A Classification Theory of Prehomogeneous Vector Spaces

Tatsuo Kimura

This is a survey of a classification theory of prehomogeneous vector spaces including some unpublished results of Professor Mikio Sato around 1962 with proofs under his permission (Sections 8, 10 and 15) and some results by the author (Section 9) not published elsewhere. This paper consists of the following 15 sections.
§ 1. Basic definitions.
§ 2. Trivial P.V.'s and P. V.-equivalences.
§ 3. A classification of irreducible P.V.'s.
§ 4. A classification of simple P.V.'s.
§ 5. A classification of 2 -simple P.V.'s.
§ 6. A classification of reductive P.V.'s with finitely many orbits.
§ 7. Some generalization of castling transformations and a classification of certain P.V.'s (Y. Teranishi's result).
§ 8. A classification of certain reductive P.V.'s (M. Sato's unpublished result I).
§ 9. Prehomogeneity of some reductive triplets.
§ 10. P.V.'s of associative algebras (M. Sato's unpublished result II).
$\S 11$. A classification of regular irreducible P.V.'s with universally transitive open orbits (J. Igusa's result).
§ 12. Universal transitivity of simple P.V.'s and 2 -simple P.V.'s.
\S 13. Irreducible P.V.'s of characteristic $p \geqq 3$ (Z. Chen's result).
\S 14. A classification of irreducible P.V.'s of parabolic type and their real forms (H. Rubenthaler's result).
$\S 15$. Indecomposable commutative Frobenius algebras and δ-functions; Examples of quasi-regular, non-regular P.V.'s (M. Sato's unpublished result III).
S. Kasai, Xiao-wei Zhu, M. Inuzuka, M. Taguchi and others are trying to classify some P.V.'s respectively, but since they are not completed yet, we do not contain their result here. About other aspects of the theory of P.V.'s originated by M. Sato and developed by many other mathematicians, one can see the papers in the references. The author would like to
express his hearty thanks to Professor M. Sato who explained his results to the author and gave a permission to introduce his result with proofs.

§ 1. Basic definitions

Let Ω be an algebraically closed field of characteristic zero, and we shall consider everything over Ω in this section. Let G be a connected linear algebraic group, ρ a rational representation of G on a finite-dimensional vector space V. When V has a Zariski-dense G-orbit Y, we say that a triplet (G, ρ, V) (or simply $(G, \rho))$ is a prehomogeneous vector space (abbrev. P.V.). A point of Y is called a generic point. For $x \in V$, we denote by G_{x} the isotropy subgroup $\{g \in G ; \rho(g) x=x\}$. Put $g=\operatorname{Lie}(G)$ and $\mathrm{g}_{x}=\operatorname{Lie}\left(G_{x}\right)=\{A \in \mathrm{~g} ; d \rho(A) x=0\}$ where $d \rho$ is the infinitesimal representation of ρ.

Theorem 1.1. If there exists $x \in V$ satisfying $\operatorname{dim} g_{x}=\operatorname{dim} G-\operatorname{dim} V$, then a triplet (G, ρ, V) is a P.V.

Proof. Since $\operatorname{dim} \rho(G) \cdot x=\operatorname{dim} G-\operatorname{dim} G_{x}=\operatorname{dim} G-\operatorname{dim} \mathfrak{g}_{x}=\operatorname{dim} V$, we have $\overline{\rho(G) \cdot x}=V$.
Q.E.D.

A rational function $f(x)$ on V is called a relative invariant of a triplet (G, ρ, V) if there exists a rational character $\chi: G \rightarrow \Omega^{\times}$satisfying $f(\rho(g) x)$ $=\chi(g) f(x)$ for all $g \in G$. If $\chi=1, f(x)$ is called an absolute invariant.

Theorem 1.2. If a triplet (G, ρ, V) has a non-constant absolute invariant, it cannot be a P.V.

Proof. Assume that it is a P.V. Then $f(x)$ is constant on the Zariski-dense orbit Y, and hence it is constant on $\bar{Y}=V$. Q.E.D.

Theorems 1.1 and 1.2 are fundamental tools to check the prehomogeneity of a given triplet (G, ρ, V).

The complement $S=V-Y$ of Y is called the singular set of a P.V. (G, ρ, V), which is Zariski-closed. Let $S=S^{1} \cup \cdots \cup S^{N} \cup S^{\prime \prime}$ be the irreducible decomposition of S where each $S^{i}=\left\{x \in V ; f_{i}(x)=0\right\}$ is an irreducible hypersurface $(1 \leqq i \leqq N)$ and $S^{\prime \prime}$ is the union of irreducible components of codimension $\geqq 2$. All $f_{i}(x)(1 \leqq i \leqq r)$ are relatively invariant irreducible polynomials, which are called basic relative invariants of a P.V. (G, ρ, V). Any relative invariant $f(x)$ is uniquely expressed as $f(x)=$ $c f_{1}(x)^{m_{1}} \cdots f_{N}(x)^{m_{N}}$ where $c \in \Omega^{\times}$and $\left(m_{1}, \cdots, m_{N}\right) \in Z^{N}$. A relative invariant $f(x)$ is called non-degenerate if its Hessian $\operatorname{Hess}_{f}(x)=\operatorname{det}\left(\partial^{2} f / \partial x_{i} \partial x_{j}\right)$ is not identically zero. A P.V. (G, ρ, V) is called regular if it has a nondegenerate relative invariant. A P.V. (G, ρ, V) with a reductive algebraic group G is called a reductive P.V.

Theorem 1.3 (§ 4 in [S-K], [Servedio 3]). Let (G, ρ, V) be a reductive P.V. Then the following conditions are equivalent.
(1) (G, ρ, V) is a regular P.V.
(2) The generic isotropy subgroup $G_{x}(x \in Y)$ is reductive.
(3) The singular set S is a (not necessarily irreducible) hypersurface.

By Theorem 1.3, a reductive P.V. (G, ρ, V) is regular if and only if the generic isotropy subalgebra $\mathfrak{g}_{x}(x \in Y)$ is reductive.

Now two triplets (G, ρ, V) and $\left(G^{\prime}, \rho^{\prime}, V^{\prime}\right)$ are called isomorphic if there exists a rational isomorphism $\sigma: \rho(G) \rightarrow \rho^{\prime}\left(G^{\prime}\right)$ and an isomorphism $\tau: V \rightarrow V^{\prime}$ satisfying $(\sigma \rho)(g) \cdot \tau(v)=\tau \cdot \rho(g) v$ for all $g \in G$ and $v \in V$. In this case, we shall write $(G, \rho, V) \simeq\left(G^{\prime}, \rho^{\prime}, V^{\prime}\right)$. For example, we have $\left(S L_{2}, 2 \Lambda_{1}\right) \simeq\left(S O_{3}, \Lambda_{1}\right)$ although $S L_{2}$ and $S O_{3}$ are not isomorphic. If G is reductive, then we have $(G, \rho, V) \simeq\left(G, \rho^{*}, V^{*}\right)$ where ρ^{*} is the contragredient representation on the dual vector space V^{*} of V. In our classification, we identify isomorphic triplets.

§ 2. Trivial P.V.'s and P.V.-equivalences

In this section, we shall show some general methods to construct infinitely many P.V.'s.

Theorem 2.1. Let ρ be any representation of any group H on an m dimensional vector space V. Then the triplet $\left(H \times G L_{n}, \rho \otimes \Lambda_{1}, V \otimes \Omega^{n}\right)$ is a P.V. for all $n \geqq m=\operatorname{dim} V$.

Proof. It is enough to prove the prehomogeneity when $H=\{1\}$. In this case, this triplet is isomorphic to $\left(G L_{n}, \Lambda_{1} \oplus \cdots \oplus \Lambda_{1}, M_{n, m}\right)$. Put $x=$ $\binom{I_{m}}{0}$. Then the isotropy subgroup G_{x} is given by $G_{x}=\left\{\left(\left.\frac{I_{m}}{0} \right\rvert\, \frac{*}{A}\right)\right.$; $\left.A \in G L_{n-m}\right\}$. Since $\operatorname{dim} G_{x}=m(n-m)+(n-m)^{2}=\operatorname{dim} G L_{n}-\operatorname{dim} M_{n, m}$. it is a P.V. by Theorem 1.1.
Q.E.D.

Definition 2.2. Any P.V. of the type in Theorem 2.1 is called a trivial P.V.

Now various P.V.-equivalences can be proved by using the following lemma.

Key Lemma 2.3. Let G be a connected linear algebraic group and let W, W^{\prime} be irreducible algebraic varieties on which G acts. Let $\psi: W \rightarrow W^{\prime}$ be a dominant (i.e., $\left.\bar{\psi}(W)=W^{\prime}\right) G$-equivariant (i.e., compatible with the action of G) morphism. Then the following conditions are equivalent:
(i) W is G-prehomogeneous, i.e., it has a Zariski-dense G-orbit.
(ii) W^{\prime} is G-prehomogeneous, and for a point y of a Zariski-dense orbit, the fiber $\psi^{-1}(y)$ is G_{y}-prehomogeneous.

Proof. (i) \Rightarrow (ii): Let x be a point of the Zariski-dense G-orbit in W and put $y=\psi(x)$. Since $\overline{G \cdot y}=\overline{\psi(G \cdot x)} \supset \psi(\overline{G \cdot x})=\psi(W)$ and $W^{\prime}=\overline{\psi(W)}$, we have $W^{\prime}=\overline{G \cdot y}$, i.e., W^{\prime} is G-prehomogeneous, and hence $\operatorname{dim} G_{y}=$ $\operatorname{dim} G-\operatorname{dim} W^{\prime} . \quad$ Since $\operatorname{dim}\left(G_{y}\right)_{r}=\operatorname{dim} G_{x}=\operatorname{dim} G-\operatorname{dim} W=\operatorname{dim} G_{y}+$ $\operatorname{dim} W^{\prime}-\operatorname{dim} W=\operatorname{dim} G_{y}-\operatorname{dim} \psi^{-1}(y)$, the fibre $\psi^{-1}(y)$ of y is $G_{y^{-}}$ prehomogeneous.
(ii) \Rightarrow (i): \quad Since $\operatorname{dim} G_{x}=\operatorname{dim}\left(G_{y}\right)_{x}=\operatorname{dim} G_{y}-\operatorname{dim} \psi^{-1}(y)=(\operatorname{dim} G$ $\left.-\operatorname{dim} W^{\prime}\right)-\operatorname{dim} \psi^{-1}(y)=\operatorname{dim} G-\operatorname{dim} W, W$ is G-prehomogeneous.
Q.E.D.

Theorem 2.4. A triplet $\left(G, \rho_{1} \oplus \rho_{2}, V_{1} \oplus V_{2}\right)$ is a P.V. if and only if (i) $\left(G, \rho_{1}, V_{1}\right)$ is a P.V. and (ii) $\left(H, \rho_{2} \mid H, V_{2}\right)$ is a P.V. where H is a generic isotropy subgroup of $\left(G, \rho_{1}, V_{1}\right)$.

Proof. By Key Lemma 2.3 for $W=V_{1} \oplus V_{2}, W^{\prime}=V_{1}$ and $\psi=$ the projection to V_{1}, we have our result.
Q.E.D.

Theorem 2.5. The following conditions are equivalent.
(i) All $\left(G_{i}, \rho_{i}, V_{i}\right)$ are P.V.'s $(1 \leqq i \leqq r)$.
(ii) A triplet $\left(G_{1} \times \cdots \times G_{r} \times G L_{n},\left(\rho_{1}+\cdots+\rho_{r}\right) \otimes 1+\sigma \otimes \Lambda_{1},\left(V_{1} \oplus\right.\right.$ $\left.\left.\cdots \oplus V_{r}\right) \oplus\left(V \otimes \Omega^{n}\right)\right)$ is a $P . V$. where σ is any representation of the group $G_{1} \times \cdots \times G_{r}$ on V and n is any natural number satisfying $n \geqq \operatorname{dim} V$.

Proof. By Theorems 2.1 and 2.4, we have our result.
Q.E.D.

Definition 2.6. A triplet in (ii) in Theorem 2.5 is called a generalized direct sum of $\left(G_{i}, \rho_{i}, V_{i}\right)(1 \leqq i \leqq r)$. When $V=\{0\}$, it is called the direct sum and denoted by $\oplus\left(G_{i}, \rho_{i}, V_{i}\right)$.

Theorem 2.7. Let ρ be a representation of an algebraic group H on an m-dimensional vector space V. For any n satisfying $m>n \geqq 1$, the following conditions are equivalent.
(i) $\left(H \times G L_{n}, \rho \otimes \Lambda_{1}, V \otimes \Omega^{n}\right)$ is a $P . V$.
(ii) $\left(H \times G L_{m-n}, \rho^{*} \otimes \Lambda_{1}, V^{*} \otimes \Omega^{m-n}\right)$ is a $P . V$. where ρ^{*} is the contragredient representation of ρ on the dual space V^{*} of V. Note that if H is reductive, then this triplet is isomorphic to $\left(H \times G L_{m-n}, \rho \otimes \Lambda_{1}, V \otimes\right.$ Ω^{m-n}).

Proof. Put $W=\left\{x=\left(x_{1}, \cdots, x_{n}\right) \in M_{m, n}=V \otimes \Omega^{n} ; \operatorname{rank} x=n\right\}$ and $W^{\prime}=\operatorname{Grass}_{n}(V)$, i.e., the Grassmann variety consisting of n-dimensional
subspaces of V. For $x \in W$, let $\psi(x)$ be the n-dimensional subspace of V. spanned by x_{1}, \cdots, x_{n}. Then we obtain a dominant $H \times G L_{n}$-equivariant map $\psi: W \rightarrow W^{\prime}$, and $G L_{n}$ acts on each fibre transitively while it acts on W^{\prime} trivially. Hence, by Key Lemma 2.3, (i) is equivalent to the condition: (i) $W^{\prime}=\operatorname{Grass}_{n}(V)$ is H-prehomogeneous. Since $\operatorname{Grass}_{n}(V) \simeq$ $\operatorname{Grass}_{m-n}\left(V^{*}\right)$, we have our result.
Q.E.D.

We say the triplets (i) and (ii) in Theorem 2.7 are castling transforms of each other. Two triplets are called castling-equivalent if one is obtained from the other by a finite number of castling transformations. Let (G, ρ, V) be any given P.V. with $m=\operatorname{dim} V$. Clearly $\left(G \times G L_{1}, \rho \otimes \Lambda_{1}\right.$, $V \otimes \Omega)$ is also a P.V., and hence so is its castling transform ($G \times G L_{m-1}$, $\left.\rho^{*} \otimes \Lambda_{1}, \quad V^{*} \otimes \Omega^{m-1}\right)$. By repeating this procedure, one sees that there exist infinitely many non-isomorphic P.V.'s which are castling-equivalent to a given P.V. when $m=\operatorname{dim} V \geqq 3$. There are many other P.V.-equivalences (See [S-K], [K-K-T-I]). We shall finish this section by giving one more example of P.V.-equivalence.

Theorem 2.8. Let ρ_{1} (resp. ρ_{2}) be a representation of an algebraic group H on an $m_{1}\left(\right.$ resp. $\left.m_{2}\right)$-dimensional vector space $V_{1}\left(\right.$ resp.$\left.V_{2}\right)$. Then the following conditions are equivalent.
(i) $\left(H, \rho_{1} \otimes \rho_{2}, V_{1} \otimes V_{2}\right)$ is a P.V.
(ii) $\left(H \times G L_{n}, \rho_{1} \otimes \Lambda_{1}+\rho_{2} \otimes \Lambda_{1}^{*}, V_{1} \otimes \Omega^{n}+V_{2} \otimes \Omega^{n}\right)$ is a P.V. for all n satisfying $n \geqq \max \left\{m_{1}, m_{2}\right\}$.
(iii) There exists n satisfying $n \geqq \max \left\{m_{1}, m_{2}\right\}$ such that $\left(H \times G L_{n}, \rho_{1}\right.$ $\left.\otimes \Lambda_{1}+\rho_{2} \otimes \Lambda_{1}^{*}, V_{1} \otimes \Omega^{n}+V_{2} \otimes \Omega^{n}\right)$ is a $P . V$.

By using Key Lemma 2.3, we can prove Theorem 2.8 (See $\S 1$ in [K-K-T-I], $\S 4$ in [K-K-H]). Thus, for any given P.V. (G, ρ, V), we can construct a new P.V. $\left(G \times G L_{n}, \rho \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{*}, V \otimes \Omega^{n}+\Omega^{n}\right)$ for any $n \geqq \operatorname{dim} V$.

§*3. A classification of irreducible P.V.'s

The starting point of a classification is the following lemma.
Lemma 3.1. If (G, ρ, V) is a P.V., then we have $\operatorname{dim} G \geqq \operatorname{dim} V$.
Proof. If x is a generic point, we have $\operatorname{dim} G_{x}=\operatorname{dim} G-\operatorname{dim} V \geqq 0$.
Q.E.D.

By a well-known theorem of E. Cartan, $\rho(G)$ is a reductive algebraic group with at most one-dimensional center when ρ is irreducible. Hence we may assume that $G=\left(G L_{1} \times\right) G_{1} \times \cdots \times G_{k}$ where each $G_{i}(1 \leqq i \leqq k)$ is
a simple algebraic group of dim $\geqq 3$. It is also well-known that if σ is an irreducible representation of a group $H=H_{1} \times H_{2}$ over Ω, then we have $\sigma=\sigma_{1} \otimes \sigma_{2}$ where each σ_{i} is an irreducible representation of $H_{i}(i=1,2)$. Hence we may assume that $\rho=\left(\Lambda_{1} \otimes\right) \rho_{1} \otimes \cdots \otimes \rho_{k}, V=V\left(d_{1}\right) \otimes \cdots \otimes V\left(d_{k}\right)$ ($d_{1} \geqq d_{2} \geqq \cdots \geqq d_{k} \geqq 2$) where each ρ_{i} is a d_{i}-dimensional irreducible representation of G_{i} on $V\left(d_{i}\right)(1 \leqq i \leqq k)$ and Λ_{1} denotes the scalar multiplication of $G L_{1}$ on V. Thus, by Lemma 3.1, we have $1+g_{1}+\cdots+g_{k} \geqq d_{1} d_{2}$ $\cdots d_{k}$ where $g_{i}=\operatorname{dim} G_{i}(1 \leqq i \leqq k)$. The following lemma due to M. Sato is important for our purpose.

Lemma 3.2 (M. Sato) (p. 43 in $[\mathrm{S}-\mathrm{K}]$). If $k \geqq 3$, then $1+g_{1} \geqq 4 d_{1}-6$.
Now what we have to do is first to classify all triplets (G, ρ, V) satisfying $\operatorname{dim} G \geqq \operatorname{dim} V$ by using castling transformations, case by case when $G_{1}=A_{n}, B_{n}, C_{n}, D_{n},\left(G_{2}\right), F_{4}, E_{6}, E_{7}, E_{8}$. For example, Lemma 3.2 says that $k=1$ or 2 when G_{1} is an exceptional algebraic group $\left(G_{2}\right), F_{4}, E_{6}, E_{7}$, E_{8}. Next, by using Theorems 1.1 and 1.2 , we check the prehomogeneity of triplets (G, ρ, V) satisfying $\operatorname{dim} G \geqq \operatorname{dim} V$. Note that the property of $\operatorname{dim} G \geqq \operatorname{dim} V$ and the regularity are invariant property under castling transformations. The results are given as follows.

Theorem 3.3 ([S-K]). Any irreducible P.V. (G, ρ, V) is castling-equivalent to one of the following P.V.'s.
(I) Regular P.V.'s.
(1) A trivial P.V., i.e., $\left(H \times G L_{n}, \rho \otimes \Lambda_{1}, M_{n}\right)$ where ρ is an n dimensional irreducible representation of a connected semisimple algebraic group H.
(2) $\left(G L_{n}, \rho\right)$ where $\rho=2 \Lambda_{1} ; 3 \Lambda_{1}(n=2) ; \Lambda_{2}(n=$ even $) ; \Lambda_{3}(n=6,7,8)$.
(3) $\left(S L_{3} \times G L_{2}, 2 \Lambda_{1} \otimes \Lambda_{1}, V(6) \otimes V(2)\right)$.
(4) $\left(S L_{6} \times G L_{2}, \Lambda_{2} \otimes \Lambda_{1}, V(15) \otimes V(2)\right)$.
(5) $\left(S L_{5} \times G L_{n}, \Lambda_{2} \otimes \Lambda_{1}, V(10) \otimes V(n)\right)(n=3,4)$.
(6) $\left(S L_{3} \times S L_{3} \times G L_{2}, \Lambda_{1} \otimes \Lambda_{1} \otimes \Lambda_{1}, V(3) \otimes V(3) \otimes V(2)\right)$.
(7) $\left(S p_{n} \times G L_{2 m}, \Lambda_{1} \otimes \Lambda_{1}, V(2 n) \otimes V(2 m)\right)(n>m \geqq 1)$
(8) $\left(G L_{1} \times S p_{3}, \Lambda_{1} \otimes \Lambda_{3}, V(14)\right)$.
(9) $\left(S O_{n} \times G L_{m}, \Lambda_{1} \otimes \Lambda_{1}, V(n) \otimes V(m)\right)(n>m \geqq 1)$.
(10) $\quad\left(\operatorname{Spin}_{7} \times G L_{n}\right.$, the spin rep. $\left.\otimes \Lambda_{1}\right)(1 \leqq n \leqq 3)$.
(11) $\left(G L_{1} \times \operatorname{Spin}_{n}\right.$, the spin rep.) $(n=9,11)$.
(12) $\left(\operatorname{Spin}_{10} \times G L_{n}\right.$, a half-spin rep. $\left.\otimes \Lambda_{1}\right)(n=2,3)$.
(13) $\left(G L_{1} \times \operatorname{Spin}_{n}\right.$, a half-spin rep.) $(n=12,14)$.
(14) $\left(G_{2} \times G L_{n}, \Lambda_{2} \otimes \Lambda_{1}, V(7) \otimes V(n)\right)(n=1,2)$.
(15) $\quad\left(E_{6} \times G L_{n}, \Lambda_{1} \otimes \Lambda_{1}, V(27) \otimes V(n)\right)(n=1,2)$.
(16) $\quad\left(G L_{1} \times E_{7}, \Lambda_{1} \otimes \Lambda_{6}, V(56)\right)$.
(II) Non-regular P.V.'s.
(1) $\left(S p_{n} \times G L_{2}, \Lambda_{1} \otimes 2 \Lambda_{1}, V(2 n) \otimes V(3)\right)$.
(2) $\left(\left(G L_{1} \times\right) H \times S L_{n},\left(\Lambda_{1} \otimes\right) \rho \otimes \Lambda_{1}, V(m) \otimes V(n)\right)$ where ρ is an m dimensional irreducible representations of a semisimple algebraic group H with $1 \leqq m<n$.
(3) $\left(\left(G L_{1} \times\right) S L_{2 m+1},\left(\Lambda_{1} \otimes\right) \Lambda_{2}, V(m(2 m+1))\right)(m \geqq 2)$.
(4) $\left(\left(G L_{1} \times\right) S L_{2 m+1} \times S L_{2},\left(\Lambda_{1} \otimes\right) \Lambda_{2} \otimes \Lambda_{1}, V(m(2 m+1)) \otimes V(2)\right)(m \geqq 2)$.
(5) $\left(\left(G L_{1} \times\right) S p_{n} \times S L_{2 m+1},\left(\Lambda_{1} \otimes\right) \Lambda_{1} \otimes \Lambda_{1}, V(2 n) \otimes V(2 m+1)\right)$.
(6) $\left(\left(G L_{1} \times\right) \operatorname{Spin}_{10},\left(\Lambda_{1} \otimes\right)\right.$ a half-spin rep., $\left.V(16)\right)$.

Remark. A classification of irreducible P.V.'s $\left(G L_{1} \times G, \Lambda_{1} \otimes \rho\right)$ with a simple algebraic group G was completed by M. Sato and T. Shintani (See P. 144 in [S-S]).

§4. A classification of simple P.V.'s

E.B. Vinberg has classified a P.V. (G, ρ, V) when G is a simple algebraic group ([V]). T. Shintani completed a classification of irreducible simple P.V.'s with the scalar multiplication ([S-S]). This result is included insisection 3. T. Kimura has classified simple P.V.'s with scalar multiplications ([Kimura 5]).

Theorem 4.1 (E.B. Vinberg [V]). A P.V. (G, ρ, V) with a simple algebraic group is given as follows.
(1) $G=S L_{n} ; \rho=\Lambda_{1} \oplus \cdots \oplus \Lambda_{1}(1 \leqq k<n), \Lambda_{2}(n=$ odd $), \Lambda_{2} \oplus \Lambda_{1}^{*}(n=$ odd), $\Lambda_{2} \oplus \Lambda_{2}(n=o d d)$.
(2) $\left(S p_{n}, \Lambda_{1}\right),\left(\mathrm{Spin}_{10}\right.$, a half-spin rep.).

Let G^{\prime} be a simple algebraic group, $\rho^{\prime}=\rho_{1} \oplus \cdots \oplus \rho_{k}$ a rational representation of G^{\prime} where each ρ_{i} is an irreducible representation. Put $G=$ $G L_{1}{ }^{k} \times G^{\prime}$ and let ρ be the composition of ρ^{\prime} and the scalar multiplications $G L_{1}{ }^{k}$ on each irreducible component $\rho_{i}(1 \leqq i \leqq k)$. A P.V. (G, ρ, V) of such type is called a simple $P . V$. For simplicity, we write ($G L_{1}{ }^{k} \times G^{\prime}, \rho^{\prime}$) or $\left(G^{\prime}, \rho^{\prime}\right)^{\prime}$ instead of $\left(G L_{1}{ }^{k} \times G^{\prime}, \rho\right)$.

Theorem 4.2 ([Kimura 5] with a correction [K-K-I-Y]). All nonirreducible simple P.V.'s (with scalar multiplications) are given as follows.
(1) $\quad G^{\prime}=S L_{n}, \rho=\Lambda_{1} \oplus \cdots \oplus \Lambda_{1} \oplus \Lambda_{1}^{(*)}(2 \leqq k \leqq n+1, n \geqq 2), \Lambda_{2} \oplus \Lambda_{1}^{(*)} \oplus$ $\cdots \oplus \Lambda_{1}^{(*)}(2 \leqq k \leqq 4, n \geqq 4) \quad$ except $\quad \Lambda_{2} \oplus \Lambda_{1} \oplus \Lambda_{1} \oplus \Lambda_{1}^{*}(n=$ odd $), 2 \Lambda_{1} \oplus \Lambda_{1}^{(*)}$, $\Lambda_{2} \oplus \Lambda_{2}(n=o d d), \Lambda_{2} \oplus \Lambda_{2} \oplus \Lambda_{1}^{*}(n=5), \Lambda_{3} \oplus \Lambda_{1}^{(*)}(n=6,7), \Lambda_{3} \oplus \Lambda_{1} \oplus \Lambda_{1}(n=6)$.
(2) $\quad G^{\prime}=S p_{n}, \rho=\Lambda_{1} \oplus \Lambda_{1}, \Lambda_{1} \oplus \Lambda_{1} \oplus \Lambda_{1}, \Lambda_{2} \oplus \Lambda_{1}(n=2), \Lambda_{3} \oplus \Lambda_{1}(n=3)$.
(3) $\quad G^{\prime}=\operatorname{Spin}_{n}, \rho=$ the spin rep. \oplus the vector rep. $(n=7)$, a half-spin rep. \oplus the vector rep. $(n=8,10,12), \Lambda \oplus \Lambda$ where $\Lambda=$ the even half-spin representation.

Theorem 4.3. All non-irreducible simple regular P.V.'s are given as follows.
(1) $\quad G^{\prime}=S L_{n}, \rho=\Lambda_{1} \oplus \Lambda_{1}^{*}, \Lambda_{1} \oplus \cdots \oplus \Lambda_{1}(k=n)\left(\oplus \Lambda_{1}^{(*)}\right), 2 \Lambda_{1} \oplus \Lambda_{1}^{(*)}$, $\Lambda_{2} \oplus \Lambda_{1}^{(*)} \oplus \Lambda_{1}^{(*)}(n=$ even $), \Lambda_{2} \oplus \Lambda_{1}\left(\oplus\left(\Lambda_{1} \oplus \Lambda_{1}\right)^{(*)}\right)(n=$ odd $), \Lambda_{3} \oplus \Lambda_{1}^{(*)}(n=7)$.
(2) $G^{\prime}=S p_{n}, \rho=\Lambda_{1} \oplus \Lambda_{1}, \Lambda_{3} \oplus \Lambda_{1}(n=3)$.
(3) All P.V.'s given in (3) in Theorem 4.2.

§ 5. A classification of 2-simple P.V.'s

In this section, we shall consider a triplet $\left(G L_{1}{ }^{k+s+t} \times G_{1} \times G_{2},\left(\sigma_{1}+\right.\right.$ $\left.\left.\cdots+\sigma_{s}\right) \otimes 1+\left(\rho_{1} \otimes \rho_{1}^{\prime}+\cdots+\rho_{k} \otimes \rho_{k}^{\prime}\right)+1 \otimes\left(\tau_{1}+\cdots+\tau_{t}\right)\right)$ where G_{1}, G_{2} are simple algebraic groups; σ_{i}, ρ_{i} (resp. $\rho_{j}^{\prime}, \tau_{j}$) are non-trivial irreducible representation of G_{1} (resp. G_{2}), and $G L_{1}{ }^{k+s+t}$ acts on each irreducible component as scalar multiplications. A P.V. of such type is called a 2-simple P.V. If one of $\left(G L_{1} \times G_{1} \times G_{2}, \rho_{i} \otimes \rho_{i}^{\prime}\right)(1 \leqq i \leqq k)$ is a non-trivial P.V., it is called a 2-simple P. V. of type I . On the other hand, if all $\left(G L_{1} \times G_{1} \times\right.$ $\left.G_{2}, \rho_{i} \otimes \rho_{i}^{\prime}\right)(1 \leqq i \leqq k)$ are trivial P.V.'s (See Definition 2.2), it is called a 2 -simple P.V. of type II. Note that if $k=0$, it is just the direct sum of simple P.V.'s, and hence we shall assume $k \geqq 1$. By using the results in Sections 3 and 4, one can complete the classification of 2 -simple P.V. of type I.

Theorem 5.1 ([K-K-I-Y]). Any 2-simple P.V. of type I is castlingequivalent to a simple P.V. or one of the following P.V.'s $\left(G L_{1}{ }^{k} \times G\right.$, $\rho\left(=\rho_{1} \oplus \cdots \oplus \rho_{k}\right)$).
(I) Regular P.V.'s
(1) $G=S L_{m} \times S L_{n}$, (a) $m=4 ; \rho=\Lambda_{2} \otimes \Lambda_{1}+T(n=2)$ with $T=\Lambda_{1} \otimes \Lambda_{1}$, $\left(\Lambda_{1}+\Lambda_{1}\right) \otimes 1 ; \quad \Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1\left(+1 \otimes \Lambda_{1}^{(*)}\right) \quad(n=3), \quad \Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+1 \otimes \Lambda_{1}^{*}$ ($n=4$), (b) $m=5 ; \quad \rho=\Lambda_{2} \otimes \Lambda_{1}+\left(\Lambda_{1}^{*}+\Lambda_{1}^{(*)}\right) \otimes 1 \quad(n=2), \quad \Lambda_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{(*)}$ $(n=3), \Lambda_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{*}(n=8), \Lambda_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{*}(n=9)$.
(2) $G=S p_{m} \times S L_{n}$, (a) $\rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)}\right)(n=$ even $) ; ~ \Lambda_{1} \otimes$ $\Lambda_{1}+1 \otimes T(n=2)$ with $T=2 \Lambda_{1}, 3 \Lambda_{1},\left(2 \Lambda_{1}+\Lambda_{1}\right) ; \Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1\left(+1 \otimes\left(\Lambda_{1}+\right.\right.$ $\left.\left.\Lambda_{1}\right)^{(*)}\right)(n=o d d)$. (b) $m=2 ; \rho=\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1\left(+1 \otimes \Lambda_{1}\right)(n=2), \Lambda_{1} \otimes \Lambda_{1}+$ $\Lambda_{2} \otimes 1+1 \otimes \Lambda_{1}^{*}(n=3), \Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+1 \otimes \Lambda_{1}^{*}(n=4)$.
(3) $G=S O_{n} \times S L_{m}, \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{(*)}$.
(4) $\quad G=\operatorname{Spin}_{7} \times S L_{n}$, (a) $\rho=\Lambda \otimes \Lambda_{1}+1 \otimes \Lambda_{1}(n=2,3), \Lambda \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{*}$ ($n=3,6,7$) where $\Lambda=$ the spin representation of Spin_{7}. (b) $\rho=\chi \otimes \Lambda_{1}+\Lambda \otimes$ $1\left(+1 \otimes \Lambda_{1}\right)(n=2), \chi \otimes \Lambda_{1}+\Lambda \otimes 1+1 \otimes \Lambda_{1}^{*}(n=6)$ where $\chi=$ the vector representation of Spin_{7}, i.e. $\chi\left(\mathrm{Spin}_{7}\right)=S O_{7}$.
(5) $\quad G=\operatorname{Spin}_{m} \times S L_{n}$, (a) $m=8, \rho=\chi \otimes \Lambda_{1}+\Lambda^{\prime} \otimes 1\left(+1 \otimes \Lambda_{1}\right)(n=2,3)$, $\chi \otimes \Lambda_{1}+\Lambda^{\prime} \otimes 1+1 \otimes \Lambda_{1}^{*} \quad(n=3,6,7)$ where $\Lambda^{\prime}=a$ half-spin representation. (b) $m=10, \rho=\Lambda^{\prime} \otimes \Lambda_{1}+1 \otimes T(n=2)$ with $T=2 \Lambda_{1}, 3 \Lambda_{1}, \Lambda_{1}+\Lambda_{1}, 2 \Lambda_{1}+\Lambda_{1}$,
$\Lambda_{1}+\Lambda_{1}+\Lambda_{1} ; \Lambda^{\prime} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}(n=3), \Lambda^{\prime} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{*}(n=3,14,15), \chi \otimes \Lambda_{1}+$ $\Lambda^{\prime} \otimes 1(n=2,3,4)$.
(6) $G=\left(G_{2}\right) \times S L_{n}, \rho=\Lambda_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}(n=2), \Lambda_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{*}(n=6)$ where $\operatorname{deg} \Lambda_{2}=7$.

(II) Non-regular P.V.'s

(7) $\quad G=S L_{n} \times S L_{2} ; \rho=\Lambda_{2} \otimes \Lambda_{1}+1 \otimes T(n=$ odd $)$ with $T=t \Lambda_{1}(t=1,2,3)$, $\Lambda_{1}+t \Lambda_{1}(t=1,2), \Lambda_{1}+\Lambda_{1}+\Lambda_{1} ; \Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1\left(+1 \otimes \Lambda_{1}\right)(n=4), \Lambda_{2} \otimes \Lambda_{1}+$ $\Lambda_{1}^{(*)} \otimes 1\left(+1 \otimes \Lambda_{1}\right)(n=5), \Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{*} \otimes 1+1 \otimes T(n=5)$ with $T=2 \Lambda_{1}, \Lambda_{1}+\Lambda_{1} ;$ $\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{(*)} \otimes 1(n=6,7), \Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{*} \otimes 1+1 \otimes \Lambda_{1}(n=7), \Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{*} \otimes 1$ ($n=9$).
(8) $\quad G=S L_{4} \times S L_{5}, \rho=\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+1 \otimes \Lambda_{1}^{*}$.
(9) $G=S L_{5} \times S L_{9}, \rho=\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+1 \otimes \Lambda_{1}^{*}$.
(10) $\quad G=S p_{n} \times S L_{m}$, (a) $m=$ even, $\rho=\Lambda_{1} \otimes \Lambda_{1}\left(+T\left(+1 \otimes\left(\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)}\right)\right)\right)$ with $T=\Lambda_{1} \otimes 1,1 \otimes \Lambda_{1}^{(*)} ; \Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+1 \otimes \Lambda_{1}^{(*)}$. (b) $m=$ odd, $\rho=\Lambda_{1} \otimes \Lambda_{1}+$ $1 \otimes T$ with $T=\Lambda_{1}^{(*)}, \Lambda_{2}, \rho=\Lambda_{1} \otimes \Lambda_{1}+S+T$ with $S, T=\Lambda_{1} \otimes 1,1 \otimes \Lambda_{1}^{(*)} . \quad \rho=$ $\Lambda_{1} \otimes \Lambda_{1}+T$ with $T=1 \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}+\Lambda_{1}\right)^{(*)}, 1 \otimes\left(\Lambda_{1}^{*}+\Lambda_{1}^{*}+\Lambda_{1}^{*}\right)$. (c) $m=2$, $\rho=\Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+1 \otimes 2 \Lambda_{1}, \Lambda_{1} \otimes 2 \Lambda_{1}+1 \otimes \Lambda_{1}, \quad$ (d) $m=3, \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes$ $2 \Lambda_{1}$, (e) $m=5, \rho=\Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{2}+\Lambda_{1}^{*}\right)$.
(11) $\quad G=\operatorname{Spin}_{10} \times S L_{2}, \rho=\Lambda^{\prime} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}$.

Now let us consider 2 -simple P.V.'s of type II.
Theorem 5.2. For any simple P.V. $\left(G L_{1}{ }^{r} \times G, \rho_{1} \oplus \cdots \oplus \rho_{r}\right)$, one can obtain the following 2 -simple P.V.'s of type II.
(1) $\left(G L_{1}{ }^{r+s} \times G \times S L_{n}, \quad\left(\sigma_{1}+\cdots+\sigma_{s}\right) \otimes \Lambda_{1}+\left(\rho_{1}+\cdots+\rho_{r}\right) \otimes 1\right)$ for any representation $\sigma_{1}+\cdots+\sigma_{s}$ of G and any natural number n satisfying $n \geqq \operatorname{deg} \sigma_{1}+\cdots+\operatorname{deg} \sigma_{s}$.
(2) $\left(G L_{1}^{r+t} \times G \times S L\left(\sum_{t}^{k} \operatorname{deg} \rho_{i}+t-1\right),\left(\rho_{1}+\cdots+\rho_{k}\right) \otimes \Lambda_{1}+\left(\rho_{k+1}{ }^{*}\right.\right.$ $\left.+\cdots+\rho_{r}{ }^{*}\right) \otimes 1+1 \otimes(\Lambda_{1}+\overbrace{\cdots}+\Lambda_{1}))(1 \leqq k \leqq r)$ for any $t \geqq 0$.
(3) $\left(G L_{1}^{r+t} \times G \times S L_{n}, \quad\left(\rho_{1}+\cdots+\rho_{k}\right) \otimes \Lambda_{1}+\left(\rho_{k+1}+\cdots+\rho_{r}\right) \otimes 1+1\right.$ $\otimes(\Lambda_{1}+\overbrace{\cdots+}^{t-1}+\Lambda_{1}+\Lambda_{1}^{*})(1 \leqq k \leqq r)$ for any pair of natural numbers (t, n) satisfying $t \geqq 1$ and $n \geqq t-1+\operatorname{deg} \rho_{1}+\cdots+\operatorname{deg} \rho_{k}$.

Proof. By Theorem 2.5 (resp. Theorem 2.7, Theorem 2.8), we have (1) (resp. (2), (3)).
Q.E.D.

A classification of 2 -simple P.V.'s of type II is more difficult than that of type I because we have to classify 2 -simple P.V.'s of type ($G L_{1}{ }^{k+s+t}$ $\times S L_{m} \times S L_{n}, \quad(\Lambda_{1}^{(*)} \overbrace{+\cdots}^{s}+\Lambda_{1}^{(*)}) \otimes 1+(\Lambda_{1}^{(*)} \otimes \Lambda_{1}^{(*)} \overbrace{\cdots \cdots+}^{t}+\Lambda_{1}^{(*)} \otimes \Lambda_{1}^{(*)})+$

Λ_{1} or its dual $\Lambda_{1}^{(*)}$. One can see after using some P.V.-equivalences that the most essential part is to investigate the prehomogeneity of $\left(G L_{1}{ }^{k+s+t} \times\right.$ $S L_{m} \times S L_{n},(\Lambda_{1}+\overbrace{\cdots}^{s}+\Lambda_{1}) \otimes 1+(\Lambda_{1} \otimes \Lambda_{1}+\overbrace{\left.\cdots+\Lambda_{1} \otimes \Lambda_{1}\right)+1 \otimes(\Lambda_{1}^{*}+\overbrace{\cdots+}^{t}+, ~+~}^{t}$ $\left.\Lambda_{1}^{*}\right)$) with $k m>n>m \geqq 2$ and $t \geqq 1$. Actually this was the most difficult part of a classification of 2 -simple P.V.'s. Before stating the result, we need some definitions.

Definition 5.3. Let R be the set of triplets (k, m, n) of natural numbers satisfying $k \geqq 2, n>m \geqq 2$ and $k+m^{2}+n^{2}>k m n+2$. We define a $\operatorname{map} \Psi: R \rightarrow Z_{+}=\{0,1,2, \cdots\}$ by $\Psi(k, m, n)=\min \left\{i ; c_{i} \leqq 0\right\}$ where $c_{-2}=n$, $c_{-1}=m, c_{i}=k c_{i-1}-c_{i-2}(i \geqq 0)$. Define a sequence $\left\{a_{i}\right\}$ by $a_{-1}=-1, a_{0}=0$, $a_{i}=k a_{i-1}-a_{i-2}$ and put $b_{i}=a_{i} / a_{i+1}(i \geqq 0)$.

Theorem 5.4 (See Theorem 4.13 in [K-K-T-I]). A triplet $\left(G L_{1}{ }^{k+s+t} \times\right.$ $S L_{m} \times S L_{n},(\Lambda_{1} \overbrace{\cdots}^{s}+\Lambda_{1}) \otimes 1+(\Lambda_{1} \otimes \Lambda_{1} \overbrace{-\cdots+}^{k}+\Lambda_{1} \otimes \Lambda_{1})+1 \otimes(\Lambda_{1}^{*} \overbrace{\cdots+}^{t}+$ $\left.\left.\Lambda_{1}^{*}\right)\right)(k m>n>m \geqq 2, t \geqq 1)$ is a P.V. if and only if $(k, m, n) \in R$ and $s+k t$ $\leqq m-b_{j}(n-t)$ where $j=\Psi(k, m, n)$.

The basic idea of Theorem 5.4 is due to M. Inuzuka, and developed by T. Kimura. S. Kasai and M. Taguchi improved its proof. The scalar multiplications have a delicate role in our classification. For example, we have a following proposition due to T. Kimura and M. Taguchi.

Proposition 5.5 (Theorem 4.18 in [K-K-T-I]). The following conditions are equivalent.

(2) $(G L_{m-1} \times G L_{n-1}, \quad(\Lambda_{1} \overbrace{\cdots \cdot+}^{k+s-2}+\Lambda_{1}) \otimes 1+(\Lambda_{1} \otimes \Lambda_{1} \overbrace{\cdots}^{k}+\Lambda_{1} \otimes \Lambda_{1})+$ $1 \otimes(\Lambda_{1}+\overbrace{\left.\cdots+\Lambda_{1}\right)}^{k+t-2})$ is a P.V.

From the classification of 2 -simple P.V.'s of type I, we can prove the following theorem.

Theorem 5.6 (M. Inuzuka and T. Kimura). Let G_{1} and G_{2} be simple algebraic groups. Assume that $\left(G_{1} \times G_{2}, \rho, V\right)$ is a non-irreducible P.V. which contains a non-trivial P.V. as an irreducible component. Then it must be one of the following P.V.'s.
(1) $\left(S p_{n} \times S L_{2 m+1}, \Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}^{*}\right)(n>m)$.
(2) $\left(S p_{n} \times S L_{2 m+1}, \Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{2}\right)(n>m \geqq 2)$.

Moreover, they have infinitely many orbits.
Proof. If $\left(G_{1} \times G_{2}, \rho, V\right)$ is a P.V., then $\left(G L_{1}{ }^{k} \times G_{1} \times G_{2}, \rho\left(=\rho_{1} \oplus \ldots\right.\right.$ $\left.\oplus \rho_{k}\right), V$) is a 2 -simple P.V. of type I without any relative invariant and hence we obtain (1) and (2) from Theorem 5.1 by checking their generic isotropy subalgebras. It is easy to prove that (1) and (2) are actually P.V.'s. By Proposition 1.4 in [K-K-Y], if (1) and (2) are F.P.'s, then $\left(S P_{n} \times S L_{2 m+1}, \Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}\right)$ and $\left(S p_{n} \times S L_{2 m+1}, \Lambda_{1} \otimes \Lambda_{1}+1 \otimes \Lambda_{2}^{*}\right)$ are also F.P.'s. But they are not P.V.'s, i.e., a contradiction.
Q.E.D.

§ 6. A classification of reductive P.V.'s with finitely many orbits

A triplet (G, ρ, V) such that V decomposes into a finitely many G orbits must be clearly a P.V. However the converse is not true in general. Actually since this condition is very strong, we can classify all such P.V.'s under the assumption that G is reductive without assuming the irreducibility of $\rho([\mathrm{K}-\mathrm{K}-\mathrm{Y}])$. A P.V. with a finitely many orbits is called a finite P.V. (abbrev F.P.).

Lemma 6.1 (cf. p. 148 in [S-K]). If $\left(H \times G L_{n}, \rho \otimes \Lambda_{1}, V \otimes \Omega^{n}\right)(m=$ $\operatorname{dim} V>n \geqq 1)$ is a F.P., then $\left(H \times G L_{k}, \rho \otimes \Lambda_{1}, V \otimes \Omega^{k}\right)$ is also a F.P. for any $k \leqq n$.

Proof. We identify $V \otimes \Omega^{n}$ with $M_{m, n}$. Define a map ψ of $M_{m, n}$ to the set $T=\bigcup_{r=0}^{n} \operatorname{Grass}_{r}(V)$ by $\psi(v)=$ the vector subspace of V spanned by column vectors of v. Since $G L_{n}$ acts on each fibre transitively, there is a one-to-one correspondence between the orbits of $\left(H \times G L_{n}, \rho \otimes \Lambda_{1}\right.$, $M_{m, n}$) and the H-orbits in T. Hence $\cup_{r=0}^{k} \operatorname{Grass}_{r}(V)$ has a finitely many H-orbits. This implies our assertion.
Q.E.D.

As an example, we prove that a castling transform $\left(S L_{2} \times G L_{3}, 3 \Lambda_{1} \otimes\right.$ $\left.\Lambda_{1}, V(4) \otimes V(3)\right)$ of $\left(G L_{2}, 3 \Lambda_{1}, V(4)\right)$ has infinitely many orbits. If it is a F.P., then $\left(S L_{2} \times G L_{2}, 3 \Lambda_{1} \otimes \Lambda_{1}, V(4) \otimes V(2)\right)$ must be a F.P. by Lemma 6.1. Since $\operatorname{dim} S L_{2} \times G L_{2}=7<\operatorname{dim} V(4) \otimes V(2)=8$, it cannot be a P.V. by Lemma 3.1. This is a contradiction.

Proposition 6.2. An irreducible P.V. $\left(G L_{1} \times G_{1} \times \cdots \times G_{k}, \rho_{1} \otimes \cdots \otimes\right.$ $\left.\rho_{k}, V\left(d_{1}\right) \otimes \cdots \otimes V\left(d_{k}\right)\right)\left(d_{1} \geqq \cdots d_{k} \geqq 2\right)$ with $k \geqq 4$ has infinitely many orbits.

Proof. If it is a F.P., $\left(G L_{1} \times S L\left(d_{1}\right) \times S L\left(d_{2}\right) \times S L\left(d_{3}\right) \times S L\left(d_{4} \cdots d_{k}\right)\right.$, $\Lambda_{1} \otimes \Lambda_{1} \otimes \Lambda_{1} \otimes \Lambda_{1}$) must be also a F.P. Applying Lemma 6.1 several times, we see that $\left(G L_{1} \times S L_{2} \times S L_{2} \times S L_{2} \times S L_{2}, \quad \Lambda_{1} \otimes \Lambda_{1} \otimes \Lambda_{1} \otimes \Lambda_{1}, \quad V(2) \otimes V(2) \otimes\right.$ $V(2) \otimes V(2))$ is also a F.P. However since $\operatorname{dim} G L_{1} \times S L_{2} \times S L_{2} \times S L_{2} \times$ $S L_{2}=13<16$, it cannot be even a P.V., i.e., a contradiction. Q.E.D.

By this way, T. Kimura determined all irreducible F.P.'s ([Kimura 1], also partly in [S-K]). V.G. Kac has also determined all irreducible F.P.'s independently ([Kac 1], [Kac 2]).

Theorem 6.3 (A classification of irreducible F.P.'s).
(1) An irreducible trivial P.V. $\left(H \times G L_{n}, \rho \otimes A_{1}, M_{m, n}\right)(m \leqq n)$ is a F.P. if and only if (H, ρ) is one of $\left(S L_{m}, \Lambda_{1}\right),\left(S O_{m}, \Lambda_{1}\right),\left(S p_{m^{\prime}}, \Lambda_{1}\right)\left(m=2 m^{\prime}\right)$.
(2) $\left(\left(G L_{1} \times\right) S L_{2 m+1} \times S L_{2},\left(\Lambda_{1} \otimes\right) \Lambda_{2} \otimes \Lambda_{1}, V(m(2 m+1)) \otimes V(2)\right)(m \geqq 2)$ is a F.P. if and only if $m=2,3$.
(3) Under above restriction (1) and (2), all irreducible F.P.'s are given in the list of Theorem 3.3. Note that property to be a F.P. is not invariant under castling transformations as we saw above.

Also, in [Kac 3], V.G. Kac has completed the classification of F.P.'s when each irreducible component is $\left(G L_{n} \times G L_{m}, \Lambda_{1} \otimes \Lambda_{1}, V(n) \otimes V(m)\right)$ which is the development of the results of P. Gabriel ([G]). T. Kimura classified simple F.P.'s.

Theorem $6.4([\mathrm{~K}-\mathrm{K}-\mathrm{Y}])$. All simple F.P.'s $\left(G L_{1}{ }^{k} \times G, \rho\left(=\rho_{1} \oplus \cdots \oplus \rho_{k}\right)\right)$ are given as follows.
(1) $G=S L_{n}, \rho=\Lambda_{1} \oplus \Lambda_{1}^{(*)}\left(\oplus \Lambda_{1}\right), \Lambda_{2} \oplus \Lambda_{1}^{(*)}\left(\oplus \Lambda_{1}^{(*)}\right), 2 \Lambda_{1} \oplus \Lambda_{1}^{(*)}, \Lambda_{3} \oplus \Lambda_{1}^{(*)}$ ($n=6,7$).
(2) $\quad G=S p_{n}, \rho=\Lambda_{1} \oplus \Lambda_{1}\left(\oplus \Lambda_{1}\right), \Lambda_{2} \oplus \Lambda_{1}(n=2), \Lambda_{3} \oplus \Lambda_{1}(n=3)$.
(3) $G=\operatorname{Spin}_{n}, \rho=$ the spin rep. \oplus the vector rep. $(n=7)$, a half-spin rep. \oplus the vector rep. $(n=8,10,12)$.

Now we denote a triplet $\left(G \times G^{\prime}, \Lambda \otimes \Lambda^{\prime}, V \otimes V^{\prime}\right)$ by a diagram $\underset{\circ}{G \Lambda \Lambda^{\prime} G^{\prime}}$. If $G=G L_{n}$ or $S L_{n}$, we simply write ${ }^{n} \Lambda \Lambda^{\prime} G^{\prime}$. Moreover, if $\Lambda=\Lambda_{1}$ (also for $S p_{n}$), we write $\stackrel{n}{\circ} \Lambda^{\prime} G^{\prime}$ (resp. ${ }_{\circ}^{S p_{n}} \Lambda^{\prime} \Lambda^{\prime} G^{\prime}$). Any diagram should be assumed that on each irreducible component, the scalar multiplications act independently. Now the key point of the classification of the general case is the following "Basic Theorem" due to T. Kimura.

Theorem 6.5 (Basic Theorem). Let $\stackrel{H}{\circ} \rho{ }_{\circ}^{m}(m \geqq 2)$ be a F.P. such that $\stackrel{1 \rho H \rho 1}{\circ}$, is not a F.P. If $\stackrel{H}{\circ} \rho \quad m \quad{ }_{\circ} \quad G$ is a F.P., it must be one of the following type.

Moreover, if $m=2$ and $\stackrel{H}{\circ} \stackrel{2}{\circ} \quad 1$ is a F.P., then (1) $\sim(4)$ are actually F.P.'s.

We can apply the basic theorem to all irreducible F.P.'s except ($S L_{n}$ $\left.\times G L_{m}, \Lambda_{1} \otimes \Lambda_{1}\right),\left(S p_{n} \times G L_{m}, \Lambda_{1} \otimes \Lambda_{1}\right)$ and $\left(G L_{n}, \Lambda_{2}\right)$. O. Yasukura investigated F.P.'s with these irreducible components. S. Kasai did a lot of calculation for orbital decompositions to prove the finiteness of the number of orbits ([Kasai]).

§ 7. Some generalization of castling transformations and a classification of certain P.V.'s (Y. Teranishi's result)

Let d_{1}, \cdots, d_{r} be positive integers and put $n=d_{1}+\cdots+d_{r}$. We denote by $G L\left(d_{1}, \cdots, d_{r}\right)$ the parabolic subgroup of $G L_{n}$ consisting of all matrices of the form

$$
g=\left(\begin{array}{cccc}
g_{11} & g_{12} & \cdots & g_{1 r} \\
0 & g_{22} & & \\
0 & \cdots & \cdots & 0
\end{array} g_{r r}\right) \quad \text { where } g_{i i} \in G L_{d_{i}}
$$

Now let ρ be a rational representation of a connected linear algebraic group G on $V=\Omega^{m}$. Define representations $\rho_{1}, \rho_{2}, \rho_{1}^{*}, \rho_{2}^{*}$ of $G \times$ $G L\left(d_{1}, \cdots, d_{r}\right)$ on $M_{m, n}$ by $\rho_{1}(g, a) x=\rho(g) x a^{-1}, \quad \rho_{2}(g, a) x=\rho(g) x^{t} a$, $\rho_{1}^{*}(g, a) x={ }^{t} \rho(g)^{-1} x^{t} a, \rho_{2}^{*}(g, a) x={ }^{t} \rho(g)^{-1} x a^{-1}$ respectively for $g \in G, a \in$ $G L\left(d_{1}, \cdots, d_{r}\right)$ and $x \in M_{m, n}$. Clearly $\left(G \times G L\left(d_{1}, \cdots, d_{r}\right), \rho_{1}, M_{m, n}\right) \simeq$ $\left(G \times G L\left(d_{r}, \cdots, d_{1}\right), \rho_{2}, M_{m, n}\right)$ and $\left(G \times G L\left(d_{1}, \cdots, d_{r}\right), \rho_{1}^{*}, M_{m, n}\right) \simeq(G \times$ $\left.G L\left(d_{r}, \cdots, d_{1}\right), \rho_{2}^{*}, M_{m, n}\right)$.

Proposition 7.1 ([T1]). For $m>n$, the following conditions are equivalent.
(1) $\left(G \times G L\left(d_{1}, \cdots, d_{r}\right), \rho_{1}, M_{m, n}\right)$ is a P.V.
(2) $\left(G \times G L\left(m-n, d_{r}, \cdots, d_{2}\right), \rho_{2}^{*}, M_{m, m-d_{1}}\right)$ is a P.V.

When $r=1$, then $G L\left(d_{1}, \cdots, d_{r}\right)=G L_{n}, \quad G L\left(m-n, d_{r}, \cdots, d_{2}\right)=$ $G L_{m-n}, M_{m, m-d_{1}}=M_{m, m-n}$ and we obtain Theorem 2.7. Hence Proposition 7.1 is a some generalization of a castling transformation.

Proposition 7.2 ([T1]). Let G be a connected linear semisimple algebraic group, B_{n} the group of all $n \times n$ upper triangular matrices, ρ an irreducible n-dimensional rational representation of G. Then a triplet $\left(G \times B_{n}, \rho_{1}, M_{n}\right)$ is a P.V. if and only if $(G, \rho)=\left(S L_{n}, \Lambda_{1}\right),\left(S p_{m}, \Lambda_{1}\right)(n=2 m),\left(S O_{n}, \Lambda_{1}\right)$.

Remark 7.3. Y. Yeranishi ([T1] [T2]) investigated P.V.'s in Proposition 7.2 in detail.

§ 8. A classification of certain reductuve P.V.'s (M. Sato's unpublished result I)

Let V be a d-dimensional vector space over Ω and G a connected reductive subgroup of $G L(V)$. Then we have $V=V_{1} \oplus \cdots \oplus V_{m}$ with $d_{i}=\operatorname{dim} V_{i}$ and $d=d_{1}+\cdots+d_{m}$ where G acts on each V_{i} irreducibly $(1 \leqq i \leqq m)$. By a remark above Lemma 3.2, we have $V_{\mu}=V_{\mu 1} \otimes \cdots \otimes$ $V_{\mu k_{\mu}}$ with $d_{\mu \nu}=\operatorname{dim} V_{\mu \nu}$ and $d_{\mu}=d_{\mu 1} \cdots d_{\mu k_{\mu}}\left(k_{\mu} \geqq 0, \mu=1, \cdots, m ; 2 \leqq d_{\mu \nu} \leqq\right.$ $d_{11}(=\delta)$) where some simple component of G acts on $V_{\mu \nu}$ irreducibly. Now let G_{0} be a connected semisimple subgroup of $S L_{n}$. In this situation, let us consider ($G_{0} \times G, \Omega^{n} \otimes V$).

Theorem 8.1 (M. Sato). Assume that $\left(G_{0} \times G, \Omega^{n} \otimes V\right)$ is a P.V. Then we have the following assertions.
(i) If $\delta \leqq n \leqq d-\delta$, then we have $k_{1} \leqq 2$.
(ii) If $\delta \leqq n \leqq 2 d-\delta-1$ and $\operatorname{dim} G_{0} \leqq \frac{1}{2} n(n+1)$, then we have $k_{1} \leqq 2$.
(iii) If $\delta \leqq n \leqq 2 d-\delta+1$ and $\operatorname{dim} G_{0} \leqq \frac{1}{2} n(n-1)$, then we have $k_{1} \leqq 2$.

Proof. By Lemma 3.1, we have $\operatorname{dim} G_{0}+\operatorname{dim} G \geqq \operatorname{dim}\left(\Omega^{n} \otimes V\right)=n d$. Since $n^{2}-1 \geqq \operatorname{dim} G_{0}\left(\right.$ resp. $\left.\frac{1}{2} n(n+1) \geqq \operatorname{dim} G_{0}, \frac{1}{2} n(n-1) \geqq \operatorname{dim} G_{0}\right)$ in (i) (resp. (ii), (iii)), we have $\operatorname{dim} G \geqq n(d-n)+1 \quad$ (resp. $\frac{1}{2} n(2 d-1-n)$, $\frac{1}{2} n(2 d+1-n)$). In general, we have $x(a-x) \geqq x_{0}\left(a-x_{0}\right)$ for $x_{0} \leqq x \leqq a-x_{0}$ since $x(a-x)-x_{0}\left(a-x_{0}\right)=\left(x-x_{0}\right)\left(a-x_{0}-x\right) \geqq 0$. Hence we have $\operatorname{dim} G \geqq$ $\delta(d-\delta)+1$ (resp. $\left.\operatorname{dim} G \geqq \frac{1}{2} \delta(2 d \mp 1-\delta)\right)$ in (i) (resp. (ii) (iii)). Let G_{μ} be the image of $G \rightarrow G L\left(V_{\mu}\right)$. Since $G \rightarrow G_{1} \times \cdots \times G_{m}$ is injective, we have $\operatorname{dim} G \leqq \operatorname{dim} G_{1}+\cdots+\operatorname{dim} G_{m}$. Hence we have $N_{1}+N_{2}+\cdots+N_{m} \leqq 0$ for (i) and $N_{1}^{ \pm}+N_{2}+\cdots+N_{m} \leqq 0$ for (ii), (iii) with $N_{1}=-\operatorname{dim} G_{1}+\delta\left(d_{1}-\delta\right)$ $+1, \quad N_{\mu}=-\operatorname{dim} G_{\mu}+\delta d_{\mu} \quad(2 \leqq \mu \leqq m) \quad$ and $\quad N_{1}^{ \pm}=-\operatorname{dim} G_{1}+\delta\left(d_{1}-\delta\right)+$ $\frac{1}{2} \delta(\delta \mp 1)$. Since $N_{1}^{-} \geqq N_{1}^{+} \geqq N_{1}$, we have $N_{1}+N_{2}+\cdots+N_{m} \leqq 0$ also for (ii), (iii). We shall show that $N_{\mu} \geqq 0(2 \leqq \mu \leqq m)$. When $k_{\mu}=0$, then $\operatorname{dim} G_{\mu}=1, d_{\mu}=1$ and $N_{\mu}=-1+\delta \geqq 0$. When $k_{\mu} \geqq 1$, we may assume $2 \leqq d_{\mu \pi} \leqq d_{\mu 1}$ without loss of generality. Since $\operatorname{dim} G_{\mu} \leqq 1+\left(d_{\mu 1}^{2}-1\right)+\cdots$ $+\left(d_{\mu k_{\mu}}{ }^{2}-1\right) \leqq 1+k_{\mu} \cdot\left(d_{\mu 1}{ }^{2}-1\right)$ and $d_{\mu} \geqq d_{\mu 1} \cdot 2^{k_{\mu}-1}$, we have $N_{\mu}=-\operatorname{dim} G_{\mu}$ $+\delta d_{\mu} \geqq-1-k_{\mu} \cdot\left(d_{\mu 1}{ }^{2}-1\right)+d_{\mu 1}{ }^{2} \cdot 2^{k_{\mu}-1}=\left(2^{k_{\mu}-1}-k_{\mu}\right) \cdot d_{\mu 1}{ }^{2}+k_{\mu}-1$. Since $2^{k-1}-k \geqq 0$ for any $k \geqq 1$, we have $N_{\mu} \geqq 0(2 \leqq \mu \leqq m)$. Now $N_{1}+N_{2}+\cdots+$ $N_{m} \leqq 0$ implies $0 \geqq N_{1}=-\operatorname{dim} G_{1}+\delta\left(d_{1}-\delta\right)+1 \geqq-k_{1}\left(\delta^{2}-1\right)+\delta^{2}\left(2^{k_{1}-1}-1\right)$ $=\left(2^{k_{1}-1}-1-k_{1}\right) \delta^{2}+k_{1}$. Thus we have $2^{k_{1}-1}-1-k_{1}<0$ and hence $k_{1} \leqq 2$.
Q.E.D.

Now we shall classify all P.V.'s $\left(G_{0} \times G, \Omega^{n} \otimes V\right)$ when $k_{1}=2$. First we assume that, by the action of G, the scalar multiplications act on each V_{i} independently $(1 \leqq i \leqq m)$. But as a result (Theorem 8.4), we will see that there is no P.V.'s without this assumption.

Lemma 8.2. Assume that $k_{1}=2$. Put $N_{1}=-\operatorname{dim} G_{1}+\delta\left(d_{1}-\delta\right)+1$ and $N_{\mu}=-\operatorname{dim} G_{\mu}+\delta d_{\mu}(2 \leqq \mu \leqq m)$. Then we have:
(1) $N_{1}=-2$ and $\left(G_{1}, V_{1}\right)=\left(S L_{\dot{\delta}} \times G L_{2}, V(\delta) \otimes V(2)\right)$.
(2) $0 \leqq N_{\mu} \leqq 2,0 \leqq N_{2}+\cdots+N_{m} \leqq 2,0 \leqq k_{\mu} \leqq 2$ and $\left(G_{\mu}, V_{\mu}\right)=\left(G L_{1}\right.$ $\left.\times S L\left(d_{\mu 1}\right) \times \cdots \times S L\left(d_{\mu k_{\mu}}\right), V\left(d_{\mu 1}\right) \otimes \cdots \otimes V\left(d_{\mu k_{\mu}}\right)\right)$ for $2 \leqq \mu \leqq m$.
(3) $\quad(G, V)=\left(G_{1}, V_{1}\right) \oplus \cdots \oplus\left(G_{m}, V_{m}\right)$, i.e, $G=G_{1} \times \cdots \times G_{m}$.

Proof. (1) Since $G_{1} \subset S L_{\dot{\delta}} \times G L\left(d_{12}\right)$, we have $N_{1}=-\operatorname{dim} G_{1}+$ $\delta\left(d_{1}-\delta\right)+1 \geqq-\left(\delta^{2}+d_{12}{ }^{2}-1\right)+\delta\left(\delta d_{12}-\delta\right)+1=\delta^{2}\left(d_{12}-2\right)-d_{12}{ }^{2}+2$. If $d_{12} \geqq 3$, then $N_{1} \geqq \delta^{2}-d_{12}{ }^{2}+2 \geqq 2>0$. Since $0 \geqq N_{1}$ (See the proof of Theorem 8.1), it is a contradiction, and hence we have $d_{12}=2, \operatorname{dim} G_{1} \leqq$ $\delta^{2}+3$, and $0 \geqq N_{1}=-\operatorname{dim} G_{1}+\delta^{2}+1$, i.e. $\delta^{2}+3=\operatorname{dim} S L_{\delta} \times G L_{2} \geqq \operatorname{dim} G_{1} \geqq$ $\delta^{2}+1$. There is no proper non-abelian simple subgroup of $S L_{n}$ with codimension at most 2 , and hence we have $G_{1}=S L_{\dot{\delta}} \times G L_{2}$ and $N_{1}=-2$.
(2) In the proof of Theorem 8.1, we have $0 \leqq N_{\mu}(2 \leqq \mu \leqq m)$ and $N_{1}+\cdots+N_{m} \leqq 0$, i.e., $N_{2}+\cdots+N_{m} \leqq 2$. Now $0 \leqq \operatorname{dim} G L_{1} \times S L\left(d_{\mu 1}\right) \times$ $\cdots \times S L\left(d_{\mu k_{\mu}}\right)-\operatorname{dim} G_{\mu} \leqq 1+k_{\mu} \cdot\left(d_{\mu 1}{ }^{2}-1\right)+\left(N_{\mu}-\delta d_{\mu 1} 2^{k_{\mu}-1}\right) \leqq\left(3-k_{\mu}\right)+$ $d_{\mu 1}^{2}\left(k_{\mu}-2^{k_{\mu}-1}\right)(=A)$. If $k_{\mu}=1$, then $A=2$. If $k_{\mu}=2$, then $A=1$. If $k_{\mu} \geqq 3$, then $0 \leqq A<0$, i.e., a contradiction. Hence $0 \leqq k_{\mu} \leqq 2$ and $A \leqq 2$. Thus, as (1), we have $G_{\mu}=G L_{1} \times S L\left(d_{\mu 1}\right) \times \cdots \times S L\left(d_{\mu k_{\mu}}\right)$.
(3) Since $0 \leqq \operatorname{dim} G_{1} \times \cdots \times G_{m}-\operatorname{dim} G \leqq \operatorname{dim} G_{1}+\cdots+\operatorname{dim} G_{m}-$ $\delta\left(d_{1}+\cdots+d_{m}-\delta\right)-1=-\left(N_{1}+N_{2}+\cdots+N_{m}\right)=2-\left(N_{2}+\cdots+N_{m}\right) \leqq 2$, we have $G=G_{1} \times \cdots \times G_{m}$ by the same reason as (1).
Q.E.D.

Lemma 8.3. We have only the following possibilities for $2 \leqq \mu \leqq m$ where $N_{2}+\cdots+N_{m} \leqq 2$.
(I) $N_{\mu}=2,\left(G_{1}, V_{1}\right)=\left(S L_{3} \times G L_{2}, V(3) \otimes V(2)\right)$,
(I-1) $\quad\left(G_{\mu}, V_{\mu}\right)=\left(G L_{1}, V(1)\right),(\mathrm{I}-2)\left(G_{\mu}, V_{\mu}\right)=\left(G L_{2}, V(2)\right)$.
(II) $N_{\mu}=1,\left(G_{1}, V_{1}\right)=\left(S L_{2} \times G L_{2}, V(2) \otimes V(2)\right)$,
(II-1) $\quad\left(G_{\mu}, V_{\mu}\right)=\left(G L_{1}, V(1)\right),(\mathrm{II}-2)\left(G_{\mu}, V_{\mu}\right)=\left(S L_{2} \times G L_{2}, V(2)\right.$ $\otimes V(2))$.
(III) $\quad N_{\mu}=0,\left(G_{\mu}, V_{\mu}\right)=\left(G L_{\delta}, V(\delta)\right)$.

Proof. We have $0 \leqq k_{\mu} \leqq 2$ by Lemma 8.2. If $k_{\mu}=0$, then $N_{\mu}=$ $-\operatorname{dim} G_{\mu}+\delta d_{\mu}=\delta-1 \leqq 2$ and hence $\delta=2$, i.e. (II-1) or $\delta=3$, i.e., (I-1). If $k_{\mu}=1$, then $N_{\mu}=-d_{\mu}^{2}+\delta d_{\mu}=\left(\delta-d_{\mu}\right) d_{\mu} \leqq 2$ and hence $\delta=3, d_{\mu}=d_{\mu 1}=2$, i.e., (I-2) or $\delta=d_{\mu}=d_{\mu 1}$ i.e., (III). If $k_{\mu}=2$, then $N_{\mu}=\left(\delta-d_{\mu 1}\right) d_{\mu}+$ $\left(d_{\mu 2}-2\right) d_{\mu 1}{ }^{2}+\left(d_{\mu 1}{ }^{2}-d_{\mu 2}{ }^{2}\right)+1 \leqq 2$, and hence $\delta=d_{\mu 1}=d_{\mu 2}=2$, i.e., (II-2).

Q.E.D.

Since $N_{2}+\cdots+N_{m} \leqq 2$, we have only four possibilities $\left(N_{2}, \cdots, N_{m}\right)$ $=($ i) $(0, \cdots, 0)$, (ii) $(1,0, \cdots, 0)$, (iii) $(1,1,0, \cdots, 0)$, (iv) $(2,0, \cdots, 0)$. We shall check the prehomogeneity of each case.
(i) The case for $\left(N_{2}, \cdots, N_{m}\right)=(0, \cdots, 0)$.

By Lemma 8.3, we have $(G, V)=\left(G L_{\dot{\delta}} \times S L_{2}, V(\delta) \otimes V(2)\right) \oplus\left(G L_{\dot{\delta}}\right.$, $V(\delta))^{m-1}$. Since $\operatorname{dim} G=m \delta^{2}+3 \geqq n(d-n)+1$ with $d=(m+1) \delta$, we have $2 \geqq(n-\delta)(m \delta-n)$ with $\delta \leqq n \leqq m \delta$. Thus we have (i-a) $n=\delta$ or $n=m \delta$, or (i-b) $m=2 ; \delta=2$ with $n=3$ or $\delta=3$ with $n=4$, 5 . In the case (i-a), we have $\operatorname{dim} G_{0} \geqq \operatorname{dim} S L_{n}-2$ by Lemma 3.1, and hence $G_{0}=S L_{n}$ (cf. the proof of (1) in Lemma 8.2). Hence, to check the prehomogeneity, we may assume that $n=\delta$ since they are castling-equivalent. Then, by Theorem 2.5, the prehomogeneity of ($G_{0} \times G, \Omega^{n} \otimes V$) reduces to that of an irreducible triplet $\left(S L_{\dot{\delta}} \times S L_{\dot{\delta}} \times G L_{2}, \Lambda_{1} \otimes \Lambda_{1} \otimes \Lambda_{1}\right)$. By Section 3, it is a regular P.V. for $\delta=2,3$ and a non P.V. for $\delta \geqq 4$. In the case (i-b), we have also $G_{0}=S L_{n}$ similarly as (i-a). Hence, by a castling transformation, we may assume that $n=\delta+1$ with $\delta=2,3$. If we denote by \sim a castlingequivalence, we have $\left(G_{0} \times G, \Omega^{n} \otimes V\right)=\left(S L(\delta+1) \times\left(G L_{\delta} \times S L_{2} \times G L_{\delta}\right)\right.$, $V(\delta+1) \otimes(V(\delta) \otimes V(2)+V(\delta))) \sim\left(S L(\delta+1) \times\left(G L_{\delta} \times S L_{2} \times G L_{1}\right), V(\delta+1) \otimes\right.$ $(V(\delta) \otimes V(2)+V(1)) \sim\left(S L_{\delta} \times\left(G L_{\dot{\delta}} \times S L_{2} \times G L_{1}\right), V(\delta) \otimes(V(\delta) \otimes V(2)+V(1))\right.$ $=\left(G L_{\delta} \times S L_{\delta} \times G L_{2}, \Lambda_{1} \otimes \Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1 \otimes 1\right)(\delta=2,3)$. They are regular P.V.'s (cf. p. 99 in [S-K] for $\delta=3$ and (3) with $n=4, m=2$ in Theorem 5.1 for $\delta=2$). Note that $\left(S L_{2} \times S L_{2}, \Lambda_{1} \otimes \Lambda_{1}\right) \simeq\left(S O_{4}, \Lambda_{1}\right)$.
(ii) The case for $\left(N_{2}, \cdots, N_{m}\right)=(1,0, \cdots, 0)$.

By Lemma 8.3, we have $\delta=2$. In our case, $\operatorname{dim} G \geqq n(d-n)+1$ (cf. the proof of Theorem 8.1) implies that $(n-2)(d-2-n) \leqq 1$. Hence we have $n=2$ or $n=d-2$. Note that $n=3$ and $d=6$ is not a solution because d is odd or $d \geqq 8$. If $n=2$, we have $G_{0}=S L_{2}$. If $n=d-2, \operatorname{dim} G_{0}+$ $\operatorname{dim} G=\operatorname{dim} G_{0}+(2 d-2) \geqq(d-2) d$ implies $\operatorname{dim} G_{0} \geqq(d-2)^{2}-2$ and hence $G_{0}=S L(d-2)$. By a castling transformation, we may assume that $G_{0}=$ $S L_{2}$, and by Theorem 2.5, we may assume that $m=2$. When $\left(G_{2}, V_{2}\right)=$ $\left(S L_{2} \times G L_{2}, V(2) \otimes V(2)\right)$, it is not a P.V. Because $G L_{2}$-part of a generic isotropy subgroup of $\left(S L_{2} \times S L_{2} \times G L_{2}, \Lambda_{1} \otimes \Lambda_{1} \otimes \Lambda_{1}\right)=\left(S O_{4} \times G L_{2}, \Lambda_{1} \otimes \Lambda_{1}\right)$ is O_{2} (p. 100 in $[\mathrm{S}-\mathrm{K}]$) and hence the prehomogeneity implies that of $\left(G L_{1}^{2} \times S O_{4}, \Lambda_{1} \oplus \Lambda_{1}\right)$, which is a non P.V. (Theorem 4.2). When $\left(G_{2}, V_{2}\right)$ $=\left(G L_{1}, V(1)\right)$ i.e. (II-1), it is a regular P.V. since $\left(G L_{1} \times S O_{2}, \Lambda_{1}\right)$ is a P.V. with a reductive generic isotropy subgroup.
(iii) The case for $\left(N_{2}, \cdots, N_{m}\right)=(1,1,0, \cdots, 0)$ with $m \geqq 3$.

Similarly as before, we have $(n-2)(d-2-n) \leqq 1$ and hence $n=2$ or $d-2$. We have $G_{0}=S L_{n}$ and hence we may assume that $n=2$ and $m=3$. If one of $\left(G_{\mu}, V_{\mu}\right)(\mu=2,3)$ is (II-2) $\left(S L_{2} \times G L_{2}, V(2) \otimes V(2)\right)$, it is not a P.V. by (ii). Hence $\left(G_{\mu}, V_{\mu}\right)=\left(G L_{1}, V(1)\right)(\mu=2,3)$. But it is not a P.V. either. Because the projection to $\operatorname{Lie}\left(G_{0}\right)$ of a generic isotropy subalgebra
of $\left(G_{0} \times G_{1} \times G_{2}, V_{0} \otimes\left(V_{1}+V_{2}\right)\right)$ is $\{0\}$, its prehomogeneity implies that of ($G L_{1}, V(2)$), which is a contradiction.
(iv) The case for $\left(N_{2}, \cdots, N_{m}\right)=(2,0, \cdots, 0)$.

In this case, we have $\delta=3$ by Lemma 8.3. Similarly as above, we have $(n-3)(d-3-n) \leqq 0(3 \leqq n \leqq d-3)$ and hence $n=3$ or $d-3$. We have $G_{0}=S L_{n}$ in this case by dimension reason, and hence we may assume $n=3$, and $m=2$. Also we may assume that $\left(G_{2}, V_{2}\right)=\left(G L_{1}, V(1)\right)$ by a castling transformation. In this case, as we saw in (i), it is a regular P.V.

Thus we obtain the following theorem.
Theorem 8.4 (M. Sato). Assume that $\left(G_{0} \times G, \Omega^{n} \otimes V\right)$ is a P.V. with $\delta \leqq n \leqq d-\delta$ and $k_{1}=2$ (cf. Theorem 8.1). Then it is one of the following regular P.V.'s.
(1) $\left(S L_{n} \times\left(\left(G L_{\dot{\delta}} \times S L_{2}\right) \times G L_{\dot{\delta}}^{m-1}\right), \Omega^{n} \otimes\left(V(\delta) \otimes V(2)+V(\delta)^{m-1}\right)\right)(m \geqq$ $1 ; n=\delta$ or $d-\delta ; \delta=2,3)$.
(2) $\left(S L_{n} \times\left(\left(G L_{\delta} \times S L_{2}\right) \times G L_{\partial}\right), \Omega^{n} \otimes(V(\delta) \otimes V(2)+V(\delta))\right)(\delta=2, n=$ $3 ;-\delta=3, n=4,5)$.
(3) $\left(S L_{n} \times\left(\left(G L_{3} \times S L_{2}\right) \times G L_{k} \times G L_{3}^{m-2}\right), \Omega^{n} \otimes(V(3) \otimes V(2)+V(k)+\right.$ $\left.\left.V(3)^{m-2}\right)\right)(m \geqq 2 ; n=3$ or $d-3: k=1$ or 2$)$.
(4) $\quad\left(S L_{n} \times\left(\left(G L_{2} \times S L_{2}\right) \times G L_{1} \times G L_{2}{ }^{m-2}\right), \quad \Omega^{n} \otimes(V(2) \otimes V(2)+V(1)+\right.$ $\left.V(2)^{m-2}\right)$) $(m \geqq 2 ; n=2$ or $d-2)$.

Remark. Although $\Omega^{n}=V(n)$, we use Ω^{n} as a representation space of G_{0} to distinguish from that of G.

§9. Prehomogeneity of some reductive triplets

The starting point to prove Theorem 5.4 was to show that a triplet $(G L_{1}{ }^{k} \times S L_{m} \times S L_{n}, \Lambda_{1} \otimes \Lambda_{1}+\overbrace{\cdots}^{k}+\Lambda_{1} \otimes \Lambda_{1})(m \neq n)$ is a P.V. if and only if $\operatorname{dim} G \geqq \operatorname{dim} V$, i.e., $k+m^{2}+n^{2} \geqq k m n+2$, and when $\operatorname{dim} G>\operatorname{dim} V$, it is transformed to a trivial P.V. by j-times castling transformations where $j=\Psi(k, m, n)$ in Definition 5.3 (Theorem 4.5 in [K-K-T-I]). With this in mind, we shall consider the triplet $(G L_{1}{ }^{k} \times S L_{m_{1}} \times \cdots \times S L_{m_{t}},(\Lambda_{1} \overbrace{\otimes \cdots \otimes}^{t} \Lambda_{1})$ $\overbrace{+\cdots+}^{k}(\Lambda_{1} \overbrace{\otimes \cdots \otimes}^{t} \Lambda_{1})$) with $m_{1} \geqq \cdots \geqq m_{t} \geqq 2, k \geqq 2$ and $t \geqq 3$. If $m_{1} \geqq$ $k m_{2} \cdots m_{t}$, then it is clearly a trivial P.V. Hence we shall investigate its prehomogeneity when $k m_{2} \cdots m_{t}>m_{1}\left(\geqq m_{2}\right)$. If it is a P.V., we have $\operatorname{dim} G \geqq \operatorname{dim} V$ by Lemma 3.1 and hence we have $f\left(m_{1}\right) \geqq 0$ where $f(x)=x^{2}-$ $\left(k m_{2} \cdots m_{t}\right) x+\left(m_{2}^{2}+\cdots+m_{t}^{2}+k-t\right)$. Its discriminant $D=\left(k m_{2} \cdots m_{t}\right)^{2}$ $-4\left(m_{2}{ }^{2}+\cdots+m_{t}{ }^{2}+k-t\right)$ is positive because $D=\left(k^{2}-4\right) m_{2}{ }^{2} \cdots m_{t}{ }^{2}+4 t$
$-4 k+4\left(m_{2}{ }^{2} \cdots m_{t}{ }^{2}-m_{2}{ }^{2}-\cdots-m_{t}{ }^{2}\right) \geqq 16\left(k^{2}-4\right)+12-4 k+4\left(4^{t-2} m_{2}{ }^{2}-\right.$ $\left.(t-1) m_{2}^{2}\right) \geqq 4\{k(4 k-1)-13\}+16\left(4^{t-2}-t\right)+16 \geqq 4+16+16>0$. We shall show that $m_{1} \geqq \frac{1}{2}\left\{\left(k m_{2} \cdots m_{t}\right)+\sqrt{D}\right\}$. For this purpose, it is enough to show $\frac{1}{2}\left\{\left(k m_{2} \cdots m_{t}\right)-\sqrt{D}\right\}<m_{2} \quad\left(\leqq m_{1}\right)$. L.H.S. $=\left\{\left(k m_{2} \cdots m_{t}\right)^{2}-D\right\} /$ $\left\{2\left(k m_{2} \cdots m_{t}+\sqrt{\bar{D}}\right)\right\}=2\left(m_{2}^{2}+\cdots+m_{t}{ }^{2}+k-t\right) /\left(k m_{2} \cdots m_{t}+\sqrt{ } \bar{D}\right) \leqq$ $2\left\{(t-1) m_{2}{ }^{2}+k-t\right\} / 2^{t-2} k m_{2}<m_{2}$ if and only if $(A=)\left(2^{t-3} k-t+1\right) m_{2}{ }^{2}+$ $t-k>0$. However we have $A \geqq 4\left(2^{t-3} k-t\right)+4+t-k=\left(2^{t-1}-1\right) k-3 t$ $+4 \geqq 2^{t}-3 t+2>0$.

Lemma 9.1. If $\operatorname{dim} G \geqq \operatorname{dim} V$ and $k m_{2} \cdots m_{t}>m_{1}$ with $t \geqq 3$, then we have ($m_{1}^{\prime}=$) $k m_{2} \cdots m_{t}-m_{1}<m_{2}$.

Proof. Assume that $m_{1}^{\prime} \geqq m_{2}$. Then we have $k m_{2} \cdots m_{t}-m_{2} \geqq m_{1} \geqq$ $\frac{1}{2}\left\{\left(k m_{2} \cdots m_{t}\right)+\sqrt{\bar{D}\}}\right\}$, i.e., $k m_{2} \cdots m_{t}-2 m_{2} \geqq \sqrt{ } \bar{D}$. Hence we have $m_{2}{ }^{2}+$ $\left(m_{2}{ }^{2}+\cdots+m_{t}{ }^{2}+k-t\right) \geqq m_{2}{ }^{2}\left(k m_{3} \cdots m_{t}\right)$. Since $m_{2} \geqq \cdots \geqq m_{t} \geqq 2$, we have $t m_{2}{ }^{2}+k-t \geqq 2^{t-2} \cdot k m_{2}{ }^{2}$ i.e., $0 \geqq\left(2^{t-2} k-t\right) m_{2}{ }^{2}-k+t \geqq 4\left(2^{t-2} k-t\right)-k+t$ $=\left(2^{t}-1\right) k-3 t \geqq 2^{t+1}-3 t-2>0$ for $t \geqq 3$, which is a contradiction, and hence $m_{1}^{\prime}<m_{2}$.
Q.E.D.

Theorem 9.2 (T. Kimura). Let (G, ρ, V) be a triplet such that $G=$ $G L_{1}{ }^{k} \times S L_{m_{1}} \times \cdots \times S L_{m_{t}}, \quad \rho=(\Lambda_{1} \otimes \overbrace{\cdots \otimes}^{t} \Lambda_{1}) \overbrace{\cdots+}^{k}+\left(\Lambda_{1} \otimes \cdots \otimes \otimes \Lambda_{1}\right), \quad V=$ $V\left(m_{1} \cdots m_{t}\right) \overbrace{\oplus \oplus \oplus}^{k} V\left(m_{1} \cdots m_{t}\right)$ with $m_{1} \geqq \cdots \geqq m_{t} \geqq 2, t \geqq 3$ and $k \geqq 2$.
(1) If $\operatorname{dim} G>\operatorname{dim} V$, then it is castling-equivalent to a trivial P.V.
(2) If $\operatorname{dim} G=\operatorname{dim} V$ and $k \geqq 3$, it is castling-equivalent to a regular simple P.V. $(G L_{1}{ }^{k} \times S L_{k-1}, \Lambda_{1} \oplus \overbrace{\cdots \oplus}^{k} \Lambda_{1}, M_{k-1, k})$.
(3) If $\operatorname{dim} G=\operatorname{dim} V$ and $k=2$ (such as $m_{1}=7, m_{2}=m_{3}=2, t=3$), it is not a P.V.

Proof. First note that the number k and $\operatorname{dim} G-\operatorname{dim} V$ are invariant under castling transformations. We denote this (G, ρ, V) by $T\left(m_{1}, \cdots\right.$, m_{t}) with $m_{1} \geqq \cdots \geqq m_{t} \geqq 2$. (1) If it is not a trivial P.V., it is castlingequivalent to some $T\left(n_{1}, \cdots, n_{s}\right)$ with $n_{1}=m_{2} \geqq n_{2} \geqq \cdots \geqq n_{s}$ and $t \geqq s$ by Lemma 9.1. If $s \leqq 2$, it is castling-equivalent to a trivial P.V. (cf. Theorem 4.5 in [K-K-T-I]]. If it is not a trivial P.V. with $s \geqq 3$, we can use Lemma 9.1 again. Repeating this procedure, finally we obtain our result. Note that $T\left(m_{1}, m_{2}\right)$ with $\operatorname{dim} G>\operatorname{dim} V$ implies $m_{1} \neq m_{2}$. (2) (3) First we show that $T\left(m_{1}, \cdots, m_{t}\right)\left(m_{1} \geqq \cdots \geqq m_{t} \geqq 2, t \geqq 2\right)$ with $\operatorname{dim} G=\operatorname{dim} V$ cannot be a trivial P.V. In fact, if $m_{1} \geqq k m_{2} \cdots m_{t}$ and $k-t+m_{1}{ }^{2}+\cdots+m_{t}{ }^{2}=k m_{1}$ $\cdots m_{t}\left(\leqq m_{1}{ }^{2}\right)$, we have $4(t-1) \leqq(t-1) m_{t}{ }^{2} \leqq m_{2}{ }^{2}+\cdots+m_{t}{ }^{2} \leqq t-k \leqq t-2$, i.e., $3 t \leqq 2$, which is a contradiction. Hence, by Lemma 9.1, it is castling-
equivalent to $T\left(m_{1}, \cdots, m_{t}\right)$ with $t \leqq 2$. $\quad T\left(m_{1}, m_{2}\right)$ with $\operatorname{dim} G=\operatorname{dim} V$ and $k \geqq 3$ implies $m_{1} \neq m_{2}$ and hence, by Theorem 4.5 in [K-K-T-I], we have (2). $T\left(m_{1}, m_{2}\right)$ with $\operatorname{dim} G=\operatorname{dim} V$ and $k=2$ implies $m_{1}=m_{2}$, which is not a P.V. If $\operatorname{dim} G=\operatorname{dim} V$ and $k=2$, only $\left(G L_{1}{ }^{2}, V(1)^{2}\right)$ is a P.V. which is not castling-equivalent to any $T\left(m_{1}, \cdots, m_{t}\right)$ with $t \geqq 3$.
Q.E.D.

Proposition 9.3. A triplet $(G L_{1}{ }^{2} \times S L_{m_{1}} \times \cdots \times S L_{m_{t}}, \Lambda_{1} \otimes \overbrace{\cdots \otimes}^{t} \Lambda_{1}+$ $\Lambda_{1}^{*} \otimes \Lambda_{1}^{(*)} \overbrace{\otimes \cdots \otimes}^{t-1} \Lambda_{1}^{(*)}, \quad V\left(m_{1} \cdots m_{t}\right) \oplus V^{\prime}\left(m_{1} \cdots m_{2}\right))$ with $m_{1} \geqq \cdots \geqq m_{t} \geqq 2$ and $t \geqq 2$, is not a $P . V$.

Proof. Assume that it is a P.V. If $2 m_{2} \cdots m_{t}>m_{1}$, then we have $2 m_{2} \cdots m_{t}-m_{1}<m_{2}$ by Lemma $9.1(t \geqq 3)$, which is concerning only the dimensions of the representation spaces. Hence $m_{1}>2 m_{2} \cdots m_{t}-m_{2}>m_{2}$ $\cdots m_{t}$. In any case, we have $m_{1} \geqq m_{2} \cdots m_{t}$. By Theorem $2.8,\left(G L_{1} \times S L_{m_{2}}\right.$ $\times \cdots \times S L_{m_{t}},\left(\Lambda_{1} \otimes \cdots \otimes \Lambda_{1}\right) \otimes(\Lambda_{1}^{(*)} \overbrace{\otimes \cdots \otimes \otimes}^{t-1} \Lambda_{1}^{(*)}))$ must be a P.V. and hence $1+\left(m_{2}{ }^{2}-1\right)+\cdots+\left(m_{2}^{2}-1\right) \geqq\left(m_{2} \cdots m_{t}\right)^{2}$. Thus we have $(t-1) m_{2}{ }^{2}-$ $(t-2) \geqq m_{2}{ }^{2} \cdot 4^{t-2}$, i.e. $0 \geqq t-2+m_{2}^{2}\left(4^{t-2}-t+1\right)>0(t \geqq 3)$, which is a contradiction. When $t=2$, it is known (cf. §5). Q.E.D.

Theorem 9.4 (T. Kimura). Assume that $\left(G L_{1}{ }^{k} \times S L_{m_{1}} \times \cdots \times S L_{m_{t}}\right.$, $\Lambda_{1}^{(*)} \overbrace{\otimes \cdots \otimes}^{t} \Lambda_{1}^{(*)} \overbrace{-\cdots+\Lambda_{1}^{(*)}}^{k} \overbrace{\otimes \cdots \otimes}^{t} \Lambda_{1}^{(*)})(k \geqq 2, t \geqq 3)$ is a P.V. Then it is castling-equivalent to one of (1) a trivial P.V. (2) $\left(G L_{1}{ }^{k} \times S L(k-1)\right.$, $\Lambda_{1} \oplus \overbrace{\oplus \oplus}^{k} \Lambda_{1}) \quad$ (3) $(G L_{1}{ }^{k} \times S L_{m}, \Lambda_{1} \oplus \overbrace{\cdots \oplus}^{k-1} \Lambda_{1} \oplus \Lambda_{1}^{*})(k-1 \leqq m)$.

Proof. We may assume that $\rho=\Lambda_{1} \overbrace{\otimes \cdots \otimes}^{t} \Lambda_{1}+\Lambda_{1}^{(*)} \overbrace{\otimes \cdots \otimes \otimes}^{t} \Lambda_{1}^{(*)}$ $\overbrace{+\cdots+}^{k-1} \Lambda_{1}^{(*)} \overbrace{\otimes \cdots \otimes}^{t} \Lambda_{1}^{(*)}$ with $m_{1} \geqq \cdots \geqq m_{t} \geqq 2$. If one of $\Lambda_{1}^{(*)}$ for $S L_{m_{1}}$ is Λ_{1}^{*}, then it is not a P.V. by Proposition 9.3, i.e., $\rho=\Lambda_{1} \otimes(\Lambda_{1} \overbrace{\otimes \cdots \otimes}^{t-1} \Lambda_{1}$ $+\Lambda_{1}^{(*)} \overbrace{\otimes \cdots \otimes}^{t-1} \Lambda_{1}^{(*)} \overbrace{+\cdots+\Lambda_{1}^{(*)} \overbrace{\otimes \cdots \otimes}^{t-1}}^{k-1} \Lambda_{1}^{(*)}$). If it is not trivial P.V., then by Lemma 9.1, it is castling-equivalent to $\left(G L_{1}{ }^{k} \times S L_{m_{1}^{\prime}} \times \cdots \times S L_{m_{t}^{2}}, \Lambda_{1}^{(*)}\right.$ $\overbrace{\otimes \cdots \otimes}^{t} \Lambda_{1}^{(*)} \overbrace{+\cdots+}^{k}+\Lambda_{1}^{(*)} \overbrace{\otimes \cdots \otimes}^{t} \Lambda_{1}^{(*)})$ with $m_{2}=m_{1}^{\prime} \geqq \cdots \geqq m_{t}^{\prime} \geqq 1$. Hence if $m_{2}^{\prime} \geqq 2$, we may assume that any $\Lambda_{1}^{(*)}$ for $S L_{m_{1}^{\prime}}=S L_{m_{2}}$ is Λ_{1} by Proposition 9.3. Repeating this procedure, we have our result by Theorem 9.2. Note that $(G L_{1}{ }^{k} \times S L_{m}, \Lambda_{1} \oplus \cdots \oplus \overbrace{1})(m \geqq k)$ is a trivial P.V. \quad Q.E.D.

Remark 9.5. In Theorems 9.2 and 9.4, the case for $k=1$ (resp. $t=1$, $t=2$) has been treated as an irreducible P.V. (resp. a simple P.V., a $2-$ simple P.V.).

Now recall that $\left(\left(G L_{m_{1}} \times \cdots \times G L_{m_{k}}\right) \times G L_{n},\left(V\left(m_{1}\right) \oplus \cdots \oplus V\left(m_{k}\right)\right) \otimes\right.$ $V(n)$) is a F.P. (and hence P.V. See Section 6) for any m_{1}, \cdots, m_{k}, n with $1 \leqq k \leqq 3$ ([G], [Kac 3], [K-K-Y]). We shall study when $k=4$. First we shall prove the following Theorem.

Theorem 9.6. $\quad\left(\left(G L_{m_{1}} \times G L_{m_{2}}\right) \times\left(G L_{n_{1}} \times G L_{n_{2}}\right), \quad\left(V\left(m_{1}\right) \oplus V\left(m_{2}\right)\right) \otimes\right.$ $\left.\left(V\left(n_{1}\right) \oplus V\left(n_{2}\right)\right)\right)$ is a P.V. if and only if $m_{1}+m_{2} \neq n_{1}+n_{2}$.

Proof. If $m_{1}+m_{2} \neq n_{1}+n_{2}$, we may assume that $m_{1}+m_{2}<n_{1}+n_{2}$. If $m_{1}+m_{2} \leqq n_{1}$ or $m_{1}+m_{2} \leqq n_{2}$, it is a P.V. by Theorem 2.5 and the above result. If $m_{1}+m_{2}>n_{i}(i=1,2)$, it is castling-equivalent to $\left(\left(G L_{m_{1}} \times G L_{m_{2}}\right)\right.$ $\left.\times\left(G L_{n_{1}^{\prime}} \times G L_{n_{2}^{\prime}}\right), \quad\left(V\left(m_{1}\right) \oplus V\left(m_{2}\right)\right) \otimes\left(V\left(n_{1}^{\prime}\right) \oplus V\left(n_{2}^{\prime}\right)\right)\right)$ with $n_{1}^{\prime}+n_{2}^{\prime}<m_{1}+m_{2}$ where $n_{i}^{\prime}=m_{1}+m_{2}-n_{i}(i=1,2)$. Repeating this procedure, we have our result for $m_{1}+m_{2} \neq n_{1}+n_{2}$. To prove the case $m_{1}+m_{2}=n_{1}+n_{2}$, first we prove two lemmas.

Lemma 9.7. $\quad\left(\left(G L_{m} \times G L_{n}\right) \times\left(G L_{m} \times G L_{n}\right), \quad(V(m) \oplus V(n)) \otimes(V(m) \oplus\right.$ $V(n))$) is not a P.V.

Proof. For $m \leqq n ; A_{1}, A_{2} \in G L_{m} ; B_{1}, B_{2} \in G L_{n} ; X \in M_{m}, Y \in M_{n}$, $Z \in M_{m, n}$ and $W \in M_{n, m}$, the prehomogeneity of $(X, Y, Z, W) \rightarrow\left(A_{1} X^{t} A_{2}\right.$, $\left.B_{1} Y^{t} B_{2}, A_{1} Z^{t} B_{2}, B_{1} W^{t} A_{2}\right)$ reduces to that of $(Z, W) \rightarrow\left(A_{1} Z^{t} B_{1}{ }^{-1}, B_{1}{ }^{-1} W A_{1}{ }^{-1}\right)$ which is not a P.V. since it has a non-constant absolute invariant $\operatorname{det}(Z W)$ (cf. Theorem 1.2).

Lemma 9.8. $\quad\left(\left(G L_{m} \times G L_{m}\right) \times\left(G L_{n_{1}} \times G L_{n_{2}}\right),(\rho=) \Lambda_{1} \otimes 1 \otimes\left(\Lambda_{1} \otimes 1+1 \otimes\right.\right.$ $\left.\left.\Lambda_{1}\right)+1 \otimes \Lambda_{1} \otimes\left(\Lambda_{1}^{*} \otimes 1+1 \otimes \Lambda_{1}^{*}\right)\right)\left(m \leqq n_{1}, n_{2}\right)$ is not a $P . V$.

Proof. For $g=\left(A, A^{\prime}, B_{1}, B_{2}\right) \in G L_{m} \times G L_{m} \times G L_{n_{1}} \times G L_{n_{2}}$ and $x=$ $(X, Y, Z, W) \in M_{m, n_{1}} \oplus M_{m, n_{2}} \oplus M_{m, n_{1}} \oplus M_{m, n_{2}}$, we have $\rho(g) x=\left(A X^{t} B_{1}\right.$, $\left.A Y^{t} B_{2}, A^{\prime} Z B_{1}^{-1}, A^{\prime} W B_{2}^{-1}\right)$ and hence $f(x)=\operatorname{det}\left(X^{t} Z\right) / \operatorname{det}\left(Y^{t} W\right)$ is a nonconstant absolute invariant.
Q.E.D. for Lemma 9.8.

Now we shall prove Theorem 9.6 for $m_{1}+m_{2}=n_{1}+n_{2}$. We may assume that $m_{1} \leqq m_{2}$ and $n_{1} \leqq n_{2}$. If $m_{1}=n_{1}$, then $m_{2}=n_{2}$, and hence it reduces to Lemma 9.7. If $m_{1}<n_{1} \leqq n_{2}<m_{2}$, since $\left(n_{1}+n_{2}\right)-m_{2}=m_{1}$, it reduces to Lemma 9.8 by a castling transformation.
Q.E.D. for Theorem 9.6.

Corollary 9.9. For any algebraic group G, a triplet $\left(G,\left(\sigma_{1}+\cdots+\sigma_{s}\right)\right.$ $\left.\otimes\left(\tau_{1}+\cdots+\tau_{t}\right),\left(V\left(m_{1}\right) \oplus \cdots \oplus V\left(m_{s}\right)\right) \otimes\left(V\left(n_{1}\right) \oplus \cdots \oplus V\left(n_{t}\right)\right)\right)$ with $m_{1}+$ $\cdots+m_{s}=n_{1}+\cdots+n_{t}(s \geqq 2, t \geqq 2)$ is not a P.V.

Proof. If it is P.V., then $\left(\left(G L\left(m_{1}\right) \times G L\left(m_{2}+\cdots+m_{s}\right)\right) \times\left(G L\left(n_{1}\right) \times\right.\right.$ $\left.\left.G L\left(n_{2}+\cdots+n_{t}\right)\right), \quad\left(V\left(m_{1}\right) \oplus V\left(m_{2}+\cdots+m_{s}\right)\right) \otimes\left(V\left(n_{1}\right) \oplus V\left(n_{2}+\cdots+n_{t}\right)\right)\right)$ $\left(m_{1}+\left(m_{2}+\cdots+m_{s}\right)=n_{1}+\left(n_{2}+\cdots+n_{t}\right)\right)$ must be a P.V., which is a contradiction.
Q.E.D.

Theorem 9.10. $\quad\left(\left(G L_{m_{1}} \times G L_{m_{2}} \times G L_{m_{3}} \times G L_{m_{4}}\right) \times G L_{n},\left(V\left(m_{1}\right) \oplus V\left(m_{2}\right)\right.\right.$ $\left.\left.\oplus V\left(m_{3}\right) \oplus V\left(m_{4}\right)\right) \otimes V(n)\right)$ is a P.V. if and only if $m_{1}+m_{2}+m_{3}+m_{4} \neq 2 n$ or $n \leqq \max \left\{m_{i}\right\}$.

Proof. Assume that $m_{1}+m_{2}+m_{3}+m_{4}=2 n$ with $n>m_{1} \geqq m_{2} \geqq m_{3} \geqq$ m_{4}. Then we have $m_{1}^{\prime}+m_{2}^{\prime}=m_{3}+m_{4} \leqq n$ with $m_{i}^{\prime}=n-m_{i}$ and it is castlingequivalent to $\left(\left(G L_{m_{1}^{\prime}} \times G L_{m_{2}^{\prime}}\right) \times\left(G L_{m_{3}} \times G L_{m_{4}}\right) \times G L(n),\left(V\left(m_{1}^{\prime}\right)+V\left(m_{2}^{\prime}\right)\right) \otimes\right.$ $\left.V(n)^{*}+\left(V\left(m_{3}\right)+V\left(m_{4}\right)\right) \otimes V(n)\right)$, which is P.V.-equivalent to $\left(\left(G L_{m_{1}^{\prime}} \times G L_{m_{2}^{\prime}}\right)\right.$ $\left.\times\left(G L_{m_{3}} \times G L_{m_{4}}\right),\left(V\left(m_{1}^{\prime}\right)+V\left(m_{2}^{\prime}\right)\right) \otimes\left(V\left(n_{3}\right) \oplus V\left(n_{4}\right)\right)\right)$ by Theorem 2.8 , which is not a P.V. by Theorem 9.6. If some $m_{i} \geqq n$, it reduces to the case $k=3$ by Theorem 2.5 and hence it is a P.V. Now assume that $m_{1}+m_{2}+m_{3}+$ $m_{4} \neq 2 n$ and $n>\max \left\{m_{i}\right\}$. If $n \geqq m_{1}+m_{2}+m_{3}+m_{4}$, it is a trivial P.V., and if $m_{1}+m_{2}+m_{3}+m_{4}>n$, we may assume that $m_{1}+m_{2}+m_{3}+m_{4}>2 n$ by a castling transformation. Put $m_{i}^{\prime}=n-m_{i}(1 \leqq i \leqq 4)$. Then we have $m_{1}^{\prime}+\cdots+m_{4}^{\prime}=4 n-\left(m_{1}+\cdots+m_{4}\right)<4 n-2 n=2 n<m_{1}+\cdots+m_{4}$, and it is castling-equivalent to $\left(\left(G L_{m_{1}^{\prime}} \times \cdots \times G L_{m_{4}^{\prime}}\right) \times G L_{n},\left(V\left(m_{1}^{\prime}\right)+\cdots+\right.\right.$ $\left.V\left(m_{4}^{\prime}\right)\right) \otimes V(n)$). If $m_{1}^{\prime}+\cdots+m_{4}^{\prime} \leqq n$, it is a trivial P.V. If $m_{1}^{\prime}+\cdots+$ $m_{4}^{\prime}>n$, we have $n>n^{\prime}=m_{1}^{\prime}+\cdots+m_{4}^{\prime}-n$ and $m_{1}^{\prime}+\cdots+m_{4}^{\prime}>2 n^{\prime}$. Repeating this procedure, we have our result.
Q.E.D.

§ 10. P.V.'s of associative algebras (M. Sato's unpublished result II)

First we recall the definition of quasi-regularity of P.V.'s. Let (G, ρ, V) be a P.V. with the Zariski-dense orbit $Y=V-\mathrm{S}$. Let G_{1} be a subgroup of G generated by the commutator subgroup [G, G] and a generic isotropy subgroup $G_{x}(x \in Y)$. This does not depend on a choice of a generic point x, and a rational character χ of G corresponds to some relative invariant if and only if it annihilates G_{1} and the rank N of the character group of G / G_{1} coincides with the number of basic invariants. Let \mathfrak{g} (resp. \mathfrak{g}_{1}) be the algebra of G (resp. G_{1}) and \mathfrak{g}^{*} the dual vector space of g. Then we have the following lemma.

Lemma 10.1 (Lemma 1.1 in [S-K-K-O]). For $\omega \in \mathfrak{g}^{*}$, there exists a rational map $\Psi_{\omega}: Y \rightarrow V^{*}$ satisfying (1) $\Psi_{\omega}(\rho(g) X)=\rho^{*}(g) \Psi_{\omega}(x)$ for $g \in G$, $x \in Y$, (2) $\left\langle\Psi_{\omega}(x), d \rho(A) x\right\rangle=\omega(A)$ for all $x \in Y$ and $A \in \mathfrak{g}$ if and only if $\omega\left(\mathfrak{g}_{1}\right)=0$.

Definition 10.2. A P.V. (G, ρ, V) is called quasi-regular if there exists
$\omega \in\left(\mathrm{g} / \mathrm{g}_{1}\right)^{*}$ such that $\Psi_{\omega}: Y \rightarrow V^{*}$ is dominant. If there exists a rational character χ corresponding to a relative invariant f such that $\Psi_{\delta_{\chi}}=\operatorname{grad} \log f$ is dominant (i.e., $f=$ non-degenerate), we say that (G, ρ, V) is regular. Hence regularity implies quasi-regularity. As we shall see, the converse is not true. However if G is reductive, it is equivalent.

Definition 10.3. Let \mathscr{A} be a finite-dimensional associative algebra over C with the identity 1 , and \mathscr{A}^{\times}the multiplicative group of all invertible elements in \mathscr{A}. Then $G=\mathscr{A}^{\times}$acts on $V=\mathscr{A}$ by $\rho(a) b=a b$ for $a \in G$, $b \in V$. Clearly the triplet (G, ρ, V) is a P.V. which is called the P.V. of the associative algebra \mathscr{A}. Let \mathscr{A}^{*} be the dual vector space of \mathscr{A}. Then \mathscr{A}^{*} becomes bi- \mathscr{A}-module by $\langle a x b, y\rangle=\langle x, b y a\rangle$ for $a, x, b \in \mathscr{A}$ and $y \in \mathscr{A}^{*}$.

Definition 10.4. We call \mathscr{A} a Frobenius algebra when there exists an isomorphism $\Psi: \mathscr{A} \rightarrow \mathscr{A}^{*}$ satisfying $\Psi(a b)=a \Psi(b)$ for all $a, b \in \mathscr{A}$. This map Ψ induces the adjoint map $\Psi^{*}:\left(\mathscr{A}^{*}\right)^{*}=\mathscr{A} \rightarrow \mathscr{A}^{*}$. We call $\mathscr{A} a$ symmetric algebra if there exists Ψ satisfying $\Psi=\Psi^{*}$ and $\Psi(a b)=a \Psi(b)$ for all $a, b \in \mathscr{A}$. If we put $B(a, b)=\langle a, \Psi(b)\rangle$ and $y_{0}=\Psi(1)$, then we have $B(a, b)=\left\langle a b, y_{0}\right\rangle$. Hence \mathscr{A} is a Frobenius (resp. symmetric) algebra if and only if there exists $y_{0} \in \mathscr{A}^{*}$ such that the bilinear form $\left\langle a b, y_{0}\right\rangle$ on \mathscr{A} is non-degenerate (resp. non-degenerate and symmetric).

The remaining part of this section will be devoted to prove the following unpublished work of M. Sato around 1962.

Theorem 10.5 (M. Sato). Let (G, ρ, V) be a P.V. of an associative algebra \mathscr{A}.
(1) The dual triplet $\left(G, \rho^{*}, V^{*}\right)$ is a $P . V$. if and only if \mathscr{A} is a Frobenius algebra.
(2) The triplet (G, ρ, V) is a quasi-reqular $P . V$. if and only if \mathscr{A} is a symmetric algebra.
(3) The triplet (G, ρ, V) is a regular P.V. if and only if \mathscr{A} is a semisimple algebra.

To prove this theorem, we shall prove several lemmas.
Lemma 10.6. \mathscr{A} is a Frobenius algebra if and only if there exists an element y_{0} of \mathscr{A}^{*} satisfying $\mathscr{A}^{*}=\mathscr{A} y_{0}$.

Proof. Let \mathscr{A} be a Frobenius algebra, and $\Psi: \mathscr{A} \rightarrow \mathscr{A}^{*}$ be a left \mathscr{A} module isomorphism. Put $y_{0}=\Psi(1)$. Then we have $\mathscr{A}^{*}=\Psi(\mathscr{A})=\mathscr{A} y_{0}$ since $a y_{0}=\Psi(a)$ for all $a \in \mathscr{A}$. Conversely, if $\mathscr{A}^{*}=\mathscr{A} y_{0}$, then $\Psi(a)=a y_{0}$ $(a \in \mathscr{A})$ is a left \mathscr{A}-module surjective homomorphism. Since $\operatorname{dim} \mathscr{A}=$
$\operatorname{dim} \mathscr{A}^{*}$, it is injective.

Lemma 10.7. For $y_{0} \in \mathscr{A}^{*}$, we have $\mathscr{A}^{*}=\mathscr{A} y_{0}$ if and only if $\mathscr{A}^{*}=$ $y_{0} \mathscr{A}$.

Proof. We have $B\left(a, a^{\prime}\right)=\left\langle a, a^{\prime} y_{0}\right\rangle=\left\langle a^{\prime}, y_{0} a\right\rangle$ and this is nondegenerate if and only if $\operatorname{det}\left(B\left(a_{i}, a_{j}\right)\right) \neq 0$ where $\left\{a_{1}, \cdots, a_{n}\right\}$ is a basis of \mathscr{A} over C. Hence we have $\mathscr{A}^{*}=\mathscr{A} y_{0} \Leftrightarrow B\left(a, a^{\prime}\right)=0$ for all $a^{\prime} \in \mathscr{A}$ implies $\left.a=0 \Leftrightarrow \operatorname{det} B\left(a_{i}, a_{j}\right)\right) \neq 0 \Leftrightarrow B\left(a, a^{\prime}\right)=0$ for all $a \in \mathscr{A}$ implies $a^{\prime}=0 \Leftrightarrow \mathscr{A}^{*}=$ $y_{0} \mathscr{A}$.
Q.E.D.

Now we ready to prove (1) of Theorem 10.5. Since ρ^{*} is defined by $\left\langle g x, \rho^{*}(g) y\right\rangle=\langle x, y\rangle$ for all $x \in \mathscr{A}$ and $y \in \mathscr{A}^{*}$, we have $\left\langle x, \rho^{*}(g) y\right\rangle=$ $\left\langle g^{-1} x, y\right\rangle=\left\langle x, y g^{-1}\right\rangle$ for all $x \in \mathscr{A}$, i.e., $\rho^{*}(g) y=y g^{-1}$ for $y \in \mathscr{A}^{*}$ and $g \in$ $G=\mathscr{A}^{\times}$. Hence the dual triplet $\left(G, \rho^{*}, V^{*}\right)$ is a P.V. if and only if there exists an element y_{0} in \mathscr{A}^{*} such that $\rho^{*}(G) y_{0}=y_{0} \mathscr{A}^{\times}$is dense in $V^{*}=\mathscr{A}^{*}$. Since $y_{0} \mathscr{A}^{\times} \subset y_{0} \mathscr{A}$ and \mathscr{A}^{\times}is dense in $\mathscr{A}^{\prime}, y_{0} \mathscr{A}^{\times}$is dense in \mathscr{A}^{*}, if and only if $y_{0} \mathscr{A}=\mathscr{A}^{*}$, i.e., \mathscr{A} is a Frobenius algebra by Lemmas 10.6 and 10.7. This proves (1).

As we have seen above, \mathscr{A} is a Frobenius algebra if and only if $B\left(a, a^{\prime}\right)=\left\langle a a^{\prime}, y_{0}\right\rangle\left(a, a^{\prime} \in \mathscr{A}\right)$ is non-degenerate for some $y_{0} \in \mathscr{A}^{*}$. Moreover, \mathscr{A} is a symmetric algebra if and only if B is a non-degenerate symmetric bilinear form for some y_{0}.

Let us prove (2) of Theorem 10.5. First assume that (G, ρ, V) is quasi-regular. Then by the definition and Lemma 10.1, there exists y_{0} in $\mathfrak{g}^{*}=\mathscr{A}^{*}$ and a dominant G-admissible rational map $\Psi: V-S=\mathscr{A}^{\times} \rightarrow$ $V^{*}=\mathscr{A}^{*}$ satisfying $\langle a x, \Psi(x)\rangle=\left\langle a, y_{0}\right\rangle$ for any $a \in \mathfrak{g}=\mathscr{A}$ and $x \in V-$ $S=\mathscr{A}^{\times}$. Moreover, by Lemma 10.1, we have $\left\langle g_{1}, y_{0}\right\rangle=0$ and hence $\left\langle a b, y_{0}\right\rangle=\left\langle b a, y_{0}\right\rangle$ for any $a, b \in \mathfrak{g}=\mathscr{A}$. On the other hand, we have $\Psi(1)=y_{0}$ because $\langle a \cdot 1, \Psi(1)\rangle=\left\langle a, y_{0}\right\rangle$ for all $a \in \mathscr{A}$. This implies that $\Psi\left(\mathscr{A}^{\times}\right)=y_{0} \mathscr{A}^{\times}$is dense in \mathscr{A}^{*}, and hence $y_{0} \mathscr{A}=\mathscr{A}^{*}$. Thus \mathscr{A} is a symmetric algebra. Conversely, assume that \mathscr{A} is a symmetric algebra. Then there exists y_{0} in \mathscr{A}^{*} such that $y_{0} \mathscr{A}=\mathscr{A}^{*}$ and $\left\langle a b, y_{0}\right\rangle=\left\langle b a, y_{0}\right\rangle$ for any $a, b \in \mathscr{A}$. Define a map $\Psi: \mathscr{A}^{\times} \rightarrow \mathscr{A}^{*}$ by $\Psi(g)=y_{0} g^{-1}$ for $g \in \mathscr{A}^{\times}$. Then Ψ is clearly G-admissible and dominant. By Lemma 10.1, it is enough to show that $\langle a x, \Psi(x)\rangle=\left\langle a, y_{0}\right\rangle$ for any $x \in V-S=\mathscr{A}^{\times}$and $a \in \mathfrak{g}=\mathscr{A}$. However, it is obvious since $\langle a x, \Psi(x)\rangle=\left\langle a x, y_{0} x^{-1}\right\rangle=\left\langle x^{-1}(a x), y_{0}\right\rangle=$ $\left\langle(a x) x^{-1}, y_{0}\right\rangle=\left\langle a, y_{0}\right\rangle . \quad$ This proves (2).

Finally we shall prove (3) of Theorem 10.5. Assume that \mathscr{A} is semisimple. Then we have $\mathscr{A}=M\left(m_{1}, \boldsymbol{C}\right) \oplus \cdots \oplus M\left(m_{k}, \boldsymbol{C}\right)$ where $M\left(m_{i}, \boldsymbol{C}\right)$ denotes the totality of $m_{i} \times m_{i}$ matrices over C. Let N (resp. Tr) be the norm (resp. trace) of \mathscr{A}, i.e., $\mathrm{N}(a)=\left(\operatorname{det} a_{1}\right)^{m_{1}} \cdots\left(\operatorname{det} a_{k}\right)^{m_{k}}($ resp. $\operatorname{Tr}(a)=$
$\left.m_{1} \operatorname{tr} a_{1}+\cdots+m_{k} \operatorname{tr} a_{k}\right)$ for $a=\left(a_{1}, \cdots, a_{k}\right) \in \mathscr{A}$. We identify \mathscr{A} and \mathscr{A}^{*} by the bilinear form $\operatorname{Tr}(a b)$. We have $G=G L\left(m_{1}, \boldsymbol{C}\right) \times \cdots \times G L\left(m_{k}, \boldsymbol{C}\right)$ and $S=\{a \in \mathscr{A} ; \mathrm{N}(a)=0\}$. For $x \in G L(n, C)$, we have grad log det $x=$ (grad det x)/det $x={ }^{t} x^{-1}$ and hence, we see that $\operatorname{grad} \log \mathrm{N}(a)$ is dominant, i.e., the triplet (G, ρ, V) is a regular P.V. Conversely assume that \mathscr{A} is not semi-simple and let $\mathscr{R}(\neq 0)$ be the radical of \mathscr{A}. Then there exists a semi-simple subalgebra \mathscr{A}_{0} satisfying $\mathscr{A}=\mathscr{A}_{0} \oplus \mathscr{R}$. Let $g=g_{0}+n_{0}$ ($g_{0} \in \mathscr{A}_{0}, n_{0} \in \mathscr{R}$) be invertible in \mathscr{A}. Put $g^{-1}=g_{0}^{\prime}+n_{0}^{\prime}$. Then $1=g_{0} g_{0}^{\prime}+n_{0}^{\prime \prime}$. Since $1 \in \mathscr{A}_{0}$, we have $n_{0}^{\prime \prime}=0, g_{0}^{\prime}=g_{0}{ }^{-1}$, and hence $g_{0}+n_{0}=g_{0}\left(1+g_{0}{ }^{-1} n_{0}\right)$. Put $U=\{1+n ; n \in \mathscr{R}\}$. Since \mathscr{R} is a nilpotent ideal, U is a unipotent group. Let $f(x)$ be a relative invariant of (G, ρ, V) and χ its character. Let x_{0} be a generic point satisfying $f\left(x_{0}\right)=1$. Then for $x=g x_{0} \in V-S$, we have $f(x)=\chi(g)$. If $g=g_{0}+n_{0}\left(g_{0} \in \mathscr{A}_{0}, n_{0} \in \mathscr{R}\right)$ then $g=g_{0} u(u=1+$ $g_{0}{ }^{-1} n_{0} \in U$), and hence $\chi(g)=\chi\left(g_{0}\right)$. Note that $\chi \mid U=1$ since U is unipotent. This implies that $f(x)$ is function only on \mathscr{A}_{0} and hence Hess $\log f(x)=0$, i.e., (G, ρ, V) is not regular. This proves (3) and this completes the proof of Theorem 10.5 .

Let (G, ρ, V) be a P.V., and $C[\rho(G)]$ the vector subspace of End (V) generated by $\rho(G)(\subset G L(V))$. We shall close this section by proving the following Remark due to T. Kimura.

Remark 10.8. Let (G, ρ, V) be a P.V. such that ρ is faithful. Then it is a P.V. of some associative algebra \mathscr{A} if and only if (1) a generic isotropy subgroup H is the identity group, and (2) $\operatorname{dim} C[\rho(G)]=\operatorname{dim} V$.

Proof. If $V=\mathscr{A}, G=\mathscr{A}^{\times}$and $\rho(a) b=a b$ for $a, b \in \mathscr{A}$ where \mathscr{A} is an associative algebra, then a generic isotropy subgroup H is the identity $\{1\}$ and $C\left[\mathscr{A}^{\times}\right] \simeq \mathscr{A}$, and hence we have (1) and (2). Conversely, assume (1) and (2). Let x_{0} be a generic point and define a map $\Psi: C[\rho(G)] \rightarrow V$ by $\Psi\left(\sum c_{i} \rho\left(g_{i}\right)\right)=\sum c_{i} \rho\left(g_{i}\right) x_{0} \in V$. Clearly it is surjective and hence an isomorphism by the condition (2). Since $C[\rho(G)]$ is an associative algebra, V has a structure of an associative algebra which we denote by \mathscr{A}. Since $\boldsymbol{C}[\rho(G)]^{\times}$is connected and $\operatorname{dim} C[\rho(G)]^{\times}=\operatorname{dim} \rho(G)$, we have $C[\rho(G)]^{\times}=$ $\rho(G) \simeq G$, i.e., $\mathscr{A}^{\times} \simeq G$.
Q.E.D.

§ 11. A classification of regular irreducible P.V.'s with universally transitive open orbits (J. Igusa's result)

Let k be a field of characteristic zero. Let \tilde{G} be a connected linear k-split algebraic group, $\rho: \widetilde{G} \rightarrow G L(X)$ with $X=A f f^{n}$ a k-homomorphism. Assume that (\widetilde{G}, ρ, X) is a regular irreducible P.V. In this case, the singular set S is an irreducible hypersurface and its complement Y is necessarily
k-open. Put $G=\rho(\widetilde{G})$. The number $\ell=\ell_{k}(G, X)=|G(k) \backslash Y(k)|$ of $G(k)$ orbits in $Y(k)$ is finite [(Serre)]. We say that Y is a universally transitive open orbit if $\ell=|G(k) \backslash Y(k)|=1$ for all k satisfying $H^{1}\left(k\right.$, Aut $\left.\left(S L_{2}\right)\right) \neq 0$, i.e., there exists a nonsplit quaternion k-algebra. This condition is satisfied by every local field k other than C.

Theorem 11.1 ([Igusa 2]). The number $\ell=|G(k) \backslash Y(k)|$ is invariant under a castling transformation.

By this theorem, it is enough to check the universal transitivity for all regular irreducible P.V.'s in Theorem 3.3 (Section 3). Using Galois cohomology, J. Igusa obtained the following result.

Theorem 11.2 ([Igusa 1], [Igusa 2]). A regular irreducible P.V. has a universally transitive open orbit (, i.e., $\ell=1$) if and only if it is castlingequivalent to one of the following P.V.'s.
(1) $\left(H \times G L_{m}, \rho \otimes \Lambda_{1}\right)$ where ρ is an m-dimensional irreducible representation of H.
(2) $\left(G L_{2 m}, \Lambda_{2}\right)$
(3) $\left(S p_{n} \times G L_{2 m}, \Lambda_{1} \otimes \Lambda_{1}\right)$
(4) $\left(G L_{1} \times S O_{n}, \Lambda_{1} \otimes \Lambda_{1}\right)$ where n is even and $n \geqq 4$.
(5) $\left(G L_{1} \times \operatorname{Spin}_{7}, \Lambda_{1} \otimes\right.$ the spin rep.)
(6) $\left(G L_{1} \times \mathrm{Spin}_{9}, \Lambda_{1} \otimes\right.$ the spin rep.)
(7) $\left(\operatorname{Spin}_{10} \times G L_{2}\right.$, a half-spin rep. $\left.\otimes \Lambda_{1}\right)$
(8) $\left(G L_{1} \times E_{6}, \Lambda_{1} \otimes \Lambda_{1}\right)$ with $\operatorname{deg}\left(\Lambda_{1}\right)=27$ for E_{6}.

Theorem 11.3 ([Igusa 2]). (1) If all octonion k-algebras split over k, e.g., if k is a p-adic field then not only P.V.'s in Theorem 11.2 but also $\ell=$ $|G(k) \backslash Y(k)|=1$ for $\left(G L_{7}, \Lambda_{3}, V(35)\right)$. (2) If $k=R$, we have $\ell_{k}(G, X)=1$ if and only if all roots of the b-function of the reduced P.V.'s in the castlingequivalence classes of (G, X) are integers.

Remark 11.4. For the b-function, see [S-K-K-O], [Kimura 4]. A P.V. (G, ρ, V) is called "reduced" if any castling transform ($G^{\prime}, \rho^{\prime}, V^{\prime}$) has a property that $\operatorname{dim} V^{\prime} \geqq \operatorname{dim} V$. Each castling-equivalence class contains the unique reduced P.V. in the irreducible case (See p. 39 in [S-K]).

§ 12. Universal transitivity of simple P.V.'s and 2-simple P.V.'s

T. Kimura, S. Kasai and H. Hosokawa proved the invariance of ℓ (See Section 11) under various P.V.-equivalences (e.g. P.V.-equivalence in Theorem 2.8) and classified simple P.V.'s, 2-simple P.V.'s of type I, 2simple P.V.'s of type II with universally transitive open orbits respectively.

Theorem 12.1 ([K-K-H]). All non-irreducible simple P.V.'s with universally transitive open orbits are given as follows.
(1) $(G L_{1}{ }^{k+1} \times S L_{n}, \Lambda_{1} \oplus \overbrace{\cdots \oplus}^{k} \Lambda_{1} \oplus \Lambda_{1}^{(*)})(1 \leqq k \leqq n, n \geqq 2)$
(2) $\quad(G L_{1}{ }^{k+1} \times S L_{n}, \quad \Lambda_{2} \oplus \Lambda_{1}^{(*)} \overbrace{\oplus \cdots \oplus}^{k} \Lambda_{1}^{(*)}) \quad(1 \leqq k \leqq 3, n \geqq 4) \quad$ except $\left(G L_{1}^{4} \times S L_{n}, \Lambda_{2} \oplus \Lambda_{1} \oplus \Lambda_{1} \oplus \Lambda_{1}^{*}\right)$ with $n=$ odd.
(3) $\left(G L_{1}{ }^{2} \times S L_{2 m+1}, \Lambda_{2} \oplus \Lambda_{2}\right)$ for $m \geqq 2$.
(4) $\left(G L_{1}^{3} \times S L_{5}, \Lambda_{2} \oplus \Lambda_{2} \oplus \Lambda_{1}^{*}\right)$.
(5) $\quad(G L_{1}{ }^{k} \times S p_{n}, \Lambda_{1} \oplus \overbrace{\cdots \oplus}^{k} \Lambda_{1})(k=2,3)$.
(6) $\left(G L_{1}{ }^{2} \times \operatorname{Spin}_{n}\right.$, a half-spin rep. \oplus the vector rep.) with $n=8,10$.
(7) $\left(G L_{1}^{2} \times \operatorname{Spin}_{10}, \Lambda \oplus \Lambda\right)$ where $\Lambda=$ the even half-spin representation.

Corollary 12.2. All non-irreducible regular simple P.V.'s with universally transitive open orbits are given as follows.
(1) $\left(G L_{1}{ }^{2} \times S L_{n}, \Lambda_{1} \oplus \Lambda_{1}^{*}\right)$.
(2) $(G L_{1}{ }^{n} \times S L_{n}, \Lambda_{1} \oplus \overbrace{\cdots \oplus} \Lambda_{1})$.
(3) $(G L_{1}{ }^{n+1} \times S L_{n}, \Lambda_{1} \oplus \cdots \oplus \overbrace{1} \oplus \Lambda_{1}^{(*)})$.
(4) $\left(G L_{1}{ }^{3} \times S L_{2 m}, \Lambda_{2} \oplus \Lambda_{1}^{(*)} \oplus \Lambda_{1}^{(*)}\right)$.
(5) $\quad\left(G L_{1}^{2} \times S L_{2 m+1}, \Lambda_{2} \oplus \Lambda_{1}\right)$.
(6) $\quad\left(G L_{1}^{4} \times S L_{2 m+1}, \Lambda_{2} \oplus \Lambda_{1} \oplus\left(\Lambda_{1} \oplus \Lambda_{1}\right)^{(*)}\right)$.
(7) $\left(G L_{1}{ }^{2} \times S p_{n}, \Lambda_{1} \oplus \Lambda_{1}\right)$.
(8) $\quad\left(G L_{1}^{2} \times \operatorname{Spin}_{n}\right.$, a half-spin rep. \oplus the vector rep.) with $n=8,10$.
(9) $\left(G L_{1}{ }^{2} \times \operatorname{Spin}_{10}, \Lambda \oplus \Lambda\right)$ where $\Lambda=$ the even half-spin representation.

Theorem 12.3. Any non-irreducible 2-simple P.V. $\left(G L_{1}{ }^{k} \times G, \rho\left(=\rho_{1}\right.\right.$ $\left.\oplus \cdots \oplus \rho_{k}\right)$) of type I with the universally transitive open orbit is castlingequivalent to one of the following P.V.'s.
(1) $\quad G=S L_{2 m+1} \times S L_{2}, \quad \rho=\Lambda_{2} \otimes \Lambda_{1}+1 \otimes \Lambda_{1}(+T)$ with $T=1 \otimes \Lambda_{1}(+1$ $\otimes \Lambda_{1}$).
(2) $\quad G=S L_{5} \times S L_{2}, \rho=\Lambda_{2} \otimes \Lambda_{1}+\Lambda_{1}^{*} \otimes 1\left(+1 \otimes \Lambda_{1}\left(+1 \otimes \Lambda_{1}\right)\right)$.
(3) $G=S L_{5} \times S L_{2}, \rho=\Lambda_{2} \otimes \Lambda_{1}+\left(\Lambda_{1}^{*}+\Lambda_{1}^{*}\right) \otimes 1$.
(4) $\quad G=S p_{n} \times S L_{m}, \quad \rho=\Lambda_{1} \otimes \Lambda_{1}+T$, with $T=1 \otimes\left(\Lambda_{1}^{(*)}+\cdots+\Lambda_{1}^{(*)}\right)$ $(1 \leqq k \leqq 3)$ except $1 \otimes\left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}^{*}\right)$ with $m=$ odd, $\Lambda_{1} \otimes 1+1 \otimes\left(\Lambda_{1}^{(*)}+\cdots+\right.$ $\left.\Lambda_{1}^{(*)}\right)(0 \leqq k \leqq 2)$ except $\Lambda_{1} \otimes 1+1 \otimes\left(\Lambda_{1}+\Lambda_{1}^{*}\right)$ with $m=o d d, 1 \otimes \Lambda_{2}(m=o d d)$, $1 \otimes\left(\Lambda_{2}+\Lambda_{1}^{*}\right)(m=5)$.
(5) $\quad G=S p_{n} \times S L_{2 m+1}, \rho=\Lambda_{1} \otimes \Lambda_{1}+\left(\Lambda_{1}+\Lambda_{1}\right) \otimes 1$.
(6) $G=\operatorname{Spin}_{10} \times S L_{2}, \rho=$ a half-spin rep. $\otimes \Lambda_{1}+1 \otimes \Lambda_{1}(+T)$ with $T=$ $1 \otimes \Lambda_{1}\left(+1 \otimes \Lambda_{1}\right)$.

Corollary 12.4 . Any non-irreducible regular 2-simple P.V. of type I with the universally transitive orbit is castling-equivalent to one of the following P.V.'s.
(1) $\left(G L_{1}{ }^{3} \times S L_{5} \times S L_{2}, \Lambda_{2} \otimes \Lambda_{1}+\left(\Lambda_{1}^{*}+\Lambda_{1}^{*}\right) \otimes 1\right)$.
(2) $\left(G L_{1}^{3} \times S p_{n} \times S L_{2 m}, \Lambda_{1} \otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}^{(*)}+\Lambda_{1}^{(*)}\right)\right)$.
(3) $\left(G L_{1}{ }^{2} \times S p_{n} \times S L_{2 m+1}, \Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1\right)$.
(4) $\left(G L_{1}{ }^{4} \times S p_{n} \times S L_{2 m+1}, \Lambda_{1} \otimes \Lambda_{1}+\Lambda_{1} \otimes 1+1 \otimes\left(\Lambda_{1}+\Lambda_{1}\right)^{(*)}\right)$,
(5) $\left(G L_{1}{ }^{3} \times \operatorname{Spin}_{10} \times S L_{2}\right.$, a half-spin rep. $\left.\otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}+\Lambda_{1}\right)\right)$.
(6) $\left(G L_{1}{ }^{4} \times \operatorname{Spin}_{10} \times S L_{2}\right.$, a half-spin rep. $\left.\otimes \Lambda_{1}+1 \otimes\left(\Lambda_{1}+\Lambda_{1}+\Lambda_{1}\right)\right)$.

One can see also that any non-regular irreducible P.V., which is not castling-equivalent to ($S p_{n} \times G L_{2}, \Lambda_{1} \otimes 2 \Lambda_{1}$), has the universally transitive open orbit. Any 2-simple P.V. of type II in Theorem 5.2 has the universally transitive open orbit if and only if so is the corresponding simple P.V. There are many other 2-simple P.V.'s of type II with universally transitive open orbits (See [K-K-H]).

§ 13. Irreducible P.V.'s of characteristic $\boldsymbol{p} \geqq \mathbf{3}$ (Z. Chen's result)

In [C3], [C4], Z. Chen obtained the following result. Since all irreducible P.V.'s are defined over \boldsymbol{Q} (Section 3), by the reduction modulo p, one obtains corresponding P.V.'s in characteristic p. If $p>5$, every regular irreducible P.V. of characteristic 0 induces a regular irreducible one of characteristic p by the reduction modulo $p([\mathrm{C} 4])$. There is one exception if $p=5$ and 6 exceptions if $p=3$. But not every irreducible P.V.'s of characteristic p can be obtained by the reduction mudulo p. In fact, when $p>2$, there are following 4 new types.
(1) $\left(G L_{n},\left(1+p^{s}\right) \Lambda_{1}, V\left(n^{2}\right)\right)(s>0, n \geqq 2)$.
(2) $\left(G L_{n}, \Lambda_{1}+p^{s} \Lambda_{n-1}, V\left(n^{2}\right)\right)(s>0, n \geqq 3)$.
(3) $\left(G L_{1} \times S L_{3}, \Lambda_{1} \otimes\left(\Lambda_{1}+\Lambda_{2}\right), V(1) \otimes V(7)\right)(p=3)$.
(4) $\left(G L_{4}, \Lambda_{1}+\Lambda_{2}, V(16)\right)(p=3)$.

Among them, Z. Chen investigated a P.V. (4) in detail. It is a regular irreducible P.V. with the irreducible relative invariant of degree 8.

§ 14. A classification of irreducible P.V.'s of parabolic type and their real forms (H. Rubenthaler's result)

Let \mathfrak{g} be a complex semisimple Lie algebra, \mathfrak{h} a Cartan subalgebra. Let R be the root system w.r.t. $(\mathfrak{g}, \mathfrak{h})$ and fix a base Ψ of R. Let θ be a subset of Ψ. Put $h_{\theta}=\{x \in h, \alpha(x)=0$ for all $\alpha \in \theta\}$ and define an element H^{θ} of h_{θ} by $\alpha\left(H^{\theta}\right)=0$ for $\alpha \in \theta$ and $\alpha\left(H^{\theta}\right)=2$ for $\alpha \in \Psi-\theta$. For $n \in Z$, put $d_{n}(\theta)=\left\{X \in \mathfrak{g} ;\left[H^{\theta}, X\right]=2 n X\right\}$. Then we have $\left[d_{i}(\theta), d_{j}(\theta)\right] \subset d_{i+j}(\theta)$ and hence we obtain Z-grading.

The space $d_{0}(\theta)$, which is denoted by ℓ_{θ}, is a reductive subalgebra of g. It operates on each $d_{i}(\theta)$ by the adjoint action. Let L_{θ} be the connected subgroup of G corresponding to ℓ_{θ} where G is adjoint group of g. Then we have the action of L_{θ} on $d_{i}(\theta)$ which corresponds to that of ℓ_{θ} on $d_{i}(\theta)$. It is known (Vinberg) that $\left(L_{\theta}, d_{1}(\theta)\right)$ is a P.V. of paraboilc type. It is an irreducible P.V. if and only if Card $(\Psi-\theta)=1$. H. Rubenthaler classified irreducible P.V.'s of parabolic type [R1]. Irreducible regular P.V.'s of parabolic type are given by (1) with $(H, \rho)=\left(S L_{n}, \Lambda_{1}\right)$, (2) $\sim(9)$, $\left(S p_{n^{\prime}}, \Lambda_{1}\right)\left(n=2 n^{\prime}\right),\left(S O_{n}, \Lambda_{1}\right)$. (10) with $n=1$, (12), (13), (15), (16), in (I) in Theorem 3.3. H. Rubenthaler also investigated their real forms ([R1], [R2]).
\S 15. Indecomposable commutative Frobenius algebras and δ-functions; Examples of quasi-regular, non-regular P.V.'s (M. Sato's unpublished result III)

Let $A=\boldsymbol{C}\left[x_{1}, \cdots, x_{n}\right]$ be the polynomial ring of n variables over \boldsymbol{C}. Any finite-dimensional commutative algebra \bar{A} over C can be expressed as $\bar{A}=A / J$ where J is an ideal of A satisfying $\mathfrak{m} \supset J \supset \mathfrak{m}^{k}$ for some k with $\mathfrak{m}=A x_{1}+\cdots+A x_{n}$. Let $\mathscr{B}_{p t}=\left\{P(D) \delta\left(x_{1}, \cdots, x_{n}\right) ; P(D)\right.$ is a partial differential operator with constant coefficients $\}$ be the hyperfunctions with the support at the origin of C^{n}, where $\delta\left(x_{1}, \cdots, x_{n}\right)$ is the Dirac's delta function. By the inner product $(f, \triangle(x))=\int f(u) \triangle(u) d u$, we can regard $\mathscr{B}_{p t}$ as the dual A^{*} of A canonically. Note that $\mathscr{B}_{p t}$ is an A-module. The dual \bar{A}^{*} of \bar{A} is given by $\bar{A}^{*}=\left\{\triangle(x) \in \mathscr{B}_{p t} ;(f, \triangle(x))=0\right.$ for all $\left.f \in J\right\}$. By Lemma $10.6, \bar{A}=A / J$ is a Frobenius algebra if and only if $\bar{A}^{*}=A \triangle(x)$ for some $\triangle(x) \in \bar{A}^{*} \subset \mathscr{B}_{p t}$. Note that a commutative Frobenius algebra is a symmetric algebra. When $A^{*}=A \triangle(x)$, the ideal J is given by $J=$ $\left\{f \in A ;\langle f, \Psi \triangle(x)\rangle=\int f \Psi \triangle(u) d u=\int \Psi f \triangle(u) d u=\langle\Psi, f \triangle(x)\rangle=0\right.$ for all $\Psi \in A\}=\{f \in A ; f \triangle(x)=0\}$. Hence, for any given $\triangle(x) \in \mathscr{B}_{p t}$, we can get a commutative Frobenius algebra $\bar{A}=A / J$ by the ideal $J=\{f \in A$; $f \triangle(x)=0\}$ of $A=C\left[x_{1}, \cdots, x_{n}\right]$. Conversely, any finite-dimensional indecomposable commutative Frobenius algebra can be obtained by this method.

Remark 15.1. $\left\{x^{\alpha}=x_{1}{ }^{\alpha_{1}} \cdots x_{n}{ }^{\alpha_{n}}\right\}$ is a base of $A=\boldsymbol{C}\left[x_{1}, \cdots, x_{n}\right]$. The dual base of $\mathscr{B}_{p t}$ is given by $\left\{\left((-1)^{|\beta|} / \beta!\right) \delta^{(\beta)}(x)\right\}$, i.e., $\left(x^{\alpha},\left((-1)^{|\beta|} / \beta!\right) \delta^{(\beta)}(x)\right)$ $=1(\alpha=\beta)$ and $=0(\alpha \neq \beta)$.

Remark 15.2. Assume that $A=A_{1} \oplus \cdots \oplus A_{k}$ where each A_{i} is a two-
sided ideal of A. Then A is a Frobenius algebra (resp. symmetric algebra) if and only if each A_{i} is a Frobenius algebra (resp. symmetric algebra).

Remark 15.3. Both $A=C\left[x_{1}, \cdots, x_{n}\right]$ and $\mathscr{B}_{p t}$ are of infinite dimension. If one wants to consider a finite-dimensional vector space, one can modify our argument as follows. Let \mathfrak{M}^{k} be the ideal of $A=C\left[x_{1}, \cdots, x_{n}\right]$ generated by $x_{1}{ }^{k}, \cdots, x_{n}{ }^{k}$, i.e., $\mathfrak{M}^{k}=A x_{\mathrm{i}}{ }^{k}+\cdots+A x_{n}{ }^{k}$ and put $A_{k}=A / \mathfrak{M}^{k}$. For $\bar{A}=A / J$, we have $A_{k} \rightarrow \bar{A} \rightarrow 0$ (exact) for a sufficiently large k. Its kernel \bar{J} is given by $\bar{J}=J / M^{k}$. Now A_{k} is a finite-dimensional vector space over C. Let $\mathscr{B}_{p t}{ }^{(k)}$ be the totality of less than k-th derivations of the δ function. Then $\mathscr{B}_{p t}{ }^{(k)}$ is the dual of A_{k}.

Now we shall investigate the correspondence between $\mathscr{B}_{p t}$ and $\bar{A}=$ A / J (=a Frobenius algebra) in detail. Assume that \bar{A} has two expression: (1) $\bar{A}=\boldsymbol{C}\left[x_{1}, \cdots, x_{n}\right] / J_{1}$ which corresponds to $\triangle_{1}(x)$ with n-variables, (2) $\bar{A}=C\left[x_{1}, \cdots, x_{n+r}\right] / J_{2}$ which corresponds to $\triangle_{2}(x)$ with $(n+r)$-variables. In this case, put $\triangle_{1}^{\prime}(x)=\triangle_{1}(x) \delta\left(x_{n+1}\right) \cdots \delta\left(x_{n+r}\right)$ and $J_{1}^{\prime}=\left\{f \in C\left[x_{1}, \cdots\right.\right.$, $\left.\left.x_{n+r}\right] ; f \triangle_{1}^{\prime}(x)=0\right\}$. Since J_{1}^{\prime} contains x_{n+1}, \cdots, x_{n+r}, we have (3) $\bar{A}=$ $C\left[x_{1}, \cdots, x_{n}, \cdots, x_{n+r}\right] / J_{1}^{\prime}$. Thus we may assume that two expressions have the same number of variables, i.e., $A=\boldsymbol{C}\left[x_{1}, \cdots, x_{n}\right] / J_{1}\left(\Leftrightarrow \triangle_{1}(x)\right)=$ $\boldsymbol{C}\left[y_{1}, \cdots, y_{n}\right] / J_{2}\left(\Leftrightarrow \triangle_{2}(y)\right)$. We have $\bar{A}=\boldsymbol{C} \oplus N$ where N is the radical of \bar{A}. Nakayama's lemma says that elements u_{1}, \cdots, u_{n} of N generate \bar{A} as an algebra if and only if $u_{1} \bmod N^{2}, \cdots, u_{n} \bmod N^{2}$ generate N / N^{2} as a vector space. Put $u_{i}=x_{i} \bmod J_{1}$ and $v_{i}=y_{i} \bmod J_{2}(1 \leqq i \leqq n)$. We may assume that (1) $u_{i}, v_{i} \in N(1 \leqq i, j \leqq n)$, (2) $\left\{u_{1}, \cdots, u_{m}\right\} \bmod N^{2}$ and $\left\{v_{1}\right.$, $\left.\cdots, v_{m}\right\} \bmod N^{2}$ are bases of N / N^{2} so that $A=C\left[u_{1}, \cdots, u_{m}, \cdots, u_{n}\right]=$ $C\left[u_{1}, \cdots, u_{m}\right]$ etc. Put $u_{i}=\Psi_{i}(v)$ and $v_{j}=\Phi(u)$. We have $v_{i} \equiv \sum a_{i j} u_{j}$ $\bmod N^{2}(1 \leqq i \leqq n)$. If $n=m$, we have $\operatorname{det}\left(a_{i j}\right) \neq 0$. Even if $n>m$, we may take Ψ and Φ such that $\operatorname{det}\left(a_{i j}\right) \neq 0$, and hence $u_{i}=\Psi_{i}(v)$ and $v_{j}=\Phi_{j}(u)$ are non-singular transformations at the origin. We say that $\triangle_{1}(x)$ and $\triangle_{2}(x)$ are equivalent (denoted by $\triangle_{1}(x) \simeq \triangle_{2}(x)$) if one is transformed from the other by (1) the coordinate transformation $\triangle(u) d u \mapsto \triangle(\Psi(v))(\partial \Psi(u) / \partial v) \cdot d v$ and (2) $\triangle(u) d u \mapsto f(u) \triangle(u) d u$ where $f(f(0) \neq 0)$ is an invertible operator. If $\triangle_{1} \simeq \triangle_{2}$, then the corresponding Frobenius algebras are isomorphic, i.e., \{equivalence class of $\left.\mathscr{B}_{p t}\right\} \Leftrightarrow\{$ isomorphic class of indecomposable commutative Frobenius algebras\}.

Example 15.4 (one variable). We have $a_{0} \delta^{(n)}(x)+a_{1} \delta^{(n-1)}(x)+\cdots+$ $a_{n} \delta(x)\left(a_{0} \neq 0\right) \simeq \delta^{(n)}(x)$. It is transformed by (1) (also possible by (2)). Put $A=C[x]$. Then $A \delta^{(n)}(x)=C \delta^{(n)}(x) \oplus \cdots \oplus C \delta^{(1)}(x) \oplus C \delta(x)$, and $J=$ $\left\{f \in C[x] ; f \delta^{(n)}(x)=0\right\}=C[x] \cdot x^{n+1}$. Hence $A=A / J=C \cdot 1 \oplus C \cdot x \oplus \cdots \oplus$ $\boldsymbol{C} x^{n} \bmod x^{n+1}$. We shall consider a commutative Frobenius algebra obtained in such a way. Namely $A=C \cdot 1 \oplus C \cdot u \oplus \cdots \oplus C u^{n-1}$ with $u^{n}=0$.

This is obtained from $\delta^{(n-1)}(x)$. For an element $g=a_{0}+a_{1} u+\cdots+$ $a_{n-1} u^{n-1}$ of \bar{A}, we have

$$
\left(g, g u, \cdots, g u^{n-1}\right)=\left(1, u, \cdots, u^{n-1}\right)\left|\begin{array}{ccccc}
a_{0} & & & \\
a_{1} & a_{0} & & 0 \\
\vdots & & \cdot & \cdot \\
a_{n-1} & \cdot & \cdot & a_{0}
\end{array}\right|
$$

Hence $\operatorname{det} g=a_{0}{ }^{n}$ and $G=\bar{A}^{\times}=\left\{a_{0}+a_{1} u+\cdots+a_{n-1} u^{n-1} ; a_{0} \neq 0\right\}$. By Section $10,\left(\bar{A}^{\times}, \bar{A}\right)$ is a quasi-regular, non-regular P.V.

Proposition 15.5. There exist n-invariant closed 1 -forms on an ndimensional commutative Frobenius algebra \mathscr{A}.

Proof. For $x=x_{1} u_{1}+\cdots+x_{n} u_{n} \in \mathscr{A}^{\times}$and $\xi \in \mathscr{A}$, put $x^{-1} \xi=$ $\Psi_{1}(x, \xi) u_{1}+\cdots+\Psi_{n}(x, \xi) u_{n}$ where $\left\{u_{1}, \cdots, u_{n}\right\}$ is a base of \mathscr{A}. Since $d \log x=x^{-1} d x$ and $(g x)^{-1}(g \xi)=x^{-1} \xi, \Psi_{1}(x, d x), \cdots, \Psi_{n}(x, d x)$ are G invariant closed 1 -forms. Q.E.D.

Example 15.6. We shall consider $\mathscr{A}=\boldsymbol{C} \cdot 1 \oplus C \cdot u \oplus C u^{2}\left(u^{3}=0\right)$. For $x=x_{0}+x_{1} u+x_{2} u^{2} \in \mathscr{A}^{\times}$, we have $\log x=\log x_{0}+\log \left(1+\left(x_{1} / x_{0}\right) u+\left(x_{2} / x_{0}\right) u^{2}\right)$ $=\log x_{0}+\left(x_{1} / x_{0}\right) u+\left(x_{2} / x_{0}-\frac{1}{2}\left(x_{1} / x_{0}\right)^{2}\right) u^{2}$ since $\log (1+t)=t-\frac{1}{2} t^{2} \bmod t^{3}$. Hence $d \log x=1 / x_{0} d x_{0}+\left(d x_{1} / x_{0}\right) u+\left(d\left(2 x_{0} x_{2}-x_{1}^{2}\right) / 2 x_{0}^{2}\right) u^{2}$ and we obtain G-invariant closed 1-forms $\Psi_{0}=d x_{0} / x_{0}, \Psi_{1}=d\left(x_{1} / x_{0}\right)$ and $\Psi_{2}^{*}=d\left(\left(2 x_{0} x_{2}-\right.\right.$ $\left.\left.x_{1}^{2}\right) / 2 x_{0}^{2}\right)$. Now Ψ_{0} corresponds to a rational relative invariant $f_{0}(x)=x_{0}$, and Ψ_{1} (resp. Ψ_{2}) corresponds to a transcendental relative invariant $f_{1}(x)$ $=\exp \left(x_{1} / x_{0}\right)\left(\operatorname{resp} . f_{2}(x)=\exp \left(\left(2 x_{0} x_{2}-x_{1}^{2}\right) / 2 x_{0}^{2}\right)\right)$. We have $f_{0}(g x)=a_{0} f_{0}(x)$, $f_{1}(g x)=\left(\exp a_{1} / a_{0}\right) f_{1}(x), f_{2}(g x)=\left(\exp \left(\left(2 x_{0} x_{0}-x_{1}^{2}\right) / 2 x_{0}^{2}\right) f_{2}(x)\right.$ for $g=a_{0}+$ $a_{1} u+a_{2} u^{2} \in \mathscr{A}^{\times}$. Since grad $\log f_{0}^{s_{0}} f_{1}^{s_{1}} f_{2}^{s_{2}}={ }^{t}\left(s_{0} / x_{0}-s_{1} x_{1} / x_{0}^{2}-s_{2}\left(x_{0} x_{2}+x_{1}^{2}\right) /\right.$ $x_{0}{ }^{3}, s_{1} / x_{0}-s_{2} x_{1} / x_{0}{ }^{2}, s_{2} / x_{0}$), we can see the quasi-regularity again. This quasi-regular P.V. can be considered as a deformation of a regular P.V. ($G L_{1}{ }^{3}, V(3)$). We shall explain this fact for a 2-dimensional commutative associative algebra $A=C \oplus C u$. The structure of an algebra is determined by giving λ and ν for $u^{2}=\lambda+\nu u$. Using $u^{\prime}=u-\nu / 2$, we may assume that $\nu=0$ and $u^{2}=\lambda$. If $\lambda \neq 0$, then $\left(\mathscr{A}^{\times}, \mathscr{A}\right)$ is a regular P.V. isomorphic to $\left(G L_{1}{ }^{2}, V(2)\right)$. In fact, putting $e_{1}=\frac{1}{2}+u /(2 \sqrt{\lambda})$ and $e_{2}=\frac{1}{2}-u /(2 \sqrt{\lambda})$, we have $g\left(e_{1}, e_{2}\right)=\left(e_{1}, e_{2}\right)\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ for $g=a e_{1}+b e_{2} \in \mathscr{A}=\boldsymbol{C} \boldsymbol{e}_{1} \oplus \boldsymbol{C} \boldsymbol{e}_{2}$. However, as the limit of $\lambda \rightarrow 0$, we obtain a quasi-regular, non-regular P.V.

References

Z. Chen, On prehomogeneous vector spaces over an algebraically closed field of characteristic p, J. East China Normal Univ., Nat. Sci. Edition No. 2 (1983), 11-18 [in Chinese]. spaces, Chin. Ann. of Math., 5A (1984), 755-764 [in Chinese]. -, A classification of irreducible prehomogeneous vector spaces over an algebraically closed field of characteristic $p(\mathrm{I})$, Chin. Ann. of Math., 6A (1985), 39-48 [in Chinese], (II) to appear [in Chinese].
[C5] - Fonction zeta associee a un espace prehomogene et sommes de Gauss, Univ. Louis Pasteur, Straskourg.
[C6] -, A classification of irreducible prehomogeneous vector spaces over an algebraically closed field of characteristic 2 (I), to appear [in Chinese].
[C7] - On the prehomogeneous vector space $(G L(1) \times S L(3), \square \otimes$ $\left.\left(\Lambda_{1}+\Lambda_{2}\right), V(1) \otimes V(7)\right)(p=3)$, J. East China Normal Univ., Nat. Sci. Ed., No. 2 (1986), 32-36 [in Chinese].
[D-W] B. Datskovsky and D. J. Wright, The adelic zeta function associated with the space of binary cubic forms, II: Local theory, J. Reine Angew. Math., 367 (1986), 27-75.
[D2] - Harvard The adelic zeta function associated with the space of binary cubic forms: Function fields, to appear in Trans. Amer. Math. Soc.
P. Gabriel, Unzerlegbare Darstellungen I., Man. Math., 6 (1972), 71-103.
[G-K] A. Gyoja and N. Kawanaka, Gauss sums of prehomogeneous vector spaces, Proc. Japan Acad., 61, Ser A (1985) 19-22.
[Igusa 1] J. Igusa, On functional equations of complex powers, Invent. Math., 85 (1986), 1-29.
[Igusa 2] - On a certain class of prehomogeneous vector spaces, J. Pure Appl. Algebra, 47 (1987), 265-282.
[Igusa 3] - A classification of spinors up to dimension twelve, Amer. J. Math., 92 (1970), 997-1028.
[Igusa 4] \quad Some results on p-adic complex powers, Amer. J. Math., 106 1013-1032.
[Igusa 5] -, Some recent results on complex powers and zeta distributions, to appear in Sém. Théorie des Nombres, Paris 1985-86, Birkhäuser.
[Igusa 6] - Zeta distributions associated with some invariants, Amer. J. Math., 109 (1987), 1-34.
[Inuzuka] M. Inuzuka, A classification of 2 -simple prehomogeneous vector spaces of type I, Master Thesis, Univ. of Tsukuba. (1985), 1-172 [in Japanese].
[Kac 1] V. G. Kac, Concerning the question of describing the orbit space of a linear algebraic group, Uspechi Math. Nauk, 30 (1975), 173-174 [in Russian].
[Kac 2] Some remarks on nilpotent orbits, J. Algebra, 64 (1980), 190213.
[Kac 3] -, Infinite root systems, representation of graphs and invariant theory, Invent. Math., (1980). 56-92.
[Kawahara] H. Kawahara, On the prehomogeneous vector spaces associated with the spin group $\operatorname{Spin}(10)$, Master Thesis, Univ. of Tokyo (1974) [in Japanese].
[Kasai] S. Kasai, A classification of representations of reductive algebraic groups which admit only a finite number of orbits, Master Thesis,

Univ. of Tsukuba (1984), 1-640 [in Japanese].
[Kimura 1] T. Kimura, Study of irreducible prehomogeneous vector spaces, Master Thesis, Univ. of Tokyo (1973), 1-373 [in Japanese].
[Kimura 2] -, Theory of prehomogeneous vector spaces, Sugaku, Vol. 32, Japan Math. Society (1980) 97-118 [in Japanese].
[Kimura 3] _-, Remark on some combinatorial construction of relative invariants, Tsukuba J. Math., 5, No. 1 (1981), 101-115.
[Kimura 4] - The b-functions and holonomy diagrams of irreducible regular prehomogeneous vector spaces, Nagoya Math. J., 85 (1982), 1-80.
[Kimura 5] -, A classification of prehomogeneous vector spaces of simple algebraic groups with scalar multiplications, J. Algebra, 83, No. 1 (1983), 72-100.
[K-M]
[K-O] T. Kimura and I. Ozeki, Oa the microlocal structur of a regular prehomogeneous vector space associated with $\operatorname{Spin}(10) \times G L(3)$, Proc. Japan Acad., 58, Ser. A (1982), 239-242.
[K-K] T. Kimura and S. Kasai, The orbital decomposition of some prehomogeneous vector spaces, Adv. Stud. Pure Math., 6 (1985), 437-480.
[K-K-Y] T. Kimura, S. Kasai and O. Yasukura, A classification of the representations of reductive algebraic groups which admit only a finite number of orbits, Amer. J. Math., 108 (1986), 643-692.
[K-K-H] T. Kimura, S. Kasai and H. Hosokawa, Universal transitivity of simple and 2 -simple prehomogeneous vector spaces, to appear in Ann. Inst. Fourier (Grenable).
[K-K-I-Y] T. Kimura, S. Kasai, M. Inuzuka and O. Yasukura, A classification of 2 -simple prehomogeneous vector spaces of type I , to appear in J. Algebra.
[K-K-T-I] T. Kimura, S. Kasai, M. Taguchi and M. Inuzuka, Some P. V.equivalences and a classification of 2 -simple prehomogeneous vector spaces of type II, to appear in Trans. Amer. Math. Soc.
M. Muro, Microlocal calculas and Fourier transforms (in prehomogeneous vector spaces), Master Thesis, Kyoto Univ. (1976) [in Japanese].
-, Some prehomogeneous vector spaces with relative invariants of degree four and the formula of the Fourier transforms, Proc. Japan Acad., 56 (1980), 70-74.
[M3] - On prehomogeneous vector spaces related to binary cubic forms I, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 1 (1980), 35-57, II, ibid., 2 (1981), 75-99.
[M4] -, Singular spectrums of hyperfunctions and Fourier transforms of group invariant measures on singular orbits of prehomogeneous vector spaces I, Mem. Fac. Sci. Kochi Univ., 4 (1983), 55-88.
[M5]
-, Microlocal analysis and calculations on some relatively invariant hyperfunctions related to zeta functions associated with the vector spaces of quadratic forms, Publ. Res. Inst. Math. Sci. Kyoto Univ., 22 (1986), 395-463.
[Muller] I. Muller, Decomposition orbitale des espaces prehomogènes reguliers de type parabolique commutatif et application, C. R. Acad. Sci. Paris (1986), 495-496.
[M-R-S] I. Muller, H. Rubenthaler, G. Schiffmann, Structure des espaces préhomogènes associes a certaines algebres de Lie graduees, Math. Ann., 274 (1986), 95-123.
[Ozeki 1] I. Ozeki, On the micro-local structure of the regular prehomogene-
ous vector space associated with $S L(5) \times G L(4)$ I, Proc. Japan Acad., 55, Ser. A, (1979), 37-40.
[Ozeki 2] ——, On the microlocal structure of a regular prehomogeneous vector space associated with $G L(8)$, Proc. Japan Acad., 56, Ser. A (1980), 18-21.
[R1] H. Rubenthaler, Espaces préhomogènes de type parabolique, Thèse, Université de Strasbourg (1982).
[R2] ——, Formes réelles des espaces préhomogènes irréductibles de type parabolique, Ann. Inst. Fourier (Grenoble), 36 (1986), 1-38.
[R3] La surjectivité de l'application moyenne pour les espaces préhomogenès, J. Funct. Anal., 60, No. 1 (1985), 80-94.
[R-S] H. Rubenthaler and G. Schiffmann, Opérateurs différentiels de Shimura et espaces préhomogènes, Invent. Math., 90 (1987), 409-442.
[Robinson] M. Robinson, On the complex powers associated with the twisted cases of the determinant and the Pfaffian, Ph.D. Thesis, The Johns Hopkins University (1986).
[M. Sato 1] M. Sato's personal research note at Princeton (1962).
[M. Sato]
[S-K] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65 (1977), 1-155.
[S-K-K-O] M. Sato, M. Kashiwara, T. Kimura and T. Oshima, Micro-local analysis of prehomogeneous vector spaces, Invent. Math., 62 (1980), 117-179.
[S-S] M. Sato and T. Shintani, On zeta-functions associated with prehomogeneous vector spaces. Ann. of Math., 100 (1974), 131-170.
[F. Sato 1] F. Sato, Zeta functions in several variables associated with prehomogeneous vector spaces I: Functional equations, Tohoku Math. J. 34 (1982), 437-483, II: a convergence criterion, ibid. 35 (1983), 77-99.
[F. Sato 2] -, Zeta functions in several variables associated with prehomogeneous vector spaces III: Eisenstein series for indefinite quadratic forms, Ann. of Math., 116 (1982), 117-212.
[F. Sato 3] - On a functional equation of zeta-functions in several variables associated with the prehomogeneous vector spaces of positive definite hermitian matrices, Master Theses, Univ. of Tokyo (1975) [in Japanese].
[Serre] J. Seree, Cohomologie Galoisienne, Springer Lecture Note, 5 (1965).
[Shintani 1] T. Shintani, On Dirichlet series whose coefficients are class numbers of integral binary cubic forms, J. Math. Soc. Japan, 24 (1972).
[Shintani 2] , On zeta-functions associated with the vector space of quadratic forms, J. of Fac. Sci. Univ. of Tokyo (1975), 25-65.
[S-F] I. Satake and J. Faraut, The functional equation of zeta distributions associated with formally real Jordan algebras, Tohoku Math. J., 36 (1984), 469-482.
[Servedio 1] F. J. Servedio, Prehomogeneous vector spaces and varieties, Trans. Amer. Math. Soc., 176 (1973), 421-444.
[Servedio 2] F. J. Servedio, Dense orbits in $Z(P)$ the singular hypersurface of a prehomogeneous vector space, J. Pure Appl. Algebra, 10 (1977), 169-175.
[Servedio 3] - Affine open orbits, reductive isotropy groups, and dominant gradient morphisms; a theorem of Mikio Sato, Pacific J. Math., 72, No. 2 (1977), 537-545.
[Suzuki] T. Suzuki, On the Fourier transform of relative invariants of prehomogeneous vector spaces, Master Thesis, Nagoya University (1975) [in Japanese].
[T1] Y. Teranishi, Relative invariants and b-functions of prehomogeneous vector spaces $\left(\tilde{G} \times G L\left(d_{1}, \cdots, d_{r}\right), \tilde{\rho}_{1}, M(n, C)\right)$, Nagoya Math. J., 98 (1985), 139-156.
, The functional equation of zeta distributions associated with prehomogeneous vector spaces ($\tilde{G}, \tilde{\rho}, M(n, C)$) Nagoya Math. J., 99 (1985), 131-146.
[Taguchi] M. Taguchi, A classification of 2 -simple prehomogeneous vector spaces of type II, Master Thesis, Univ. of Tsukuba (1986), 1-252 [in Japanese].
[V] E. B. Vinberg, Invariant linear connections on homogeneous spaces, Trudy Moskov. Math. Obshch, 9 (1960), 191-210 [in Russian].
[W1] D. J. Wright, Dirichlet series associated with the space of binary cubic forms with coefficients in a number field, Ph.D. Thesis, Harvard Univ. (1982).
[W2] —— The adelic zeta function associated with the space of binary cubic forms, I: Global theory, Math. Ann., 270 (1985), 503-534.
[Y] H. Yamada, Relative invariants of prehomogeneous vector spaces and a realization of certain unitary representations I, Hiroshima Math. J., 11 (1981), 97-109.

References (II) added in proof

[H] H. Hosokawa, On the Igusa local zeta functions of prehomogeneous vector spaces, Master Thesis, Univ. of Tsukuba (1988), 1-315 [in Japanese].
[Igusa 7] J. Igusa, On the arithmetic of a singular invariant, to appear in Amer. J. Math.
[Igusa 8] $\quad B$-functions and p-adic integrals, to appear in Prospect of Algebraic Analysis, Academic Press.
[Kasai 2] S. Kasai, A classification of reductive prehomogeneous vector spaces with two irreducible components, I, to appear in Jap. J. Math.
[Kasai 3] _- A classification of a certain class of reductive prehomogeneous vector spaces, preprint.
[Kasai 4] -_, A classification of a certain class of reductive prehomogeneous vector spaces, II, to appear in J. Algebra.
[Kasai 5] _ Universal transitivity of certain classes of reductive prehomogeneous vector spaces, to appear in Tsukuba J. Math.
[Kimura 6] T. Kimura, Complex powers on p-adic fields and a resolution of singularities, to appear in Prospect of Algebraic Analysis, Academic Press.
[Mortajine] A. Mortajine, Classification des espaces prehomogenes reguliers de type parabolique et de leurs invariants relatifs, Prépublication, Institut E. Cartan (1988).
[F.Sato] F. Sato (note by T. Kimura) Theory of prehomogeneous vector spaces over p-adic fields, Lecture note at Univ. of Tsukuba (1988) [in Japanese].
[Z]
X. Zhu, The classification of spinors under GSpin ${ }_{14}$ over finite fields and its application, Ph.D. Thesis, The Johns Hopkins University (1988).

The Institute of Mathematics
University of Tsukuba
Ibaraki, 305 Japan

