Some Relations Among New Invariants of Prime Number \boldsymbol{p} Congruent to $1 \bmod 4$

Hideo Yokoi

In this paper, we shall define some invariants (i.e. number theoretic function) of prime p congruent to $1 \bmod 4$, and consider the problem to express the prime p by using those new invariants of p.

Namely, almost all such primes p are uniquely expressed as a polynomial of degree 2 of the first invariant n, which takes any value of natural numbers. Then, the coefficient of the term of degree 2 is the square of the second invariant u, which takes any value of natural numbers of the form $2^{\delta} \prod p_{i}^{e_{i}}\left(\delta=0\right.$ or 1 , and prime $\left.p_{i} \equiv 1 \bmod 4\right)$. The coefficients $2 a$ and b of terms of degree 1 and 0 respectively are invariants depending on u and satisfying the relations $a^{2}+4=b u^{2}$ and $0 \leqq a<(1 / 2) u^{2}$.

Moreover, with terms of these invariants, a necessary condition of solvability of the diophantine equation $x^{2}-p y^{2}= \pm 4 m$ for any natural number m, an explicit formula of the fundamental unit of the real quadratic field $\boldsymbol{Q}(\sqrt{p})$, and an estimate formula from below of the classnumber of $\boldsymbol{Q}(\sqrt{p})$ are given.

Throughout this paper, the following notation is used:
N : the set of all natural numbers
Z : the ring of all rational integers
$Q: \quad$ the rational number field
N : the absolute norm mapping

(-): Legendre-Jacobi-Kronecker symbol.

Theorem. Almost all rational prime p congruent to $1 \bmod 4$ are uniquely expressed in the form

$$
p=u^{2} n^{2} \pm 2 a n+b,
$$

where

$$
n \in N^{+}=\{0\} \cup N
$$

$$
\begin{aligned}
& u \in \boldsymbol{U}=\left\{2^{\delta} \prod_{i=1}^{r} p_{i}^{e_{i}} ; \delta=0 \text { or } 1, e_{i} \geqq 1, \text { prime } p_{i} \equiv 1(\bmod 4)\right\} \\
& a \in A_{u}=\left\{ \pm a_{\lambda} ; 0 \leqq a_{\lambda}<\frac{1}{2} u^{2}, \lambda=1,2, \cdots, 2^{\delta+r-1}\right\}
\end{aligned}
$$

which is a system of representatives of the residue classes of the solutions of $x^{2} \equiv-4\left(\bmod u^{2}\right)($ put $a=0$ in the case $r=0)$, and

$$
b=\frac{a^{2}+4}{u^{2}} \quad\left(\text { i.e. } a^{2}+4=b u^{2}\right)
$$

Moreover, then

$$
\begin{equation*}
\varepsilon_{p}=\frac{1}{2}\left(u^{2} n \pm a+u \sqrt{p}\right)>1 \tag{i}
\end{equation*}
$$

is the fundamental unit of the real quadratic field $\boldsymbol{Q}(\sqrt{p})$.
(ii) For a natural number $m>1$, if the diophantine equation $x^{2}-p y^{2}$ $= \pm 4 m$ has at least one non-trivial integral solution, then $m \geqq n$ holds.
(iii) For the class-number $h=h(p)$ of $\boldsymbol{Q}(\sqrt{p})$ and the least prime $q_{0}=q_{0}(p)$ such that $\left(\frac{p}{q_{0}}\right)=1$, i.e. q_{0} splits completely in $\boldsymbol{Q}(\sqrt{p})$, it holds

$$
h \geqq \frac{\log n}{\log q_{0}}
$$

To prove this theorem, we need two lemmas.
In a square-free integer $D>1$ and a natural number $m>1$, we say that an integral solution (u, v) of the diophantine equation $x^{2}-D y^{2}= \pm 4 m$ is trivial if and only if $m=n^{2}$ is a square and $u \equiv v \equiv 0(\bmod n)$.

Lemma 1 (Davenport-Ankeny-Hasse-Ichimura). Let $D>1$ be a square-free rational integer, and denote the fundamental unit of the real quadratic field $\boldsymbol{Q}(\sqrt{D})$ by

$$
\varepsilon_{D}=\frac{1}{2}(t+u \sqrt{D})>1
$$

Then, for any natural number $m>1$, if the diophantine equation $x^{2}-D y^{2}$ $= \pm 4 m$ has at least one non-trivial integral solution, it holds

$$
m \geqq\left\{\begin{array}{l}
\frac{t}{u^{2}} \cdots N \varepsilon_{D}=-1, \\
\frac{t-2}{u^{2}} \cdots N \varepsilon_{D}=1 .
\end{array}\right.
$$

Proof. For proofs in the case of no square m, see N. C. Ankeny, S. Chowla and H. Hasse [1] or H. Hasse [2]. For arbitrary natural number m, this lemma was first proved by H. Ichimura as follows in a letter to the author:

We prove this lemma in the case $N \varepsilon_{D}=-1$ only, because in another case it can be proved similarly. If there exists at least one non-trivial solution (x^{\prime}, y^{\prime}) of $x^{2}-D y^{2}= \pm 4 m$, then we know $y^{\prime} \neq 0$ at once. Hence, let $\left(x_{0}, y_{0}\right)$ be the non-trivial solution such that $x_{0} \geqq 0$ and $y_{0}>0$ is the smallest, then

$$
N\left(x_{0}-y_{0} \sqrt{D}\right)= \pm 4 m
$$

holds, and multiplying this by

$$
N\left(\frac{t+u \sqrt{D}}{2}\right)=-1
$$

we obtain

$$
N\left(\frac{x_{0} t-y_{0} u D}{2}+\frac{x_{0} u-y_{0} t}{2} \sqrt{D}\right)= \pm 4 m
$$

and we see easily that both of

$$
a=\frac{x_{0} t-y_{0} u D}{2} \quad \text { and } \quad b=\frac{x_{0} u-y_{0} t}{2}
$$

are rational integers.
Here, we can verify that (a, b) is also a non-trivial integral solution of $x^{2}-D y^{2}= \pm 4 m$. For, if not, then there exists a positive integer n such that $m=n^{2}, a \equiv b \equiv 0(\bmod n)$. Writing ε_{D}^{-1} as

$$
\varepsilon_{D}^{-1}=\frac{1}{2}\left(t^{\prime}+u^{\prime} \sqrt{D}\right), \quad\left(t^{\prime}, u^{\prime} \in Z\right)
$$

and noting

$$
\varepsilon_{D}\left(x_{0}-y_{0} \sqrt{\bar{D}}\right)=a+b \sqrt{D}
$$

we obtain

$$
x_{0}-y_{0} \sqrt{D}=\frac{t^{\prime} a+u^{\prime} b D}{2}+\frac{t^{\prime} b+u^{\prime} a}{2} \sqrt{\bar{D}}
$$

Since ε_{D}^{-1} is an integer of $Q(\sqrt{D})$ and D is square-free, we know $t^{\prime} \equiv u^{\prime}$ $(\bmod 2)$, and hence we obtain

$$
\begin{aligned}
x_{0}=\frac{t^{\prime} a+u^{\prime} b D}{2} \equiv 0 & (\bmod n) \\
-y_{0}=\frac{t^{\prime} b+u^{\prime} a}{2} \equiv 0 & (\bmod n)
\end{aligned}
$$

This contradicts the assumption that $\left(x_{0}, y_{0}\right)$ is non-trivial. Therefore, (a, b) and so $(|a|,|b|)$ is also a non-trivial solution of $x^{2}-D y^{2}= \pm 4 m$.

Finally, because of the minimum choice of y_{0}, we get

$$
|b|=\left|\frac{x_{0} u-y_{0} t}{2}\right| \geqq y_{0}
$$

i.e.

$$
x_{0} \geqq \frac{t+2}{u} y_{0}>0 \quad \text { or } \quad 0 \leqq x_{0} \leqq \frac{t-2}{u} y_{0} .
$$

Hence, from $x_{0}^{2}-D y_{0}^{2}= \pm 4 m$, we obtain either

$$
\underset{(-)}{+} 4 m \geqq\left\{\left(\frac{t+2}{u}\right)^{2}-D\right\} y_{0}^{2} \geqq \frac{4 t}{u}
$$

or

$$
\underset{(+)}{-} 4 m \leqq\left\{\left(\frac{t-2}{u}\right)^{2}-D\right\} y_{0}^{2} \leqq-\frac{4 t}{u^{2}}
$$

Therefore, in each case, we obtain $m \geqq t / u^{2}$ as asserted in the lemma.
Lemma 2. Let $D>1$ be a square-free positive integer, and q be an odd prime. Then, the following two assertions are equivalent to each other:
(i) The number e is the smallest natural number such that the diophantine equation $x^{2}-D y^{2}= \pm 4 q^{e}$ has at least one integral solution.
(ii) $\left(\frac{D}{q}\right)=1$ and the natural number e is the order of prime factors $\mathfrak{q}_{1} \neq \mathfrak{q}_{2}$ of q in $\boldsymbol{Q}(\sqrt{D})$ in the ideal class group.

Proof. Let e_{1} be the smallest natural number such that $x^{2}-D y^{2}=$ $\pm 4 q^{e_{1}}$ is solvable, then $\left(\frac{D}{q}\right)=1$. On the other hand, for an odd prime q satisfying $\left(\frac{D}{q}\right)=1$, let e_{2} be the order of prime factors $\mathfrak{q}_{i}(i=1,2)$ of q in $\boldsymbol{Q}(\sqrt{D})$ in the ideal class group. Moreover, put $\mathfrak{q}_{1}^{e_{2}}=(\omega), \omega=\frac{1}{2}(u+v \sqrt{D})$, then we get

$$
q^{e_{2}}=\left(N \mathfrak{q}_{1}\right)^{e_{2}}=|N(\omega)|=\left|\frac{1}{4}\left(u^{2}-D v^{2}\right)\right|
$$

and so we have $u^{2}-D v^{2}= \pm 4 q^{e_{2}}$, which implies $e_{2} \geqq e_{1}$.
Conversely, for some (u, v), it holds $u^{2}-D v^{2}= \pm 4 q^{e_{1}}$, and so $u^{2} \equiv D v^{2}$ $(\bmod q)$, which implies $\left(\frac{D}{q}\right)=1$. Hence, putting $\frac{1}{2}(u+v \sqrt{D})=\omega,(\omega)=$ \mathfrak{A}, and $q=\mathfrak{q}_{1} \cdot \mathfrak{q}_{2}$, we get

$$
N \mathfrak{U}=|N(\omega)|=q^{e_{1}}=\left(\mathfrak{q}_{1} \mathfrak{q}_{2}\right)^{e_{1}}
$$

Then, we know $\mathfrak{U}=\mathfrak{q}_{1}^{e_{1}}$ or $\mathfrak{q}_{2}^{e_{1}}$, which implies $e_{1} \geqq e_{2}$.
For, putting $\mathfrak{U}=\mathfrak{q}_{1}^{r} \mathfrak{q}_{2}^{e_{1}-r}\left(0 \leqq r \leqq e_{1}\right)$, we get $\mathfrak{U}=q^{e_{1}-r} \mathfrak{q}_{1}^{2 r-e_{1}}$ (resp. $q^{r} \mathfrak{q}_{2}^{e_{1}-2 r}$) in the case $r \geqq e_{1}-r$ (resp. $r<e_{1}-r$). Hence, $\mathfrak{q}_{1}^{2 r-e_{1}}$ (resp. $\mathfrak{q}_{2}^{e_{1}-2 r}$) $=(\eta)$ is a principal ideal, and so putting $\eta=\frac{1}{2}\left(u_{1}+v_{1} \sqrt{D}\right)$, we get

$$
\pm q^{2 r-e_{1}}\left(\text { resp. } \pm q^{e_{1}-2 r}\right)=N(\eta)=\frac{1}{4}\left(u_{1}^{2}-D v_{1}^{2}\right)
$$

which implies $u_{1}^{2}-D v_{1}^{2}= \pm 4 q^{2 r-e_{1}}$ (resp. $\pm 4 q^{e_{1}-2 r}$). Hence, it follows from $2 r-e_{1} \geqq e_{1}$ (resp. $e_{1}-2 r \geqq e_{1}$) that $r=e_{1}$ (resp. $r=0$), i.e. $\mathfrak{U}=\mathfrak{q}_{1}^{e_{1}}$ (resp. $\mathfrak{q}_{2}^{e_{1}}$).

Proof of theorem. For any prime p congruent to $1 \bmod 4$, let

$$
\varepsilon_{p}=\frac{1}{2}\left(t_{p}+u_{p} \sqrt{p}\right), \quad\left(t_{p}>0, u_{p}>0\right)
$$

be the fundamental unit of the real quadratic field $\boldsymbol{Q}(\sqrt{\bar{p}})$. Then, we get first

$$
\left.u_{p}=2^{e} \prod_{i=1}^{r} p_{i}^{e_{i}}, \quad\left(\delta=0 \text { or } 1, \text { prime } p_{i} \equiv 1 \bmod 4\right), *\right)
$$

and

$$
N \varepsilon_{p}=-1, \quad \text { i.e. } t_{p}^{2}-p u_{p}^{2}=-4
$$

Hence, $u=u_{p}$ is an invariant of p and belongs to \boldsymbol{U}.
Next, there is uniquely determined a number n_{p} of N^{+}by the inequality

$$
\left|\frac{t_{p}}{n_{p}^{2}}-n_{p}\right|<\frac{1}{2}
$$

[^0]For, if $u_{p}=2$, then $p=\frac{1}{4} t_{p}^{2}+1 \equiv 1(\bmod 4)$ implies $t_{p} \equiv 0(\bmod 4)$, and so $t_{p} / u_{p}^{2}=t_{p} / 4 \in N$. Hence, $n=n_{p}$ is also an invariant of p belonging to N^{+}.

Moreover, if we put

$$
t_{p}=n u^{2} \pm a, \quad(a \geqq 0)
$$

then we get

$$
0 \leqq \frac{a}{u^{2}}=\left|\frac{t_{p}}{u^{2}}-n\right|<\frac{1}{2}
$$

and hence $0 \leqq a<\frac{1}{2} u^{2}$.
Here, $a=0$ if and only if $r=0$. For, if $a=0$, i.e. $t_{p} \equiv 0\left(\bmod u_{p}^{2}\right)$, then it follows from $\left(t_{p}, u_{p}\right)=1$ or 2 that $u_{p}=1$ or 2 . Conversely, if $r=0$, i.e. $u_{p}=1$ or 2 , then it follows easily from $t_{p}^{2}-p u_{p}^{2}=-4$ that $t_{p} \equiv 0(\bmod$ u_{p}^{2}), i.e. $a=0$.

Furthermore, from

$$
\begin{aligned}
p u_{p}^{2} & =t_{p}^{2}+4=\left(n u_{p}^{2} \pm a\right)^{2}+4 \\
& =n^{2} u_{p}^{4} \pm 2 a n u_{p}^{2}+a^{2}+4,
\end{aligned}
$$

we get $a^{2}+4 \equiv 0\left(\bmod u_{p}^{2}\right)$.
Hence, a is an invariant of p belonging to A, and b defined by $a^{2}+4$ $=b u^{2}$ is also an invariant of p, and consequently the prime p is expressed by those invariants of p in the form

$$
p=u^{2} n^{2} \pm 2 a n+b .
$$

Conversely, if a prime p congruent to $1 \bmod 4$ is expressed in this form, then it is known by Yokoi-Nakahara**) that for almost all (i.e. except for finite number of) such primes p,

$$
\varepsilon_{p}=\frac{1}{2}\left(u^{2} n \pm a+u \sqrt{p}\right)
$$

is the fundamental unit of the real quadratic field $\boldsymbol{Q}(\sqrt{p})$. Hence, $u_{p}=u$ and $t_{p}=u^{2} n \pm a$, and moreover

$$
\left|\frac{t_{p}}{u_{p}^{2}}-n\right|=\frac{a}{u_{p}^{2}}<\frac{1}{2}
$$

Therefore, u, n, a and b in $p=u^{2} n^{2} \pm 2 a n+b$ are uniquely determined by prime p.

[^1]Furthermore, for a natural number m, if the diophantine equation $x^{2}-p y^{2}= \pm 4 m$ has at least one non-trivial integral solution, then by Lemma 1 we get $m \geqq t_{p} / u_{p}^{2}=n \pm a / u_{p}^{2}$, and noting $0 \leqq a / u_{p}^{2}<\frac{1}{2}$, we obtain $m \geqq n$.

Finally, for any rational prime q splitting completely in $Q(\sqrt{p})$, i.e. $\left(\frac{p}{q}\right)=1$, by Lemma 2 we obtain

$$
q^{h} \geqq n, \quad \text { i.e. } h \geqq \frac{\log n}{\log q}
$$

Hence, in particular, for the least prime $q_{0}=q_{0}(p)$ satisfying $\left(\frac{p}{q_{0}}\right)=1$, $h \geqq \frac{\log n}{\log q_{0}}$ holds.

Example.

(1) The case of $u=1$.

$$
(a, b)=(0,4) . \quad \text { Hence } p=n^{2}+4
$$

For example,

$$
\begin{aligned}
& (p, n ; h)=(5,1 ; 1),(13,3 ; 1),(29,5 ; 1),(53,7 ; 1), \\
& \quad(173,13 ; 1),(293,17 ; 1),(1373,37 ; 3) \\
& \varepsilon=\frac{1}{2}(n+\sqrt{p})
\end{aligned}
$$

(2) The case of $u=2$.

$$
(a, b)=(0,1) . \quad \text { Hence } p=2^{2} n^{2}+1
$$

For example,

$$
\begin{aligned}
& \begin{array}{l}
(p, n ; h)= \\
(5,1 ; 1),(17,2 ; 1),(37,3 ; 1),(101,5 ; 1) \\
\\
\quad(197,7 ; 1),(677,13 ; 1),(5477,37 ; 3), \cdots \\
\varepsilon=2 n+\sqrt{p}
\end{array}
\end{aligned}
$$

(3) The case of $u=5$.

$$
(a, b)=(11,5) . \quad \text { Hence } p=5^{2} n^{2} \pm 2 \cdot 11 n+5
$$

For example,

$$
\begin{aligned}
(p, n ; h)= & (61,2 ; 1),(317,4 ; 1),(773,6 ; 1) \\
& (1429,8 ; 5) \cdots p=5^{2} n^{2}-2 \cdot 11 n+5 \\
(p, n ; h)= & (149,2 ; 1) \cdots p=5^{2} n^{2}+2 \cdot 11 n+5
\end{aligned}
$$

(4) The case of $u=10$.

$$
(a, b)=(36,13) . \quad \text { Hence } p=10^{2} n^{2} \pm 2 \cdot 36 n+13
$$

For example,

$$
\begin{aligned}
(p, n ; h)= & (41,1 ; 1),(269,2 ; 1),(2153,5 ; 5), \\
& (3181,6 ; 5),(4409,7 ; 9) \cdots p=10^{2} n^{2}-2 \cdot 36 n+13 . \\
(p, n ; h)= & (557,2 ; 1),(1129,3 ; 9),(1901,4 ; 3) \\
& (5417,7 ; 7) \cdots p=10^{2} n^{2}+2 \cdot 36 n+13 .
\end{aligned}
$$

(5) The case of $p=1,009$.

$$
\begin{aligned}
& \varepsilon_{p}=540+17 \sqrt{p} . \quad h(p)=7 \\
& \text { Hence } t_{p}=1,080, u_{p}=34, n=1 \\
& \quad(a, b)=(76,5)
\end{aligned}
$$

Therefore, $p=1,009=34^{2} \cdot 1^{2}-2 \cdot 76 \cdot 1+5$.
(6) The case of $p=2,677$.

$$
\begin{gathered}
\varepsilon_{p}=\frac{1}{2}(3,777+73 \sqrt{p}) . \quad h(p)=3 . \\
\text { Hence } t_{p}=3,777, u_{p}=73, n=1 . \\
(a, b)=(1552,452) .
\end{gathered}
$$

Therefore, $p=2,677=73^{2} \cdot 1^{2}-2 \cdot 1552 \cdot 1+452$.
(7) The case of $p=5,273$.

$$
\begin{gathered}
\varepsilon_{p}=944+13 \sqrt{p} . \quad h(p)=7 . \\
\text { Hence } t_{p}=1,888, u_{p}=26, n=3 . \\
\quad(a, b)=(140,29) .
\end{gathered}
$$

Therefore, $p=5,273=26^{2} \cdot 3^{2}-2 \cdot 140 \cdot 3+29$.

References

[1] N. C. Ankeny, S. Chowla and H. Hasse, On the class-number of the maximal real subfield of a cyclotomic field, J. Reine Angew. Math., 217 (1965), 217-220.
[2] H. Hasse, Über mehrklassige, aber eingeschlechitige reellquadratische Zahlkörper, Elemente der Mathematik, 20 (1965), 49-72.
[3] T. Nakahara, On the determination of the fundamental units of certain real quadratic fields, Mem. Fac. Sci., Kyushu Univ., 24 (1970), 300-304.
[4] -, On the fundamental units and an estimate of the class numbers of real quadratic fields, Reports Fac. Sci. \& Eng., Saga Univ., 2 (1974), 1-13.
[5] H. Yokoi, On real quadratic fields containing units with norm -1 , Nagoya Math. J., 33 (1968), 139-152.

Department of Mathematics
College of General Education
Nagoya University
Chikusa-ku, Nagoya 464
Japan

[^0]: *) C.f. Yokoi [5], Lemma 1.

[^1]: **) C.f. Yokoi [5], Nakahara [3].

