Advanced Studies in Pure Mathematics 14, 1988 Representations of Lie Groups, Kyoto, Hiroshima, 1986 pp. 531-540

A Description of Discrete Series for Semisimple Symmetric Spaces II

Toshihiko Matsuki

§1. Introduction

In [F], Flensted-Jensen constructed countably many discrete series for a semisimple symmetric space G/H when

(1.1)
$$\operatorname{rank}(G/H) = \operatorname{rank}(K/K \cap H).$$

Conversely, [OM1] proved that (1.1) holds if there exist discrete series for G/H. Moreover [OM1] constructed Harish-Chandra modules B_{λ}^{j} which parametrize all the discrete series for G/H, where j runs through finite indices and λ runs through lattice points contained in a positive Weyl chamber. In this paper, we give a necessary condition for j and λ so that the module B_{λ}^{j} is nontrivial. In the subsequent paper [OM2], we will prove that the condition also assures $B_{\lambda}^{j} \neq \{0\}$. We remark that our results also covers "limits of discrete series" for G/H. In the appendix, we give a certain simplification of the proof of a main result in [OM1]. To state the precise result in this paper, we prepare some notations.

Let g be a semisimple Lie algebra and σ an involution (automorphism of order 2) of g. Fix a Cartan involution θ of g such that $\sigma\theta = \theta\sigma$. Let $g = \mathfrak{h} + \mathfrak{q}$ (resp. $g = \mathfrak{k} + \mathfrak{p}$) be the decomposition of g into the +1 and -1 eigenspaces for σ (resp. θ). Let g_{σ} denote the complexification of g and put

$$\begin{split} & \mathring{t}^{d} = \mathring{t} \cap \mathfrak{h} + \sqrt{-1} \, (\mathfrak{p} \cap \mathfrak{h}), \qquad \mathfrak{p}^{d} = \sqrt{-1} \, (\mathring{t} \cap \mathfrak{q}) + \mathfrak{p} \cap \mathfrak{q}, \\ & \mathfrak{h}^{d} = \mathring{t} \cap \mathfrak{h} + \sqrt{-1} \, (\mathring{t} \cap \mathfrak{q}), \qquad \mathfrak{q}^{d} = \sqrt{-1} \, (\mathfrak{p} \cap \mathfrak{h}) + \mathfrak{p} \cap \mathfrak{q}, \\ & \mathfrak{q}^{d} = \mathring{t}^{d} + \mathfrak{p}^{d} = \mathfrak{h}^{d} + \mathfrak{q}^{d}. \end{split}$$

Let G_c be a connected complex Lie group with Lie algebra \mathfrak{g}_c , and let $G, K, H, G^d, K^d, H^d, H_c$ and K_c be the analytic subgroups of G_c corresponding to $\mathfrak{g}, \mathfrak{k}, \mathfrak{h}, \mathfrak{g}^d, \mathfrak{k}^d, \mathfrak{h}_c$ and \mathfrak{k}_c , respectively.

In [OM1], we studied the discrete series for G/H and proved that

Received April 6, 1987.

rank $(G/H) = \operatorname{rank} (K/K \cap H)$ if there exist discrete series for G/H. So we may choose a maximal abelian subspace α_p of p^d contained in $p^d \cap \mathfrak{h}^d$ $(=\sqrt{-1}(\mathfrak{f} \cap \mathfrak{q}))$. Let Σ denote the root system of the pair $(\mathfrak{g}^d, \alpha_p)$ and fix a positive system Σ^+ of Σ . Let M be the centrailzer of α_p in G^d and put $A_p = \exp \alpha_p$, $\mathfrak{n}^+ = \sum_{\alpha \in \Sigma^+} \mathfrak{g}^d(\alpha_p; \alpha)$, $N^+ = \exp \mathfrak{n}^+$, $\rho = \frac{1}{2} \sum_{\alpha \in \Sigma^+} m_\alpha^a \alpha$, $\rho_t = \frac{1}{2} \sum_{\alpha \in \Sigma^+} m_\alpha^+ \alpha$ where $\mathfrak{g}^d(\alpha_p; \alpha) = \{X \in \mathfrak{g}^d \mid [Y, X] = \alpha(Y)X$ for all $Y \in \alpha_p\}$, $m_\alpha = \dim \mathfrak{g}^d(\alpha_p; \alpha)$ and $m_\alpha^+ = \dim (\mathfrak{g}^d(\alpha_p; \alpha) \cap \mathfrak{h}^d)$ for $\alpha \in \Sigma$. Then $P = MA_pN^+$ is a minimal parabolic subgroup of G^d . For $\lambda \in (\alpha_p)_c^*$, we define the space of hyperfunction sections of class 1 principal series for G^d :

$$\mathscr{B}(G^{d}/P; L_{\lambda}) = \{ f \in \mathscr{B}(G^{d}) \mid f(xman) = a^{\lambda - \rho} f(x)$$

for $x \in G^{d}$, $m \in M$, $a \in A_{\mathfrak{p}}$ and $n \in N^{+} \}$

where $a^{\lambda-\rho} = e^{\langle \lambda-\rho, \log a \rangle}$.

Let M^* denote the normalizer of $\mathfrak{a}_{\mathfrak{p}}$ in K^d and $W = M^*/M$ the Weyl group of Σ . Then by [M1] § 3 Proposition 2, we can choose elements $w_1 = 1, w_2, \dots, w_m$ of M^* such that $\{H^d w_j P | j = 1, \dots, m\}$ is the set of all the closed $H^d \cdot P$ double cosets in G^d $(H^d w_i P \neq H^d w_j P$ if $i \neq j$). Put

 $B_{\lambda}^{j} = \{f \in \mathscr{B}(G^{d}/P; L_{\lambda}) | \operatorname{supp} f \subset H^{d}w_{j}P \text{ and } f \text{ transforms according}$ to a finite dimensional representation of H^{d} which can be extended to a holomorphic representation of $K_{c}\}$.

In [OM1], we proved that all the K-finite functions of all the discrete sreies for G/H are given by $(\eta^{-1} \circ \mathscr{P}_{\lambda})B_{\lambda}^{j}$ $(j = 1, \dots, m, \lambda \in L_{K/K\cap H} - \rho + 2\rho_{t}, \langle \lambda, \alpha \rangle > 0$ for all $\alpha \in \Sigma^{+}$) where $\eta : \mathscr{A}_{K}(G/H) \cong \mathscr{A}_{H^{d}}(G^{d}/K^{d})$ is the Flensted-Jensen's isomorphism, $\mathscr{P}_{\lambda} : \mathscr{R}(G^{d}/P; L_{\lambda}) \cong \mathscr{A}(G^{d}/K^{d}; \mathscr{M}_{\lambda}^{d})$ is the Poisson transform and $L_{K/K\cap H}$ is the lattice in $\alpha_{\mathfrak{p}}^{*}$ generated by the highest weights of finite-dimensional representations of K having a $K \cap H$ fixed vector. (See [OM1] for precise notations.) In [OM1] § 1, we announced a proposition which describes the condition for $B_{\lambda}^{j} \neq \{0\}$. One of the aim of this paper is to prove a part of the following theorem which is a revised version of the proposition. (There was a mistake in the formulation of the proposition. See the remark following Theorem 1.1.)

Since $\mathscr{B}(G^d/P; L_{\lambda}) \simeq \mathscr{B}(G^d/w_j P w_j^{-1}; L_{w_j^{-1}\lambda})$ by the identification $xw_j P \rightarrow xw_j P w_j^{-1}$ of G^d/P and $G^d/w_j P w_j^{-1}$, we have only to study B^1_{λ} for any choice of the positive system Σ^+ of Σ . Put $\mu_{\lambda} = \lambda + \rho - 2\rho_{\iota}, m_{\alpha}^- = m_{\alpha} - m_{\alpha}^+$ and $m_{\alpha}^0 = m_{\alpha}^+ - m_{\alpha}^-$ ($\alpha \in \Sigma$). Let Z denote the ring of integers.

Theorem 1.1. Suppose that

and that

(1.3)
$$\langle \lambda, \alpha \rangle \ge 0$$
 for all $\alpha \in \Sigma^+$.

Then $B_{\lambda}^{1} \neq \{0\}$ if and only if the following condition (P) holds.

(P) Let $\{\beta_1, \dots, \beta_k\}$ be a sequence of roots in Σ^+ satisfying the following conditions (i) and (ii). Then

$$\langle \mu_{\lambda}, \beta_{k} \rangle \geq 0.$$

(i) β_i is a simple root in the set $\{\alpha \in \Sigma^+ | \langle \alpha, \beta_1 \rangle = \cdots = \langle \alpha, \beta_{k-1} \rangle = 0\}$.

(ii) Put $n_i = \sum_{\alpha \in \Sigma \cap (\beta_i + Z\beta_1 + \dots + Z\beta_{i-1})} m_{\alpha}^0$. Then $n_i < m_{\beta_i}$ for $i = 1, \dots, k-1$ and $n_k = m_{\beta_k}$.

We will prove in this paper that $B_{\lambda}^{1} \neq \{0\}$ implies the condition (P). The converse assertion will be proved in a subsequent paper [OM2].

Remark. (i) The condition (P) for k=1 is equivalent to the condition

(1.4) $\langle \mu_{\lambda}, \alpha \rangle \geq 0$ for any simple root α in Σ^+ satisfying $\mathfrak{g}^d(\mathfrak{a}_{\nu}; \alpha) \subset \mathfrak{h}^d$

(the condition (a) in [OM1] Theorem (iii)). [OM1] § 1 Proposition is false even for k=1. There is a counter example when Σ is of type B_2 and β_1 is the long simple root. The condition (a') in the proposition should be replaced by the condition (P).

(ii) Suppose the conditions (1.2), (1.3) and (1.4). If $\langle \mu_i, \alpha \rangle \geq 0$ holds for all $\alpha \in \Sigma(\mathfrak{h}^d; \mathfrak{a}_p)^+ (=\Sigma(\mathfrak{h}^d; \mathfrak{a}_p) \cap \Sigma^+)$, for example when Σ is irreducible and is of type A_i $(l \geq 2)$, D_i , E_i or G_2 (cf. [OM1] Lemma 10), then $B_i^1 \neq \{0\}$ by [OM1] § 1 Remark 2 (i) (Flensted-Jensen's construction of discrete series for G/H in [F]). Hence the conditions (1.2), (1.3) and (1.4) imply the condition (P) in this case.

(iii) When Σ is of type C_i , then we will show in [OM2] that the conditions (1.2), (1.3) and (1.4) imply the condition (P) and $B_{\lambda}^1 \neq \{0\}$.

(iv) Suppose that Σ is of type B_i , BC_i or F_4 . Then we will prove in [OM2] that $B_i^1 \neq \{0\}$ if the conditions (1.2), (1.3), (1.4) and the following (1.5) holds.

(1.5) The condition (P) holds for the sequence $\{\beta_1, \dots, \beta_k\}$ consisting only of short roots.

(v) If Σ is of type B_i or BC_i and $\{\beta_1, \dots, \beta_k\}$ consists only of short roots, then the condition (ii) in [OM1] Proposition is equivalent to the

condition (ii) in Theorem 1.1. (This is the reason why the authors were not aware of the miswriting in [OM1] Proposition.)

After writing [OM1], Oshima [O] found a theorem describing the precise asymptotic behavior of spherical functions on G/H. By this theorem of Oshima, we have only to prove the following lemma to prove Theorem 1 in [OM1] § 4 instead of Lemma 3 in [OM1], which we announced in [OM1] p. 389 as "(iii) we have obtained a simpler proof of Theorem 1 which does not require case-by-case checking, which will appear in another paper." (We spent 16 pages to prove Lemma 3 in [OM1] by case-by-case checking.)

Let a_p^d be a maximal abelian subspace of \mathfrak{p}^d such that $\mathfrak{a} = \mathfrak{a}_p^d \cap \mathfrak{q}^d$ is maximal abelian in $\mathfrak{p}^d \cap \mathfrak{q}^d$. Let $\Sigma(\mathfrak{a}_p^d)^+$ be a $\sigma\theta$ -compatible positive system of $\Sigma(\mathfrak{a}_p^d)$ and P^d the minimal parabolic subgroup of G^d defined by the pair $(\mathfrak{a}_p^d, \Sigma(\mathfrak{a}_p^d)^+)$. Let y be an element of K^d such that $\operatorname{Ad}(y)\mathfrak{a}_p^d = \mathfrak{a}_p$ and that $\Sigma^+ = \{\alpha \circ \operatorname{Ad}(y)^{-1} | \alpha \in \Sigma(\mathfrak{a}_p^d)^+\}$. Then $P = yP^d y^{-1}$. Let $\Sigma(\mathfrak{a})^+$ denote the positive system of the root system $\Sigma(\mathfrak{a})$ consisting of the nonzero restrictions of roots in $\Sigma(\mathfrak{a}_p^d)^+$. Let $\{\alpha_1, \dots, \alpha_{l_0}\}$ denote the set of simple roots in $\Sigma(\mathfrak{a})^+$ and $\{\omega_1, \dots, \omega_{l_0}\}$ the dual basis of $\{\alpha_1, \dots, \alpha_{l_0}\}$.

Lemma 1.2. Let λ be an element of $(\alpha_{\mathfrak{p}}^d)^*$ such that $\langle \lambda, \alpha \rangle \geq 0$ for all $\alpha \in \Sigma(\alpha_{\mathfrak{p}}^d)^+$ and x be an element of G^d . Suppose that one of the following three conditions is satisfied.

(i) $\operatorname{rank}(G/H) \neq \operatorname{rank}(K/K \cap H)$.

(ii) $H^{d}xP^{d}$ is not closed in G^{d} .

(iii) $\operatorname{rank}(G/K) = \operatorname{rank}(K/K \cap H)$ and there is a j $(1 \le j \le m)$ such that $H^{d}xP^{d} = H^{d}w_{j}yP^{d}$ and that $\langle \lambda, \alpha \rangle = 0$ for a simple root α of $\Sigma(\alpha_{\mathfrak{p}}^{d})^{+}$ satisfying $\operatorname{Ad}(w_{j}y)\mathfrak{g}^{d}(\alpha_{\mathfrak{p}}^{d}; \alpha) \cap \mathfrak{q}^{d} \ne \{0\}$.

Then there exists $a \ w \in W(\mathfrak{a}_{\mathfrak{p}}^d)$ (the Weyl group of $\Sigma(\mathfrak{a}_{\mathfrak{p}}^d)$) such that (a) $H^d x (P^d w P^d)^{c1}$ contains inner points in G^d and that (b) $(\langle w^{-1}\lambda, \omega_1 \rangle, \cdots, \langle w^{-1}\lambda, \omega_{l_0} \rangle) \notin (-\infty, 0)^{l_0}$.

We will give a simple proof of this lemma in Appendix.

§ 2. H^d -P double cosets in G^d

Let t be a maximal abelian subspace of \mathfrak{p}^d , t* the space of real linear forms on t and \mathfrak{F} a subalgebra of \mathfrak{g}^d . Then we put $\mathfrak{F}(\mathfrak{t}; \alpha) = \{X \in \mathfrak{F} | [Y, X] = \alpha(Y)X$ for all $Y \in \mathfrak{t}\}$ for $\alpha \in \mathfrak{t}^*$ and $\Sigma(\mathfrak{F}; \mathfrak{t}) = \{\alpha \in \mathfrak{t}^* - \{0\} | \mathfrak{F}(\mathfrak{t}; \alpha) \neq \{0\}\}$. Then $\Sigma = \Sigma(\mathfrak{g}^d; \mathfrak{a}_p)$.

Put $\Sigma_0^+ = \{ \alpha \in \Sigma^+ \mid \alpha \notin \Sigma \}$. Let *D* be an H^d -*P* double coset in G^d . Then we define a number N(D) by

$$N(D) = \frac{1}{2} \# ((\Sigma_y^+)_0 \cap \theta(\Sigma_y^+)_0) + \frac{1}{2} \dim(\operatorname{Ad}(y)\mathfrak{a}_{\mathfrak{p}} \cap \mathfrak{h}^d)$$

where $y \in K^d$ is a representative of D such that $\operatorname{Ad}(y)a_{\mathfrak{p}}$ is σ -stable and $(\Sigma_y^+)_0 = \{\alpha \circ \operatorname{Ad}(y)^{-1} \in \Sigma(\mathfrak{g}^d; \operatorname{Ad}(y)a_{\mathfrak{p}}) \mid \alpha \in \Sigma_0^+\}$. By [M1] Theorem 1, we can see that the definition of N(D) does not depend on the choice of $y \in K^d$.

Lemma 2.1. Let D and D' be H^{d} -P double cosets in G^{d} . (i) If $D' \subset DP_{\gamma}$ for a simple root γ in Σ^{+} ($P_{\gamma} = P \cup Pw_{\gamma}P$). Then

 $N(D') - N(D) = \operatorname{sgn}(\dim D - \dim D').$

Here sgn is the usual signature function with the range $\{-1, 0, 1\}$. (ii) If $w \in W$ satisfies l(w) < |N(D) - N(D')|. Then

 $D(PwP)^{cl} \cap D' = \emptyset.$

Here $l(w) = \#(\Sigma_0^+ \cap -w\Sigma_0^+)$ is the length of w.

Proof. (i) follows easily from the argument in [M2] Lemma 3. (ii) is clear from (i) because $(PwP)^{\text{cl}} = P_{\tau_1}P_{\tau_2}\cdots P_{\tau_{l(w)}}$ for a minimal expression $w = w_{\tau_1}w_{\tau_2}\cdots w_{\tau_{l(w)}}$. $(\gamma_1, \dots, \gamma_{l(w)} \text{ are simple roots in } \Sigma^+.)$

Let β be a simple root of Σ^+ such that $m_{\beta}^- > 0$. Choose an element X_{β} of $\mathfrak{g}^{\mathfrak{a}}(\alpha_{\mathfrak{p}};\beta) \cap \mathfrak{q}^{\mathfrak{a}}$ so that $2\langle\beta,\beta\rangle B(X_{\beta},\sigma X_{\beta}) = -1$ and put $c_{\beta} = \exp(\pi/2)(X_{\beta} + \sigma X_{\beta}), \ \alpha_{\mathfrak{p}}^{\prime\prime} = \operatorname{Ad}(c_{\beta})\alpha_{\mathfrak{p}}$ (cf. [M1] § 2). Then $\alpha_{\mathfrak{p}}^{\prime\prime} = \alpha_{\mathfrak{p}}^{\prime\prime} \cap \mathfrak{h}^{\mathfrak{a}} + \alpha_{\mathfrak{p}}^{\prime\prime} \cap \mathfrak{q}^{\mathfrak{a}}, \ \alpha_{\mathfrak{p}}^{\prime\prime} \cap \alpha_{\mathfrak{p}} = \alpha_{\mathfrak{p}}^{\prime\prime} \cap \mathfrak{h}^{\mathfrak{a}}$ and $\dim(\alpha_{\mathfrak{p}}^{\prime\prime} \cap \mathfrak{q}^{\mathfrak{a}}) = 1$. Let Y_{β} be the element of $\alpha_{\mathfrak{p}}$ defined by $B(Y, Y_{\beta}) = \beta(Y)$ ($Y \in \alpha_{\mathfrak{p}}$). Then $Y_{\beta}^{\prime} = \operatorname{Ad}(c_{\beta})Y_{\beta}$ generates the one-dimensional space $\alpha_{\mathfrak{p}}^{\prime\prime} \cap \mathfrak{q}^{\mathfrak{a}}$.

Let w_1 be the element of W satisfying

$$w_1 \Sigma^+ = \{ \Upsilon \in \Sigma \mid \langle \Upsilon, \beta \rangle > 0 \} \cup \{ \Upsilon \in \Sigma^+ \mid \langle \Upsilon, \beta \rangle = 0 \}.$$

Put $P'' = c_{\beta} w_1 P w_1^{-1} c_{\beta}^{-1}$. Let L_1 (resp. l_1) be the centralizer of Y'_{β} in G^d (resp. g^d). Put $l = [l_1, l_1]$ and let L be the analytic subgroup of G^d for l. Let P_1 (resp. \mathfrak{P}_1) be the parabolic subgroup of G^d (resp. subalgebra of g^d) defined by the element Y'_{β} (i.e. $\mathfrak{P}_1 = \sum_{c \ge 0} \{X \in \mathfrak{g}^d | [Y'_{\beta}, X] = cX\}$). Then we have the following natural maps ([M2] § 4)

(2.1)
$$L \cap H^{d} \setminus L/L \cap P'' \xrightarrow{q} L_{1} \cap H^{d} \setminus L_{1}/L_{1} \cap P'' \xleftarrow{p} P_{1} \cap H^{d} \setminus P_{1}/P'' \xrightarrow{\sim} H^{d} \setminus H^{d} P_{1}/P''$$

given by the inclusions $L \rightarrow L_1$, $P_1 \rightarrow H^d P_1$ and the projection $p: P_1 \rightarrow L_1$ with respect to the Langlands decomposition $P_1 = L_1 \exp n_1$. Here n_1 is the nilpotent radical of \mathfrak{P}_1 and q is surjective.

Lemma 2.2. (i) $H^d P_1$ is open in G^d .

(ii) $(L \cap H^d) (L \cap P'')$ is closed in L.

(iii) $N(H^d c_\beta w_1 P) = N(H^d P) - l(w_\beta w_1).$

(iv) $N(D) \leq N(H^d P) - l(w_\beta w_1)$ for any H^d -P double coset D contained in $H^d P_1 c_\beta w_1$.

(v) $N(D) < N(H^d P) - l(w_{\beta}w_1)$ for any H^d -P double coset D contained in $H^d P_1 c_{\beta} w_1$ such that dim $D > \dim H^d c_{\beta} w_1 P$.

Proof. (i) $\mathfrak{h}^d + \mathfrak{P}_1 = \mathfrak{h}^d + \mathfrak{P}_1 + \theta \mathfrak{P}_1 = \mathfrak{g}^d$ since $\theta Y'_{\beta} = -Y'_{\beta}$. Hence $H^d P_1$ is open in G^d .

(ii) Since $\alpha_{\mathfrak{p}}^{\prime\prime} \cap \mathfrak{h}^{d} \subset \mathfrak{l} \cap \mathfrak{P}^{\prime\prime}$ and since $\alpha_{\mathfrak{p}}^{\prime\prime} \cap \mathfrak{h}^{d}$ is a maximal abelian subspace of $\mathfrak{l} \cap \mathfrak{p}^{d}$, $(L \cap H^{d})(L \cap P^{\prime\prime})$ is closed in L by [M1] § 3.

(iii) Since $\#((\Sigma_{c_{\beta}w_{1}})_{0} \cap \theta(\Sigma_{c_{\beta}w_{1}})_{0}) = \#((\Sigma_{c_{\beta}w_{1}})_{0} \cap \Sigma(\mathfrak{l}_{1};\mathfrak{a}_{p}'')) = \#\Sigma_{0}^{+} - 2l(w_{1}) - 1$ by the definition of w_{1} , we have $N(H^{d}c_{\beta}w_{1}P) = N(H^{d}P) - l(w_{1}) - 1 = N(H^{d}P) - l(w_{\beta}w_{1})$

(iv) By (2.1), we can choose a representative y of D such that $y \in (L \cap K^d)c_\beta w_1$ and that $a_p^y = \operatorname{Ad}(y)a_p$ is σ -stable. Since $P_y = yPy^{-1} \subset P_1$, we have $P_y \cap \theta P_y \subset P_1 \cap \theta P_1 = L_1$ and therefore

(2.2)
$$\begin{aligned} & \#((\Sigma_{y}^{+})_{0} \cap \theta(\Sigma_{y}^{+})_{0}) \leq \#((\Sigma_{y}^{+})_{0} \cap \Sigma(\mathfrak{l}_{1}; \mathfrak{a}_{\mathfrak{p}}^{*})) \\ & = \#((\Sigma_{c_{\beta}w_{1}}^{+})_{0} \cap \Sigma(\mathfrak{l}_{1}; \mathfrak{a}_{\mathfrak{p}}^{*})) \\ & = \#\Sigma_{0}^{+} - 2l(w_{1}) - 1. \end{aligned}$$

Hence $N(D) \leq N(H^d P) - l(w_{\beta} w_1)$.

(v) Let y be as above. Then dim $D - \dim H^a c_{\beta} w_1 P = \dim (L \cap H^a)$ $(L \cap P_y) - \dim (L \cap H^a)(L \cap P'')$ by (2.1). Thus the assertion follows from (2.2) since the equality holds in (2.2) only when $a_y^y \cap \mathfrak{l} \subset \mathfrak{h}^a$ $(\rightleftharpoons (L \cap H^a)(L \cap P_y)$ is closed in L by [M1] § 3 Proposition 2) and since all the closed $(L \cap H^a) - (L \cap P_y)$ double cosets in L have the same dimension (cf. [M2] § 5 Lemma 7). Q.E.D.

For a root $\alpha \in \Sigma(\alpha_p)$, define a root α'' of $\Sigma(\mathfrak{g}^d; \mathfrak{a}'_p)$ by $\alpha'' = \alpha \circ \operatorname{Ad}(c_p)^{-1}$. Then the positive system $\Sigma(\mathfrak{l})^+ = \Sigma(\mathfrak{l}; \mathfrak{a}'_p)^+ = \{\alpha'' \in \Sigma(\mathfrak{l}; \mathfrak{a}'_p) \mid \alpha \in \Sigma^+\}$ of $\Sigma(\mathfrak{l}; \mathfrak{a}'_p)$ corresponds to the minimal parabolic subgroup $L \cap P''$ of L because of the choice of w_1 . Put $m_{\alpha''} = \dim(\mathfrak{g}^d(\mathfrak{a}''_p; \alpha'') \cap \mathfrak{h}^d)$, $m_{\alpha''}^- = m_{\alpha''} - m_{\alpha''}^+$ and $m_{\alpha''}^0 = m_{\alpha''}^- - m_{\alpha''}^-$ for $\alpha'' \in \Sigma(\mathfrak{l}; \mathfrak{a}'_p)$. Put $\rho^L = \frac{1}{2} \sum_{\alpha'' \in \Sigma(\mathfrak{l})} m_{\alpha''} \alpha''$ and $\rho^L = \frac{1}{2} \sum_{\alpha'' \in \Sigma(\mathfrak{l})} m_{\alpha''} \alpha''$.

Lemma 2.3. (i) Let α be an element of α_p^* such that $\langle \alpha, \beta \rangle = 0$. Then $\sum_{\tau \in \Sigma \cap (\alpha + R\beta)} m_{\tau}^0 = m_{\alpha''}^0$. (We put $m_{\alpha''}^0 = 0$ when $\alpha \notin \Sigma$. **R** is the field of real numbers.)

(ii) $(2\rho_t - \rho)|_{\mathfrak{a}_t' \cap \mathfrak{l}} = 2\rho_t^L - \rho^L.$

Proof. (i) Put $V = \sum_{\gamma \in \Sigma \cap (\alpha + R\beta)} \mathfrak{g}^d(\mathfrak{a}_{\mathfrak{p}}; \gamma)$. Then $\sum_{\gamma \in \Sigma \cap (\alpha + R\beta)} m_{\gamma}^0 = \dim(V \cap \mathfrak{h}^d) - \dim(V \cap \mathfrak{q}^d)$. On the other hand, it is clear that $V = \sum_{\gamma'' \in \Sigma (\mathfrak{a}'_{\mathfrak{p}}') \cap (\alpha'' + R\beta'')} \mathfrak{g}^d(\mathfrak{a}''_{\mathfrak{p}}; \gamma'')$. Since $\theta \mathfrak{g}^d(\mathfrak{a}''_{\mathfrak{p}}; \alpha'' + c\beta'') = \mathfrak{g}^d(\mathfrak{a}''_{\mathfrak{p}}; \alpha'' - c\beta'')$, we have

$$\dim((\mathfrak{g}^{\mathfrak{a}}(\mathfrak{a}_{\mathfrak{p}}^{\prime\prime}; \alpha^{\prime\prime} + c\beta^{\prime\prime}) + \mathfrak{g}^{\mathfrak{a}}(\mathfrak{a}_{\mathfrak{p}}^{\prime\prime}; \alpha^{\prime\prime} - c\beta^{\prime\prime})) \cap \mathfrak{h}^{\mathfrak{a}}) \\= \dim((\mathfrak{g}^{\mathfrak{a}}(\mathfrak{a}_{\mathfrak{p}}^{\prime\prime}; \alpha^{\prime\prime} + c\beta^{\prime\prime}) + \mathfrak{g}^{\mathfrak{a}}(\mathfrak{a}_{\mathfrak{p}}^{\prime\prime}; \alpha^{\prime\prime} - c\beta^{\prime\prime})) \cap \mathfrak{q}^{\mathfrak{a}})$$

when $c \neq 0$. Hence $\dim(V \cap \mathfrak{h}^d) - \dim(V \cap \mathfrak{q}^d) = m_{\alpha''}^0$.

(ii) Since $2\rho_t - \rho = \sum_{\alpha \in \Sigma^+} m_{\alpha}^0$ and since $\Sigma \cap (\gamma + R\beta) \subset \Sigma^+$ if $\gamma \in \Sigma^+ - \{\beta, 2\beta\}$, the assertion follows easily from (i). Q.E.D.

§ 3. Proof of $B_{\lambda}^{1} \neq \{0\} \Rightarrow (\mathbf{P})$

Suppose that $B_{1}^{1} \neq \{0\}$ and let $\{\beta_{1}, \dots, \beta_{k}\}$ be a sequence of roots satisfying the conditions (i) and (ii) in (P). Then we want to prove that $\langle \mu_{\lambda}, \beta_{k} \rangle \geq 0$. We will prove this assertion by induction on the rank *l* of g^{d} .

If k=1, then the condition (ii) implies that $g^{d}(\mathfrak{a}_{\mathfrak{p}};\beta_{1}) \subset \mathfrak{h}^{d}$. In this case we have already proved in [OM1] Theorem (iii) (a) that $\langle \mu_{\lambda}, \beta_{1} \rangle = \langle \lambda - \rho, \beta_{1} \rangle \geq 0$.

So we may assume that k > 1. Then we have $g^d(\mathfrak{a}_{\mathfrak{p}}; \beta_1) \not\subset \mathfrak{h}^d$. Write $\beta = \beta_1$ and define $c_{\beta}, \mathfrak{a}_{\mathfrak{p}}'', w_1, P_1, L$ and P'' as in § 2.

Put $\mu = w_1^{-1} w_{\beta} \lambda$ and $U = G^d - \bigcup_{w' < w_{\beta} w_1} H^d (Pw'P)^{\text{cl}}$. Then applying [O] Lemma 3.2 to a nonzero function f in B_{λ}^1 , we get a function $g \in \mathscr{B}_{H^d}(U/P; L_{\mu})$ such that $\operatorname{supp} g = U \cap H^d (Pw_{\beta} w_1 P)^{\text{cl}}$. Here $\mathscr{B}_{H^d}(U/P; L_{\mu})$ is the space of H^d -finite hyperfunctions h on the open subset U of G^d satisfying $h(xman) = a^{\mu - \rho} h(x)$ for any $(x, m, a, n) \in U \times M \times A \times N$ and the hyperfunction g is given as the image of $f \in B_{\lambda}^1$ by the "local intertwining operator" corresponding to $w^{-1}w_{\theta}$.

On the other hand, by Lemma 2.1 (ii) and Lemma 2.2 we have

$$(3.2) H^{d}P_{1}c_{\beta}w_{1} \cap H^{d}(Pw_{\beta}w_{1}P)^{c1} \supset H^{d}c_{\beta}w_{1}P$$

and that

(3.3) every H^d -P double coset contained in $H^d P_1 c_\beta w_1 \cap H^d (P w_\beta w_1 P)^{e_1}$ has the same dimension as $H^d c_\beta w_1 P$.

So by (3.1), (3.2) and (3.3), we can define the restriction g' of g to $H^{d}P_{1}c_{\beta}w_{1}$ such that $\operatorname{supp} g' \supset H^{d}c_{\beta}w_{1}P$ and that $\dim \operatorname{supp} g' = \dim H^{d}c_{\beta}w_{1}P$.

Put $g''(x) = g'(xc_{\beta}w_1)$ for $x \in H^d P_1$ and $\mu'' = \mu \circ \operatorname{Ad}(c_{\beta}w_1)^{-1} \in (\alpha'_{p}')^*$. Then $g'' \in \mathscr{B}_{H^d}(H^d P_1/P''; L_{\mu''})$ and supp $g'' \supset H^d P''$. Since $P_1 = LP''$ and since g'' is left H^d -finite and right P''-finite, we can define $g''|_L \in \mathscr{B}_{L \cap H^d}(L/L \cap P''; L_{\mu''})$ so that supp $g''|_L \supset (L \cap H^d)(L \cap P'')$ and that dim supp $g''|_L = \dim (L \cap H^d)(L \cap P'')$. (If necessary, we take a left H^d translation of g'' instead of g'' itself.)

Define the roots $\beta_2^{\prime\prime}, \dots, \beta_k^{\prime\prime}$ of $\Sigma(\mathfrak{l}; \mathfrak{a}_{\mathfrak{p}}^{\prime\prime})$ as in §2. Then it follows from Lemma 2.3 (i) that

$$n_{i} = \sum_{\alpha \in \Sigma \cap (\beta_{i} + Z\beta_{1} + \dots + Z\beta_{i-1})} m_{\alpha}^{0}$$
$$= \sum_{\alpha'' \in \Sigma (\alpha_{y}') \cap (\beta_{i}' + Z\beta_{2}' + \dots + Z\beta_{i-1}')} m_{\alpha''}^{0}$$

Thus the sequence $\{\beta_2^{\prime\prime}, \dots, \beta_k^{\prime\prime}\}$ of roots in $\Sigma(\mathfrak{l})^+$ satisfies the conditions (i) and (ii) in (P) for the Lie algebra \mathfrak{l} . So the assumption of induction implies

$$\langle \mu'' + \rho^L - 2\rho_t^L, \beta_k'' \rangle \geq 0$$

because of the existence of the hyperfunction $g''|_L$ on L which we considered above. It is clear that $\lambda|_{a_{p'}'\cap I} = \mu''|_{a_{p'}'\cap I}$ from the definition of μ'' . Thus we have

$$\langle \mu_{\lambda}, \beta_{k} \rangle = \langle \lambda + \rho - 2\rho_{t}, \beta_{k} \rangle = \langle \mu'' + \rho^{L} - 2\rho_{t}^{L}, \beta_{k}'' \rangle \geq 0$$

by Lemma 2.3 (ii) and therefore we have proved that the condition (P) is satisfied. Q.E.D.

Appendix.

Proof of Lemma 1.2. By [M1] Theorem 1, there exist an $h \in H^d$ and a $p \in P^d$ such that $x' = hxp \in K^d$ and that $a'_p = \operatorname{Ad}(x')a^d_p$ is σ -stable. If either of the conditions (i) or (ii) is satisfied, then

(A.1)
$$\mathfrak{a}_{\mathfrak{p}}^{\prime} \cap \mathfrak{q}^{d} \neq \{0\}$$

by [M1] § 3 Proposition 2. The case (iii) is reduced to the case (ii) by a similar argument as in [OM1] § 5. So we may assume (A.1) in the followings.

We may moreover assume that $\alpha'_{\mathfrak{p}} \cap \mathfrak{q}^d \subset \mathfrak{a}$ by [M1] Theorem 2. Put $t = \dim(\alpha'_{\mathfrak{p}} \cap \mathfrak{q}^d)$ and choose an orthogonal basis $\{Y_1, \dots, Y_l\}$ of $\mathfrak{a}_{\mathfrak{p}}^d$ so that $\{Y_1, \dots, Y_l\}$ and $\{Y_1, \dots, Y_l\}$ are the basis of $\alpha'_{\mathfrak{p}} \cap \mathfrak{q}^d$ and \mathfrak{a} , respectively.

Let w_1 be the element of $W(\alpha_p^d)$ such that $w_1\Sigma(\alpha_p^d)^+$ is the lexicographic order defined by the sequence $\{Y_1, \dots, Y_l\}$. (i.e. $\alpha \in w_1\Sigma(\alpha_p^d)^+$ if and only if there exists a u $(1 \le u \le l)$ such that $\alpha(Y_1) = \dots = \alpha(Y_{u-1}) = 0$ and that $\alpha(Y_u) > 0$.) Since $w_1\Sigma(\alpha_p^d)^+$ is $\sigma\theta$ -compatible, $H^dw_1P^d$ is open in G^d by [M1] § 3 Proposition 1. Let w_2 be the element of $W(\alpha_p^d)$ such that $w_2\Sigma(\alpha_p^d)^+ = -w_1\Sigma(\alpha_p^d)^+$. Then $H^dw_2P^d$ is also open in G^d .

By the choice of w_1 , there exists an $i \ (1 \le i \le l_0)$ such that $w_1 \omega_i \in a'_p \cap q^d$. There also exists a $j \ (1 \le j \le l_0)$ such that $w_2 \omega_j = -w_1 \omega_i$.

First consider the case $\langle \lambda, \operatorname{Ad}(x'^{-1}w_1)\omega_i \rangle \geq 0$. Choose $w_3 \in W(\mathfrak{a}_p^d)$ so that $\operatorname{Ad}(w_3^{-1}x'^{-1}w_1)\omega_i$ is dominant for $\Sigma(\mathfrak{a}_p^d)^+$. Then $w_1^{-1}x'w_3$ is contained in the parabolic subgroup P_{ω_i} of G^d defined by the element $\omega_i \in \mathfrak{a} \subset \mathfrak{a}_p^d$. Hence

(A.2)
$$w_1^{-1} x' w_3 P^d w_4 P^d \ni 1$$
 and $w_4 \omega_i = \omega_i$

for some $w_4 \in W(\mathfrak{a}_p^d)$. Since $w_1^{-1}x'w_3 \in K^d$, we have

(A.3)
$$w_1^{-1}x'w_3 \in P_{\omega_i} \cap \sigma P_{\omega_i} = Z_{Gd}(\omega_i).$$

There exists a $w'_3 \in W(\mathfrak{a}^d_\mathfrak{p})$ such that

(A.4)
$$w'_3 \leq w_3$$
 and that $w_3 P^d w_4 P^d \subset (P^d w'_3 w_4 P^d)^{\text{cl}}$.

Put $w = w'_3 w_4$. Then we have

$$H^d x (P^d w P^d)^{cl} = H^d x' (P^d w P^d)^{cl} \supset H^d x' w_3 P^d w_4 P^d \supset H^d w_1 P^d$$

by (A.2) and (A.4). On the other hand,

$$egin{aligned} &\langle w^{-1}\lambda,\,\omega_i
angle =&\langle w^{-1}_4w^{\prime -1}_3\lambda,\,\omega_i
angle \ =&\langle \lambda,\,w_3\omega_i
angle \ &\geq &\langle \lambda,\,w_3\omega_i
angle \ &=&\langle \lambda,\,\mathrm{Ad}(x^{\prime -1}w_1)\omega_i
angle \ &>0 \end{aligned}$$

by (A.2) and (A.3).

In the case that $\langle \lambda, \operatorname{Ad}(x'^{-1}w_1)\omega_i \rangle < 0$, we can prove the assertion by the same argument as above because $\langle \lambda, \operatorname{Ad}(x'^{-1}w_2)\omega_j \rangle > 0$. Q.E.D.

References

- [F] M. Flensted-Jensen, Discrete series for semisimple symmetric spaces, Ann. of Math., 111 (1980), 253-311.
- [M1] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan, 31 (1979), 331-357.

- [M2] ——, Closure relations for orbits on affine symmetric spaces under the action of minimal parabolic subgroups, Advanced Studies in Pure Math., this volume, 541–559.
- [O] T. Oshima, Asymptotic behavior of spherical functions on semisimple symmetric spaces, Advanced Studies in Pure Math., this volume, 561– 601.
- [OM1] T. Oshima and T. Matsuki, A description of Discrete series for semisimple symmetric spaces, Advanced Studies in Pure Math., 4 (1984), 331–390.
- [OM2] —, A description of discrete series for semisimple symmetric spaces III, in preparation.

Department of Mathematics College of General Education Tottori University Tottori, 680 Japan

540