. Q.E.D. 
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