Fundamental Groups of Semisimple Symmetric Spaces

Jiro Sekiguchi

Dedicated to Professor R. Takahashi on his 60th birthday

Abstract

The aim of this report is to determine the fundamental group of an arbitrary irreducible semisimple symmetric space G / H when G is a connected semisimple Lie group with trivial center. The fundamental group $\pi_{1}(G / H)$ is well-known if G / H is Riemannian. Therefore, we restrict our attention to the case where G / H is non-Riemannian so both G and H are not compact. The result is summarized in Table 4.

§ 1. Preliminaries

Let g be a semisimple Lie algebra and let σ be its involution. Then we obtain a direct sum decomposition $\mathfrak{g}=\mathfrak{h}+\mathfrak{q}$ for σ. The pair $(\mathfrak{g}, \mathfrak{h})$ is called a (semisimple) symmetric pair. Let θ be a Cartan involution of \mathfrak{g} commuting with σ and let $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ be the corresponding Cartan decomposition. Since $\theta \sigma$ is also an involution of g, we obtain a direct sum decomposition $\mathfrak{g}=\mathfrak{h}^{a}+\mathfrak{q}^{a}$ for $\theta \sigma$. The pair $\left(\mathfrak{g}, \mathfrak{h}^{a}\right)$ is the associated symmetric pair of $(\mathfrak{g}, \mathfrak{h})$ (cf. [B, p. 102]). Let G be the adjoint group Int \mathfrak{g}. Then σ is lifted to G. We denote its lifting by the same letter. Let K be the maximal compact subgroup of G corresponding to \mathfrak{f}. Put $G^{\sigma}=\{g \in G ; \sigma(g)=g\}$ and $G^{\theta \sigma}=\{g \in G ; \theta \sigma(g)=g\}$. Then G / G^{σ} and $G / G^{\theta \sigma}$ are (semisimple) symmetric spaces. By definition, \mathfrak{h} and \mathfrak{h}^{a} are the Lie algebra of G^{σ} and that of $G^{\theta \sigma}$, respectively.

The aim of this report is to answer the following problem.
Problem. Determine the fundamental group of G / G^{σ}.
A symmetric pair $(\mathfrak{g}, \mathfrak{h})$ is irreducible if the representation of \mathfrak{h} on \mathfrak{q} via the adjoint representation is irreducible. Moreover, a symmetric space G / H is irreducible if the corresponding symmetric pair is irreducible. Then it is sufficient to treat irreducible symmetric spaces to answer Problem. At this stage, we recall the following lemma (cf. [B, Prop. 53.2]).

Lemma 1. The symmetric space G / G^{σ} is a vector bundle over K / K^{σ} with fibres isomorphic to $\mathfrak{p} \cap \mathfrak{q}$.

Corollary. $\quad \pi_{1}\left(G / G^{\sigma}\right) \simeq \pi_{1}\left(G / G^{\theta \sigma}\right) \simeq \pi_{1}\left(K / K^{\sigma}\right)$.
Proof. By Lemma 1, we have $\pi_{1}\left(G / G^{\sigma}\right) \simeq \pi_{1}\left(K / K^{\sigma}\right)$. On the other hand, $K^{\sigma}=K^{\sigma \theta}$. This implies that $\pi_{1}\left(G / G^{\theta \sigma}\right) \simeq \pi_{1}\left(K / K^{\sigma}\right)$.

We note some remarks on this subject.
(i) If G / G^{σ} is an irreducible compact symmetric space, $\pi_{1}\left(G / G^{\sigma}\right)$ is determined by E. Cartan. (For the sake of completeness, we contain this result in Tables 1, 2).
(ii) If G / G^{σ} is a Riemannian symmetric space of non-compact type, then $\pi_{1}\left(G / G^{\sigma}\right)=1$. This follows from the Cartan decomposition $G=K \exp (\mathfrak{p})$.
(iii) Consider the case where g is a complex simple Lie algebra and \mathfrak{G} is its real form. Then \mathfrak{f} is a compact real form of g. So we know $\pi_{1}\left(G / G^{\sigma}\right) \simeq \pi_{1}\left(K / K^{\sigma}\right)$ from Corollary and (i).
(iv) Let $(\mathfrak{g}, \mathfrak{h})$ be a symmetric pair considered in (iii). In this case, \mathfrak{h}^{a} is a complexification of $\mathfrak{f} \cap \mathfrak{h}=\mathfrak{f} \cap \mathfrak{G}^{a}$. So $\pi_{1}\left(G / G^{\theta \sigma}\right) \simeq \pi_{1}\left(G / G^{\sigma}\right)$ is also determined. Note that there is a real form \mathfrak{g}_{0} of \mathfrak{g} such that $\mathfrak{f} \cap \mathfrak{G}$ is its maximal compact subalgebra. So $G / G^{\theta \sigma}$ is regarded as a "complexification of a Riemannian symmetric space".
(v) Consider the case where G / G^{σ} is a group space. In this case, there is a simple Lie algebra \mathfrak{g}_{1} such that $\mathfrak{g}=\mathfrak{g}_{1} \times \mathfrak{g}_{1}$ and $\sigma(x, y)=(y, x)$ for any $x, y \in g_{1}$. Let G_{1} be the adjoint group of g_{1}. Then $G=G_{1} \times G_{1}$ and the map of G to G_{1} defined by $(g, h) \mapsto g h^{-1}$ induces an isomorphism of G / G^{σ} to G_{1}. Then $\pi_{1}\left(G / G^{\sigma}\right)=\pi_{1}\left(G_{1}\right)$ is determined by E. Cartan. (For the sake of completeness, we also summarize the fundamental groups of connected non-compact real simple Lie groups with trivial center in Table 3.)

According to (i)-(v), it is sufficient to restrict our attention to the case where g is a non-compact real form of a complex simple Lie algebra and \mathfrak{h} is not a maximal compact subalgebra of \mathfrak{g}. In the sequel, we always assume this condition.

In general, K is not the adjoint group of \mathfrak{f}. But, if the Cartan involution θ of \mathfrak{g} is an outer automorphism, then \mathfrak{f} is semisimple and K is its adjoint group. So the determination of $\pi_{1}\left(K / K^{\sigma}\right)$ is reduced to the compact case (i). Next consider the case where θ is an inner automorphism. In this case, since K is not necessarily the adjoint group of \mathfrak{f}, in order to determine $\pi_{1}\left(K / K^{\sigma}\right)$, we need its concrete form (cf. Table 3). Let \mathfrak{f}_{s} be the semisimple part of \mathfrak{f}. If $\mathfrak{f}=\mathfrak{f}_{s}$, that is, \mathfrak{f} is semisimple but not abelian, then $\pi_{1}\left(K / K^{\sigma}\right)$ is a finite group. On the other hand, if $\mathfrak{f} \neq \mathfrak{f}_{s}$, that
is, \mathfrak{f} is reductive but not semisimple, then $\pi_{1}\left(K / K^{\sigma}\right)$ is not necessarily a finite group. In fact, the center of K is a one dimensional torus. In this case, we need some computation to determine the torsion part of $\pi_{1}\left(K / K^{\sigma}\right)$. For the reasons stated above, it is better to decompose into the following cases:

Case (I) The Cartan involution θ is an outer automorphism of g.
Case (IIa) The Cartan involution θ is an inner automorphism of g and K is simple but not abelian.

Case (IIb) The Cartan involution θ is an inner automorphism of g and K is semisimple but not simple.

Case (IIIa) $\mathfrak{f}_{s} \neq \mathfrak{f}$ and \mathfrak{f}_{s} is simple.
Case (IIIb) $\mathfrak{f}_{s} \neq \mathfrak{f}$ and \mathfrak{f}_{s} is semisimple but not simple.
We are going to explain how $\pi_{1}\left(G / G^{\sigma}\right)$ is computed shortly. As explained before, the determination of $\pi_{1}\left(G / G^{\sigma}\right)$ for Case (I) is easy. For the other cases, we compute $\pi_{1}\left(G / G^{\sigma}\right)$ by case by case discussion using the concrete form of K. In almost all cases, it is sufficient to investigate the compact symmetric space K / K^{σ} instead of G / G^{σ} and it is not difficult to compute $\pi_{1}\left(K / K^{\sigma}\right)$. But in the case where g is one of the exceptional Lie algebras $e_{7(-5)}, e_{8(8)}$, we cannot determine $\pi_{1}\left(G / G^{\sigma}\right)$ if we only consider K / K^{σ}. The reason is as follows. Consider the semispinor group $S s(4 n)$ ($n>2$). Then there are two involutions τ, τ^{\prime} with the following property: Put $X=S s(4 n) / S s(4 n)^{\tau}, X^{\prime}=S s(4 n) / S s(4 n)^{\tau^{\prime}}$. Then X is isomorphic to $S O(4 n) / U(2 n)$ and therefore is simply connected and $X \rightarrow X^{\prime}$ is a double covering. On the other hand, if g is one of $e_{7(-5)}, e_{8(8)}$, the maximal compact subgroup K is related with semispinor groups. In fact, $K=$ $(S s(12) \times S U(2)) / Z_{2}$ if $g=e_{7(-5)}$, and $K=S s(16)$ if $g=e_{8(8)}$ (cf. Table 3). These two cases are discussed in [S].

A classification of simple Lie groups are accomplished by GotoKobayashi [GK]. Their classification is based on the detailed study on the fundamental groups of adjoint groups. For a similar reason, it is possible to classify the global irreducible semisimple symmetric spaces by using the results in Table 4.

§ 2. The case of universal linear groups

If G is a real form of a simply connected complex simple Lie group, the fundamental group of G / G^{σ} is computed in a simple way for any involution σ of G. In this section, we shall discuss this subject.

Retain the notation of $\S 1$. Let g be a real semisimple Lie algebra and let g_{c} be its complexification. Let G_{c} be a simply connected Lie
group with the Lie algebra g_{c}. Then the real analytic subgroup of G_{c} corresponding to g is called a universal linear group corresponding to g and is denoted by $G_{u l}$. By definition, for a given Lie algebra, its universal linear group is unique up to isomorphism. Let $K_{u l}$ be a maximal compact subgroup of $G_{u l}$. Since $K_{u l}$ is semisimple or reductive, put $L=$ [$K_{u l}, K_{u l}$] and $T=$ the center of $K_{u l} . \quad$ By definition, $K_{u l}=L T$.

Proposition 2. Assume that \mathfrak{g}_{c} is simple.
(i) If $K_{u l}$ is semisimple, then $\tilde{G}=G_{u l}$ or \widetilde{G} is a double covering of $G_{u l}$, where \widetilde{G} is the universal cover of G.
(ii) If K is not semisimple, then L is simply connected.

This result is well-known but the author does not find its proof in a literature. (One of its proofs is to check all the cases by using Table 3.)

Let σ be an involution of \mathfrak{g} and let ($\mathfrak{g}, \mathfrak{h}$) be the corresponding symmetric pair. Constant use of the notation of $\S 1$. Then \mathfrak{f} is a maximal compact subalgebra of \mathfrak{g} such that $\sigma(\mathfrak{f})=\mathfrak{f}$. By definition, σ can be lifted to $G_{u l}$ and \widetilde{G}. So we denote the liftings by the same letter. We may take $K_{u t}$ such that \mathfrak{f} is its Lie algebra.

Proposition 3. Assume that \mathfrak{g}_{c} is simple. Let σ be an involution of \mathfrak{g} such that $\sigma(\mathfrak{f})=\mathfrak{f}$.
(i) If \mathfrak{f} is semisimple, then $G_{u i} /\left(G_{u i}\right)_{0}^{\sigma}$ is simply connected and $\#\left(\left(G_{u l}\right)^{\sigma} /\left(G_{u l}\right)_{0}^{\sigma}\right) \leq 2$. Here $\left(G_{u l}\right)_{0}^{\sigma}$ is the identity component of $\left(G_{u l}\right)_{0}^{\sigma}$.
(ii) If \mathfrak{f} is not semisimple and $\sigma(t)=t$ for all $t \in T$, then $G_{u l} /\left(G_{u l}\right)^{\sigma}$ is simply connected.
(iii) If \mathfrak{f} is not semisimple and $\sigma(t)=t^{-1}$ for all $t \in T$, then $\pi_{1}\left(G /\left(G_{u}\right)_{0}^{\sigma}\right)$ $=Z$.

Proof. First note that $\tilde{G} / \tilde{G}^{\sigma}$ is simply connected (cf. [L, Chap. IV, Th. 3.5]). In particular \widetilde{G}^{σ} is connected.
(i) If \widetilde{G} is linear, we have nothing to prove. So assume that \widetilde{G} is not linear. Then according to Proposition 2, (i), there is a central element $z \in \widetilde{G}$ such that $\tilde{G} /\{1, z\}=G_{u l}$. Since σ induces involutions on both \widetilde{G} and $G_{u l}$, we find that $\sigma(z)=z$. Put $H=\left\{g \in \widetilde{G}: g^{-1} \sigma(g) \in\{1, z\}\right\}$. By definition, $\widetilde{G} / H \simeq G_{u l} /\left(G_{u l}\right)^{\sigma}$. Now suppose that there is an element $g_{0} \in \widetilde{G}$ such that $\sigma\left(g_{0}\right)=z g_{0}$. Then $H=\widetilde{G}^{\sigma} \cup g_{0} \widetilde{G}^{\sigma}$. So we conclude that $\left(G_{u l}\right)^{\sigma}$ has at most two connected components. Moreover, since $G_{u l} /\left(G_{u l}\right)_{0}^{\sigma}$ $\simeq \widetilde{G} / \widetilde{G}^{\sigma}$, we find that $G_{u l} /\left(G_{u l}\right)^{\sigma}$ is simply connected. Next consider the case where $\sigma(g) \neq z g$ for all $g \in \widetilde{G}$. Then $H=\widetilde{G}^{\sigma}$ and therefore $G_{u l} /\left(G_{u l}\right)_{0}^{\sigma}$ is simply connected.
(ii) From the assumption, we find that $(T L)^{\sigma}=T L^{\sigma}$. Then $K_{u l} /\left(K_{u l}\right)^{\sigma} \simeq L / L^{\sigma}$. It follows from Proposition 2, (ii) and a theorem of
E. Cartan on compact symmetric spaces that L / L^{σ} is simply connected. Hence $K_{u l} /\left(K_{u l}\right)^{\sigma}$ and therefore $G_{u l} /\left(G_{u l}\right)^{\sigma}$ is simply connected.
(iii) By definition, L^{σ} is a maximal compact subgroup of $\left(G_{u \tau}\right)_{0}^{\sigma}$. Hence $\pi_{1}\left(G_{u l} /\left(G_{u l}\right)_{0}^{\sigma}\right) \simeq \pi_{1}\left(T L / L^{\sigma}\right)$. By the assumption, T is a one dimensional torus. Therefore we identify T with $\{z \in C ;|z|=1\}$. Define a map ϕ of $T \times L / L^{\sigma}$ to $T L / L^{\sigma}$ by $\phi(t, m L)=t m L$. This is a finite covering. Take an element $x_{0}=L^{\sigma}$ of L / L^{σ}. Then there is an integer $n>0$ such that $\phi^{-1}\left(x_{0}\right)=\left\{y_{k}=\left(t_{0}^{k}, x_{k} L^{\sigma}\right) ; 0 \leq k \leq n\right\}$, where $t_{0}=\exp (2 \pi i / n)$. Now take a path $c(\theta)=\left(c_{1}(\theta), c_{2}(\theta)\right)(0 \leq \theta<1)$ on $T \times L / L^{\sigma}$ such that $c(j)=y_{j}$ $(j=0,1)$. We may take $c_{1}(\theta)=\exp (2 \pi i \theta / n)$. Then $\phi \circ c$ defines a homotopy class $\left[\phi \circ c\right.$] of $\pi_{1}\left(T L / L^{\sigma}, x_{0}\right)$. In virtue that $\pi_{1}\left(L / L^{\sigma}\right)=1, \pi_{1}(T)=Z$, we find that $[\phi \circ c]$ is a generator of $\pi_{1}\left(T L / L^{\sigma}, x_{0}\right)$ and furthermore, $Z[\phi \circ c]$ $=Z$. q.e.d.

Remark. The statement of Proposition 3, (i) is useful in the definition of principal series for semisimple symmetric space (cf. [O]).

§ 3. Tables

We use the notation of Helgason's book [H] without any comment.
(0) As for the results of Tables 1-3, the readers consult [C], [GK], [SS], [TM] and their references.
(1) Table 1. In this table, g means a compact simple Lie algebra and $G=$ Int g .
(2) Table 2. The meaning of g and G is the same as in the case (1). Take an involutive automorphism σ of G and put $K=\{g \in G ; \sigma(g)=g\}$.
(3) Table 3. In this table, \mathfrak{g} means a real simple Lie algebra, $G=$ Int g and K means a maximal compact subgroup of G. By the Cartan decomposition, $\pi_{1}(G)=\pi_{1}(K)$. We refer to [TM] for the determination of K in the case where g is one of $\mathrm{e}_{7(-5)}, \mathrm{e}_{8(8)}$.
(4) Table 4. In this table, $(\mathfrak{g}, \mathfrak{h})$ means an irreducible symmetric pair. (A classification of irreducible symmetric pairs was accomplished by M. Berger [B].)

Remark. In Tables 1 and 3, the notation $E_{6}, E_{7}, E_{8}, F_{4}, G_{2}$ mean simply connected compact Lie groups with Lie algebras $\mathfrak{e}_{6}, \mathrm{e}_{7}, \mathrm{e}_{8}, \mathfrak{f}_{4}, \mathfrak{g}_{2}$, respectively.

In Table 3, the notation $\left(K_{1} \times K_{2}\right) / Z_{2}$ is used. For example, $(S O(2 p)$ $\times S O(2 q)) / Z_{2},(S U(6) \times S U(2)) / Z_{2}$, etc. Now explain its meaning. Take central elements $z_{i} \in K_{i}(i=1,2)$ of order 2. Put $Z=\left\{(1,1),\left(z_{1}, z_{2}\right)\right\}$. Then $\left(K_{1} \times K_{2}\right) / Z$ is written as $\left(K_{1} \times K_{2}\right) / Z_{2}$. The meaning of $\left(E_{6} \times S O(2)\right)$ $\mid Z_{3}$ is similar.

Full proofs will be published elsewhere.

Table 1. The fundamental group of a compact simple group

g	G	$\pi_{1}(G)$
$\mathfrak{B L}(n)$	$S U(n) / Z_{n}$	\boldsymbol{Z}_{n}
$\mathfrak{3 0}(2 n+1)$	$S O(2 n+1)$	Z_{2}
$\mathfrak{\square p}(n)$	$S p(n) / Z_{2}$	Z_{2}
$\mathfrak{S o}(2 n) \quad(n>2)$	$S O(2 n) / Z_{2}$	$\begin{array}{ll} Z_{4} & (n: \text { odd }) \\ Z_{2} \times Z_{2} & (n: \text { even }) \end{array}$
\mathfrak{e}_{6}	E_{6} / Z_{3}	Z_{3}
${ }_{7}$	E_{7} / Z_{2}	Z_{2}
e_{8}	E_{8}	1
f_{4}	F_{4}	1
g_{2}	G_{2}	1

Table 2. Fundamental groups of irreducible compact symmetric spaces

(g, l)	$\pi_{1}(G / K)$
$(\mathfrak{B u}(n), \operatorname{son}(n))$	Z_{n}
$(\mathfrak{n u}(2 n), \mathfrak{ß p}(n))$	\boldsymbol{Z}_{n}
$(\mathfrak{L u}(p+q), \mathfrak{\mathfrak { s u }}(p)+\mathfrak{s u t}(q)+\mathfrak{s o}(2))$	$\boldsymbol{Z}_{d} \quad(d=(p, q))$
$(\operatorname{So}(p+q), \operatorname{Bo}(p)+\operatorname{Coj}(q))$	\boldsymbol{Z}_{2} $(p \neq q)$ \boldsymbol{Z}_{4} $(p=q:$ odd $)$ $\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$ $(p=q:$ even $)$
$\left(\mathrm{m}_{\mathrm{p}}(n), \mathfrak{t}(n)\right.$)	Z_{2}
$(\mathfrak{p p}(p+q), \mathfrak{s p}(p)+\mathfrak{z p}(q))$	$\begin{array}{ll} 1 & (p \neq q) \\ Z_{2} & (p=q) \end{array}$
$(\mathfrak{m o}(2 n), \mathfrak{u}(n)$)	$\begin{array}{ll} 1 & (n: \text { odd }) \\ Z_{2} & (n: \text { even }) \end{array}$
$\left(\mathrm{e}_{6}, \mathfrak{s p}(4)\right)$	Z_{3}
$\left(\mathrm{e}_{6}, \mathfrak{S u}(6)+\mathfrak{s l u}(2)\right)$	1
$\left(e_{6}, \mathrm{Sb}(10)+\mathrm{So}(2)\right)$	1
$\left(\mathrm{e}_{6}, \mathfrak{f}_{4}\right)$	Z_{3}
$\left(\mathrm{e}_{7}, \mathfrak{B l u}(8)\right)$	Z_{2}
$\left(e_{7}, \operatorname{son}(12)+\mathfrak{z u t}(2)\right)$	1
$\left(e_{7}, \mathrm{e}_{6}+\mathrm{So}(2)\right.$)	Z_{2}
$\left(e_{8}, \operatorname{son}(16)\right)$	1
$\left(e_{8}, e_{7}+\mathfrak{3 l}(2)\right.$)	1
$\left(f_{4}, \mathfrak{S p p}(3)+\mathfrak{L u t}(2)\right)$	1
$\left(\mathrm{f}_{4}, \mathrm{Bo}(9)\right.$)	1
$\left(\mathrm{g}_{2}, \mathrm{So}(4)\right)$	1

Table 3. Concrete forms of maximal compact subgroups and fundamental groups of non-compact real simple Lie groups

g	K	$\pi_{1}(G)$
$\mathfrak{L l}(2 n, R) \quad(n>1)$	$S O(2 n) / Z_{2}$	$\begin{array}{ll} Z_{4} & (n: \text { odd }) \\ Z_{2} \times Z_{2} & (n: \text { even }) \end{array}$
$\mathfrak{g l}(2 n+1, \boldsymbol{R})$	$S O(2 n+1)$	Z_{2}
)3t* $2 n$) $(n>2)$	$S p(n) / Z_{2}$	Z_{2}
$\mathfrak{s u}(p, 1)$	$U(p) / \boldsymbol{Z}_{p+1}$	\boldsymbol{Z}
$\mathfrak{\mathfrak { z u }}(p, q) \quad(p, q>1)$	$S(U(p) \times U(q)) / Z_{p+q}$	$\boldsymbol{Z} \times \boldsymbol{Z}_{d} \quad(d=(p, q))$
$\operatorname{so}(2 p, 1) \quad(p>1)$	$S O(2 p)$	Z_{2}
$\mathrm{So}_{0}(2,2 q-1) \quad(q>1)$	$S O(2) \times S O(2 q-1)$	$\boldsymbol{Z} \times \boldsymbol{Z}_{2}$
$\mathfrak{S o n}_{0}(2 p, 2 q-1) \quad(p, q>1)$	$S O(2 p) \times S O(2 q-1)$	$\boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}$
$\overline{\mathrm{p}}(n, \boldsymbol{R}) \quad(n>2)$	$U(n) / Z_{2}$	$\begin{array}{ll} \hline \boldsymbol{Z} & (n: \text { odd }) \\ Z \times Z_{2} & (n: \text { even }) \end{array}$
$\mathfrak{q}(p, q) \quad(p, q>0)$	$(S p(p) \times S p(q)) / Z_{2}$	\boldsymbol{Z}_{2}
$3 \mathrm{Bo}(2 p-1,1) \quad(p>2)$	$S O(2 p-1)$	Z_{2}
¢о $(2 p-1,2 q-1) \quad(p, q>1)$	$S O(2 p-1) \times S O(2 q-1)$	$Z_{2} \times Z_{2}$
$\underline{\mathrm{g}}(2 p, 2) \quad(p>1)$	$(S O(2 p) \times S O(2)) / Z_{2}$	$\boldsymbol{Z} \times \boldsymbol{Z}_{2}$
$\operatorname{Bo}(2 p, 2 q) \quad(p, q>1)$	$\left(S O(2 p) \times S O(2 q) / Z_{2}\right.$	$\begin{array}{lc} Z_{2} \times Z_{4} \quad(p \text { or } q: \text { odd }) \\ Z_{2} \times Z_{2} \times Z_{2}(p, q: \text { even }) \end{array}$
$3_{0}{ }^{*}(2 n) \quad(n>3)$	$U(n) / Z_{2}$	$\begin{array}{ll} Z & (n: \text { odd }) \\ Z \times Z_{2} & (n: \text { even }) \end{array}$
$\mathrm{e}_{6(6)}$	$S p(4) / Z_{2}$	Z_{2}
$\mathrm{e}_{6(2)}$	$\left(S U(6) / Z_{3} \times S U(2)\right) / Z_{2}$	Z_{6}
$\mathrm{e}_{6(-14)}$	$(S p i n(10) \times S O(2)) / Z_{4}$	Z
$\mathrm{e}_{6(-26)}$	F_{4}	1
${ }^{7}(7)$	$S U(8) / Z_{4}$	Z_{4}
$\mathrm{e}_{7(-5)}$	$(S s(12) \times S U(2)) / Z_{2}$	$Z_{2} \times \boldsymbol{Z}_{2}$
${ }^{7}(-25)$	$\left(E_{6} \times S O(2)\right) / Z_{3}$	Z
$\mathrm{f}_{8(8)}$	Ss(16)	\boldsymbol{Z}_{2}
$\mathrm{f}_{8(-24)}$	$\left(E_{7} \times S U(2)\right) / Z_{2}$	Z_{2}
$\mathrm{f}_{4(4)}$	$(S p(3) \times S U(2)) / Z_{2}$	\boldsymbol{Z}_{2}
$\mathrm{f}_{4-(20)}$	$\operatorname{Spin}(9)$	1
$\mathrm{g}_{2(2)}$	$\mathrm{SO}(4)$	Z_{2}

Table 4. Fundamental groups of semisimple symmetric spaces
Case (I)

$\begin{aligned} & (\mathfrak{E l}(n, R), \operatorname{Bl}(i, R)+\operatorname{sl}(n-i, R)+R) \\ & (\operatorname{El}(n, R), \operatorname{so}(i, n-i)) \quad(0<i \leq n / 2,2<n) \end{aligned}$	$\begin{array}{ll} Z_{2} & (2 i<n) \\ Z_{4} & (2 n=n, i: \text { odd }) \\ Z_{2} \times Z_{2} & (2 i=n, i: \text { even }) \end{array}$
$\begin{aligned} & (\mathfrak{B l}(2 n, \boldsymbol{R}), \mathfrak{B p}(n, \boldsymbol{R})) \\ & (\mathfrak{B l}(2 n, \boldsymbol{R}), \mathfrak{B l}(n, \boldsymbol{C})+\mathfrak{B l}(2)) \quad(n>1) \end{aligned}$	$\begin{array}{ll} 1 & (n: \text { odd }) \\ Z_{2} & (n: \text { even }) \end{array}$
$\begin{aligned} & \left(\mathfrak{H u}^{*}(2 n), \mathfrak{\mathfrak { H } ^ { * }} *(2 i)+\mathfrak{G u} *(2 n-2 i)+\boldsymbol{R}\right) \\ & \left(\mathfrak{h u}^{*}(2 n), \mathfrak{\mathfrak { p }}(i, n-i)\right) \quad(0<i \leq n / 2,2<n) \end{aligned}$	$\begin{array}{ll} 1 & (2 i<n) \\ Z_{2} & (2 i=n) \end{array}$
$\begin{aligned} & \left(\mathfrak{G u} \mathfrak{u}^{*}(2 n), \mathfrak{B n}^{*}(2 n)\right) \\ & \left(\mathfrak{G u} \mathfrak{H}^{*}(2 n), \mathfrak{\operatorname { l n }}(n, C)+\operatorname{Bo}(2)\right) \quad(2<n) \end{aligned}$	Z_{2}
$\begin{gathered} (\operatorname{so}(2 p-1,2 q-1), \operatorname{so}(k)+\operatorname{so}(2 p-k-1,2 q-1)) \\ (0<k<2 p-1,0<q) \end{gathered}$	Z_{2}
$\begin{gathered} (\operatorname{son}(2 p-1,2 q-1), \operatorname{So}(k, h)+\operatorname{So}(2 p-k-1,2 q-h-1) \\ (0<k<2 p-1,0<h<2 q-1) \end{gathered}$	$Z_{2} \times Z_{2}$
$\begin{aligned} & (\operatorname{So}(2 n+1,2 n+1), \operatorname{Bl}(2 n+1, \boldsymbol{R})+\boldsymbol{R}) \\ & (\operatorname{sog}(2 n+1,2 n+1), \operatorname{So}(2 n+1, C)) \quad(n>0) \end{aligned}$	Z_{2}
$\left(e_{6(6)}, f_{4(4)}\right) \quad\left(e_{6(6)}, \mathfrak{b l u} *(6)+\mathfrak{L u}(2)\right)$	1
($\left.\mathrm{e}_{6(6)}, \mathrm{Sol}(5,5)+\boldsymbol{R}\right) \quad\left(e_{6(6)}, \operatorname{Spp}(2,2)\right)$	Z_{2}
	Z_{2}
$\left(\mathrm{e}_{6(-26)}, \mathfrak{\mathfrak { H }} *(6)+\mathfrak{b u}(2)\right) \quad\left(\mathrm{e}_{6(-26)}, \mathfrak{S p p}^{(3,1)}\right)$	1
$\left(\mathrm{e}_{6(-26)}, \mathrm{Sb}(9,1)+\boldsymbol{R}\right) \quad\left(\mathrm{e}_{6(-26)}, \mathfrak{f}_{4(-20)}\right)$	1

Case (IIa)

$\left(\mathfrak{F o l}_{0}(1,2 n), \mathfrak{S o}(1, h)+\mathfrak{O O}(2 n-h)\right) \quad(2<n, 0<h<2 n)$	Z_{2}
	1
$\left(\mathrm{e}_{7(7)}, \operatorname{sbo}(6,6)+\mathfrak{I l}(2, R)\right) \quad\left(\mathrm{e}_{7(7)}, \mathfrak{B l}\right.$	Z_{2}
$\left(e_{7(7)}, \mathfrak{L l}(8, \boldsymbol{R})\right.$)	Z_{4}
$\left(\mathrm{e}_{7(7)}, \mathfrak{G l u} *(8)\right) \quad\left(\mathrm{e}_{7(7)}, \mathrm{e}_{6(6)}+R\right)$	Z_{4}
$\left(\mathrm{e}_{8(8)}, \mathrm{e}_{7(-5)}+\mathfrak{5 l}(2)\right.$)	1
$\left(\mathrm{e}_{8(8)}, \mathrm{So}(8,8)\right)$	Z_{2}
$\left(\mathrm{e}_{8(8)}, \mathfrak{\Sigma g}^{0} *(16)\right) \quad\left(\mathrm{e}_{8(8)}, \mathrm{e}_{7(7)}+\mathfrak{S l}(2, R)\right)$	Z_{2}
$\left(f_{4(-20)}, \operatorname{Bo}(1,8)\right)$	1
$\left(f_{4(-20)}, \mathfrak{B p}(2,1)+\mathfrak{B l}(2)\right)$	1

Case (IIb)

	Z_{2}
$\begin{aligned} (\mathrm{Bo}(2 p, 2 q-1) & \left., \mathrm{Bo}_{\mathrm{o}}(k, h)+\mathrm{Bo}(2 p-k, 2 q-h-1)\right) \\ & (1<p, q, 0 \leq k \leq 2 p, 0<h<2 q-1) \end{aligned}$	$\begin{array}{ll} Z_{2} & (k=0 \text { or } 2 p) \\ Z_{2} \times Z_{2} & (0<k<2 p) \end{array}$
$\begin{aligned} & (\mathfrak{g p}(p, q), \mathfrak{s p}(k, h)+\mathfrak{3 p}(p-k, q-h)) \\ & \quad(0<p, q, 0 \leq k \leq p, 0<h<q) \end{aligned}$	$\begin{array}{ll} 1 & (2 k \neq p \text { or } 2 h \neq q) \\ Z_{2} & (2 k=p \text { and } 2 h=q) \end{array}$
	Z_{2}
$(\mathfrak{p p}(p, q), \mathfrak{s u}(p, q)+\mathfrak{z o}(2)) \quad(0<p, q)$	Z_{2}
$\begin{gathered} (\operatorname{Bo}(2 p, 2 q), \operatorname{so}(k, h)+\operatorname{Bo}(2 p-k, 2 q-h)) \\ (1<p, q) \end{gathered}$	$\begin{array}{ll} \boldsymbol{Z}_{2} \quad\left(\begin{array}{l} k=0,2 p \text { or } h=0,2 q) \\ \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}\binom{0<k<2 p, 0<h<2 q}{k \neq p \text { or } h \neq q} \\ \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{4}\binom{k=p, h=q}{p \text { or } q \text { odd }} \\ \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2} \times \boldsymbol{Z}_{2}\binom{k=p, h=q}{p \text { and } q \text { even }} \end{array}, \begin{array}{l} \text { and } \end{array}\right) \end{array}$
$(\mathfrak{g o}(2 p, 2 q), \mathfrak{z u t}(p, q)+\mathfrak{z o}(2)) \quad(1<p, q)$	$\begin{array}{ll} 1 & (p: \text { odd or } q: \text { odd }) \\ Z_{2} & (p, q \text { even }) \end{array}$
$\begin{aligned} & (\operatorname{Bo}(2 n, 2 n), \operatorname{Bl}(2 n, R)+\boldsymbol{R}) \quad(n>1) \\ & (\operatorname{so}(2 n, 2 n), \operatorname{So}(2 n, C) \end{aligned}$	$\begin{array}{ll} Z_{4} & (n: \text { odd }) \\ Z_{2} \times Z_{2} & (n: \text { even }) \end{array}$
(${ }_{66}(2), \hat{S}_{0} 0 *(10)+\hat{S b}_{0}(2)$)	1
	1
$\left(\mathrm{e}_{6(2)}, \mathfrak{b u t}(3,3)+\mathfrak{z l}(2, R)\right)$	Z_{2}
$\left(\mathrm{e}_{6(2)}, \mathfrak{Z p}(3,1)\right) \quad\left(\mathrm{e}_{6(2)}, \mathrm{f}_{4(4)}\right)$	Z_{3}
($\mathrm{e}_{6(2)}, \mathrm{Bp}(4, R)$)	Z_{6}
$\left(e_{7(-5)}, \mathrm{e}_{6(-14)}+30(2)\right)$	Z_{2}
$\left(e_{7(-5)}, \mathfrak{b o}(4,8)+\mathfrak{b u}(2)\right)$	1
($\mathrm{e}_{7(-5)}, \mathfrak{\mathfrak { b u }}(4,4)$)	$Z_{2} \times Z_{2}$
$\left(\mathrm{e}_{7(-5)}, \mathfrak{B u}(2,6)\right) \quad\left(\mathrm{e}_{7(-5)}, \mathrm{e}_{6(2)}+\mathrm{BrO}_{(2)}\right)$	Z_{2}
$\left(e_{7(-5)}, \mathfrak{S O} *(12)+\mathfrak{s l}(2, R)\right)$	Z_{2}
($\mathrm{e}_{8(-24)}, 50 \times(16)$)	Z_{2}
$\left(e_{8(-24)}\right.$, , ${ }_{0}(4,12) \quad\left(e_{8(-24)}, e_{7(-5)}+\mathfrak{3 l u}(2)\right)$	1
$\left(\mathrm{e}_{8(-24)}, \mathrm{e}_{7(-25)}+\mathfrak{S l}(2, R)\right)$	Z_{2}
$\left(\mathrm{f}_{4(4)}, \mathfrak{Z p}(3, R)+\mathfrak{B l}(2, R)\right.$)	Z_{2}
$\left(\mathfrak{f}_{4(4)}, \mathfrak{B o}(4,5)\right) \quad\left(\mathfrak{f}_{4(4)}, \mathfrak{B p}(1,2)+\mathfrak{S u}(2)\right)$	1
$\left(g_{2(2)}, \mathfrak{g l}(2, R)+\mathfrak{g l}(2, R)\right)$	Z_{2}

Case (IIIa)

$(\operatorname{Cll}(2, R), ~ \mathfrak{B o}(1,1))$	\boldsymbol{Z}
$(\mathfrak{L b u}(1, n), \mathfrak{h l u}(1, h)+\mathfrak{B l u}(n-h)+\mathfrak{S o}(2)) \quad(0<h<n)$	1
$\begin{aligned} & (\mathrm{Bo}(2,2 n-1), \mathrm{Bo}(k, h)+\mathrm{Bo}(2-k, 2 n-h-1)) \\ & (1<n, 0 \leq h \leq 2 n-1) \end{aligned}$	$\begin{array}{ll} \boldsymbol{Z}_{2} & (k=0,2) \\ \boldsymbol{Z} \times \boldsymbol{Z}_{2} & (k=1) \end{array}$
$\begin{aligned} & (\mathfrak{s p}(n, \boldsymbol{R}), \mathfrak{s p}(i, \boldsymbol{R})+\operatorname{sp}(n-i, \boldsymbol{R})) \\ & (\mathfrak{g p}(n, \boldsymbol{R}), \mathfrak{s u}(i, n-i)+\mathfrak{g o}(2)) \quad(0<i \leq n / 2,2<n) \end{aligned}$	$\begin{array}{ll} \hline 1 & (2 i<n) \\ Z_{2} & (2 i=n) \end{array}$
$(\mathfrak{g p}(n, R), \mathfrak{l l}(n, R)+\boldsymbol{R}) \quad(n>2)$	$\begin{array}{ll} Z & (n: \text { odd }) \\ Z \times Z_{2} & (n: \text { even }) \end{array}$
$(\mathfrak{p p}(2 n, R), \mathfrak{ß p}(n, C)) \quad(n>1)$	$\begin{array}{ll} Z & (n: \text { odd }) \\ Z \times Z_{2} & (n: \text { even }) \end{array}$
$\begin{aligned} (\mathrm{Bo}(2,2 n), \mathrm{go}(k, h)+\mathrm{Bo}(2- & k, 2 n-h)) \\ & (1<n, 0 \leq h \leq 2 n) \end{aligned}$	$\begin{array}{ll} \boldsymbol{Z}_{2} & (k=0,2) \\ \boldsymbol{Z} \times \boldsymbol{Z}_{2} & (k=1) \end{array}$
$(\mathfrak{O b}(2,2 n), \mathfrak{3 n}(1, n)+\mathfrak{g o}(2)) \quad(2<n)$	1
	$\begin{array}{ll} 1 & (2 i<n) \\ Z_{2} & (2 i=n) \end{array}$
$\left(\mathrm{Ba}_{0} *(2 n), \mathrm{So}(n, C)\right) \quad(3<n)$	$\begin{array}{ll} Z & (n: \text { odd }) \\ Z \times Z_{2} & (n: \text { even }) \end{array}$
$\left.\left(\mathfrak{g r O}_{0}{ }^{(1)} 4 n\right), \mathfrak{G u} *(2 n)+\boldsymbol{R}\right) \quad(2<n)$	$\begin{array}{ll} Z & (n: \text { odd }) \\ Z \times Z_{2} & (n: \text { even }) \end{array}$
$\left(e_{6(-14)}, \mathfrak{f}_{4(-20)}\right)$	Z
$\left(e_{6(-14)}, \operatorname{So}(2,8)+\operatorname{So}(2)\right)$	1
$\left(e_{6(-14)}, \mathfrak{\mathfrak { u }}(2,4)+\mathfrak{W l u}(2)\right)$	1
$\left(\mathrm{e}_{6(-14)}, \operatorname{Sp}(2,2)\right)$	Z
($\left.\mathrm{e}_{6(-14)}, \mathfrak{\mathfrak { L u }}(1,5)+\mathfrak{L l}(2, R)\right) \quad\left(\mathrm{e}_{6(-14)}, \mathscr{S O}_{0} *(10)+\operatorname{So}(2)\right)$	1
$\left(e_{7(-25)}, \mathfrak{S u} *(8)\right.$)	Z
$\left(\mathrm{e}_{7(-25)}, \mathfrak{S O}(2,10)+\mathfrak{S l}(2, \boldsymbol{R})\right) \quad\left(\mathrm{e}_{7(-25)}, \mathrm{e}_{6(-14)}+\operatorname{So}(2)\right)$	1
($\mathrm{7}_{7(-25)}, \mathfrak{3 l}(2,6)$) ($\left.\mathrm{e}_{7(-25)}, \mathfrak{5 0}_{0}(12)+\mathfrak{S u t}(2)\right)$	1
$\left(\mathrm{e}_{7(-25)}, \mathrm{e}_{6(-26)}+\boldsymbol{R}\right)$	Z

Case (IIIb)

$\begin{aligned} & (\mathfrak{h u}(p, q), \mathfrak{\mathfrak { n }}(k, h)+\mathfrak{s u}(p-k, q-h)+\mathfrak{\mathfrak { o n } (2))} \\ & \quad(p, q>1) \end{aligned}$	$\begin{array}{ll} 1 & (2 k \neq p \text { or } 2 h \neq q) \\ Z_{2} & (2 k=p \text { and } 2 h=q) \end{array}$
$(\mathfrak{H l t}(p, q), \mathfrak{S o}(p, q))$	$\boldsymbol{Z} \times \boldsymbol{Z}_{d} \quad(d=(p, q))$
($\mathfrak{u l}(2 p, 2 q), \mathfrak{ß p}(p, q))$	$\boldsymbol{Z} \times \boldsymbol{Z}_{d} \quad(d=(p, q))$
	Z_{n}
$(\mathfrak{n l}(n, n), \mathfrak{3 l}(n, C)+\boldsymbol{R})$	$\boldsymbol{Z} \times \boldsymbol{Z}_{n}$

References

[C] M. Berger, Les espaces symetriques non compacts. Ann. Sci. École Norm. Sup., 74 (1957), 85-177.
[C] E. Cartan, Sur certaines formes riemanniennes remarquables des géometries à group fundamental simple, Ann. Sci. École Norm. Sup., 44 (1927), 345-467.
[GK] M. Goto and E. T. Kobayashi, On the subgroups of the centers of simply connected simple Lie groups-classification of simple Lie groups in the large, Osaka J. Math., 6 (1969), 251-281.
[H] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
[L] O. Loos, Symmetric space, I, Benjamin Inc., New York, Amsterdam, 1969.
[O] T. Oshima, A realization of semisimple symmetric spaces and construction of boundary value maps, Advanced Studies in Pure Math., 14 (1988), 603-650.
[OS] T. Oshima and J. Sekiguchi, The restricted root system of a semisimple symmetric pair, Advanced Studies in Pure Math., 4 (1984), 433-497.
[S] J. Sekiguchi, Determination of fundamental groups of certain symmetric spaces, Rep. Univ. Electro-Comm., 37 (1987), 163-167.
[SS] A. I. Sirota and A. S. Solodovnikov, Non-compact semi-simple Lie groups, Uspehi Mat. Nauk, 18 (1963), 87-144.
[TM] H. Toda and M. Mimura, Topology of Lie Groups, Kinokuniya Shoten, Tokyo (in Japanese).
[T1] M. Takeuchi, On the fundamental group and the group of isometries of a symmetric space, J. Fac. Sci. Univ. Tokyo, 10 (1964), 88-123.
[T2] M. Takeuchi, On the fundamental group of a simple Lie group, Nagoya Math. J., 40 (1970), 147-159.

Department of Mathematics
The University of Electro-Communications
Chofu 182, Japan

