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A Description of Discrete Series for
Semisimple Symmetric Spaces II

Toshihiko Matsuki

§ 1. Introduction

In [F], Flensted-Jensen constructed countably many discrete series
for a semisimple symmetric space G/H when

(1.1 rank (G/H)=rank (K/K N H).

Conversely, [OM1] proved that (1.1) holds if there exist discrete series for
G/H. Moreover [OM1] constructed Harish-Chandra modules B] which
parametrize all the discrete series for G/H, where j runs through finite
indices and 2 runs through lattice points contained in a positive Weyl
chamber. In this paper, we give a necessary condition for j and 2 so
that the module Bj is nontrivial. In the subsequent paper [OM2], we
will prove that the condition also assures B{=={0}. We remark that our
results also covers “limits of discrete series” for G/H. In the appendix,
we give a certain simplification of the proof of a main result in [OM1].
To state the precise result in this paper, we prepare some notations.

Let g be a semisimple Lie algebra and ¢ an involution (automor-
phism of order 2) of g. Fix a Cartan involution # of g such that ¢f=6o.
Let g=9+q (resp. g=1t-+p) be the decomposition of g into the +1 and
—1 eigenspaces for ¢ (resp. §). Let g, denote the complexification of
g and put

E=IN)++/—1(pNH, p=v-1END+pNa,
p=EiNh++/—-10¢N0q, q*=v-10ENH+pNa,
gl =T 4p?=4h¢4 g%
Let G, be a connected complex Lie group with Lie algebra g,, and let
G, K, H, G%, K¢, H%, H, and K, be the analytic subgroups of G, corre-

sponding to g, {, 9, g4, %, %, . and {,, respectively.
In [OM1], we studied the discrete series for G/H and proved that
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rank (G/H)=rank (K/KN H) if there exist discrete series for G/H. So we
may choose a maximal abelian subspace a, of p? contained in p? M5
(=¢/=1(fNq)). Let 3 denote the root system of the pair (g?, a,) and
fix a positive system X* of Y. Let M be the centrailzer of a, in G¢
and put A,=expa, n*=> ,cz+8%q,; @), N*=expn’, p=3 2 .cs+M 0,
=% D e s+mia wWhere g¥a,; a)={X e g?|[Y, X]=a(Y)X for all Y e a},
m,=dim g%a,; @) and m}=dim(g%a,; ®)NH?) for o« e 2. Then P=
MAN* is a minimal parabolic subgroup of G¢. For 2 ¢ (a,)F, we define
the space of hyperfunction sections of class 1 principal series for G?:

HB(GY|P; L)={f e #(GY)| f(xman)=a*~* f(x)
forxeG?, meM,aeAd,andne N*}

where a~# =¢tt-pls e,

Let M * denote the normalizer of a, in K* and W =M */M the Weyl
group of X. Then by [M1] § 3 Proposition 2, we can choose elements
w,=1, wy, - -, w, of M* such that {H%w,P|j=1, ---, m} is the set of
all the closed H*P double cosets in G* (H*w,P=H*w,Pif i=j). Put

B]={fe #(G*P; L)|supp f CHw,P and f transforms according
to a finite dimensional representation of H?¢ which can be
extended to a holomorphic representation of K,}.

In [OM1], we proved that all the K-finite functions of all the discrete
sreies for G/H are given by (37 'e Z)B] (j=1, ---,m, A€ Lyjxnn—p
+2p,, (X, @) >0 for all @ € 2*) where 9: o (G/H)= o (G4 K?) is the
Flensted-Jensen’s isomorphism, £,: #(G%/P; L)=/(G%/K?®; #£%) is the
Poisson transform and L., .,z is the lattice in o generated by the
highest weights of finite-dimensional representations of K having a K N H-
fixed vector. (See [OMI] for precise notations.) In [OMI1] §1, we
announced a proposition which describes the condition for B{+{0}. One
of the aim of this paper is to prove a part of the following theorem
which is a revised version of the proposition. (There was a mistake in
the formulation of the proposition. See the remark following Theorem
1.1.)

Since #(G*/P; L)~ B(G*/w,Pw;*; L,,,j_ll) by the identification xw,P
—xw;Pw;* of G/P and G*/w,Pw;', we have only to study B} for any
choice of the positive system 3+ of 3. Put g,=24p—2p,, m; =m,—m}
and ml=m} —m; (« € ). Let Z denote the ring of integers.

Theorem 1.1. Suppose that

(1.2) 1€ Lysgnm
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and that
(1.3) {2, a>>0 forall @ e X*.

Then B}=={0} if and only if the following condition (P) holds.
(®) Let {B, - -+, Bu} be a sequence of roots in X+ satisfying the fol-
lowing conditions (1) and (ii). Then

{tt By =0.

(i) B, is a simple root in the set {a e 3* |{a, Byy=""-={a, Be_1y
=0}.

() Put n,=3 ucsnpi+zonse+z8i-pMe  Then n,<my, fori=1, -- .,
k—1 and n,=my,.

We will prove in this paper that B}=={0} implies the condition (P).
The converse assertion will be proved in a subsequent paper [OM2].

Remark. (i) The condition (P) for k=1 is equivalent to the
condition

(1.4 (g, a)>>>0 for any simple root « in 3* satisfying g%(a,; a) Ch¢

(the condition (a) in [OMI1] Theorem (iii)). [OM1] § 1 Proposition is
false even for k=1. There is a counter example when X is of type B,
and B, is the long simple root. The condition (a’) in the proposition
should be replaced by the condition (P).

(i) Suppose the conditions (1.2), (1.3) and (1.4). If {g, a)>>0
holds for all «e 2(Y?%; a,)* (=2(§%; a,)N2*), for example when X is
irreducible and is of type 4; (I >>2), D,, E, or G, (cf. [OM1] Lemma 10),
then Bj= {0} by [OM1] § 1 Remark 2 (i) (Flensted-Jensen’s construction
of discrete series for G/H in [F]). Hence the conditions (1.2), (1.3) and
(1.4) imply the condition (P)in this case.

(iii) When X is of type C,, then we will show in [OM?2] that the
conditions (1.2), (1.3) and (1.4) imply the condition (P) and Bj=~{0}.

(iv) Suppose that X is of type B;, BC, or F,. Then we will prove
in [OM2] that B;+ {0} if the conditions (1.2), (1.3), (1.4) and the following
(1.5) holds.

(1.5) The condition (P) holds for the sequence {3,, - - -, B} consisting
only of short roots.

(v) If X is of type B, or BC, and {B,, - - -, f;} consists only of short
roots, then the condition (i) in [OM1] Proposition is equivalent to the
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condition (ii) in Theorem 1.1. (This is the reason why the authors were
not aware of the miswriting in [OM1] Proposition.)

After writing [OMI1], Oshima [O] found a theorem describing the
precise asymptotic behavior of spherical functions on G/H. By this
theorem of Oshima, we have only to prove the following lemma to prove
Theorem 1 in [OM1] § 4 instead of Lemma 3 in [OM1], which we an-
nounced in [OMI1] p. 389 as “(iii)) we have obtained a simpler proof of
Theorem 1 which does not require case-by-case checking, which will
appear in another paper.” (We spent 16 pages to prove Lemma 3 in
[OM1] by case-by-case checking.)

Let af be a maximal abelian subspace of p? such that a=afNq? is
maximal abelian in p*(q% Let 2(a¥)* be a c¢f-compatible positive
system of X(af) and P? the minimal parabolic subgroup of G* defined by
the pair (o, 2(a9)*). Let y be an element of K¢ such that Ad(y)af=a,
and that Y*={aoAd(y)"'|ac 2(af)*}. Then P=yP%'. Let 2(a)*
denote the positive system of the root system X(a) consisting of the
nonzero restrictions of roots in X(af)*. Let {ay, - - -, ;,} denote the set
of simple roots in X(a)* and {w,, - - -, ®,,} the dual basis of {a;, - - -, a;,}.

Lemma 1.2. Ler 2 be an element of (a®)* such that (1, o) >0 for all
a e 2(ad)* and x be an element of G*. Suppose that one of the following
three conditions is satisfied.

(i) rank(G/H)=rank(K/K N H).

(ii) H%xP¢< is not closed in G°.

(iii) rank(G/K)=rank(K/KN H) and there is a j (1< j<m) such
that HexP%=Hw,;yP® and that {1, ay=0 for a simple root a of 2(a%)*
satisfying Ad(w; »)a(a¢; )N q%=={0}.

Then there exists a we W(a%) (the Weyl group of 2(a%) such that
(a) Hx(PowP<%) contains inner points in G* and that (b) (w2, @), - - -,
W71, @3,) € (— o0, O)°.

We will give a simple proof of this lemma in Appendix.

§2. H9P double cosets in G¢

Let { be a maximal abelian subspace of p?, t* the space of real
linear forms on { and 3 a subalgebra of g%. Then we put 3(1; a)=
{Xes|[Y, X]=a(Y)X for all Yet} for ¢ et* and J(3;t)={a e i*—
{0} &(t; @)= {0}}. Then 3'=2(g*; a,).

Put Si={aeX*|a¢ 2} Let D be an H?-P double coset in G°.
Then we define a number N(D) by

N(D)=§#((27)N 0270+ £ dim(Ad(y)a, N §7)
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where y e K? is a representative of D such that Ad(y)a, is g-stable and
@ )={axoAd(y)"' e 2(g%; Ad(»)a,) | € 2¢}. By [MI1] Theorem 1, we
can see that the definition of N(D) does not depend on the choice of
yeKe.

Lemma 2.1. Let D and D’ be H?-P double cosets in G°.
(i) If D'CDP, for a simple root ¥ in 3+ (P,=PU Pw,P). Then

N(D)— N(D)=sgn(dim D—dim D’).

Here sgn is the usual signature function with the range {—1, 0, 1}.
(ii) If w e W satisfies I(w) <|N(D)—N(D")|. Then

D(PwP)* N\ D' = .
Here Iw)=#(2s N —wXy) is the length of w.

Proof. (i) follows easily from the argument in [M2] Lemma 3.
(i) is clear from (i) because (PwP)*=P, P;,- - -P;, , for a minimal ex-
pression w=w; w,,- - Wy, . (1, + -, Ty are simple roots in X'*.)

Let B be a simple root of 3* such that m; >0. Choose an element
X; of g%a,; p)Ng? so that 2{B, BYB(X;, 0X,)=—1 and put c¢,=
exp (7/2)(X,+0X;), af=Ad (c))a, (cf. [M1] §2). Then o) =a)NHe+
a/Nag%, afNa,=a;/NH* and dim(a;’Nq%)=1. Let Y, be the element
of a, defined by B(Y, Y,)=p(Y) (Yeqa,). Then Y;=Ad(c,)Y, generates
the one-dimensional space a;’ N q%.

Let w, be the element of W satisfying

WSt =101 e I|<T, >0 U{r e I* (<1, By=0).

Put P”"=c,w,Pwi'c;'. Let L, (resp.[,) be the centralizer of ¥} in G*
(resp. g%). Put [=[{(,, [,] and let L be the analytic subgroup of G¢ for .
Let P, (resp. B,) be the parabolic subgroup of G? (resp. subalgebra of g?)
defined by the element Y; (i.e. By=>.,{X € g?|[Y}, X]=cX}). Then
we have the following natural maps ([M2] § 4)

LN Hd\L/LﬂP”—TLlﬂH“\Ll/LlﬂP”«—’;—Plﬂ H\P,/P”

@.1)
—~>H*\ HP,/P"

given by the inclusions L—L,, P,—H?%P, and the projection p: P,—L,
with respect to the Langlands decomposition P,=L, exp n,. Here n, is
the nilpotent radical of , and ¢ is surjective.
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Lemma 2.2. (i) H4P, is open in G°.

(i) (LNHY(LNP")is closed in L.

(iiily N(H%cw,P)=N(H*P)—I(wsw,).

(iv) NWD)YKN(HP)—I(wewy) for any H®-P double coset D con-
tained in HP,cw,.

(v) ND)N(HP)—I(wswy) for any H*-P double coset D con-
tained in HP,c,w, such that dim D>dim H %c,w,P.

Proof. (i) B?4+PB,=h?4+P,+0P,=g* since §Y,=—7Y;. Hence
HAP, is open in G°.

(ii) Since aNHecINP” and since a;’ NH® is a maximal abelian
subspace of [N p?, (LN H)(LNP")is closed in L by [M1] § 3.

(i) Since #(ZZu)o N O(2Zu)0) = F(E5u N 205 o)) = §3¢ —
2I(w,;)—1 by the definition of w,, we have N(H%c,w,P)=N(H*P)—I(w,)
—1=NHP)—I(wsw,)

(iv) By (2.1), we can choose a representative y of D such that y e
(LNK?%cw, and that a?=Ad(y)a, is o-stable. Since P,= yPy'CP,,
we have P,N0P,C P,NGP,=L, and therefore

B2 NI <H((27) N 25 af)
(2.2) =50 N 205 @)
=45 —20(w)— 1.

Hence N(D)< N(H*P)—I(w,w,).

(v) Letybeasabove. Then dim D—dim H%,w P=dim (LN H?%)
(LNP,)—dim(LNH*LNP”) by (2.1). Thus the assertion follows
from (2.2) since the equality holds in (2.2) only when ayNIlCh?
(ELNHYLNP,) s closed in L by [M1] § 3 Proposition 2) and since
all the closed (LN H*)~(LN P,) double cosets in L have the same dimen-
sion (cf. [M2] § 5 Lemma 7). Q.E.D.

For a root «e 3(a,), define a root «” of X(g%;a)) by o=
a o Ad(c,)~". Then the positive system J([)* =23(l; ;)" ={a” e (s a)) |
e 2*} of J([;a) corresponds to the minimal parabolic subgroup
LN P” of L because of the choice of w,. Put m,.=dim g¥a}’; &), m},=
dim(g?(a}; YN Y%, mz = me—mf, and ml.=m}l—m7, for o e
(0 C[;'). Put o' =14 > e s@y+ Mo’ and pof =% 3 ove oy emia’.

Lemma 2.3. (i) Let « be an element of of such that {a, 8)=0.
Then 3 csnwinnMy=my. (We put ml.=0 when a« ¢ 2. R is the field
of real numbers.)

(ii) (2[]:—40)\%'01:2(0%_"0["
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Proof. (i) Put V=3 crnw+rp 8%a,;7). Then Dreznrrp M=
dim(VNH%)—dim(¥ Nq%). On the other hand, it is clear that V=

D es (672N a+ RE™) g%(ay’; 7). Since 0g%(ay; o'+ cp)=gUa); a’’—cB"),

we have

dim((@*(a/; o'+ cB")+a%(al’; a” — c8) N §%)
=dim((g*(a’; "+ ")+ g%(e); & —cf)) N q%)

when ¢0. Hence dim(¥V N §?)—dim(V N q¢)=ml...

(ii) Since 2p,—p=> l,cs+m5 and since SNT+RY)CIT* if e I+
—{B, 2f}, the assertion follows easily from (i). Q.E.D.

§3. Proof of B} {0}=>(P)

Suppose that B}={0} and let {8, - - -, B;} be a sequence of roots
satisfying the conditions (i) and (ii) in (P). Then we want to prove that
{ts Bey=>0. We will prove this assertion by induction on the rank / of

d

If k=1, then the condition (ii) implies that g%(a,; B)CH%. In this
case we have already proved in [OMI1] Theorem (iii) (a) that {yu, 8;>=

So we may assume that k>1. Then we have g%(a,; B,)ZH%. Write
B=4, and define ¢;, a;, w;, P,, L and P” as in § 2.

Put y=w;'w,A and U=Gd—-Uw,<w5le‘z(Pw’P)°1. Then applying
[O] Lemma 3.2 to a nonzero function f in B}, we get a function g e
#ua(U[P; L,) such that supp g=U N H%(Pwyw,P)". Here ZyU/P;L,)
is the space of H?-finite hyperfunctions 2 on the open subset U of G*¢
satisfying A(xman) = a*~°h(x) for any (x,m,a,n)e UXM XAXN and
the hyperfunction g is given as the image of f'e B; by the “local intertwin-
ing operator” corresponding to w='w,.

On the other hand, by Lemma 2.1 (ii) and Lemma 2.2 we have

3.D HeP.c;w, C U,
(3.2) H?P,c,w, N HY(Pww,P)'DH%w,P
and that

(3.3) every HP double coset contained in H*P,c,w, "\ H*(Pwyw,P)"
has the same dimension as H“%c,w,P.
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So by (3.1), (3.2) and (3.3), we can define the restriction g’ of g to
H?P,c,w, such that supp g’ D H’c,w, P and that dim supp g’=dim H%c,w,P.

Put g’ (x)=g'(xc,w,) for x e H*P, and p’'=po Ad(c,w) " € (a))*.
Then g”’ e By«HP,/P"; L,.) and supp g”"DH?P’”. Since P,=LP"
and since g’/ is left H?-finite and right P”-finite, we can define g,
BroundLILOP"; L, so that supp g”|,DLNHYLNP”) and that
dim supp g”|,=dim (LN HYYLNP"). (If necessary, we take a left H?-
translation of g’/ instead of g’/ itself.)

Define the roots g7/, - - -, i of 2(I; a) as in §2. Then it follows
from Lemma 2.3 (i) that

— 0
M= we 2051+ 2614w+ Zps—)Ma

=2, m,
T L € X () NG H ZBY e+ 2B ) e

Thus the sequence {8/, - - -, B }-of roots in J([)* satisfies the conditions
(i) and (ii) in (P) for the Lie algebra [. So the assumption of induction
implies

'+t =207, B> =>0

because of the existence of the hyperfunction g”’|, on L which we con-
sidered above. It is clear that Zlné,mzp" la;'m from the definition of p”.
Thus we have

o Bep =2+ p—20, pip={t"+ 0" — 207, B> =0

by Lemma 2.3 (ii) and therefore we have proved that the condition (P) is
satisfied. Q.E.D.

Appendix.

Proof of Lemma 1.2. By [M1] Theorem 1, there exist an £ e H? and
ape P? such that x'=hxp e K¢ and that a,=Ad(x')a? is ¢-stable. If
either of the conditions (i) or (ii) is satisfied, then

(A.D @, N q?{0}

by [M1] § 3 Proposition 2. The case (iii) is reduced to the case (ii) by a
similar argument as in [OM1] §5. So we may assume (A.1) in the
followings.

We may moreover assume that o, q®Ca by [M1] Theorem 2. Put
t=dim(a; N q%) and choose an orthogonal basis {Y,, - - -, ¥;} of a? so that
{¥y, -+, Y}and {Y,, - --, Y, .} are the basis of a/N q and a, respectively.
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Let w, be the element of W(a?) such that w3 (a%)* is the lexicographic
order defined by the sequence {Y,, - - -, ¥V;}. (i.e. ¢ e w,2(af)* if and only
if there exists a u (1<u<l) such that ae(¥)="---=a(¥,_)=0 and
that @(Y,)>0.) Since w,2(af)* is gf-compatible, H%w,P¢ is open in G*
by [MI1] §3 Proposition 1. Let w, be the element of W(a?) such that
wyd(a9)* = —w,X(a?)*. Then H*w,P? is also open in G

By the choice of w,, there exists an 7 (1<<i<C/) such that ww, e
a;Nq? There also exists a j (1< j </) such that w,0,= —w,.

First consider the case (1, Ad(x'"'w)w;»>0. Choose w; ¢ W(a?) so
that Ad(w;'x’~'w))w, is dominant for X(a%)*. Then wi'x'w, is contained
in the parabolic subgroup P,, of G* defined by the element v, € aCaf.
Hence

(A.2) wi'x'w,Pew, P> 1 and ww,=w,
for some w, ¢ W(a%). Since wy'x'w; € K%, we have
(A.3) wi'x'wy € P,,NoP,,=Zgdw,).
There exists a w; € W(ay) such that
(A4 wi<w, and that w,P°w,P¢C (Pewiw, P,
Put w=wjw,. Then we have
Hex(PiwP) ' = Hex'(P°wP %) D Hx'wyPw,P* D H°%w,P*?
by (A.2) and (A.4). On the other hand,

w2, @, y=4w; Wi "2, ;)
=, W0,
>{2, W,y
={2, Ad(x""'w)w,>
>0
by (A.2) and (A.3).

In the case that {2, Ad(x’~'w)w,><<0, we can prove the assertion
by the same argument as above because {1, Ad(x’"'w,)w,>>0. Q.E.D.

References
[F] M. Flensted-Jensen, Discrete series for semisimple symmetric spaces, Ann.
of Math., 111 (1980), 253-311.
[M1] T. Matsuki, The orbits of affine symmetric spaces under the action of

minimal parabolic subgroups, J. Math. Soc. Japan, 31 (1979), 331-357.



540 T. Matsuki

[M2]

, Closure relations for orbits on affine symmetric spaces under the
action of minimal parabolic subgroups, Advanced Studies in Pure
Math., this volume, 541-559.

[O] T. Oshima, Asymptotic behavior of spherical functions on semisimple
symmetric spaces, Advanced Studies in Pure Math., this volume, 561-
601,

[OM1] T. Oshima and T. Matsuki, A description of Discrete series for semisimple
symmetric spaces, Advanced Studies in Pure Math., 4 (1984), 331-350.

, A description of discrete series for semisimple symmetric spaces

111, in preparation.

[OM2]

Department of Mathematics
College of General Education
Tottori University

Tottori, 680

Japan





