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Geometric Constructions of Representations 

Wilfried Schmid* 

§ 1. Introduction 

Beginning with the work of Gelfand, it has become apparent that 
there is a close connection between representations of a Lie group G and 
its coadjoint orbits, i.e., G-orbits in the dual of the Lie algebra. In the 
case of a nilpotent group, unitary representations correspond to coadjoint 
orbits equipped with real polarizations, and the correspondence was 
used by Kirillov [11] to actually construct the representations. Harish
Chandra's parametrization of those unitary representations which enter 
the Plancherel decomposition of L2(G), with G semisimple, can also be 
phrased in terms of coadjoint orbits, though his construction ties the 
representations only indirectly to the orbits in question. A direct geo
metric construction via coadjoint orbits was conjectured by Langlands [14] 
and carried out in [17-20, 25] - at least for the discrete series, but impli
citly for the various other non-degenerate series as well. In this connection 
I should mention also Duflo's synthesis of the nilpotent and semisimple 
cases [5], which attaches unitary representations to coadjoint orbits for 
algebraic groups over R. 

A short note of Kostant [13] suggests a method for associating 
representations - not necessarily unitary representation - to G-orbits 
in the dual of the complexified Lie algebra. Attempts to carry out his 
program in practice quickly lead to major analytic difficulties, especially 
if the orbits carry polarizations that are neither maximally real nor maxi
mally complex (the terminology will be explained in Section 3 below). 
Perhaps for this reason, among others, coadjoint orbits with arbitrary 
polarizations have received little attention. Zuckerman's derived functor 
construction [23] mimics the "orbit method" (for semisirnple coadjoint 
orbits of semisimple Lie groups) algebraically, and thus avoids all analytic 
difficulties. The derived functor construction, too, has been used almost 
exclusively in the setting of maximally real or maximally complex polari
zations; indeed, these very special polarizations suffice to obtain all irre
ducible Harish-Chandra modules [15, 23]. Nonetheless a case can be made 
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for the importance of arbitrary polarizations, particularly in view of the 
duality between the Zuckerman modules and the Beilinson-Bernstein 
modules [6]. 

In this paper I shall describe recent results of J. A. Wolf and myself, 
on the "orbit method" for semisimple coadjoint orbits of semisimple Lie 
groups, without restriction on the type of polarization: properly inter
preted, the procedure outlined in [13] yields global representations on 
Frechet spaces; moreover, the underlying Harish-Chandra modules coin
cide with the derived functor modules which correspond to the same data'. 
To put these facts into perspective, I shall discuss also the various canonical 
globalizations of Harish-Chandra modules, and recall the connection 
between the Zuckerman derived functor construction and the £0-module 
construction of Beilinson-Bernstein. 

§ 2. Canonical globalizations of Harish-Chandra modules 

From now on, G shall denote a connected, linear, semisimple Lie 
group, and K a particular maximal compact subgroup. The assumption 
of linearity is merely a convenience: everything that will be said remains 
correct, with minor modifications, for reductive groups in Harish-Chandra's 
class. Unless there is an indication to the contrary, the word "representa
tion" shall mean a continuous representation on a complete, locally convex, 
Hausdorff topological vector space. If every chain of closed invariant 
subspaces breaks off after finitely many steps, the representation is said to 
be of finite length. The space of K-finite vectors 2 V for any representation 
1r of finite length is dense in the representation space and consists entirely 
of C 00 vectors; in particular, the complexified Lie algebra g and its universal 
enveloping algebra U(g) act on V by differentiation. The group K also 
acts on V, via the restriction of 1r. These two actions turn V into a 
Harish-Chandra module, i.e., 

(2.1) 

a) Vis finitely generated over U(g); 
b) as K-module, Vis a direct sum of finite dimensional irreduci

bles, each occuring only finitely often; and 
c) the actions of U(g) and Kare compatible, 

in the sense that the derivative of the K-action agrees with the restriction 
of the g-action to f ( = complexified Lie algebra of K). If a Harish-Chandra 
module V arises as the space of K-finite vectors for a representation rr, I 

1 The note [22] is a brief announcement of our work; full details will appear 
elsewhere. See Hecht-Taylor [8] for related results. 

2 i.e., the linear span of all finite dimensional, K-invariant subspaces. 
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call rr a globalization of V. 
Every Harish-Chandra module can be globalized - in a variety of 

ways, if the module is infinite dimensional. Functorial globalizations do 
exist: the C 00 and distribution globalizations of Casselman-Wallach [24], 
and the minimal and maximal globalizations [21]. I shall concentrate on 
the latter, since for our purposes it is the most important of the four. 

To define the maximal globalization of a Harish-Chandra module V, 
I embed Vas the space of K-finite vectors into V, the representation space 
of a particular globalization (rr, V). Every vector 1: in the dual Harish
Chandra module 

(2.2) V' = space of K-finite vectors in the algebraic dual V* 

extends to a bounded linear functional f on V. Hence, to each v e V and 
r: e V', one can associate a "matrix coefficient" fv,,, with 

(2.3) fv,,(g)= < f, rr(g)v). 

Functions of this type satisfy elliptic differential equations, and conse
quently are real analytic. The Taylor series of fv,, at the identity depends 
solely on the U(g)-action. Thus, contrary to appearance, fv,, is an in
variant of the Harish-Chandra module V. 

Now let {1:1, r:2, • • ·, 1:n} be a finite set of generators for V' over U(g). 
The map 

(2.4) 

injects V into C 00 (G)n, equivariantly with respect to the actions of g and 
K- the obvious actions on V, and by right translation on C 00 (G). The 
induced topology on V does not depend on the choice of generators 
{z-1, r:2, • • ·, 1: n}: any other set of generators is related to the original one 
by a matrix with entries in U(g), and this matrix, acting as a matrix of 
right invariant differential operators, intertwines the two mappings (2.4). 
It can be shown that the representation of g on V lifts to a representation 
ofGon 

(2.5) Vmax=completion of Vin the induced topology, 

and that Vmax is a globalization, the maximal globalization, of V. If V is 
some other globalization, the identity map on V extends to a G-equivariant, 
continuous inclusion V ~ v max - essentially because the definition (2.3) 
makes sense for v e V. In other words, Vmax contains every other globali
zation; hence its name. 

To give a concrete example, I suppose that G has a non-empty discrete 
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series; equivalently, rk K=rk G. I fix a maximal torus TcK, which is 
then also a Cartan subgroup of G. The quotient manifold G/T can be 
realized as an open G-orbit in the flag variety X of g (in several different 
ways), and thus inherits a G-invariant complex structure. Every character 
e' of T determines a G-homogeneous holomorphic line bundle Lr~Gf T, 
i.e., a holomorphic line bundle to which the action of G lifts. In particu
lar, G operates on the cohomology groups H*(G/T, 0(L,)) of the sheaf of 
holomorphic sections. If L, is negative in the appropriate sense3, the 
cohomology vanishes except in dimension s=i dimR K/T, H'(G/T, 0(L,)) 
is an irreducible Frechet G-module, and the resulting representation of G 
has the same underlying Harish-Chandra module as the discrete series re
presentation with character 0,+p (in Harish-Chandra's notation; here p 
denotes the half sum of the roots which have a negative inner product 
with 1). The proof of these facts in [18] identifies H'(G/T, 0(L,)) with a 
space of matrix coefficients, and consequently with the maximal globaliza
tion of its space of K-finite vectors. 

Now let (rr, V) be a globalization of a Harish-Chandra module V, on 
a Banach space V. The space of analytic vectors 

(2.6) V"'={v e Vlg--rr(g)v is a real analytic map from G to V} 

has a natural complete, locally convex topology; G acts continuously on 
V"', and thus V"' becomes a globalization of V. This construction can be 
dualized if the Banach space V is reflexive: the dual representation rr' on 
the dual Banach space V' is then continuous, and the natural action of G 
on the space of "hyperfunction vectors" 

(2.7) v-"'= strong topological dual of (V')"' 

turns v-w into another globalization of V. It injects canonically into 
Vmax, because of the maximality property of the latter. 

(2.8) Theorem ([21]). The inclusion V-"'=---------=,. Vmax is an isomorphism 
of topological vector spaces. 

Unlike the construction and basic properties of Vmax - which are 
relatively straightforward - the proof of (2.8) requires some effort. The 
crux is a lower bound for the asymptotic behavior of K-finite matrix 
coefficients, in terms of their K-types. 

Short exact sequences of Harish-Chandra modules can be lifted to 
short exact sequence of representations on reflexive Banach spaces. Also, 
the passage from a representation on a reflexive Banach space to the space 

3 see §§ 4-5 below. 
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of hyperfunction vectors is exact. Hence: 

(2.9) Corollary. Vi--+ Vmax is an exact functor. 

The isomorphism asserted by the theorem arises typically as a 
boundary value map. To see this, I consider a homogeneous vector 
bundle E-+G/P, over the quotient of G by a minimal parabolic subgroup 
P. Then C 00 (G/P, E)<x), the Harish-Chandra module of K-finite sections, 
has obvious reflexive Banach globalizations, namely the spaces of LP 
sections, 1 <p<oo. The subspaces of analytic vectors may be identified 
with C"'(G/P, E), the space of analytic sections of E. Dualizing, one finds: 

(2.10) Corollary. The maximal globalization of C 00 (G/P, E)<Kl coin
cides with the space of hyper/unction sections c-"'(G/P, E). 

Any Harish-Chandra module V can be realized as a quotient module 
of C 00 (G/P, E)cx), for some appropriately chosen E [4]. When Varises as 
the space of K-finite solutions of a G-invariant system of differential equa
tions, the quotient map is given by an integral kernel - for example, the 
Poisson kernel in the setting of Helgason's conjecture [10). Corollary 
(2.10) asserts, in effect, that every such integral kernel induces a topolo
gical isomorphism between a space of hyperfunction "boundary values" 
on G/P on the one hand, and the full solution space of the system of 
differential equations on the other. In particuar, (2.10) implies Helgason's 
conjecture. 

The construction of the minimal globalization V min is formally dual 
to that of V00ax [21): Vmin can be described as a quotient of C0(Gt, it 
injects canonically and continuously into every other globalization, and 
coincides with the space of analytic vectors in any Banach globalization 
of V. Thus C 00 (G/P, E)cx) has C"'(G/P, E) as minimal globalization. 

The c= and distribution globalizations were introduced by Casselman
Wallach [24) (and served as motivation for the definition of Vmin and Vmax• 
which came later). Casselman-Wallach showed that the c= and distribu
tion topologies on any quotient V of submodules of c=(G/P, E)<x) are 
intrinsic: they do not depend on E or the particular presentation of V as 
sub-quotient in C 00 (G/P, E)<x)· The completions with respect to these 
topologies, to be denoted by v= and v- 00

, are functorial in V. If (rr, V) 
is a Banach globalization, the identity map on V extends to topological, 
G-equivariant isomorphisms V 00 = V00

, v- 00 = f- 00
• 

§ 3. Coadjoint orbits and polarizations 

I shall be concerned primarily with regular, semisimple orbits in the 
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dual space g* of the complexified Lie algebra. As homogeneous space, 
any such orbit can be identified with the quotient G/ H, by a Cartan sub
group HcG. I assume, as I may, that His stable under the Cartan 
involution. In addition to the homogeneous structure, the datum of the 
coadjoint orbit specifies a linear functional A on the complexified Lie 
algebra lj of H. The orbit is said to be integral if A lifts to a character 
el: H-C*. The lifting need not be unique. To avoid complicated 
terminology, I consider the lifting as part of the datum of integral coad
joint orbit. 

The regularity of the orbit translates into the regularity of A e lj*. 
However, I shall also allow A to be singular: representations which the 
various constructions assign to the pair (G/H, e,.), with A singular, should 
be thought of as belonging to a singular semisimple coadjoint orbit, i.e., 
the orbit through A. 

An invariant polarization for the coadjoint orbit in question amounts 
to the choice of a Borel subalgebra ocg, with ljco. I let n=[6, o] denote 
the nilradical of o, so that o = ljEBn. If the Cartan subgroup H splits over 
R, every polarization is real, in the sense that n = fl (=complex conjugate 
of n); if His compact, all polarizations are totally complexes, i.e., n n fl 
= 0. Orbits corresponding to Cartan subgroups H which are neither split 
nor compact have various types of intermediate polarizations, among them 
maximally real and maximally complex polarizations: the former maximize 
the dimension of n n fl, the latter minimize it, subject to the condition 
o:) lj, of course. Henceforth I shall work interchangeably with the triple 
(G/H, el, o) and the polarized, integral, coadjoint orbit which it specifies. 

The character e,. associates a G-invariant line bundle' L,.-G/H to the 
principal H-bundle G-Gf H; its fibre at the identity coset is a complex 
line L,., on which the isotropy group H acts according to el. This line 
bundle L,. can be continued to a G-invariant complex of vector bundles 
Lli!J I\ 'N*-G/H, with fibre L,.® I\ 'n* at the identity coset. Let q denote 
the quotient map form (g/lj)* ( = complexified cotangent space of G/ H at 
eH) onto n *; then 

(3.1) (g/lj)*®L,.® /\ • n*~L,.® /\ ·+ 1n*, 

commutes with the natural actions of H. Since G-Gf H has a unique G
invariant connection, the map (3.1) induces a G-invariant, first order dif
ferential operator 

• the notation is slightly deceptive, since the line bundle depends not only on 
l but also on the lifting. 
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the differential for the complex of vector bundles L,0/\ 0 N*. Pulling back 
sections from G/H to G, one obtains a G-invariant isomorphism 

here { ... }H refers to the space of fl-invariants, with H acting on C 00 (G) 
on the right. I view C 00 (G)0L, as n-module, by infinitesimal right trans
lation on C00 (G) and trivial action on L,. The coboundary map in the 
standard complex (C 00 (G)0L,0/\ ·n*, o) commutes with the action of H; 
the isomorphism (3.3) relates the differential dn to o. 

In the special case of a compact Cartan subgroup G, the quotient 
manifold G/H carries a G-invariant complex structure such that ncg/g 
corresponds to the antiholomorphic tangent space at the identity coset. 
Recall the discussion in Section 2: the line bundle L, can be turned into a 
G-invariant holomorphic line bundle. The original description of the 
complex (3.2) shows that 

(3.4) Q---)-(!)(L.)---)-~ 00 (L.)---)-~ 00 (L,0N*)---)- · · · 

(~
00

( ••• ) = sheaf of C 00 sections of, . , ) is the Dolbeault resolution of the 
sheaf of holomorphic sections. In particular, 

(3.5) H*(G/H, <!J(L,))~H*(C 00 (G/H, L,0/\'N*), dn). 

The vanishing theorem mentioned in Section 2 - a precise statement will 
appear below, in a more general context- asserts the vanishing of the 
cohomology except in one dimension s, under an appropriate negativity 
hypothesis on the parameter l; 

can then be identified with the maximal globalization of a discrete series 
representation. It should be noted that the Dolbeault complex is elliptic 
and remains a resolution of <!J (L,) if smooth forms are replaced by 
forms with distribution or hyperfunction coefficients: the three complexes 
(C 1(G/H, L,0/\ 0 N), dn), where"?" stands for any one of the symbols oo, 
- oo, -w, all have the same cohomology. 

At the opposite extreme, when H splits over R, o = gEBn becomes the 
complexified Lie algebra of a minimal parabolic subgroup (equivalently, 
in this particular case, Borel subgroup) BcC. The line bundle L.-~GJH 
drops to a G-invariant line bundle L,-+G/B, over the real flag variety G/B. 
Since G/H-+G/B has Euclidean fibres B/H~n, an application of the 
Poincare lemma proves 

(3.6) 
if p=O, 

if p=/=O, 
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without any special assumptions on ,t The Poincare lemma applies 
equally in the context of distributions or hyperfunctions, so (3.6) carries 
over to those two settings. Now, however, the cohomology changes when 
we pass from c= sections to distribution or hyperfunction sections: as 
was remarked in Section 2, c=(G/B, Li), c-=(G/B, L.), and c-•(G/B, Li) 
are, respectively, the c= globalization, the distribution globalization, and 
the maximal globalization of the Harish-Chandra module c=(G/B, LJ<xi· 

Next I consider the case of an arbitrary Cartan subgroup H and a 
maximally complex polarization fl. If ;i satisfies an appropriate negativity 
condition, one can combine the arguments in the real and totally complex 
situations: the cohomology of (C 1(G/H, Lli!)/\ ·N*), du), with either oo or 
- oo in place of the symbol "?", vanishes in all but one degree, the oper
ator du has closed range also in the remaining degree, and the cohomology 
group in that degree is a globalization of a Harish-Chandra module ob
tained by parabolic induction [25]. Topologically the representation is 
induced from the maximal globalization of a discrete series representation, 
with c= and distribution coefficients, respectively. Thus both"?= oo" 
and"?= -oo" lead to "mixed" topologies, and not to any one of the 
four canonical globalizations. For general polarizations the situation ap
pears to be much worse: although examples are difficult to work out 
explicitly, there is evidence suggesting that du need not have closed range 
in the c= or distribution topologies. 

The space of hyperfunctions on a non-compact real analytic manifold 
carries no natural Hausdorff topology. Thus, at first glance, the complex 
(C-°'(G/H, L/59/\ 0 N*), d") does not seem useful for constructing global re
presentations. In the case of a real polarization, the problem is overcome 
by integrating out the dependence on certain variables and re-interpreting 
the cohomology as a space of hyperfunctions on a compact manifold; 
equivalently, a non-Hausdorff toplogy for the complex produces a Frechet 
topology on the cohomology. A similar procedure puts a good topology 
on the cohomology groups H*(C-"'(G/H, L/$9/\ ·N*), du), for any polari
zation fl; I shall make this precise in Section 5, following a discussion of 
the infinitesimal analogue of the complex (C-°'(G/H, Li©/\.N*), du). 

In one important respect, the examples of real or maximally complex 
polarizations are misleading: for these special types of polarizations, the 
complex of sheaves of sections of Lli9 I\· N* is acyclic, and hence provides 
a soft, respectively flabby resolution of the single sheaf 

(3.7) 

(lif 1( ···)=sheaf of C 1 sections of· .. ). Simple examples show that the 
complex (lif 1 (L,© I\· N*), dn) fails to be acyclic in general. Thus 
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(C 1(G/H, L).®/\'N*), dn) computes not the cohomology of one sheaf, but 
rather the hypercohomology of a complex of sheaves. 

For the remainder of this section, the polarization 6 of G/ H will be 
arbitrary. I let D denote the G-orbit through 6 in the flag variety X 
(=variety of Borel subalgebras of g). Since H normalizes 6, there is a 
natural G-equivariant fibration GJH-D. Its fibres can be identified with 
the connected, simply connected, nilpotent Lie group which has n n fl as 
complexified Lie algebra. In particular, the line bundle Li drops to a G
invariant, real analytic line bundle Li-D, The pair (D, L).) completely 
determines the polarized, integral, semisimple coadjoint orbit that corre
sponds to the triple (G/H, el, 6). 

As homogeneous submanifold of the complex manifold X, D has a 
global CR-structure: an induced o operator 

(3.8) 

Here ND-D denotes the intersection of the anti-holomorphic tangent 
bundle of X with the complexified tangent bundle of D; its fibre at 6 is 
isomorphic to n/n n fl. Since L).-D is real analytic, it extends to a g
invariant holomorphic line bundle L).- D, over some neighborhood D of 
D in X. Twisting the operator (3.8) by this bundle, one obtains a complex 
(C""(D, L).®/\'N'J;), oD). It can be identified with a subcomplex of 
(C""(G/H, L,®/\ 'N*), dn), via pull-back from D to G/H. Under the iso
morphism (3.3), this complex corresponds to the subcomplex of fl-invari
ants in the standard complex for relative Lie algebra cohomology with 
respect to the pair ( n, n n fl): 

The inclusion of the OD-complex into the dn-complex induces an iso
morphism of cohomology, as follows from an application of the Poincare 
lemma along the fibres of GJH-D. Everything that has just been said 
remains correct when one works with hyperfunction coefficients. Con
sequently 

H*(C-.,(G/H, L).®/\'N*), dn)~H*(C-°'(D, L).®/\'Nt), oD) 

(3, lO) ~H*({ c-(jJ(G)®L).® I\ '(n/n n fl)*}nnn,H, o). 

These cohomology groups are the subject of the main result, stated in 
Section 5 below. 

§ 4. Infinitesimal constructions 

The derived functor construction [23] associates a family of Harish-
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Chandra modules AP(6, Li) to the data (G/H, el, 6): view U(g) as 6-module 
by left multiplication, as Hn K-module by conjugation, and as (left!) 
g-module via right multiplication, twisted by the! standard anti-automor
phism; then 

(4.1) M.,i = Hom. ( U(g), Li)<Hn Kl 

(=space of Hn K-finite maps in Hom. (U(g), Li)) becomes a (g, Hn K)
module - i.e., simultaneously a module for both g and H n K, acting in a 
compatible fashion (recall that Li has been turned into a 6-module with 
trivial n-action, and that H was assumed to be stable under the Cartan 
involution). Zuckerman's functor I', from the category of Hn K-finite 
(g, Hn K)-modules to the category of (g, K)-modules, associates to any 
module in its domain the largest f-finite, f-semisimple subspace on which 
the action of f lifts to K. Since I' is left exact, and since the domain 
contains enough injectives, one can define the right derived functors RP I' 
[23]. The modules 

( 4.2) AP(f>, Li)= RP I'(M.,i) 

turn out to be Harish-Chandra modules. They have been extensively 
studied in the situation of a maximally real or maximally complex polari
zation [23]. 

To interpret the modules (4.2) geometrically, I let C1(LliSJ I\ ·N*) 
denote the space of formal power series at the identity coset in G/H, with 
values in the bundle L/i!)/\.N*. The operator d. turns C1(L/2)/\.N*) 
into a complex of (g, H)-modules. The U(g)-action, followed by evalua
tion at the identity coset, induces a natural isomorphism 

(4.3) C1(LiC8) I\ .N*)~Hom& (U(g), L/8) I\ 'n*), 

which leads to the identification 

The modules C 1 (L/2) I\· N*)<Hn K) are injective in the category of H n K
finite (g, Hn K)-modules, and they resolve M.,i, hence 

(4.5) 

[1, 6]. C 00 functions have formal Taylor series, so the K-finite part of the 
complex C 00 (G/H, L/2)/\'N*) maps into the complex of formal power 
series. The induced map on cohomology, 
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will be a crucial ingredient of the proof of the main result. 
The complexification Kc of K is an algebraic group, which operates 

on the :flag variety X with finitely many orbits; the orbits are locally closed 
in the Zariski topology. A G-orbit D and a Kc-orbit Q are said to be 
dual to each other if K acts transitively on D n Q. This notion of duality 
establishes an order reversing bijection between the two types of orbits 
[16]. The restriction to D n Q of any G-invariant line bundle L,-+D ex
tend uniquely to a Kc-invariant algebraic line bundle over Q. Typically 
the isotropy subgroup of K at a point in D n Q is smaller than the isotropy 
subgroup of G. For this reason the passage from the G-invariant line 
bundle L, on D to the induced algebraic Kc-invariant bundle on Q is not 
one-to-one. Nonetheless, for simplicity, I denote the induced bundle by 
the same symbol L,. In addition to L,-+Q, the datum of). (or its lifting 
e') determines a g-invariant twisted sheaf of differential operators 5 £», on 
X (in the algebraic category) [3], whose restriction of to Q operates on 
sections of L,-+Q. The £»-module direct imagej+@Q(L,) under the inclu
sion j: Q=----+X is a Kc-invariant sheaf of £»,-modules. Its cohomology 
groups flP(X,j+(!)Q(L,)) become g-modules - in fact, Harish-Chandra 
modules - via the natural map from g to the space of global sections of 
£», [2]. 

Let<!)+ denote the positive root system in <P=<P(g, g) (=root system 
of (g, g)), such that n is spanned by root spaces corresponding to negative 
roots. I write p for the half-sum of the positive roots, as usual. According 
to a very general vanishing theorem of Beilinson-Bernstein, any quasi
coherent sheaf of £»,-modules on X has cohomology only in degree zero, 
unless 2().+p, a)/(a, a) is a strictly negative integer for some a e <!)+ [2]. 
In particular, 

if p>O, 

(4.7) provided 20+p,a)::;t=-l, -2, ... foreveryae<P+. 
(a, a) 

If). satisfies the stronger hypothesis Re((.i!+p, a)/(a, a))>O for a e <P+, 
the 0-th cohomology group is non-zero and contains exactly one irreducible 
submodule. Every irreducible Harish-Chandra module with regular in
finitesimal character occurs as such an irreducible submodule, correspond
ing to uniquely determined data (Q, L,, £»,). A similar, but more involved 
statement describes the irreducible Harish-Chandra modules with singular 
infinitesimal character. This, in effect, is Beilinson-Bernstein's classifica
tion of irreducible Harish-Chandra modules [2]. 

5 This parameterization of the sheaves£&, differs from Beilinson-Bernstein's: 
l=O corresponds to the non-twisted sheaf !?2x. 
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As a sum of roots, -2p e g* lifts to a character e- 2p of H which is 
trivial on the center of G. The corresponding line bundle L_2P - which 
makes sense as Aut (g)-invariant line bundle over all of X - coincides 
with the canonical bundle of X. Now let L,-+D be a G-invariant line 
bundle over a G-orbit DcX, Q the dual Kc-orbit, L_,_2p-+Q the bundle 
induced by the reciprocal of L,, tensored with L_zp• The duality theorem 
of [6] asserts: 

(4.8) AP(fJ, L.) and H•-P(X,jJJQ(L_,_ 2P)) are canonically dual in the 
category of Harish-Chandra modules, 

with s=dim 8 (Q n D)-dimc Q. Via the duality theorem, (4.7) translates 
into a vanishing theorem for the derived functor modules AP(o, L;)-

There exist two earlier, quite general vanishing theorems for the 
modules AP(o, L,), which can also be deduced from (4.7) and (4.8). First, 
when o is maximally real, the modules AP(o, L;) are obtained by parabolic 
induction from derived functor modules associated to totally complex 
polarizations of coadjoint orbits of proper subgroups of G. This implies: 

(4.9) AP(o, L,) = 0 for p -=f=. s if o is maximally real and 
2((l+p, a)/(a, a))-=f=.l, 2, ···,for every positive imaginary root a; 

here s=s(o) has the same meaning as in (4.8). Next, I suppose that o is 
maximally complex. Let I+ c (lj n f)* be the set of positive restricted 
roots, i.e., the set of non-zero images of positive roots under the projection 
g*-+{g n f)* (orthogonal projection, relative to the Killing form). Then 

(4.10) A11(o, Li)=O for p-=f=.s if o is maximally complex and 
Re (l+p, a)<O, for every a e _l'+ 

[23]. Both ( 4.9) and ( 4.10) can be strengthened - more on this later -
at the expense of making the statements considerably more complicated. 

In the setting of either of the two vanishing theorems, certain addi
tional inequalities imply that the one remaining module A'(o, L;) is non
zero and has a unique irreducible quotient; moreover, every irreducible 
Harish-Chandra module occurs among these irreducible quotients, with 
parameters that are unique up to conjugacy. For maximally real polari
zations, this amounts to a paraphrase of Langlands' classification [15], 
and for maximally complex polarizations, of the Vogan-Zuckerman clas
sification [23]. Thus three types of polarizations lead to classifications of 
irreducible Harish-Chandra modules in terms of semisimple coadjoint 
orbits: negative polarizations, characterized by the inequlities Re(l + p, a) 
>O for a e ([)+, which enter the statement of the Beilinson-Bernstein clas-
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sification ( or rather its implication for the AP(6, L;) via the duality theorem 
(4.8)), as well as maximally real and maximally complex polarizations. 

Initially the three classification schemes appeard essentially distinct. 
It is now clear that they are really one and the same, dressed in three dif
ferent disguises. The intertwining functors of Beilinson-Bernstein [3, 7] 
make it possible to pass back and forth between them. Let D be the G
orbit corresponding to the triple ( G/ H, e\ 6 ), Q the dual Kc-orbit, a a 
simple root for the positive root system ([J+=([J+(D). Then X fibres 
Aut (g)-equivariantly over Xa, the variety of parabolic subalgebra of type 
a, with fibre CP 1• I denote the map of the fibration by Pa· Depending 
on the nature of the simple root a, p; 1(paQ) is a union of one, two, or 
three Kc-orbits, and p; 1(paD) a union of the same number of G-orbits. 
In the following I shall assume that a is a complex root, i.e., neither real 
nor imaginary, and that a is a negative root. In this situation, 

(4.11) 
p; 1(paD)=DUD 0, with dimRDo=dimRD-2, 

p; 1(paQ)= Q U Q0 , with dime Q0=dimc Q+ 1; 

D0 corresponds to the polarization ba obtained from 6 by replacing the 
(-a)-root space with the a-root space, and Q0 is dual to D0• The map P« 
induces fibrations D-D 0, Q0-Q, both with fibres C 1• Only the polari
zation is changed in going from D to D0, so L; exists also as G-invariant 
line bundle over D0• I let LHa denote the tensor product of L; with La, 
the G-invariant line bundle associated to the character ea of H; geomet
rically, La is the bundle of vectors tangential to the fibres of Pa· An 
analysis of the Leray spectral sequences for D-D 0, Q0-Q shows6 

(4.12) 

flP(X, j +@iL;)) ~ flP(X, j + @QoCLJ.+a)) 

if2 (.:t+p,a) :;t:-l, -2, · · · 
(a, a) 

if2 (.:t+p, a) :;t:1, 2, ... 
(a, a) 

[7]. Both isomorphisms can be described in geometric terms - for ex
ample, via the description (4.5) of the modules AP(b, L;). Chains of such 
isomorphisms, coupled with the duality theorem (4.8), directly relate the 
three classifications [7]. 

The sheaf J+<PiL;) is supported on Q. Hence, if the Kc-orbit Q 
happens to be affine, the cohomology groups flP(X,J+<PQ(L;)),p>O, vanish 

• Caution: the line bundles L;-+Q, L;-+Qo correspond to the same character 
eJ. of H, but to different Borel subalgebras; if they extend to g-invariant line bundles 
over all of X, the extensions will agree only if (,l., a)=O. 
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even without any special assumptions on 1. More generally, Q may admit 
a fibration over an affine Kc-orbit, in which case the cohomology in strictly 
positive degrees vanishes as soon as L. restricts to a positive line bundle 
along the fibres. Alternatively, the cohomology may vanish because there 
exists a fibration with affine fibres and the bundle L. satisfies an appropriate 
positivity condition relative to the base. Vanishing statements can also 
be transferred from one orbit to another by isomorphisms like (4.12), or 
by analogous isomorphisms corresponding to simple roots a which are 
either imaginary or real. Considerations of this type lead to the refine
ments of the vanishing theorems (4.9-10) that were alluded to before [7]. 

§ 5. The main result 

I recall that each G-invariant line bundle L. over a G-orbit Dc::.X 
extends g-equivariantly to a holomorphic line bundle L.-~D, over a neigh
borhood D of D in X. The local cohomology groups of the extended 
bundle along D, Hfi(D, (!)(£.)), are computed by the Dolbeault complex 
over D, with hyperfunction coefficients which are supported on D [12]. 
These groups depend only on the original bundle L.-~D, not on the par
ticular choice of D. If Dis open orbit, one can take D=D; in this case 
Hfi(D, (!)(L.))=HP(D, (!)(£.)). At the opposite extreme, when Xis a com
plexification of D - as happens in the situation of a real polarization -, 
the local cohomology vanishes except in degree d=dimRD, and 
Ht(D, (!)(LJ) coincides with the space of hyperfunction sections of L.-~D 
[12]. 

For the statement of the main theorem, I fix an integral, polarized, 
semisimple coadjoint orbit, corresponding to the triple (G/H, el, o), and 
let DCX denote the G-orbit through o. 

(5.1) Theorem. There exist canonical isomorphisms 

H*(C-"'(D, Ll~/\"Nt), On)=.H*(C-"'(G/H, L/i)/\"N*), dn) 

=.Ht+c(D, (!){£.)), 

with c=real codimension of Din X. These cohomology groups carry natural 
Frechet topologies which make the action of G continuous. The resulting 
representations are canonically and topologically isomorphic to the maximal 
globalizations of the derived functor modules A *(o, L.). 

In the case of a totally complex polarization, this is a result of Aguilar
Rodriguez [I]. 

The suggestion that various standard representations might be 
realized as local cohomology groups along G-orbits in X was made by 
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Zuckerman [26]. He also observed that a statement of this sort would 
lead to resolutions of finite dimensional representations by representations 
induced from various parabolic subgroups: the G-orbits induce a stratifi
cation, and thus a spectral sequence for local cohomology on X with sup
port on the strata; an appropriate vanishing theorem should make the 
spectral sequence collapse, into a resolution for the global cohomology. 
The character formula which would follow from such a resolution was 
later proved by Vogan [23]. After Beilinson-Bernstein [2] had attached 
Harish-Chandra modules to Kc-orbits, Zuckerman constructed a resolution 
in the setting of Harish-Chandra modules, via local cohomology (in the 
algebraic category) supported along Kc-orbits [27]. The same resolution 
was obtained independently by J. Johnson [9], by purely algebraic methods. 
Theorem (5.1), the vanishing theorem (4.7) and the duality (4.8) immedi
ately give a resolution on the level of global representations. 

The topology of H*(C-w(D, L,0/\"N"E), iJD) can be described ex
plicitly, as follows. Let PcG be a cuspidal parabolic subgroup associated 
to the Cartan subgroup H, such that P contains the isotropy subgroup of 
G at 6. The fibres of the natural G-equivariant fibration D--+G/P are 
complex analytic submanifolds of X. Applying the Dolbeault lemma 
locally along these submanifolds, one finds that the complex of sheaves 
(rt'-.,(L,0 I\ "N"E), iJD) is quasi-isomorphic to a subcomplex of forms whose 
hyperfunction coefficients are holomorphic in the fibre directions. The 
same argument shows that this latter complex is also quasi-isomorphic to 
the subcomplex of (<t'-.,(L,0 /\·NE), i1 D) consisting of forms which are 
smooth along the fibres; notation: (<t';"'(L,0 I\· NE), i1 D). The sheaf rt';,., 
of partially smooth hyperfunctions is fine in the fibre directions, and flabby 
transversely to the fibration, hence globally acyclic. This implies: 

with C;,"'(D, ···)=space of global sections of rt';,"'(···). Since G/P is 
compact, the spaces C;,.,(D, L,0 I\ "Nti) have natural Hausdorff topologies. 
The proof of ( 5.1) will show that the operator iJ D has closed range, so the 
induced topology is also Hausdorff. 

Because of the closed range property, every K-finite cohomology class 
has a K-finite representative, and a K-finite form can be exact only if it is 
the boundary of a K-finite form. Hence 

Since K acts transitively on G/P, K-finite forms is C;,"'(D, L,0 I\ "NE) are 
smooth: 
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These two identifications, combined with (4.4-5), provide morphisms 

(5.5) H*(C-"'(D, L,©A'N'fi). dn\x)~A*(b, L,); 

isomorphisms, it will tum out, which identify the derived functor modules 
as the K-finite part of H*(C-w(D, L,©'N'fi), dn). 

The first of the isomorphisms asserted by theorem ( 5.1) was mentioned 
already in Section 3. The second depends on the nature of the embedding 
DCX. Near any point of D, there exist commuting holomorphic vector 
fields Zi, Z 2, •• ·, Z, on X, whose real parts are tangential along D, and 
whose imaginary parts frame the normal bundle of D. The ZJ define a 
holomorphic foliation of X with c-dimensional leaves, which are complexi
fications of their intersections with D. A spectral sequence argument, 
using the description of hyperfunctions in terms of local cohomology, re
duces the Dolbeault complex on D (with hyperfunction coefficients sup
ported on D), to the dn·COmplex on D. Thus 

(5.6) H'fi+•(D, @(L.))=H*(C-.,(D, L,©/\ 'N'fi), dn)). 

The local cohomology groups H'fi(D, @(L,)) can be computed from a 
complex of @(£,)-valued cochains on a relative covering of (D, D) [12). 
One knows that Z(g) (=center of U(g)) acts on @(L,) via the character 
X,+p (in Harish-Chandra's notation), so 

(5.7) Z(g) operates on H*(C-"'(D, L,©/\ 'N'fi), On)) via Xi+p· 

The analogous statement about A*(o, L,) follows directly from the defini
tion (4.1-2). 

It suffices to prove (5.1) for parameters l in any one particular Weyl 
chamber: the isomorphisms (3.10), (5.6), the map (5.5), the maximal 
globalization all behave well with respect to the process of "tensoring 
across the walls"; the assertion (5.7) makes the argument go through. If 
the polarization o happens to be maximally real, and if l is negative with 
respect to the imaginary roots, the modules H*(C-.,(D, L,©A"N'fi), dn)) 
are obtained by parabolic induction from discrete series representations, 
as has been described in Section 3. In this situation, the statements of the 
theorem can be verified directly. In particular, (5.5) is an isomorphism 
which indentifies the dn·cohomology groups with the maximal globaliza
tion of the derived functor modules. To complete the proof - and this 
is really the crux of the matter- one needs an analogue of (4.12) on the 
level of the groups H*(C-.,(D, L,©A 'N'fi), On)). 

As in (4.11-12), I fix a simple complex root a, whose complex con-
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jugate is negative. Near any point of the base Xa, the fibration Pa is a 
product; I choose an open, relatively compact neighborhood Ua in pa(D), 
so that 

(5.8) 

and set U= Van D, U0 = Van D0, Ua=closure of Ua in Pa(D); similarly, U 
and U0 will denote the closures of U in D and of U0 in D0, respectively. 
Shrinking Ua if necessary, I may assume that Va= p; 1(Ua) is still a product 
of Ua with CP1, and that U0 does not meet the oo-section, i.e., U0c 
UaXC. The argument will involve three induced a operators: aa on Da, 
a0 on D0, an on D. Lett be a coordinate on CP 1 ; then 

(5.9) Uo= {(w, t) E Ua X CP 1 I !=p(w)}, 

for some function p e C01(Ua) with the property that aap-:/=-0 at every point 
of Ua. Any (scalar-valued) differential form in the aa-complex on Ua can 
be expressed uniquely as w+aap/\,fr, where ro, t are differential forms 
in the induced Dolbeault complex on U0, viewed as forms on Ua via 
pa: U0 ~ Ua. In terms of this representation, the operators 00, o a are 
related by the identity 

(5.10) 

here oy denotes the Lie derivative in the direction of the (0, 1) vector field 
Yon Ua which is characterized by the two conditions i) Yp= 1, and ii) Y 
commutes with the pullback to Ua of any (0, 1) vector field on U0• 

To establish the analogue of (4.12), it suffices to define a morphism 
of complexes 

whose restriction to every sufficiently small neighborhood U0cD 0 induces 
isomorphisms 

(5.12) H*(C· 01(U0, Li+a©/\.Nt 0), 00)~H*+ 1(C· 01(U, Li@/\·Nt), an); 
in addition, the morphism must be compatible with (4.12), (5.5). It is easy 
to describe the morphism via the identification (3.9): let ro« e (n/n n fl)* be 
dual to the (-a)-root space; then (5.11) is induced by the assignment 

with na=[Oa, Oa]. The geometric interpretation ofthis map will show that 
it has the appropriate compatibility properties. 
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The formal duality between hyperfunctions and real analytic functions 
can be used to reduce (5.12) to a statement about forms with real analytic 
coefficients. Rather than justifying the passage to the dual statement in 
detail, I shall describe the relevant properties of hyperfunctions and of 
the induced Dolbeault complex. To begin with, an application of the 
Dolbeault lemma along the fibres of U-.Ua shows that the complex 
(C-"'(U 0, L,+a®/\"Nt 0), d0) has the same cohomology as the subcomplex 
of forms which are holomorphic in the fibre directions and do not involve 
the differential dl. The map (5.11,13) takes values in this subcomplex, so 
I shall work with the latter from now on. In analogy to 

(5.14) 

[12] (the superscript prime stands for "strong topological dual"), the space 
of hyperfunctions on U which are holomorphic along the fibres is a quo
tient of duals of spaces of real analytic functions: functions, defined on 
the germ of a neighborhood in Va of, respectively, U0 and au0, and holo
morphic along the fibres. In effect, this is the duality between holomorphic 
functions on C and germs of holomorphic functions at oo, with parameters. 
The duality persists when scalar functions are replaced by sections of L,, 
provided the parameter ,l satisfies the hypothesis of the second half of 
(4.12). This hypothesis ensures that the space of holomorphic sections of 
L, over each fibre FcD is irreducible under the action of the stabilizer of 
Fin g. 

The usual Dolbeault complex is formally self-dual, except for a shift 
by the canonical bundle. Restricted Dolbeault complexes have the same 
formal self-duality property; the shift is given by a CR line bundle: the 
top exterior power of the annihilator in the complexified cotangent bundle 
of the (0, 1) tangent subbundle. Recall that the complex on the right hand 
side of (5.11-13) has been replaced by a certain subcomplex - in effect, 
the restrited Dolbeault complex of Pa(D)cX., with parameters which are 
holomorphic sections of L, on the fibres of pa· In the case of the restricted 
Dolbeault complexes over Da and D 0, the compensating shifts in the 
selfduality statement are related by the line bundle of tangent vectors to 
X-.Xa; this explains the appearance of L, on one side of (5.11), and of 
L,+a on the other. Also, the lengths of the two complexes differ by one, 
which accounts for the shifted degree on the right hand side. 

The arguments which have just 1been outlined reduce (5.12) to the 
following statement. Let ScD 0 be a sufficiently small compact subset, 
which may play the role of either U0 or au0 ; let C"'(S, d0) denote the re
stricted Dolbeault complex over S with real analytic coefficients, and 
c:(s, d) the complex of real analytic forms, defined on the germ of a 
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neighborhood of Sin p; 1(S), holomorphic in the fibre directions, and not 
involving the differential dt. Then, if the restriction map 

(5.15) 

induces an isomorphism in cohomology, (5.12) will follow. The line 
bundle has disappeared at this point, since it can be trivialized over a 
neighborhood of S. 

Forms Q e C~(S, d0) can be expanded as series in powers of t-<p, 
with coefficients that are real analytic Dolbeault forms on pa(S). Expres
sing the coefficients as wn+da<fa/\tn, as described above, one obtains a 
series expansion 

(5.16) 

with positive but arbitrarily small radius of convergence. I now use (5.10) 
to calculate the co boundary of Q: 

(5.17) dfJ= I: {doWn+da<p/\(oyWn -(n+ l)a,n+1-do'Yn)}(t-<pr. 
n;;,o 

The restriction of <p to D0 conicides with that of the holomorphic function 
t, so da<p restricts to zero on D0• Conclusion: the map (5.15) is given by 
the assignment Q~a, 0• If a,0 e C°'(S, d0) is closed, one can inductively 
solve the relations Wn+i=(n+ I)- 1oywn to construct a closed form fJ= 
I:n wnCt-<far E q(S, d) which restricts to Woon S; symbolically 

(5.18) 

(note: do commutes with oy). Convergence presents no problem, since 
a,0 and Y are real analytic. Similarly, if Q is closed and a,0 exact, one can 
recursively construct the coefficients of a series<}), such that fJ=d 0W. Thus 
(5.15) induces an isomorphism in cohomology, as had to be shown. 
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