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§ 0. Introduction

0.1. We discuss about the characteristic varieties of certain modules
over the enveloping algebra of a semisimple Lie algebra, such as highest
weight modules and primitive quotients.

Let G be a connected semisimple algebraic group over the complex
number field C, g its Lie algebra and U(g) the enveloping algebra of g.
Let X be the flag variety of G and 2, the sheaf of linear (algebraic)
differential operators on X. The natural action of G on X induces an
algebra homomorphism U(g)—I"(X, @5). Hence for a U(g)-module M
we have a @y-module Z; Ry, M.

For a finitely generated U(g)-module M (resp. a coherent & x-module
) the associated variety V(M) (resp. the characteristic variety Ch(.#))
is a subvariety of the dual space g* of g (resp. a subvariety of the cotan-
gent bundle T*X). For simplicity we sometimes write Ch(M) instead of
Ch(Z2x Quy M) for a finitely generated U(g)-module M and call it the
characteristic variety of M.

‘We hope to determine the associated varieties and the characteristic
varieties of the irreducible highest weight modules L with trivial central
character and the quotients U(g)/I, where I is a primitive ideal of U(g)
with trivial central character. For a finitely generated U(g)-module M
with trivial central character V(M) is determined from Ch(M) (Borho-
Brylinski, see Proposition 1.2 below). Hence our problems are the fol-
lowing:

Problem 0.1. Determine Ch(L) for irreducible highest weight modules
L with trivial central character.

Problem 0.2. Determine Ch(U(g)/I) for primitive ideals I of U(g)

Received December 11, 1986.



2 T. Tanisaki

with trivial central character.

It follows from Propositions 1.2 and 1.9 below that Ch(U(g)/I) is
determined from Ch(L) for some L (Borho-Brylinski).

If G is of type A,, we have explicit conjectures for the above prob-
lems which are known to be true for n<5 (see Section 3.2 below).

0.2. One of the purposes of this paper is to determine Ch(L) and
Ch(U(g)/I) when the rank of G is not greater than three using several
known facts concerning them. There was a conjecture that Ch(U(g)/7) is
always irreducible ([BoB2]), but our calculation shows that there exist
counter examples for B, and C,.

We also propose a modification of the above conjecture (Conjecture
3.4 below). It is a more refined form of the following:

Conjecture 0 3. Let &', be the set of the primitive ideals of U(g)
with trivial central character.
(i) If Ch(U(g)/1)=Ch(U(g)/L) for I, I, e &, then I, =1,
(i) There exists a natural one-to-one correspondence:
0.9 Zy= | Irr(0ONn),
O ENilpg
where Nilp, is the set of special nilpotent orbits in the sence of Lusztig

(see Section 2.3), n is the Lie algebra of the unipotent radical of a Borel
subgroup and Irr(O (\ n) is the set of the irreducible components of O n.

It is known that a subset &', , of &', is determined for each O e Nilp,
and we have:

(& o0)=#drr(0ONn) (O e Nilp,)
Z= 11 Zo

OENilp;
Our conjecture states that there exists a natural one-to-one corre-
spondence:

(0.5) Eo,o=Irr(0ONn)

for O e Nilp,.

Conjecture 3.4, which tells more about the expected one-to-one cor-
respondence (0.5), is true for G of type 4, ([BoB2]) and for G of rank <3
(Section 4). It is also true for O e Nilp, satisfying the condition (3.6)
below (Proposition 3.5). Although (3.6) sometimes fails, it holds for
many O’s (e.g. for all O ¢ Nilp, in E,).
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0.3. The contents of this paper are as follows. In Section 1 we
recall some known results concerning characteristic varieties. In Section
2 some relations between characteristic varieties and Weyl group repre-
sentations are stated. These two sections may be considered as a survey
of the results of Joseph, Borho-Brylinski, - - . concerning the characteristic
varieties. In Section 3 the existence of [e &, such that Ch(U(g)/]) is
not irreducible is explained from the representation theory of the Hecke
algebra. We also propose a conjecture and prove this for some cases.
Section 4 is devoted to the calculations for the cases when the rank of G
is not greater than three. In Appendix we give proofs of some facts con-
cerning the Springer representations, which are probably well-known to
the experts.

0.4. We use the following notation for @-modules. For a non-
singular algebraic variety Y over C we denote by 2, the sheaf of the
linear algebraic differential operators. When f: Y— ¥ is a morphism of
non-singular varieties, an (f~'2,, 2y)-bimodule Z,,_, and a (@, f'D,)-
bimodule 2, _,, are defined as usual. We set:

L
M) =2y @ S )
flay
for a @,-module (or a complex of 9-modules) .#. When f is smooth
and ./ is a @,-module, we have: #7f*(_.#)=0 for j+0 and we write f*.#
instead of s#°f*(.#). For a @,-module (or a complex of 9,-modules)
N we set:

J = (w2 1))

§ 1. Characteristic varieties

1.1. Associated varieties and characteristic varieties.

Let U,(g) be the subspace of U(g) consisting of the elements of order
<i. Then the associated graded algebra GrU(g):= @, (U,(g)/U,-.(g)) is
naturally isomorphic to the symmetric algebra S(g). Let M be a finitely
generated U(g)-module. An increasing filtration {A/,},., of M consisting
of finite-dimensional subspaces is called a good filtration if the following
conditions are satisfied:

(F1) M,;={0} for a sufficiently small j,

(F2) M=U,e; M,,

(F3) U@M,CM,,,

(F4) Ufg)M,=M,,, for a sufficiently large j.
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If {M},c is a good filtration of a finitely generated U(g)-module, the
associated graded module GrM:=@,., (M,/M,_,) is a finitely generated
S(g)-module. Since S(g) is naturally identified with the ring Clg*] of
polynomial functions on g*, GrM determines a cohernet sheaf grif on g*.
The associated variety V(M) of M is defined to be the support of grif,
which is known to be independent of the choice of a good filtration.

Example. Let M be a finitely generated U(g)-module.

(i) If M is finite-dimensional, then V(M )={0}.

(ii) If M=U(g)/I for a left ideal I, then V(M) is the zero set of
the ideal:

Grl:= j‘é‘z (((1 N U](g))+ Uj—l(g))/ Uj—l(g))
of GrU(g)=S(g)=Clg*].

(iii) If M has a central character, then V(M) is a subvariety of the
nilpotent variety 4 ={x e g|x: nilpotent}. Here we identify g* with g
via the Killing form.

For a non-singular algebraic variety ¥ over C we denote by 2, ,
the subsheaf of &, consisting of differential operators of order <i. Let
M be a coherent 9,-module. An increasing filtration {#,};., of A
consisting of coherent ¢,-submodules is called a good filtration if the
conditions, which are obtained by replacing M, and U,(g) by .#, and
9y, respectively in (F1)-(F4), are satisfied. If {.#},.,is a good filtration
of ., the associated graded module Gr.# is a coherent Gr@,-module.
Let p: T*X — X be the cotangent bundle. Since GrZ, is naturally iso-
morphic to p,(0r.;), Gr.# determines a coherent @g.,-module gr.#.
The characteristic variety Ch(.#) of .# is defined to be the support of
gr.#, which is known to be independent of the choice of a good filtration.
It is known that Ch(.#) is an involutive subvariety of 7*} in the sence
of the symplectic geometry (Sato-Kawai-Kashiwara). Especially, any
irreducible component of Ch(.#) has dimension > dim V.

Example. Let .# be a coherent 2,-module.

(i) If 4 is coherent as an @,-module, then Ch(.#) is the zero
section of T*X. ;

(i) If #=2,/1, then Ch(#) is the zero set of Grl (C pyOr«y).

(iii) If Y is a non-singular closed subvariety of V and A =%y,
(:=s%4mY(0,)), then Ch(.#) is the conormal bundle T§V.

1.2. The Beilinson-Bernstein category equivalence.
Recall that G is a connected semisimple algebraic group over C with
Lie algebra g and X is the flag manifold.
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For a U(g)-module M we have a & ;-module 2, , M as noted in
Introduction. This is a kind of localization.

Proposition 1.1 ([BeB]). The localization stated above gives an equi-
valence between the abelian category of finitely generated U(g)-modules
with trivial central character and that of coherent & y-modules.

Let y: T#X —g* (~g) be the natural map induced by the action of
G on X (moment map).

Proposition 1.2 ([BoB2]). For a finitely generated U(g)-module M
with trivial central character we have:

V(M)=1(Ch(M)),
where Ch(M) stands for Ch(2 xRy M).

1.3. Characteristic varieties of highest weight modules.

We fix a Borel subgroup B of G' and a maximal torus H of G con-
tained in B. The Lie algebras of B and H are denoted by b and Y, res-
pectively. Let p e h* be the half of the sum of the positive roots. Here
the ordering on the root system is chosen so that the weights of n=Ib, b]
is positive. For an element w of the Weyl group W let M, be the Verma
module with highest weight —wp—p and L,, its simple quotient. Let @,
be the abelian category of finitely generated U(g)-module with trivial
central character so that the action of b lifts to the locally finite algebraic
action of B. M, and L, are objects of @, and the Grothendieck group
K(0,) has two bases {[M,]},ew and {[Lyl}oew.

Let M be an object of @, It is easily seen that V(M) is a B-
stable subvariety of n. Hence we have Ch(M)Cr'"(n)=[|yew T3 X =
Uwew T%,X (see Section 1.2). Here X, is the Schubert cell BwB/B.
Hence any irreducible component of Ch(M) for M e @, is of the form
T# X for some we W. Taking into account the multiplicity of
21(2 xR v M) at each irreducible component of Ch(M), the characteristic
cycle Ch(M) € @yew ZoolT5,X] of M is defined. By the additivity of
Ch we have a Z-linear map

Ch: K(0)—> D ZIT% X].
wWEW
We define m(y, w) e Z, for y, we Wby Ch(L,)=3,cwm(y, wIT%, X].
Setting J(w)={y ¢ W|m(y, w) >0} we have Ch(L,))=, ¢, T%,X.
It follows from Proposition 1.1 that the category ¢, is equivalent to
the category 7(X, B) consisting of coherent 2 -modules with B-action.
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By the above arguments objects of .o7(X, B) are holonomic (actually they
are regular holonomic ([BK], [BeB])).

Set 9X,=X,—X, By an easy calculation we see that
DRy M| X —0X,, coincides with #By,\x_;x,=H% " (Ox_sx,). Here
d=dim X and I(w) is the length of w. Hence it is easily shown by
induction on /(w) that 2,&y, L, coincides with the minimal extension
"®Bx.,x-2x, a5 a holonomic system (in the algebraic category).

We denote the Bruhat ordering on W by < (y<w if and only if X,
CX,) and the set of simple reflections in Wby S. Set L(w)={se S|sw
<w} and Z(w)="{s € S|ws <w}.

Lemma 1.3. (i) we 3(w) and m(w, w)=1.

(ii) Ifye 2(w), then y<w.

(iiiy If y<w and X, is contained in the non-singular part of X, then
m(y, w)=0. Especially if w is the longest element of the subgroup of W
generated by a subset of S, then X(w)={w}.

(iv) If y e Z(w), then Z(y)D L(w).

Proof. The statements (i), (ii), (iii) follow from the fact that
DyQuigy Lw="Bx,x-2x, Lhe statement (iv) follows from the following.
Let P be the parabolic subgroup of G containing B whose Levi part has
the Weyl group <.Z(w) >. Then the decomposition of X into P-orbits
gives a Whitney stratification of X, and X, is open in PyB/B if and only
if Z2(y)DZ(w).

14. Symmetry.
Let &/(XX X, G) be the abelian category consisting of coherent
© Dx.x-modules with (diagonal) G-actions. We define i: X X X X by

i(gB)=(eB, gB).

Lemma 1.4. (i) For A e (X XX, G) we have (i *)(M)=0 for
j 0.

(ii) The functor #°i*: /(X X X, G)— (X, B) gives an equivalence
of the abelian categories.

Sketch of the proof. This follows from the following observation.
The orbit decomposition of X X X under the diagonal action of G is given
by XXX =][]pew Dw (D,=G(eB, wB)). Regarding X XX as a fiber
bundle over X =G/B via the projection onto the first factor, we have
XXX=Gx%®Xand D,~G X2 X,.

Let &, and #, be the objects of /(X X X, G) so that #%%*(%,,)
=DxQup Lw and H%N¥(M,)=Dx Ry M, Then we have &£,~
"B ogxxx-ipye St Z,=TF (X XX). It is easily seen that Ch(M)C
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Uwew Z,, for M e /(X XX, G). As in Section 1.3 we have a Z-linear
map Ch: K(Z(X X X, @))—> Pyew ZIZ,). The following holds by the
same reason as the one for Lemma 4.1.

Lemma 1.5. The diagram:

KAX XX, G)—D s & 7[2.]

wew

KO)—— @ Z[T5X]
wew

commutes. Here the left vertical arrow is the isomorphism induced by
(XXX, G)=A(X, By~ 0, and the right vertical arrow is the Z-linear map
given by [Z,]—[T% X]. Especially, we have Ch(Z,,)=3", e m(y, w)[Z,].

We define j: X X X—X X X by j(g.B, g.B)=(g.B, g,B). It is a G-
equivariant isomorphism such that j(D,)=D,-,. Hence j¥(¥,)=L -1
It is easily seen that the diagram: '

K(A(X XX, ) —2 > @ Z[Z,]512.]

wew

j £
K(A(X XX, G)—2 5 ® 2113 (Z.-]

commutes. Hence we have the following.

Lemma 1.6. m(j}, wy=m(y~-', w). Especially Z(w)=(Z(w)-.
Hence if y e Z(w), then Z(y)D A(w).

1.5. Cells in the Weyl groups ([J1], [KL1]).

We define integers a(y, w) (y, w e W) by [L,]=2",ew a(y, w)[M,] (in
K(0,). By the Kazhdan-Lusztig conjecture ([KL1]) which is proved in
[BK] and [BeB] these integers are computable (at least in principle). Set
a(w)y=>_,cw a(y, w)y e Q[W]. Note that {a(w)},e» is a basis of Q[W].
A subspace of Q[W] is said to be a-basal if it is spanned by a subset of
{aW)}yew. We denote by V2 the minimal a-basal subspace which con-
tains a(w) and is invariant under the /eft action of W. Define a preorder
>, and an equivalence relation ~, on W by:

w=y if and only if VEZDOVE,
L

w~y if and only if VZ=VL.
L

Equivalence classes of ~ ; are called left cells and the left cell containing w
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is denoted by %% The representation of W on the space VZ:=VZL/(sum
of V'&’s which are properly contained in V%) is called the left cell repre-
sentation attached to the left cell ¥%. Replacing “the left action of W
above by “the right action of W (resp. “‘the two-sided action of WX W),
we have the similar notions VE, >, ~5, €Z VE (resp. VEE, =10, ~ 12
GLE, VLE).

By the arguments as in Section 1.4 (or by the Kazhdan-Lusztig con-
jecture) we see that a(y, wy=a(y~', w™') for y, we W. Hence w=,y if
and only if w'=,y ", and w~_,yif and only if w'~, y~*. Let W~ be
the set of the irreducible representations of W over Q. Since any
irreducible representation of W over Q is absolutely irreducible, we have
QW= P ,ewn (6@0c) as a WX W-module and hence w~ ,, w™* for any
we W.

1.6. Characteristic varieties of primitive quotients.
We denote by &, the set of the primitive ideals of U(g) with trivial
central character, that is,
Z={Ann(M)| M: irreducible U(g)-module with trivial

central character},
where Ann(M)={ue U(g)|u-M={0}}. Setl,=Ann(L,)eZ,.
Proposition 1.7 ([D]). % ,={l,|we W}

Proposition 1.8 ([J1], [V]). I,C1I, if and only if w>,y, and hence
I,=1I,if and only if w~ . .

Therefore we have '\~ W/~ ,.

Since I, is a two-sided ideal of U(g), Ch(U(g)/l,) is a G-invariant
closed subvariety of T*X. We identify 7*X with GX #n via the Killing
form.

Proposition 1.9 ([BoB2]). Ch(U(g)/l,)=G X2V (L,-.) for we W.

Corollary 1.10 ([J3], [BoB2]). If w=ry, then V(L,)DV(L,). Hence
ifw~gpy, then V(L,)=V(L,).

§ 2. Weyl group representations

2,1. The Springer representations.

We denote by Nilp the set of nilpotent orbits in g. Let O e Nilp
and x e O. The set of the irreducible local systems over @ on O with
G-actions is denoted by &,. Set A(x)=Z,(x)/Z,(X)’, where Z,(x) is the
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centralizer of x. Then there exists a natural one-to-one correspondence:
Ly= A" (E =Xy,

where A(x)" is the set of the irreducible representations of A(x) over Q.
It is known that any irreducible representation of A(x) over Q is abso-
lutely irreducible.

Set d=dim X and d,=d—(dim 0)/2. The variety

X7:={gBe X|xeg-n}

has pure dimension d, ([Spa]). An action of the Weyl group W on the
top homology group H,, (X*) (:=Homy(HX°(X*, Q), @)), which com-
mutes with the natural action of A(x), is defined (the Springer representa-
tion, see [Spr]).

Let Hy; (X*)=Picyp (t0,6)QX;) be the decomposition as a WX
A(x)-module. Set #p={¢ € ¥y |70,5#0}. Then itis known that
is irreducible for £ ¢ ¥, and we have:

o—>W" (Fo3&—> 10,5 W)
O €ENilp
We denote 7, p,, (= H,q,(X ®)*®), which is clearly non-zero, by Sp(0).

For a pure-dimensional variety V" we denote the set of its irreducible
components by Irr(¥). The variety D={(y, gB)|y € g-n} is isomorphic
to GX#(0ONn) as a fiber bundle over X=G/B and is isomorphic to
GXZa® X* a5 a fiber bundle over O=G/Z,(x). Since Irr(ONn)=~
Irr(O N n) ~Irr(D), we have a surjection:

2.1 h: Irr(X *)——>Irr(0O N 1)

and the inverse image of each element of Irr(O N n) under % is an A(x)-
orbit. Hence we have Irr(X *)/A(x) ~Irr(ONn). For each Y e Irr(ONn)
set:
gr= 2, [Cle Hy(X*)**=8p(0).
Ceh—1(Y)

Then {gy|Y elrr(ONn)} is a basis of Sp(0), especially we have
dim Sp(O0)= § (Irr(O N n)).

Let b} be the Q-form of h* spanned by the roots. The Weyl group

W acts on S™(H%), the space of symmetric m-th tensors, for each m e Z,.
By a theorem of Borho-MacPherson [BM] we have:

0 (m<d,)

dim Hom,(Sp(0), S™(H))= {1 (m=d,)
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Let g, be the unique W-submodule of S?(h}) which is isomorphic to
Sp(0).

For an H-invariant subvariety ¥ of n Joseph [J3] defined a polyno-
mial p, e S (HF) as follows. Let I(Y) be the defining ideal of Y.
Since Y is H-invariant, § acts on the coordinate algebra M=C[n]/I(Y)
locally semisimply with weights in —>,.,+ Z.,«. Here 4% denotes the
set of positive roots. For hel with a(h)e Z_, for any a e 4*, set
Mi={me M|h-m=im}. Then p, is defined by:

iZ::) dim M}=(— 1)’sz(h)/(a LL a{(h))kdimY+ O(kmY -1,

If YelIrr(ONn) for O e Nilp, then dim Y=(dim O)/2 and hence
d—dim Y=d,,.

Proposition 2.2 ([H], see also [BBM]). The set {p; | Y e Irr(O N n)} is
a basis of ¢, and an isomorphism from Sp(O) to ¢, of W-modules is given
by qy— py.

2.2. Joseph’s Goldie rank polynomials.
We denote Joseph’s Goldie rank polynomial ([J2]) corresponding to
L, by p,, that is,
Po= 2, a(y, W)=y~ 'p)* e S*(b}),

YEW

where d,, is the least non-negative integer so that the right hand side is
non-zero.

Proposition 2.3 ([J2)). (i) Qp,=Qp, if and only if w~ .
(Gi) Ifw~_,py thend,=d,.
(i) The space 6(W): =3, co1z Qp, is W-invariant and is irreducible
as a W-module.
(IV) U(W)= @yez’{‘,,R/‘-fL pr'
(m<d,)

(v) dim Homy(a(w), S™(§8)) = {0
1 (m=d,).
(i) ow)=0(y) if and only if w~ .z y.

Hence an injection W/~ ;,—W" is determined by w—c¢(w). The
image W of this map coincides with the set of the special representations
defined by Lusztig ([BV1, 2)).

2.3. TIrreducibility of V' (U(g)/1,).
A closed subvariety of n which is an irreducible component of ONn
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for some O e Nilp is called an orbital variety (associated to O). Set
Y"(w)=B-(nNwn) and Y'(w)=Y"(w-"). We define OY e Nilp by 0" =
G-(mNwn). Then YYw) and Y"(w) are orbital varieties associated to
Olr. Furthermore any orbital variety coincides with Y7"(w) for some
we W ([St).

Since V(L,)=T(ChL)N=U,es0 TTEX)=Uyesw Y'(), each
irreducible component of V(L,) is an orbital variety.

Considering the character of L, as an }j-module, we have p,_,=
>y ¢y Py for some ¢, >0, where Y runs through the irreducible compo-
nents of V(L,) with maximal dimension ([J3]). On the other hand by
the pure-dimensionality theorem of Kashiwara-Gabber V(L,) is pure-
dimensional. Hence we have the following.

Proposition 2.4 ([J3]). p,-1=2 v crrrwzyy Cr Py JOr some cy >0.

By Propositions 2.2, 2.3 and 2.4 we see that W) is contained in the
image of Sp: Nilp—WA". Nilpotent orbits which belong to Nilp,=
{0 e Nilp|Sp(0O) e W} are called special nilpotent orbits. A bijection:

W/ ~——>Nilp, (w—OZLF)
LR
is determined by o,z =0(w). By the above arguments we have:

Proposition 2.5. Irr(V(L,))CIrr(OLF O\ n) for w e W.
Hence by Propositions 1.2, 1.9 and 2.5 we have:
Proposition 2.6 (Borho-Brylinski, Joseph).
V(U(@@)/1)=0%5" forweW.

The irreducibility of ¥V (U(g)/I,) was conjectured by Borho and was
proved by Borho-Brylinski [BoB1] using case-by-case method. Later the
unified proof indicated above was obtained using results of several people.
Joseph ([J4]) has given a different proof without using Proposition 1.9.

The follownig is clear from Propositions 1.2 and 2.5.

Lemma 2.7. V(L,)=U,czm Y’(y)=U,ze,(w, Y(y) forweW.

oly=0L®

2.4. The Springer representations and the Steinberg cells.

The variety Z =\, ew Z,, (Z,=T7% (X X X)) has pure dimension 2d
(d=dim X). Kazhdan-Lusztig [KL2] defined a W X W-module structure
on H,(Z) (=Homy(H¥Z, Q), )=®P,ew QIZ,]) and showed that an
isomorphism f: H,,(Z)—Q[W] of W X W-modules is given by f([Z,])=e.
Hence setting b(w)=f({Z,]), we have a basis {b(W)}, s of QIW].
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Proposition 2.8 ((KL2]). Letse Sandwe W.

(1) If sw<w, then sb(w)= — b(w).

(i) If sw>w, then sb(w)=b(w)+b(sW)+ 2 1,y <ycsw 353, WIB(Y),
where 6,(y, w) are certain non-negative integers.

A subspace of Q[W] is called a p-basal subspace if it is spanned by a
subset of {b(W)}, . Using b-basal subspaces instead of g-basal subspaces
in the definitions in Section 1.6 we have the notions corresponding to
VLI =,, ---, %L They will be denoted by V!, =, ..., ¥4 replacing
L and R by / and r, respectively.

Lemma 2.9 ([KL2]). Let O e Nilp. The subspace @oirco Qb(W) of
QW] is W X W-invariant. If x e O, then we have:

(D W)/ D QbW)=(Hyuf(X HQH, (X 7)) 4

olrco olrc0-0
=~ @D (t00,6®70,5)
tes)

as W X W-modules.
Similarly we have the following.

Lemma 2.10. If Y is an orbital variety, the subspace Py i(yycy Qb(Y)
(resp. Pyrowyer OB(Y) of QIW] is invariant under the left (resp. right)
action of W. Hence if w=,y (resp. w=.,5), then Y(w)DYXy) (resp.
Yiw)D Y(y)).

The following Lemma was suggested to the author by Joseph. See
Appendix for the proof.

Lemma 2.11. (i) w~,yif and only if Yi(w)=Y(p).
(ii) w~,yifand only if Y"(W)=Y"(p).
(i) w~, yif and only if Oy =0

25. {aW)}uew and {B(W)}yew-

Let p,;: X XX X X—X XX be the projection onto the (i, j)-factor.
The Grothendieck group K(«/(X X X, G)) is endowed with a ring structure
via the product:

e L
L Lg=5 <[ (s ® pts)]
% 4t} OXxXxX
for M, M, e (X XX, G) and the isomorphism K(o/ (X X X, G))~Z[W]

of rings is given by [.#,l<>w. Especially K(Z(X XX, )R, @ is a
W x W-module.
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Proposition 2.12 ([KT], [T2]). The Q-linear map:
Ch: K(«/(X X X, G)) C? Q—H,(Z)= C?W Qz,]
is a homomorphism of W X W-modules.

Since Ch(.#,)=[Z,], the above Proposition is equivalent to the com-
mutativity of the diagram:

K(A(X XX, G)— >H,(Z)
I
ZIW] s=————— QW]
It is also equivalent to the following.

Lemma 2.13.  a(w)=> . m(y, w)b(y) for w e W.

Remark. Proposition 2.12 is generalized in [T3], where we consider
the Hecke algebra instead of the Weyl group.

§ 3. Counter examples and conjectures

3.1. Counter examples and Hecke algebras.

Borho-Brylinski [BoB2] conjectured that the characteristic varieties
Ch(U(g)/1,,) of the primitive quotients U(g)/I,, are always irreducible. By
Proposition 1.9 it is equivalent to the irreducibility of V' (L,-,). Itis also
equivalent to the following statement (A) by Proposition 2.3.

(A) The two natural bases {p,|Y e Irr(O;*Nn)} and {p,.|ye
CLE| ~ »} of the special representation Sp(O,;%)~0ozz=0(w) coincide up
to constant multiples.

Yet the calculations in Section 4 show that there exist counter
examples to the conjecture above in B, and C,. The existence of the
counter examples can be explained from the representation theory of the
Hecke algebra as follows.

Let o# be the Hecke algebra of W. It is an algebra over the Laurent
polynomial ring Qlg'”?, g='*] so that # Qgrpre, -19@=Q[W] via the
specialization: ¢'#—1. We have the notion of W-graphs and to each
W-graph a representation of s with a specified basis is associated ([KL1]).

Proposition 3.1. For any special representation Sp(O) (O e Nilp,)
there exists a representation of A arising from a W-graph such that its
specialization via: q‘*—1 is isomorphic to Sp(O) and the basis of Sp(0)



14 T. Tanisaki

(=20,) comming from the W-graph coindides with {p,-.|y € €L%] ~z}
(OLE—=O) up to constant multiples.

Proof. Let z be the (unique) two-sided cell representation containing
Sp(O)R®Sp(0) and =P, r, be the decomposition into right cell represen-
tations. 7 is a WX W-module and each ¢, is a 1 X W-submodule. Since
deg(p,,) <deg(p,,) for y,, y, with y,=> . y, and y, = ; z y,, the W-homomor-
phism Q[W]—S%(83) (y—(rp)?°) induces a surjective W-homomorphism
r: 7—a, so that each r(z,) is spanned by some p,_, (see Proposition 2.3).
Here the actions of W on Q[W] and ¢ are induced from those of W X 1.
Consider the vector space Hom(Sp(O), 7). Here the W-module structure
on r is given by the action of 1 X W. Then the action of W X1 on ¢
induces a W-module structure on Hom,, (Sp(0), z) (=@, Hom,,(Sp(0),
7,)), which is clearly isomorphic to Sp(0). If x is a non-zero vector of
Sp(0), the map F,: Homy(Sp(0), 7)—a, (f—r(f(x))) is a non-zero in-
tertwining operator and hence an isomorphism. By definition we have
F,(Homu(Sp(0), 7)) C r(r,). Therefore dim Hom,(Sp(0),r,)=1 and
F,(Hom, (Sp(0), z,)) is spanned by some p,_, for each i.

On the other hand by [Gy] there exists a representation of J# arising
from a W-graph such that its specialization via: ¢'*—1 is isomorphic to
Sp(0) (=Hom,, (Sp(0), 7)) and each element of the basis of Sp(O) com-
ming from the W-graph spans Hom,,(Sp(0), z,) for some i. Hence the
lemma.

On the other hand Kazhdan-Lustztig found counter examples to the
following hypothesis (B) in 1979 (unpublished).

(B) For any special representation Sp(O) (O e Nilp,) there exists a
representation of s arising from a W-graph such that its specialization
via: g*?—1 is isomorphic to Sp(O) and the basis of Sp(0) comming from

the W-graph coincides with {g; | Y e Irr(O N n)}.

Hence by Proposition 3.1 counter examples to (B) due to Kazhdan
and Lusztig imply the existence of counter examples to (A).

The author thanks Kazhdan and Lusztig for informing him of the
above counter examples.

3.2. Conjectures.
We have the following conjectures for type 4, ([KT], [BoB2)).

Conjecture 3.2. If G is of type A4,, then Ch(L,)=T% X for any
we W.

Conjecture 3.3. If G is of type A4,, then V(L,)=Y"(w) for any
we W.
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Since ¥(T},X)=Y"(w), Conjecture 3.2 implies Conjecture 3.3 by
Proposition 1.2. By Lemma 2.13, Conjecture 3.2 is equivalent to a con-
jecture of Kazhdan-Lusztig ([KL2])) which says that if G is of type 4,
then a(w)==5(w) for any w e W.

In general V(L,) is not irreducible. We would like to propose the
following.

Conjecture 3.4. Let O be a special nilpotent orbit and % the two-
sided cell corresponding to O (W/ ~ ., ~Nilp,, Section 2.3). Then there
exists a bijection from %/~ to Irr(ONn) (w—Y,) and an ordering <
on the set Irr(ON\n) such that V(L,)=Y,UY,. Here ¥, is the union
of some Y’s in Irr(O O\ n) with Y <Y,,.

The above conjecture is equivalent to the following.
(A”) For any special representation the matrix describing the rela-
tion of the two natural bases is triangular.

This is proved for type 4, ({BoB2]; Section 6.10).

3.3. A partial result.

We define @: WA—Nilp, and ¥: W/ —Nilp as follows. Forg e W/
if eQeCVLE (resp. e QaC V), then Oo)=0L% (¥(s)=0Y). Note
that O* c OLE. Indeed OLF=G-V(L,)DG Y (w)=O0Y.

Proposition 3.5. Let O € Nilp,. If the condition:
(3.6) {re WNO(x)CO}={r e WM ¥ (z)C O}
holds, then Conjecture 3.4 holds for O.

Proof. As WX W-modules 3 ,ircoQa(W) = 4co(z®7) and
Dorco QbW =3 1y (co (r®7). Hence by our assumption we have
ZO%RC6 Qa(w)=20,l,}'c6 Qb(W) Since a(W) € b(W)+Zy<w Zgo b(y), OLE
O if and only if O < O. Noting that O C OLF we have the following.

(3.7) If O =0, then OLF =0 especially Y"(w) e Irt(V(L,)).
We define a sequence:
¢=J,CJ,CJ,C---CIrr(ONn)

of subsets of Irr(ONn) inductively as follows. When J,_, is already
defined, then

J={Y"(0)|0y=0, V(L)Y MU( L T)}.
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We prove the following.
3.9 If J_,Ehr(ONn), then J,_,&J,.

The set S={we W|0r=0, Y"(w) ¢ J,_,} is non-empty by the assump-
tion. Let w be the minimal element of .% with respect to the Bruhat
ordering. It is sufficient to show that Y"(w) e J,. By Lemma 2.7 and
3.7 we have V(L,)=Y"(w)U(QJ, Y"(»), where y is running through
elements of X(w)—{w} such that O7=0. Assume that V(L,)Z Y"(w)
U(Uyes,_. ¥). Then there exists some y<<w so that O'=0 and Y"(y)
¢J,_,. Hence ye.# and this contradicts with the minimality of w.
Therefore we have V(L,)C Y (W)U (Uyes,_, Y) and (3.8) is proved.

We define an ordering < on Irr(ONn) so that Y'<Y for YeJ,—
J,_,and Y’ e J,—J,_, with t >u. For each Y e Irr(ONn) choose w, € ¥
so thatif Y e J,—J, _, then Y"(wy)=Y and V(L,,)CYU Uy ¢cr,. ¥
Then the set {w,|Y e Irr(ONn)} is a set of complete representatives of
€| ~ . Indeed wy <, wy, for Y = Y’ because V(L,,,)+ V(L,,,) (Corollary
1.10), and #(%/~ z)=dim Sp(O)=4#(Irr(O N n)) (Section 2). It is clear
that the above ordering < and the bijection %/~ > wy—Y e Irr(O N\ 1)
satisfy the required properties and Proposition is proved.

For OeNilp, we have {re W/ |@(z)CO}C {re WN|¥T(r)C O}
(IKT]). But the opposite inclusion does not hold in general.

Since @ and ¥ are described in [BV1, 2], [Shl, 2] and [ALS] explicitly,
and since the closure relations of the nilpotent orbits are already known
(well-known for classical types and the exceptional types are treated in
[Sh3] and [M]), we can check the condition (3.6). For example since (3.6)
holds for any O e Nilp, in E,, Conjecture 3.4 is true for £, In F, (3.6)
holds for nine special nilpotent orbits among eleven but fails for the
remaining two.

§ 4. Explicit calculations for low rank cases

41. V(L,) for C,, C,.

Set

0o . 1
T,=| .- e M,(C), Jn=[
1 0

g={xe M, (C)|'xJ,+J,x=0},
b={upper triangular matrix in g},

T M,,(C)
€ n >
0 2

n

n={x e b with diagonal entries=0}.
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Then g is a simple Lie algebra of’type C,, b is its Borel subalgebra
and n=[b, b]. The Weyl group W is identified with the set of permuta-
tions w of 2n letters {+1, +2 -, £n} so that w(—17)= —w(7) for any i.
When w(z) a, for i=1, ,n, we write w=(a, ---,a,). Set s;=
(-1,2,3,---,n), 5,=(2, 1 3,4, o), 5=(1,3,2,4,--,0), -+, 5,=
a2, -.-,n— 2, n,n—1). Then S={s, s, ---,s,}is the set of simple
reﬂect1ons

For a positive integer m let P,, be the set of the partmons of m, that
is, P,={(1™2"...m"™)|> ™ in,=m}. For g=(1"2"...)e P, we de-
note by C, by the set of nilpotent matrices in M,,(C) whose Jordan normal
forms have exactly n, Jordan blocks of size i for each i.

Set Pg,={(1™2"...) ¢ P,,|n, is even for i odd}. As is well-known,
foro e P, C,Ng+¢ if and only if ¢ € P, and foreach g e P§, 0,=C,Ng
is a single nilpotent orbit in g. Hence we have Nilp~P¢§,. It is known
that 0,=C,Ng and hence O,Nn=0,Nn=C,Nn. ForeachgeP, a
family {f7|i e I,} of polynomial functions on M, (C), whose zero set coin-
cides with C,, is explicitly constructed in [T1]. Here I, is some indexing
set. Hence we have O, Nn={x e n|f7(x)=0 for any i e I,}. Using this
we calculate the explicit forms of the orbital varieties in C, and C,. We
identify Nilp with Pg, and the orbital varieties associated to the nilpotent
orbit correspondmg to (1272 . .) e Pg, will be denoted by (1127 - .),,
(17"2"2 )2: Ut

(i) G
Nilp={(4), (2%, (1’2), (1)},

0 a ¢ b
0 0 d ¢
T[= O 0 O —a a,b,C,dEC Py
- {lo oo o '
@, =1, (29, ={a=0}, (2),={d=0}, (122),={a=c*—bd=0},
(19, ={0}.
(). C,
Nilp={(6), (24), (1°4), (3%) (2°), (1’2%), (1*2), (19},
0 a b f e d
10 0 ¢ h g e
~J10.0 0 k£ &k f
=100 0 0 —c —b| @b ukeCrp
00000 0—a
0000 00

6),=mn,
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(24),={a=0}, (24),={c=0}, 29, ={k=0},

b f e d
(1%4), ={a=det | ¢ Z g ; =0}, (1*4),={c="h—gk=0},
0 0 —c —b

(3, ={c=d’g+2abh+ bk =0}, (3%),={a=k=0},
(39) = {k=ag-+2bh—2¢f=0},
@)y ={a=b=c=0}, 2°),={a=k=bh—cf=0},
(2%),={c=h—gk=ag+bh=ah+bk=0},
(1*2%),={a=b=c=f"g+ Hd+ &k —gkd—2ehf=0},
(1"2%),={c=k=h=g=0},
(1*2%),={a=k=>bh—cf=f*g+ Hd—2ehf=b"g+ c*d—2bce
=bgf+ chd— cef—beh=0},
(12),={a=b=c=fg—eh=fh—ke=fe—hd=f*—kd=e'—gd
=h—gk=0},
(19, =10}.
Including relations of orbital varieties are given in Figure 1 and
Figure 2. Since Y*(w) (resp. Y"(w)) is the minimal orbital variety includ-

ing nNw=(n) (resp. n N w(n)), we can calculate them easily (Table 1 and
Table 3).

Next we give the right cells and the two-sided cells.
i G

Set s=s5,, t=s,, €,={e}, Cu={1, ts, tst}, €u=1s, st, sts}, €,={stst}
and €,=%, U %, Then, €, €, €n, €, are right cells and &,, €., €,
are two-sided cells.

() G

We use the numbering of the elements of W given in Table 3.

Set

€, ={1},

%, =1{5,9, 11, 33,34}, ¥,={3,13,17, 18, 25}, ¥,={2,19, 20, 29},
€n=1{26, 43,44}, %,={10, 35,36}, %,={30,47, 48},
€.=1{27,41,42}, ¥.,={31,45, 46}, %..={15, 37, 38},
€.={7,21,22,28), ¥.={4,14,16,39,40}, ¥,=16, 12, 23, 24, 32},
%.=1{8}.
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4

@ 2%,

(1221

(1%,

Figure 1.1 Including relation of
orbital varieties for C,.

(O
QM (4, (9

@y 14, (33, 3, (3%

(2%s

2%, (23),

(122%),

1222y (1222)

(1%n

Figure 2.1 Including relation of
orbital varieties for Cj.

(4%
@M 2%,

(05}

Figure 1.2 Including relation of
orbital varieties associated to
special nilpotent orbits for C,.

(O}

@4y, (24, (24);

(3%, 3 (3%

(2%)s

@) @2

123, (122, (1222),

(1%,

Figure 2.2 Including relation of
orbital varieties associated to
special nilpotent orbits for Cs.

The above fourteen subsets of W are right cells, and there are six two-
sided cells, namely €,, €,=%5 UG U€s €= UCu UG €. =%, U

(gvz U (gus %5= (gm U (552 U %53 and (ge-

The ordering on the set of right cells induced by > is given in

Figure 5 and Figure 7.
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(M

125, %), (15

a3, (13, - (13%

(23);. (231

(183);  (143)
(1322), (1322),

("
Figure 3.1 Including relation of
orbital varieties for Bs.

(@21

@0 (20)2

(01)1 (01),

(00,

Figure 4.1 Including reiation of
orbital varieties for Gs.

(125); . (125),

(M
(125)3

(132, (132), (13%)

223);  (23) (223),
(193);  (143), (143),

a7

Figure 3.2 Including relation of
orbital varieties associated to
special nilpotent orbits for Bs.

(22n

@0 QO

(00

Figure 4.2 Including relation of
orbital varieties associated to
special nilpotent orbits for G,.

‘Under the above preparation, we determine V('Lw’y).‘

(i) G

When w=e, s, t or stst, X, is non-singular. Indeed such w-is the
longest element of a parabolic subgroup of W. Hence V(L,)=Y"(w)
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Table 1 C,
w Yiw) Y7 (w) right cell V(L) a(w)
e (ON (G %1 (4 ble):
-8 (2%, (2%, Caa (22, b(s) !
t 2% (2% En (2% b(®) ’
st (22, (PN Caa (22)3 b(st) ;
ts (2%, 2%, %n @ b(ts)
sts (2% (22 2% (2%, b(sts)
tst (122, 122y, En (2%, - b(tst)+b()
stst (14, (1%, s (19, b(stst) |
Table 2 G,
w Yi(w) Y™ (W) right cell V(Ly) a(w)
2), 22); - % 22y, b(e)
(20), (20)3 €2 (20, b(s)
t (20);. (20); - 7% (20) b(r)
st (200 (20); . a2 (20}, b(st)
s (20) (20) %n (20) b(ts)
sts (20): (20). C22 (20), b(sts)
tst 01y 1) € (20) b(tst)+2b(t)
stst (01, 1), - @ . (20), b(stst)+ b(st)
tsts (01), (01), %n (20), b(tsts)+ b(ts)
SIStS: 1), (01), Cas (20), b(ststs)+ b(s)
tstst 10y, (10), - Ca (20), b(tstst)+b(tst)+ b(t)
ststst (00), (00), %3 (00), b(ststst) o

(Lemma 1,3, Lemma 2.7).

i) G

When w=1,9, 17, 2, 10, 41, 4 or 8, V(L,)=Y"(w) since such w is
the longest element of a parabolic subgroup of W. Hence V(L,)=(6), for
we %, V(L,)=24), for we @y, V(L,)=(24), for we &, V(L,)=(24),
for we @y, V(L,)=(3%, for we @y, V(L,)=(2%, for we &, V(L,)=
(122%), for w e %y, and V(L,)=(19, for w e &,.
general, V(L,)D(3),forw e €., V(L,)D(3), for w e &, V(L,,) D(2%, for
We By V(L,)D(2Y); for we @, V(L,)D(1%2%, for we ¥y, and V(L,)D
(122, for w € €,,. For w e &, (3%, is an irreducible component of V(L,)

Hence by Corollary 1.10 we have:

)

@)

V(L,)=

(@

(1,

we€,

we(le

We(gzz

we %,

Since V(L,)DY"(w) in
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%1 %
“n % G - Gz
“s ¥s
Figure 5 Ordering of right cells Figure 6 - Ordering of right cells
for C,. : for G,. ’

Figure 7 Ordering of right cells for B;, Cs.

and if there is an irreducible component different from (3%),, it must be
(3), or (39, Since ¥pn=zCu V(L)V(L,)=(24), for we &, and
y € ¥ Hence by Figure 2 V(L,)=(3?, for w e %,,. We will repeat the
above arguments. Comparing %,, to %, V(L,,)=(2%, for w e €,,. Com-
paring %,, to €, V(L,)=(1%2%, for w e &,,. Comparing %,, to &, and
@y V(L,)=(122)), for w e ¥, Comparing €, to €., V(L,)=(122), for
%,;. Comparing €, to %,, and %,, V(L,,)=(2%,U (2%, forw ¢ #,;. Com-
paring % to €, V(L,)=(39, or (3),U(3%), for we ¥, Let w=30
(e¥%,). If V(L,)=(39,U(3%,, there exists some y e J(w) such that
Y7(y)=(3%,. The only element y ¢ W so that y<w and Y"(y)=(3%), is 10.
But by a direct calculation we see that X, is contained in the non-singular
part of X, (y=10, w=230) and hence y=10¢ J(w). Thus V(L,)=(3,
for we %,,. V{(L,) is determined for any w ¢ W (Table 3).
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42, V(L,) for B,.
Set

k=| .- |eMm ).
17 0

Then g={x e M,(C)|‘xK+ Kx=0} is a simple Lie algebra of type B,, b=
{triangular matrix in g} is a Borel subalgebra and we have:

O a b g e d 0

0 0 ¢ch f O0-—d

0 00 k£ O0~—f—e
n=[b,0]=4]0. 0 0 0 —k —h —g||a,---,keC}

- 000 00 O —c—b

0000 O O0—a

0000 O O O

The Weyl group W, the right cells and two-sided cells are the same as that
of C,. The set Nilp of nilpotent orbits is identified with the set of parti-
tions of seven in which each even integer appears even times, that is; Nilp
={(7), (1), (139, (2*3), (1*3), (1°2%), (10}. The orbital varieties are given
as follows.

(MD=mn,
(1?5),={a=0}, (1’5),={c=0}, (1’5),={k=0},
(13%),={a=k=0}, (13%),={c=ah+bk=0},
(13%),={k=Hh"+2cf=0},
(223),={a=k=(bf— cef +2(fg—eh)(bh—cg) =0},
(223),={c=ah+bk=2k*d+2fkg—2ehk— af*
=2hfg-+2hkd—2eh*+bf*=0},
@83);={a=b=c=0}, .
(1*3),={a=k=bh—gc=bf—ec=gf—eh=0},
(193),={c=k=h=f=0},
(1*3);={a=b=c=eh—dk—gf=0},
(1°2%),={a=k=bh—gc=bf —ec=gf —eh=hg+2bf=g*+ 2be
=h+2cf=0},
(1328, ={c=k=h=f=g*+2ad+2be =0},
(17,={0}.
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We can calculate V(L,) as in the case of C, (Table 3).

Remark. Equations describing the orbital varieties for C, and B,
given in Sections 4.1 and 4.2 define reduced schemes.

4.3. V(L,) for G,
Let g be the simple Lie algebra of type G,, When the weighted
Dynkin diagram corresponding to a nilpotent orbit is given by:

a b

o==3 (a,6=00r1or2),

this nilpotent orbit is denoted by (ab). Then we have Nilp={(22), (20),
(01), (10), (00)}. Let 4* be the set of positive roots. We denote the sim-
ple roots by « and 8. Here « is a long root and § is a short root. For
T e 4% let g, be the root space corresponding to 7 and U, the subgroup of
G corresponding to g,. The subgroup of G corresponding to n is denoted
by U. Then the orbital varieties are described as follows.

(22),=n,
20= @D gn (20.,= @ g
r€d+—{8}

r€d+—{a}

O, =(Ad (U)@ut 8 )+ Goursr  OD,=Ad (Vg
(10),=(Ad (Up)3)+ Gueros
(00),={0}.

Let s and 7 be the reflections relative to « and p, respectively. The
four subsets ¥, ={e}, €, ={t, ts, tst, tsts, tstst}, €p={s, st sts, stst, ststs},
€,={ststst} of W are right cells and the three subsets €,, ¥y=%y U G €
are two-sided cells. ’

We can calculated V(L,) as in the case of C, (Table 2).

44. Ch(L,).

We show the calculations for G, only. The results for C,, C,, B, are
given in Table 1 and Table 3.

When Ch(L,)= 3, cn m(y, w)[T%,X], we have a(w)= 37, ew m(», w)

b(y). For type G, it is shown that a(w)=3, ., (—1)!™*1®y  When

w=e, s, t or ststst, X, is non-singular because such w is the longest ele-
ment of a parabolic subgroup of W. It is shown that X,,, is also non-
singular (although the author checked this by himself, this should be
known). Hence a(w)=5b(w) for w=e, s, t, sts, ststst by Lemma 1.3.
Furthermore by Lemma 1.3 and Lemma 1.6 a(st)=5(st) and a(ts)=b(ts).
By Lemma 1.3, Lemma 1.6 and Lemma 2.7 we have:
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a(tst)=b(tst)+x,b(1),

a(stst) = b(stst)+ x,b(st),

a(tsts) = b(tsts)+ x,b(ts),

a(ststs)=b(ststs) + x,b(sts) 4 x,b(s),

a(tstst)=b(tstst)+ x,b(tst) -+ x.b(t) -
with x, >0, x,>0, x,=>0, x,=0, x,+x,>0, x,=>0, x,>0. By Proposition
2.8 and Lemma 2.10 we have:

ub(w) € BW)+bw)+ 3, Zub(),
PSR

for u=s or ¢, we W with uw >w. Hence by Figure 4 we have x,=2,
X, =1, x,=0, x,=1, x,= 1, x,=1.

Appendix. Some remarks on the Springer repreientation

A.l. The image of the moment map 7: T*X—g*~g is the set A~
of nilpotent elements in g and 7: T*X—.4" gives a resolution of the singu-
larity of 4" (Springer). An action of the Weyl group W on R7(Qrex),
which is an object of the derived category, is defined in [L] (see also
[BM]). - Hence for any locally closed subvariety D of 4" we have an action
of W on the vector space H}(r~'(D), Q)=H}(D, Rr (Qr+x)| D) and its
dual H(r-'(D)). Since 7~ '(x)=~X~ (:={gB € X|g 'x e n), we have an ac-
tino of Won H,(X*). Since the inverse image of A4™* :={(x, —Xx)|x € A4}
under ¥ X7: T*(X X X)=T*XX T*X—>A X A coincides with Z (see Sec-
tion 2.5), we have an action of WX W on H,(Z). The action of W (resp.
WX W) on H,, (X*) (vesp. H,,(Z)) described above coincides with the
one given in [KL2] ((H]). Here O is the nilpotent orbit containing x.

A.2. Proof of Lemma 2.9 and Lemma 2.10.

Identifying 4/"* with 4" and restricting 7 X7 to Z we have a map p:
Z—". Let OeNilp. Since p=(0) (= UoycsZ,) is Zariski closed in
Z, we have the following exact sequence of WX W-modules:

0’_)H4d(0—1(6)) >H,,(Z) > 44(‘0_1('/1/"“0_))—'—*0-

Hence @iy 0 QW) (= @0y 0 QIZ,)=H,,(p~'(0)) is a WX W-submodule
of Q[W](=H,,(Z)). Setting 30 =0 — O we have also the following exact
sequence of WX W-modules:

0——>H,4(p™'(00))—>H,4(0™(0))——>H,s(p™(0)—>0.

Let x e 0. Regarding p~'(0) as a fiber bundle over O=G/Z(x) we have
p~(0)= G x 202 (X= % X*). Hence Hyo(p~(0)= (Hyu o X*)® Hyqf( X )4
and Lemma 2.9 is proved.

Consider the following commutative diagram:




28 . T. Tanisaki

1
T*XX T*X 25 4/ T*X

]

z— 1 Laexi@.

Since Z =X D)-'((r X 1)(Z)), we have the action of W on Rf,(Qy) and
hence H,(Z) (=(H“(r X 1X(Z), Rf(Q))*) is a W-module. This action
coincides with the restriction of the action of WX W on H,,(Z) (given in
Section A.1) to W 1. Identifying (¥ X 1)(Z) with T*X ~G X ®n we have
f(Z)=Gx?Y'(w). Hence Lemma 2.10 is proved similarly to Lemma
2.9. : .

A.3. Proof of Lemma 2.11.

We first prove the statement @), Wthh says that Y(w)= Y Y(y)if and
only if w~, y. ’

Let Y be an orbital variety associated to O e Nilp. We denote by Y
the union of all the orbital varieties properly contained in Y. Set Y%=
Y—g§Y. Since @y, ey Qb(wW) and @y, (uycsr Qb(W) are WX l-invariant
by Section A.2, M :=(®y,ccr Qb(w))/(@yl(w)c,,y Qb(w)) is a W-module.
For we W with Y{(w)="Y we denote the image of b(w) in M by &(w).
Then we clearly have M =@y, ,.r @b(w). It is enough to show the
following statement:

(A1) If M, is a W-invariant subspace of M and is spanned by a
subset of {b(w)| Y'(w)= Y}, then M;={0} or M,=M.

Set Zyo=f"Y(GX?Y%). Here we identify (rX1)(Z) with GXZn.
Then by the arguments similar to that of Section A.2 we have M~
H,(Zy). Note that Z,, is naturally isomorphic to {(x, gB, g.B) ¢
OXXXX|xegY'Ngn}. Hence if xeY° Z,, is isomorphic to
Gx %o (X*x X~) as a fiber bundle over O~G/Z(x). Here X* is the
union of C ¢ Irr (X*) such that 4(C)=7Y (see (2.1)). Hence we have M ~
(Hoo o X YR H,, (X *))4® as a W-module, where W acts on H,,,(X®) as in
Section A.1 and trivially on H,,,(X?). Fix C, e Irr (X*)=h"'(Y) and set
Alx, C)={z e A(x)|z-C,=C,}. Since A(x) acts on Irr (X ) transmvely,
we have the following.

(A2) M=~ H,, (X*)4=C as a W-module.

Let Irr(X*)=L ] L][---]] 1. be the orbit decomposition under
the action of A(x, C;). Then {3 ¢, [C]|j=1,---,k} is a basis of
H,,; (X#)*=% and this corresponds to the basis {b(w)] Yi(w)=Y}of M
via (A.2). '

Since Hyy(X*)=B:ery(Ti0,6®%) and Hyy (X )P =11, ®l =191,
we have the projection p: Hy, (X )— Hy, (X *)*® of W-modules. Let V'
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be a non-zero W-invariant subspace of H,, (X*)*™% spanned by a subset
of {3 e, [Cllj=1, -+, k}. Since H,, (X*)*® is irreducible and
P(2cer, [CD) = (Zcez, ZzeA(z) [z-CD/4(A(x)) #0, we have p(V)=
H,, (X*)*® and hence V contains H,, (X,)*. Let Irr(X")=J, []---
11 J; be the orbit decomposition under the action of A(x). Then we have
H,; (X" =@, QX ¢es, [C]). Since each J, is a union of some I,’s
we have V= H,, (X*)4=% by the assumption. (i) is proved.

The statement (ii) is equivalent to (i) by the symmetry.

We prove (iii). Assume that O =0y =0 for w,y e W. Since the
map {ze W|0"=0}-Irr (ONn) X Irr (ON 1) (z—(YX2), Y"(2))) is surt-
jective by [St], there exists some z ¢ W such that Yi(z)=Y*(w) and Y"(2)
=Y"(y). By (i) and (11) we have W~ Z~, y Hence w~l, y and Lemma
2.11 is proved.

As a corollary to the proof we have the following.

Corollary A.3. Let we W, 0=0y, Y=Y'(w), x ¢ 0 and C ¢ h"X(Y)
(h: Irr (X *)—Irr (0 An), see (2.1). Set A(x, C)={z e A(x)|z-C=C}.
Then V', is isomorphic to Hy, (X *)*> as a W-module.

Conjecture A.4.

(i) wz=,y if and only if Y‘(W)D Yl(y)
(ii) wz=,yif and only if Y"(W)D Y"(»).
(i) w=, y if and only if Oy DOY.
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