A Description of Discrete Series for Semisimple Symmetric Spaces II

Toshihiko Matsuki

§ 1. Introduction

In [F], Flensted-Jensen constructed countably many discrete series for a semisimple symmetric space G / H when

$$
\begin{equation*}
\operatorname{rank}(G / H)=\operatorname{rank}(K / K \cap H) \tag{1.1}
\end{equation*}
$$

Conversely, [OM1] proved that (1.1) holds if there exist discrete series for G / H. Moreover [OM1] constructed Harish-Chandra modules B_{λ}^{j} which parametrize all the discrete series for G / H, where j runs through finite indices and λ runs through lattice points contained in a positive Weyl chamber. In this paper, we give a necessary condition for j and λ so that the module B_{λ}^{j} is nontrivial. In the subsequent paper [OM2], we will prove that the condition also assures $B_{2}^{j} \neq\{0\}$. We remark that our results also covers "limits of discrete series" for G / H. In the appendix, we give a certain simplification of the proof of a main result in [OM1]. To state the precise result in this paper, we prepare some notations.

Let \mathfrak{g} be a semisimple Lie algebra and σ an involution (automorphism of order 2) of \mathfrak{g}. Fix a Cartan involution θ of \mathfrak{g} such that $\sigma \theta=\theta \sigma$. Let $\mathfrak{g}=\mathfrak{h}+\mathfrak{q}$ (resp. $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$) be the decomposition of g into the +1 and -1 eigenspaces for σ (resp. θ). Let g_{c} denote the complexification of g and put

$$
\begin{array}{rlrl}
\mathfrak{f}^{d} & =\mathfrak{f} \cap \mathfrak{h}+\sqrt{-1}(\mathfrak{p} \cap \mathfrak{h}), & \mathfrak{p}^{d}=\sqrt{-1}(\mathfrak{f} \cap \mathfrak{q})+\mathfrak{p} \cap \mathfrak{q}, \\
\mathfrak{h}^{d} & =\mathfrak{f} \cap \mathfrak{G}+\sqrt{-1}(\mathfrak{f} \cap \mathfrak{q}), & \mathfrak{q}^{d}=\sqrt{-1}(\mathfrak{p} \cap \mathfrak{h})+\mathfrak{p} \cap \mathfrak{q}, \\
\mathfrak{g}^{d} & =\mathfrak{f}^{d}+\mathfrak{p}^{d}=\mathfrak{h}^{d}+\mathfrak{q}^{d} . & &
\end{array}
$$

Let G_{c} be a connected complex Lie group with Lie algebra \mathfrak{g}_{c}, and let $G, K, H, G^{a}, K^{a}, H^{a}, H_{c}$ and K_{c} be the analytic subgroups of G_{c} corresponding to $\mathfrak{g}, \mathfrak{f}, \mathfrak{h}, \mathfrak{g}^{d}, \mathfrak{f}^{d}, \mathfrak{h}^{d}, \mathfrak{h}_{c}$ and \mathfrak{f}_{c}, respectively.

In [OM1], we studied the discrete series for G / H and proved that
$\operatorname{rank}(G / H)=\operatorname{rank}(K / K \cap H)$ if there exist discrete series for G / H. So we may choose a maximal abelian subspace $\mathfrak{a}_{\mathfrak{p}}$ of \mathfrak{p}^{d} contained in $\mathfrak{p}^{d} \cap \mathfrak{h}^{d}$ $(=\sqrt{-1}(\mathfrak{f} \cap \mathfrak{q}))$. Let Σ denote the root system of the pair $\left(g^{d}, \mathfrak{a}_{\mathfrak{p}}\right)$ and fix a positive system Σ^{+}of Σ. Let M be the centrailzer of $\mathfrak{a}_{\mathfrak{p}}$ in G^{d} and put $A_{\mathfrak{p}}=\exp \mathfrak{a}_{\mathfrak{p}}, \mathfrak{H}^{+}=\sum_{\alpha \in \Sigma} \mathfrak{g}^{d}\left(\mathfrak{a}_{\mathfrak{p}} ; \alpha\right), N^{+}=\exp \mathfrak{H}^{+}, \rho=\frac{1}{2} \sum_{\alpha \in \Sigma+} m_{\alpha} \alpha$, $\rho_{t}=\frac{1}{2} \sum_{\alpha \in \Sigma+} m_{\alpha}^{+} \alpha$ where $\mathrm{g}^{d}\left(\mathfrak{a}_{\mathfrak{p}} ; \alpha\right)=\left\{X \in \mathfrak{g}^{d} \mid[Y, X]=\alpha(Y) X\right.$ for all $\left.Y \in \mathfrak{a}_{p}\right\}$, $m_{\alpha}=\operatorname{dim} \mathfrak{g}^{d}\left(\alpha_{\mathfrak{p}} ; \mathfrak{a}\right)$ and $m_{\alpha}^{+}=\operatorname{dim}\left(\mathfrak{g}^{d}\left(\alpha_{\mathfrak{p}} ; \alpha\right) \cap \mathfrak{h}^{d}\right)$ for $\alpha \in \Sigma$. Then $P=$ $M A_{\mathfrak{p}} N^{+}$is a minimal parabolic subgroup of G^{d}. For $\lambda \in\left(\mathfrak{a}_{\mathfrak{p}}\right)_{c}^{*}$, we define the space of hyperfunction sections of class 1 principal series for G^{a} :

$$
\begin{aligned}
\mathscr{B}\left(G^{d} / P ; L_{\lambda}\right)=\{ & f \in \mathscr{B}\left(G^{d}\right) \mid f(x m a n)=a^{2-\rho} f(x) \\
& \text { for } \left.x \in G^{a}, m \in M, a \in A_{\mathfrak{p}} \text { and } n \in N^{+}\right\}
\end{aligned}
$$

where $a^{\lambda-\rho}=e^{\langle\lambda-\rho, \log a\rangle}$.
Let M^{*} denote the normalizer of $\mathfrak{a}_{\mathfrak{p}}$ in K^{d} and $W=M^{*} / M$ the Weyl group of Σ. Then by [M1] § 3 Proposition 2, we can choose elements $w_{1}=1, w_{2}, \cdots, w_{m}$ of M^{*} such that $\left\{H^{d} w_{j} P \mid j=1, \cdots, m\right\}$ is the set of all the closed $H^{d}-P$ double cosets in $G^{a}\left(H^{d} w_{i} P \neq H^{d} w_{j} P\right.$ if $\left.i \neq j\right)$. Put

$$
\begin{aligned}
B_{\lambda}^{j}= & \left\{f \in \mathscr{B}\left(G^{d} / P ; L_{2}\right) \mid \operatorname{supp} f \subset H^{d} w_{j} P \text { and } f\right. \text { transforms according } \\
& \text { to a finite dimensional representation of } H^{d} \text { which can be } \\
& \text { extended to a holomorphic representation of } \left.K_{c}\right\} .
\end{aligned}
$$

In [OM1], we proved that all the K-finite functions of all the discrete sreies for G / H are given by $\left(\eta^{-1} \circ \mathscr{P}_{\lambda}\right) B_{\lambda}^{j}\left(j=1, \cdots, m, \lambda \in L_{K / K \cap H}-\rho\right.$ $+2 \rho_{t},\langle\lambda, \alpha\rangle>0$ for all $\left.\alpha \in \Sigma^{+}\right)$where $\eta: \mathscr{A}_{K}(G / H) \leftrightarrows \mathscr{A}_{H^{d}}\left(G^{d} / K^{d}\right)$ is the Flensted-Jensen's isomorphism, $\mathscr{P}_{\lambda}: \mathscr{B}\left(G^{a} / P ; L_{\lambda}\right) \simeq \mathscr{A}\left(G^{d} / K^{a} ; \mathscr{M}_{\lambda}^{d}\right)$ is the Poisson transform and $L_{K / K \cap H}$ is the lattice in \mathfrak{a}_{p}^{*} generated by the highest weights of finite-dimensional representations of K having a $K \cap H$ fixed vector. (See [OM1] for precise notations.) In [OM1] § 1, we announced a proposition which describes the condition for $B_{\lambda}^{j} \neq\{0\}$. One of the aim of this paper is to prove a part of the following theorem which is a revised version of the proposition. (There was a mistake in the formulation of the proposition. See the remark following Theorem 1.1.)

Since $\mathscr{B}\left(G^{d} / P ; L_{\lambda}\right) \simeq \mathscr{B}\left(G^{d} / w_{j} P w_{j}^{-1} ; L_{w_{j}^{-1}}\right)$ by the identification $x w_{j} P$ $\rightarrow x w_{j} P w_{j}^{-1}$ of G^{d} / P and $G^{d} / w_{j} P w_{j}^{-1}$, we have only to study B_{λ}^{1} for any choice of the positive system Σ^{+}of Σ. Put $\mu_{\lambda}=\lambda+\rho-2 \rho_{t}, m_{\alpha}^{-}=m_{\alpha}-m_{\alpha}^{+}$ and $m_{\alpha}^{0}=m_{\alpha}^{+}-m_{\alpha}^{-}(\alpha \in \Sigma)$. Let \boldsymbol{Z} denote the ring of integers.

Theorem 1.1. Suppose that

$$
\begin{equation*}
\mu_{\lambda} \in L_{K / K \cap H} \tag{1.2}
\end{equation*}
$$

and that

$$
\begin{equation*}
\langle\lambda, \alpha\rangle \geq 0 \quad \text { for all } \alpha \in \Sigma^{+} . \tag{1.3}
\end{equation*}
$$

Then $B_{1}^{1} \neq\{0\}$ if and only if the following condition (P) holds.
(P) Let $\left\{\beta_{1}, \cdots, \beta_{k}\right\}$ be a sequence of roots in Σ^{+}satisfying the following conditions (i) and (ii). Then

$$
\left\langle\mu_{k}, \beta_{k}\right\rangle \geq 0 .
$$

(i) β_{i} is a simple root in the set $\left\{\alpha \in \Sigma^{+} \mid\left\langle\alpha, \beta_{1}\right\rangle=\cdots=\left\langle\alpha, \beta_{k-1}\right\rangle\right.$ $=0\}$.
(ii) Put $n_{i}=\sum_{\alpha \in \Sigma \cap\left(\beta_{i}+Z \beta_{1}+\cdots+Z \beta_{i-1}\right)} m_{\alpha}^{0}$. Then $n_{i}<m_{\beta_{i}}$ for $i=1, \cdots$, $k-1$ and $n_{k}=m_{\beta k}$.

We will prove in this paper that $B_{\lambda}^{1} \neq\{0\}$ implies the condition (P). The converse assertion will be proved in a subsequent paper [OM2].

Remark. (i) The condition (P) for $k=1$ is equivalent to the condition
(1.4) $\left\langle\mu_{\nu}, \alpha\right\rangle \geq 0$ for any simple root α in Σ^{+}satisfying $\mathfrak{g}^{d}\left(\mathfrak{a}_{p} ; \alpha\right) \subset \mathfrak{h}^{a}$
(the condition (a) in [OM1] Theorem (iii)). [OM1] § 1 Proposition is false even for $k=1$. There is a counter example when Σ is of type B_{2} and β_{1} is the long simple root. The condition (a^{\prime}) in the proposition should be replaced by the condition (P).
(ii) Suppose the conditions (1.2), (1.3) and (1.4). If $\left\langle\mu_{2}, \alpha\right\rangle \geq 0$ holds for all $\alpha \in \Sigma\left(\mathfrak{h}^{d} ; \mathfrak{a}_{\mathfrak{p}}\right)^{+}\left(=\Sigma\left(\mathfrak{h}^{d} ; \mathfrak{a}_{\mathfrak{p}}\right) \cap \Sigma^{+}\right)$, for example when Σ is irreducible and is of type $A_{l}(l \geq 2), D_{l}, E_{l}$ or G_{2} (cf. [OM1] Lemma 10), then $B_{\lambda}^{1} \neq\{0\}$ by [OM1] $\S 1$ Remark 2 (i) (Flensted-Jensen's construction of discrete series for G / H in $[\mathrm{F}]$). Hence the conditions (1.2), (1.3) and (1.4) imply the condition (P) in this case.
(iii) When Σ is of type C_{l}, then we will show in [OM2] that the conditions (1.2), (1.3) and (1.4) imply the condition (P) and $B_{2}^{1} \neq\{0\}$.
(iv) Suppose that Σ is of type $B_{l}, B C_{l}$ or F_{4}. Then we will prove in [OM2] that $B_{\lambda}^{1} \neq\{0\}$ if the conditions (1.2), (1.3), (1.4) and the following (1.5) holds.
(1.5) The condition (P) holds for the sequence $\left\{\beta_{1}, \cdots, \beta_{k}\right\}$ consisting only of short roots.
(v) If Σ is of type B_{\imath} or $B C_{\imath}$ and $\left\{\beta_{1}, \cdots, \beta_{k}\right\}$ consists only of short roots, then the condition (ii) in [OM1] Proposition is equivalent to the
condition (ii) in Theorem 1.1. (This is the reason why the authors were not aware of the miswriting in [OM1] Proposition.)

After writing [OM1], Oshima [O] found a theorem describing the precise asymptotic behavior of spherical functions on G / H. By this theorem of Oshima, we have only to prove the following lemma to prove Theorem 1 in [OM1] § 4 instead of Lemma 3 in [OM1], which we announced in [OM1] p. 389 as "(iii) we have obtained a simpler proof of Theorem 1 which does not require case-by-case checking, which will appear in another paper." (We spent 16 pages to prove Lemma 3 in [OM1] by case-by-case checking.)

Let $\mathfrak{a}_{\mathfrak{p}}^{d}$ be a maximal abelian subspace of \mathfrak{p}^{d} such that $\mathfrak{a}=\mathfrak{a}_{\mathfrak{p}}^{d} \cap \mathfrak{q}^{d}$ is maximal abelian in $\mathfrak{p}^{d} \cap \mathfrak{q}^{d}$. Let $\Sigma\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)^{+}$be a $\sigma \theta$-compatible positive system of $\Sigma\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)$ and P^{d} the minimal parabolic subgroup of G^{d} defined by the pair $\left(\mathfrak{a}_{\mathfrak{p}}^{d}, \Sigma\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)^{+}\right)$. Let y be an element of K^{d} such that $\operatorname{Ad}(y) \mathfrak{a}_{\mathfrak{p}}^{d}=\mathfrak{a}_{\mathfrak{p}}$ and that $\Sigma^{+}=\left\{\alpha \circ \operatorname{Ad}(y)^{-1} \mid \alpha \in \Sigma\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)^{+}\right\}$. Then $P=y P^{d} y^{-1}$. Let $\Sigma(\mathfrak{a})^{+}$ denote the positive system of the root system $\Sigma(\mathfrak{a})$ consisting of the nonzero restrictions of roots in $\Sigma\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)^{+}$. Let $\left\{\alpha_{1}, \cdots, \alpha_{i_{0}}\right\}$ denote the set of simple roots in $\Sigma(\mathfrak{a})^{+}$and $\left\{\omega_{1}, \cdots, \omega_{l_{0}}\right\}$ the dual basis of $\left\{\alpha_{1}, \cdots, \alpha_{l_{0}}\right\}$.

Lemma 1.2. Let λ be an element of $\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)^{*}$ such that $\langle\lambda, \alpha\rangle \geq 0$ for all $\alpha \in \Sigma\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)^{+}$and x be an element of G^{d}. Suppose that one of the following three conditions is satisfied.
(i) $\operatorname{rank}(G / H) \neq \operatorname{rank}(K / K \cap H)$.
(ii) $H^{d} x P^{d}$ is not closed in G^{d}.
(iii) $\operatorname{rank}(G / K)=\operatorname{rank}(K / K \cap H)$ and there is a $j(1 \leq j \leq m)$ such that $H^{d} x P^{d}=H^{d} w_{j} y P^{d}$ and that $\langle\lambda, \alpha\rangle=0$ for a simple root α of $\Sigma\left(a_{p}^{d}\right)^{+}$ satisfying $\operatorname{Ad}\left(w_{j} y\right) \mathfrak{g}^{d}\left(\mathfrak{q}_{\mathfrak{p}}^{d} ; \alpha\right) \cap \mathfrak{q}^{d} \neq\{0\}$.

Then there exists $a w \in W\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)$ (the Weyl group of $\left.\Sigma\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)\right)$ such that (a) $H^{d} x\left(P^{d} w P^{d}\right)^{\text {cl }}$ contains inner points in G^{d} and that (b) $\left(\left\langle w^{-1} \lambda, \omega_{1}\right\rangle, \cdots\right.$, $\left.\left\langle w^{-1} \lambda, \omega_{l_{0}}\right\rangle\right) \notin(-\infty, 0)^{l_{0}}$.

We will give a simple proof of this lemma in Appendix.

§ 2. $\quad H^{d}-P$ double cosets in G^{d}

Let \ddagger be a maximal abelian subspace of \mathfrak{p}^{d}, t^{*} the space of real linear forms on t and \mathfrak{g} a subalgebra of \mathfrak{g}^{d}. Then we put $\mathfrak{g}(\mathrm{t} ; \alpha)=$ $\{X \in 引 \mid[Y, X]=\alpha(Y) X$ for all $Y \in t\}$ for $\alpha \in \mathfrak{t}^{*}$ and $\Sigma(\mathfrak{z} ; \mathfrak{t})=\left\{\alpha \in \mathrm{t}^{*} \ldots\right.$ $\{0\} \mid \xi(\mathrm{t} ; \alpha) \neq\{0\}\}$. Then $\Sigma=\Sigma\left(\mathrm{g}^{d} ; \mathfrak{a}_{\mathfrak{p}}\right)$.

Put $\Sigma_{0}^{+}=\left\{\mathfrak{a} \in \Sigma^{+} \mid \alpha \notin \Sigma\right\}$. Let D be an $H^{d}-P$ double coset in G^{d}. Then we define a number $N(D)$ by

$$
N(D)=\frac{1}{2} \#\left(\left(\Sigma_{y}^{+}\right)_{0} \cap \theta\left(\Sigma_{y}^{+}\right)_{0}\right)+\frac{1}{2} \operatorname{dim}\left(\operatorname{Ad}(y) \mathfrak{a}_{\mathfrak{p}} \cap \mathfrak{G}^{d}\right)
$$

where $y \in K^{d}$ is a representative of D such that $\operatorname{Ad}(y) a_{\mathrm{p}}$ is σ-stable and $\left(\Sigma_{y}^{+}\right)_{0}=\left\{\alpha \circ \operatorname{Ad}(y)^{-1} \in \Sigma\left(\mathrm{~g}^{d} ; \operatorname{Ad}(y) a_{p}\right) \mid \alpha \in \Sigma_{0}^{+}\right\}$. By [M1] Theorem 1, we can see that the definition of $N(D)$ does not depend on the choice of $y \in K^{d}$.

Lemma 2.1. Let D and D^{\prime} be $H^{d}-P$ double cosets in G^{d}.
(i) If $D^{\prime} \subset D P_{r}$ for a simple root γ in $\Sigma^{+}\left(P_{r}=P \cup P w_{r} P\right)$. Then

$$
N\left(D^{\prime}\right)-N(D)=\operatorname{sgn}\left(\operatorname{dim} D-\operatorname{dim} D^{\prime}\right)
$$

Here sgn is the usual signature function with the range $\{-1,0,1\}$.
(ii) If $w \in W$ satisfies $l(w)<\left|N(D)-N\left(D^{\prime}\right)\right|$. Then

$$
D(P w P)^{c l} \cap D^{\prime}=\varnothing .
$$

Here $l(w)=\#\left(\Sigma_{0}^{+} \cap-w \Sigma_{0}^{+}\right)$is the length of w.
Proof. (i) follows easily from the argument in [M2] Lemma 3. (ii) is clear from (i) because ($P w P)^{\mathrm{cl}}=P_{r_{1}} P_{r_{2}} \cdots P_{r_{L_{2}(w)}}$ for a minimal expression $w=w_{r_{1}} w_{r 2} \cdots w_{r_{l(w)}} . \quad\left(\gamma_{1}, \cdots, \gamma_{l(w)}\right.$ are simple roots in Σ^{+}.)

Let β be a simple root of Σ^{+}such that $m_{\beta}^{-}>0$. Choose an element X_{β} of $\mathfrak{g}^{d}\left(\mathfrak{a}_{\beta} ; \beta\right) \cap \mathfrak{q}^{d}$ so that $2\langle\beta, \beta\rangle B\left(X_{\beta}, \sigma X_{\beta}\right)=-1$ and put $c_{\beta}=$ $\exp (\pi / 2)\left(X_{\beta}+\sigma X_{\beta}\right), \mathfrak{a}_{p}^{\prime \prime}=\operatorname{Ad}\left(c_{\beta}\right) \mathfrak{a}_{\mathfrak{p}}\left(\right.$ cf. [M1] § 2). Then $\mathfrak{a}_{p}^{\prime \prime}=\mathfrak{a}_{p}^{\prime \prime} \cap \mathfrak{h}^{d}+$ $\mathfrak{a}_{\mathfrak{p}}^{\prime \prime} \cap \mathfrak{q}^{d}, \mathfrak{a}_{\mathfrak{p}}^{\prime \prime} \cap \mathfrak{a}_{\mathfrak{p}}=\mathfrak{a}_{\mathfrak{p}}^{\prime \prime} \cap \mathfrak{h}^{d}$ and $\operatorname{dim}\left(\mathfrak{a}_{\mathfrak{p}}^{\prime \prime} \cap \mathfrak{q}^{d}\right)=1$. Let Y_{β} be the element of \mathfrak{a}_{p} defined by $B\left(Y, Y_{\beta}\right)=\beta(Y)\left(Y \in \mathfrak{a}_{p}\right)$. Then $Y_{\beta}^{\prime}=\operatorname{Ad}\left(c_{\beta}\right) Y_{\beta}$ generates the one-dimensional space $\mathfrak{a}_{\mathfrak{p}}^{\prime \prime} \cap \mathfrak{q}^{d}$.

Let w_{1} be the element of W satisfying

$$
w_{1} \Sigma^{+}=\{\gamma \in \Sigma \mid\langle\gamma, \beta\rangle>0\} \cup\left\{\gamma \in \Sigma^{+} \mid\langle\gamma, \beta\rangle=0\right\} .
$$

Put $P^{\prime \prime}=c_{\beta} w_{1} P w_{1}^{-1} c_{\beta}^{-1}$. Let L_{1} (resp. \mathfrak{I}_{1}) be the centralizer of Y_{β}^{\prime} in G^{d} (resp. \mathfrak{g}^{d}). Put $\mathfrak{Y}=\left[\mathfrak{C}_{1}, \mathfrak{l}_{1}\right]$ and let L be the analytic subgroup of G^{d} for \mathfrak{C}. Let P_{1} (resp. \Re_{1}) be the parabolic subgroup of G^{d} (resp. subalgebra of \mathfrak{g}^{d}) defined by the element Y_{β}^{\prime} (i.e. $\mathfrak{B}_{1}=\sum_{c \geq 0}\left\{X \in \mathfrak{g}^{d} \mid\left[Y_{\beta}^{\prime}, X\right]=c X\right\}$). Then we have the following natural maps ([M2] §4)

$$
\begin{align*}
L \cap H^{d} \backslash L / L \cap P^{\prime \prime} & \underset{q}{\longrightarrow} L_{1} \cap H^{d} \backslash L_{1} / L_{1} \cap P^{\prime \prime} \stackrel{\sim}{\sim} P_{1} \cap H^{d} \backslash P_{1} / P^{\prime \prime} \tag{2.1}\\
& \xrightarrow{\sim} H^{d} \backslash H^{d} P_{1} / P^{\prime \prime}
\end{align*}
$$

given by the inclusions $L \rightarrow L_{1}, P_{1} \rightarrow H^{d} P_{1}$ and the projection $p: P_{1} \rightarrow L_{1}$ with respect to the Langlands decomposition $P_{1}=L_{1} \exp \mathfrak{n}_{1}$. Here \mathfrak{n}_{1} is the nilpotent radical of \Re_{1} and q is surjective.

Lemma 2.2. (i) $H^{d} P_{1}$ is open in G^{d}.
(ii) $\left(L \cap H^{d}\right)\left(L \cap P^{\prime \prime}\right)$ is closed in L.
(iii) $N\left(H^{d} c_{\beta} w_{1} P\right)=N\left(H^{d} P\right)-l\left(w_{\beta} w_{1}\right)$.
(iv) $N(D) \leq N\left(H^{d} P\right)-l\left(w_{\beta} w_{1}\right)$ for any $H^{d}-P$ double coset D contained in $H^{d} P_{1} c_{\beta} w_{1}$.
(v) $\quad N(D)<N\left(H^{d} P\right)-l\left(w_{\beta} w_{1}\right)$ for any $H^{d}-P$ double coset D contained in $H^{d} P_{1} c_{\beta} w_{1}$ such that $\operatorname{dim} D>\operatorname{dim} H^{d} c_{\beta} w_{1} P$.

Proof. (i) $\mathfrak{h}^{d}+\mathfrak{P}_{1}=\mathfrak{h}^{d}+\mathfrak{B}_{1}+\theta \mathfrak{B}_{1}=\mathfrak{g}^{d}$ since $\theta Y_{\beta}^{\prime}=-Y_{\beta}^{\prime}$. Hence $H^{d} P_{1}$ is open in G^{d}.
(ii) Since $\mathfrak{a}_{p}^{\prime \prime} \cap \mathfrak{h}^{d} \subset \mathfrak{C} \cap \mathfrak{P}^{\prime \prime}$ and since $\mathfrak{a}_{\mathfrak{p}}^{\prime \prime} \cap \mathfrak{h}^{d}$ is a maximal abelian subspace of $\mathfrak{C} \cap \mathfrak{p}^{d},\left(L \cap H^{d}\right)\left(L \cap P^{\prime \prime}\right)$ is closed in L by [M1] $\S 3$.
(iii) Since $\#\left(\left(\Sigma_{c_{\beta} w_{1}}^{+}\right)_{0} \cap \theta\left(\Sigma_{c_{\beta} w_{1}}^{+}\right)_{0}\right)=\#\left(\left(\Sigma_{c_{\beta} w_{1}}^{+}\right)_{0} \cap \Sigma\left(\mathfrak{C}_{1} ; \mathfrak{a}_{p}^{\prime \prime}\right)\right)=\# \Sigma_{0}^{+}-$ $2 l\left(w_{1}\right)-1$ by the definition of w_{1}, we have $N\left(H^{d} c_{\beta} w_{1} P\right)=N\left(H^{d} P\right)-l\left(w_{1}\right)$ $-1=N\left(H^{d} P\right)-l\left(w_{\beta} w_{1}\right)$
(iv) $\operatorname{By}(2.1)$, we can choose a representative y of D such that $y \in$ $\left(L \cap K^{d}\right) c_{\beta} w_{1}$ and that $\mathfrak{a}_{\mathfrak{p}}^{y}=\operatorname{Ad}(y) \mathfrak{a}_{\mathfrak{p}}$ is σ-stable. Since $P_{y}=y P y^{-1} \subset P_{1}$, we have $P_{y} \cap \theta P_{y} \subset P_{1} \cap \theta P_{1}=L_{1}$ and therefore

$$
\begin{align*}
\#\left(\left(\Sigma_{y}^{+}\right)_{0} \cap \theta\left(\Sigma_{y}^{+}\right)_{0}\right) & \leq \#\left(\left(\Sigma_{y}^{+}\right)_{0} \cap \Sigma\left(\mathfrak{l}_{1} ; \mathfrak{a}_{p}^{y}\right)\right) \\
& =\#\left(\left(\Sigma_{c_{\beta} w_{1}}^{+}\right)_{0} \cap \Sigma\left(\mathfrak{l}_{1} ; \mathfrak{a}_{p}^{\prime}\right)\right) \tag{2.2}\\
& =\# \Sigma_{0}^{+}-2 l\left(w_{1}\right)-1 .
\end{align*}
$$

Hence $N(D) \leq N\left(H^{a} P\right)-l\left(w_{\beta} w_{1}\right)$.
(v) Let y be as above. Then $\operatorname{dim} D-\operatorname{dim} H^{d} c_{\beta} w_{1} P=\operatorname{dim}\left(L \cap H^{d}\right)$ $\left(L \cap P_{y}\right)-\operatorname{dim}\left(L \cap H^{d}\right)\left(L \cap P^{\prime \prime}\right)$ by (2.1). Thus the assertion follows from (2.2) since the equality holds in (2.2) only when $\mathfrak{a}_{p}^{y} \cap \mathfrak{L} \subset \mathfrak{G}^{d}$ $\left(\Leftrightarrow\left(L \cap H^{d}\right)\left(L \cap P_{y}\right)\right.$ is closed in L by [M1] § 3 Proposition 2) and since all the closed $\left(L \cap H^{d}\right)-\left(L \cap P_{y}\right)$ double cosets in L have the same dimension (cf. [M2] § 5 Lemma 7).
Q.E.D.

For a root $\alpha \in \Sigma\left(\mathfrak{a}_{\mathfrak{p}}\right)$, define a root $\alpha^{\prime \prime}$ of $\Sigma\left(\mathfrak{g}^{d} ; \mathfrak{a}_{\mathfrak{p}}^{\prime \prime}\right)$ by $\alpha^{\prime \prime}=$ $\alpha \circ \operatorname{Ad}\left(c_{\beta}\right)^{-1}$. Then the positive system $\Sigma(\mathfrak{l})^{+}=\Sigma\left(\mathfrak{l} ; \mathfrak{a}_{\mathfrak{p}}^{\prime \prime}\right)^{+}=\left\{\alpha^{\prime \prime} \in \Sigma\left(\mathfrak{l} ; \mathfrak{a}_{\mathfrak{p}}^{\prime \prime}\right) \mid \alpha\right.$ $\left.\in \Sigma^{+}\right\}$of $\Sigma\left(\mathfrak{Y} ; \mathfrak{a}_{\mathfrak{p}}^{\prime \prime}\right)$ corresponds to the minimal parabolic subgroup $L \cap P^{\prime \prime}$ of L because of the choice of $w_{1} . \quad$ Put $m_{\alpha^{\prime \prime}}=\operatorname{dim} \mathrm{g}^{d}\left(\mathfrak{a}_{p}^{\prime \prime} ; \alpha\right), m_{\alpha^{\prime \prime}}^{+}=$ $\operatorname{dim}\left(\mathfrak{g}^{d}\left(\mathfrak{a}_{p}^{\prime \prime} ; \alpha^{\prime \prime}\right) \cap \mathfrak{G}^{d}\right), \quad m_{\alpha^{\prime \prime}}^{-}=m_{\alpha^{\prime \prime}}-m_{\alpha^{\prime \prime}}^{+}$and $m_{\alpha^{\prime \prime}}^{0}=m_{\alpha^{\prime \prime}}^{+}-m_{\alpha^{\prime \prime}}^{-}$for $\alpha^{\prime \prime} \in$ $\Sigma\left(\mathfrak{Y} ; \mathfrak{a}_{\mathfrak{p}}^{\prime \prime}\right)$. Put $\rho^{L}=\frac{1}{2} \sum_{\alpha^{\prime \prime} \in \Sigma(\mathfrak{l})+} m_{\alpha^{\prime \prime}} \alpha^{\prime \prime}$ and $\rho_{t}^{L}=\frac{1}{2} \sum_{\alpha^{\prime \prime} \in \Sigma(\mathfrak{l})+} m_{\alpha^{\prime \prime}}^{+} \alpha^{\prime \prime}$.

Lemma 2.3. (i) Let α be an element of \mathfrak{a}_{p}^{*} such that $\langle\alpha, \beta\rangle=0$. Then $\sum_{r \in \Sigma \cap(\alpha+\boldsymbol{R} \beta)} m_{r}^{0}=m_{\alpha^{\prime \prime}}^{0} . \quad$ (We put $m_{\alpha^{\prime \prime}}^{0}=0$ when $\alpha \notin \Sigma . \quad \boldsymbol{R}$ is the field of real numbers.)
(ii) $\left.\quad\left(2 \rho_{t}-\rho\right)\right|_{\alpha_{p}^{\prime \prime} \cap t}=2 \rho_{t}^{L}-\rho^{L}$.

Proof. (i) Put $V=\sum_{\gamma \in \Sigma \cap\left(\alpha+\boldsymbol{R}^{\beta}\right)} \mathfrak{g}^{d}\left(\mathfrak{a}_{p} ; \gamma\right)$. Then $\sum_{r \in \Sigma \cap\left(\alpha+\boldsymbol{R}^{\beta}\right)} m_{r}^{0}=$ $\operatorname{dim}\left(V \cap \mathfrak{g}^{d}\right)-\operatorname{dim}\left(V \cap \mathfrak{q}^{d}\right)$. On the other hand, it is clear that $V=$ $\sum_{r^{\prime \prime} \in \sum\left(\mathfrak{a}_{p}^{\prime \prime}\right) \cap\left(\alpha^{\prime \prime}+\boldsymbol{R} \beta^{\prime \prime}\right)} \mathfrak{g}^{d}\left(\mathfrak{a}_{\mathfrak{p}}^{\prime \prime} ; \gamma^{\prime \prime}\right)$. Since $\theta \mathfrak{g}^{d}\left(\mathfrak{a}_{\mathfrak{p}}^{\prime \prime} ; \alpha^{\prime \prime}+c \beta^{\prime \prime}\right)=\mathfrak{g}^{d}\left(\mathfrak{a}_{\mathfrak{p}}^{\prime \prime} ; \alpha^{\prime \prime}-c \beta^{\prime \prime}\right)$, we have

$$
\begin{aligned}
& \operatorname{dim}\left(\left(\mathfrak{g}^{d}\left(\mathfrak{a}_{\mathfrak{p}}^{\prime \prime} ; \alpha^{\prime \prime}+c \beta^{\prime \prime}\right)+\mathfrak{g}^{d}\left(\mathfrak{a}_{\mathfrak{p}}^{\prime \prime} ; \alpha^{\prime \prime}-c \beta^{\prime \prime}\right)\right) \cap \mathfrak{h}^{d}\right) \\
& \quad=\operatorname{dim}\left(\left(\mathfrak{g}^{d}\left(\mathfrak{a}_{\mathfrak{p}}^{\prime \prime} ; \alpha^{\prime \prime}+c \beta^{\prime \prime}\right)+\mathfrak{g}^{d}\left(\mathfrak{a}_{\mathfrak{p}}^{\prime \prime} ; \alpha^{\prime \prime}-c \beta^{\prime \prime}\right)\right) \cap \mathfrak{q}^{d}\right)
\end{aligned}
$$

when $c \neq 0$. Hence $\operatorname{dim}\left(V \cap \mathfrak{G}^{d}\right)-\operatorname{dim}\left(V \cap \mathfrak{q}^{d}\right)=m_{\alpha^{\prime \prime}}^{0}$.
(ii) Since $2 \rho_{t}-\rho=\sum_{\alpha \in \Sigma+} m_{\alpha}^{0}$ and since $\Sigma \cap(\gamma+\boldsymbol{R} \beta) \subset \Sigma^{+}$if $\gamma \in \Sigma^{+}$ $-\{\beta, 2 \beta\}$, the assertion follows easily from (i).
Q.E.D.

§ 3. Proof of $B_{\lambda}^{1} \neq\{0\} \Rightarrow(\mathbf{P})$

Suppose that $B_{\lambda}^{1} \neq\{0\}$ and let $\left\{\beta_{1}, \cdots, \beta_{k}\right\}$ be a sequence of roots satisfying the conditions (i) and (ii) in (P). Then we want to prove that $\left\langle\mu_{\lambda}, \beta_{k}\right\rangle \geq 0$. We will prove this assertion by induction on the rank l of \mathfrak{g}^{d}.

If $k=1$, then the condition (ii) implies that $\mathfrak{g}^{d}\left(\mathfrak{a}_{\mathfrak{p}} ; \beta_{1}\right) \subset \mathfrak{h}^{d}$. In this case we have already proved in [OM1] Theorem (iii) (a) that $\left\langle\mu_{\lambda}, \beta_{1}\right\rangle=$ $\left\langle\lambda-\rho, \beta_{1}\right\rangle \geq 0$.

So we may assume that $k>1$. Then we have $\mathfrak{g}^{a}\left(\mathfrak{a}_{p} ; \beta_{1}\right) \not \subset \mathfrak{h}^{d}$. Write $\beta=\beta_{1}$ and define $c_{\beta}, \mathfrak{a}_{p}^{\prime \prime}, w_{1}, P_{1}, L$ and $P^{\prime \prime}$ as in $\S 2$.

Put $\mu=w_{1}^{-1} w_{\beta} \lambda$ and $U=G^{d}-\bigcup_{w^{\prime}<w_{\beta} w_{1}} H^{d}\left(P w^{\prime} P\right)^{\mathrm{cl}}$. Then applying [O] Lemma 3.2 to a nonzero function f in B_{λ}^{1}, we get a function $g \in$ $\mathscr{B}_{H^{d}}\left(U / P ; L_{\mu}\right)$ such that supp $g=U \cap H^{d}\left(P w_{\beta} w_{1} P\right)^{\text {cl }}$. Here $\mathscr{B}_{H^{d}}\left(U / P ; L_{\mu}\right)$ is the space of H^{d}-finite hyperfunctions h on the open subset U of G^{d} satisfying $h(x m a n)=a^{\mu-\rho} h(x)$ for any $(x, m, a, n) \in U \times M \times A \times N$ and the hyperfunction g is given as the image of $f \in B_{\lambda}^{1}$ by the "local intertwining operator" corresponding to $w^{-1} w_{\beta}$.

On the other hand, by Lemma 2.1 (ii) and Lemma 2.2 we have

$$
\begin{gather*}
H^{d} P_{1} c_{\beta} w_{1} \subset U, \tag{3.1}\\
H^{d} P_{1} c_{\beta} w_{1} \cap H^{d}\left(P w_{\beta} w_{1} P\right)^{\mathrm{cl}} \supset H^{d} c_{\beta} w_{1} P \tag{3.2}
\end{gather*}
$$

and that
(3.3) every $H^{d}-P$ double coset contained in $H^{d} P_{1} c_{\beta} w_{1} \cap H^{d}\left(P w_{\beta} w_{1} P\right)^{\text {cl }}$ has the same dimension as $H^{d} c_{\beta} w_{1} P$.

So by (3.1), (3.2) and (3.3), we can define the restriction g^{\prime} of g to $H^{d} P_{1} c_{\beta} w_{1}$ such that supp $g^{\prime} \supset H^{d} c_{\beta} w_{1} P$ and that $\operatorname{dim} \operatorname{supp} g^{\prime}=\operatorname{dim} H^{d} c_{\beta} w_{1} P$.

Put $g^{\prime \prime}(x)=g^{\prime}\left(x c_{\beta} w_{1}\right)$ for $x \in H^{d} P_{1}$ and $\mu^{\prime \prime}=\mu \circ \operatorname{Ad}\left(c_{\beta} w_{1}\right)^{-1} \in\left(\mathfrak{a}_{p}^{\prime \prime}\right)^{*}$. Then $g^{\prime \prime} \in \mathscr{B}_{H^{d}}\left(H^{d} P_{1} / P^{\prime \prime} ; L_{\mu^{\prime \prime}}\right)$ and supp $g^{\prime \prime} \supset H^{d} P^{\prime \prime}$. Since $P_{1}=L P^{\prime \prime}$ and since $g^{\prime \prime}$ is left H^{d}-finite and right $P^{\prime \prime}$-finite, we can define $\left.g^{\prime \prime}\right|_{L} \in$ $\mathscr{B}_{L \cap H^{d}}\left(L / L \cap P^{\prime \prime} ; L_{\mu^{\prime \prime}}\right)$ so that $\left.\operatorname{supp} g^{\prime \prime}\right|_{L} \supset\left(L \cap H^{d}\right)\left(L \cap P^{\prime \prime}\right)$ and that $\left.\operatorname{dim} \operatorname{supp} g^{\prime \prime}\right|_{L}=\operatorname{dim}\left(L \cap H^{d}\right)\left(L \cap P^{\prime \prime}\right)$. (If necessary, we take a left $H^{d_{-}}$ translation of $g^{\prime \prime}$ instead of $g^{\prime \prime}$ itself.)

Define the roots $\beta_{2}^{\prime \prime}, \cdots, \beta_{k}^{\prime \prime}$ of $\Sigma\left(\mathfrak{l} ; \mathfrak{a}_{\mathfrak{p}}^{\prime \prime}\right)$ as in $\S 2$. Then it follows from Lemma 2.3 (i) that

$$
\begin{aligned}
& n_{i}=\sum_{\alpha \in \Sigma \cap\left(\beta_{i}+Z_{\beta_{1}}+\cdots+Z_{i-1}\right)} m_{\alpha}^{0} \\
& =\sum_{\alpha^{\prime \prime} \in \Sigma\left(\alpha_{p}^{\prime \prime}\right) \cap\left(\beta_{i}^{\prime \prime}+Z_{\beta_{2}^{\prime}}+\cdots+Z^{\prime} \beta_{i-1}^{\prime}\right)} m_{\alpha^{\prime \prime}}^{0}
\end{aligned}
$$

Thus the sequence $\left\{\beta_{2}^{\prime \prime}, \cdots, \beta_{k}^{\prime \prime}\right\}$ of roots in $\Sigma(\mathfrak{l})^{+}$satisfies the conditions (i) and (ii) in (P) for the Lie algebra \mathfrak{l}. So the assumption of induction implies

$$
\left\langle\mu^{\prime \prime}+\rho^{L}-2 \rho_{t}^{L}, \beta_{k}^{\prime \prime}\right\rangle \geq 0
$$

because of the existence of the hyperfunction $\left.g^{\prime \prime}\right|_{L}$ on L which we considered above. It is clear that $\left.\lambda\right|_{a_{p}^{\prime \prime} \cap r}=\left.\mu^{\prime \prime}\right|_{a_{p}^{\prime \prime} \cap r}$ from the definition of $\mu^{\prime \prime}$. Thus we have

$$
\left\langle\mu_{\lambda}, \beta_{k}\right\rangle=\left\langle\lambda+\rho-2 \rho_{t}, \beta_{k}\right\rangle=\left\langle\mu^{\prime \prime}+\rho^{L}-2 \rho_{t}^{L}, \beta_{k}^{\prime \prime}\right\rangle \geq 0
$$

by Lemma 2.3 (ii) and therefore we have proved that the condition (P) is satisfied.
Q.E.D.

Appendix.

Proof of Lemma 1.2. By [M1] Theorem 1, there exist an $h \in H^{d}$ and a $p \in P^{d}$ such that $x^{\prime}=h x p \in K^{d}$ and that $\mathfrak{a}_{\mathfrak{p}}^{\prime}=\operatorname{Ad}\left(x^{\prime}\right) \mathfrak{a}_{\mathfrak{p}}^{d}$ is σ-stable. If either of the conditions (i) or (ii) is satisfied, then

$$
\begin{equation*}
\mathfrak{a}_{\mathfrak{p}}^{\prime} \cap \mathfrak{q}^{d} \neq\{0\} \tag{A.1}
\end{equation*}
$$

by [M1] § 3 Proposition 2. The case (iii) is reduced to the case (ii) by a similar argument as in [OM1] §5. So we may assume (A.1) in the followings.

We may moreover assume that $\mathfrak{a}_{\mathfrak{p}}^{\prime} \cap \mathfrak{q}^{d} \subset \mathfrak{a}$ by [M1] Theorem 2. Put $t=\operatorname{dim}\left(\mathfrak{a}_{\mathfrak{p}}^{\prime} \cap \mathfrak{q}^{d}\right)$ and choose an orthogonal basis $\left\{Y_{1}, \cdots, Y_{l}\right\}$ of \mathfrak{a}_{p}^{d} so that $\left\{Y_{1}, \cdots, Y_{t}\right\}$ and $\left\{Y_{1}, \cdots, Y_{i_{0}}\right\}$ are the basis of $\mathfrak{a}_{\mathfrak{p}}^{\prime} \cap \mathfrak{q}^{d}$ and \mathfrak{a}, respectively.

Let w_{1} be the element of $W\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)$ such that $w_{1} \Sigma\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)^{+}$is the lexicographic order defined by the sequence $\left\{Y_{1}, \cdots, Y_{\imath}\right\}$. (i.e. $\alpha \in w_{1} \Sigma\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)^{+}$if and only if there exists a $u(1 \leq u \leq l)$ such that $\alpha\left(Y_{1}\right)=\cdots=\alpha\left(Y_{u-1}\right)=0$ and that $\alpha\left(Y_{u}\right)>0$.) Since $w_{1} \Sigma\left(\mathfrak{a}_{p}^{d}\right)^{+}$is $\sigma \theta$-compatible, $H^{d} w_{1} P^{d}$ is open in G^{d} by [M1] §3 Proposition 1. Let w_{2} be the element of $W\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)$ such that $w_{2} \Sigma\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)^{+}=-w_{1} \Sigma\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)^{+}$. Then $H^{d} w_{2} P^{d}$ is also open in G^{d}.

By the choice of w_{1}, there exists an $i\left(1 \leq i \leq l_{0}\right)$ such that $w_{1} \omega_{i} \in$ $\mathfrak{a}_{\mathfrak{p}}^{\prime} \cap \mathfrak{q}^{d}$. There also exists a $j\left(1 \leq j \leq l_{0}\right)$ such that $w_{2} \omega_{j}=-w_{1} \omega_{i}$.

First consider the case $\left\langle\lambda, \operatorname{Ad}\left(x^{\prime-1} w_{1}\right) \omega_{i}\right\rangle \geq 0$. Choose $w_{3} \in W\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)$ so that $\operatorname{Ad}\left(w_{3}^{-1} x^{\prime-1} w_{1}\right) \omega_{i}$ is dominant for $\Sigma\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)^{+}$. Then $w_{1}^{-1} x^{\prime} w_{3}$ is contained in the parabolic subgroup $P_{\omega_{i}}$ of G^{d} defined by the element $\omega_{i} \in \mathfrak{a} \subset \mathfrak{a}_{\mathfrak{p}}^{d}$. Hence

$$
\begin{equation*}
w_{1}^{-1} x^{\prime} w_{3} P^{d} w_{4} P^{d} \ni 1 \quad \text { and } \quad w_{4} \omega_{i}=\omega_{i} \tag{A.2}
\end{equation*}
$$

for some $w_{4} \in W\left(\mathfrak{a}_{\mathfrak{p}}^{d}\right)$. Since $w_{1}^{-1} x^{\prime} w_{3} \in K^{d}$, we have

$$
\begin{equation*}
w_{1}^{-1} x^{\prime} w_{3} \in P_{\omega_{i}} \cap \sigma P_{\omega_{i}}=Z_{G a}\left(\omega_{i}\right) \tag{A.3}
\end{equation*}
$$

There exists a $w_{3}^{\prime} \in W\left(\mathfrak{r}_{\mathfrak{p}}^{d}\right)$ such that

$$
\begin{equation*}
w_{3}^{\prime} \leq w_{3} \text { and that } w_{3} P^{d} w_{4} P^{d} \subset\left(P^{d} w_{3}^{\prime} w_{4} P^{d}\right)^{\mathrm{cl}} \tag{A.4}
\end{equation*}
$$

Put $w=w_{3}^{\prime} w_{4}$. Then we have

$$
H^{d} x\left(P^{d} w P^{d}\right)^{c l}=H^{d} x^{\prime}\left(P^{d} w P^{d}\right)^{c l} \supset H^{d} x^{\prime} w_{3} P^{d} w_{4} P^{d} \supset H^{d} w_{1} P^{d}
$$

by (A.2) and (A.4). On the other hand,

$$
\begin{aligned}
\left\langle w^{-1} \lambda, \omega_{i}\right\rangle & =\left\langle w_{4}^{-1} w_{3}^{\prime-1} \lambda, \omega_{i}\right\rangle \\
& =\left\langle\lambda, w_{3}^{\prime} \omega_{i}\right\rangle \\
& \geq\left\langle\lambda, w_{3} \omega_{i}\right\rangle \\
& =\left\langle\lambda, \operatorname{Ad}\left(x^{\prime-1} w_{1}\right) \omega_{i}\right\rangle \\
& \geq 0
\end{aligned}
$$

by (A.2) and (A.3).
In the case that $\left\langle\lambda, \operatorname{Ad}\left(x^{\prime-1} w_{1}\right) \omega_{i}\right\rangle<0$, we can prove the assertion by the same argument as above because $\left\langle\lambda, \operatorname{Ad}\left(x^{\prime-1} w_{2}\right) \omega_{j}\right\rangle>0$. Q.E.D.

References

[F] M. Flensted-Jensen, Discrete series for semisimple symmetric spaces, Ann. of Math., 111 (1980), 253-311.
[M1] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan, 31 (1979), 331-357.
[M2] —— Closure relations for orbits on affine symmetric spaces under the action of minimal parabolic subgroups, Advanced Studies in Pure Math., this volume, 541-559.
[O] T. Oshima, Asymptotic behavior of spherical functions on semisimple symmetric spaces, Advanced Studies in Pure Math., this volume, 561601.
[OM1] T. Oshima and T. Matsuki, A description of Discrete series for semisimple symmetric spaces, Advanced Studies in Pure Math., 4 (1984), 331-390.
[OM2] _- A description of discrete series for semisimple symmetric spaces III, in preparation.

Department of Mathematics
College of General Education
Tottori University
Tottori, 680
Japan

