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Some Relations Among New Invariants of 
Prime Number p Congruent to I mod 4 

Hideo Yokoi 

In this paper, we shall define some invariants (i.e. number theoretic 
function) of prime p congruent to 1 mod 4, and consider the problem to 
express the prime p by using those new invariants of p. 

Namely, almost all such primes p are uniquely expressed as a poly
nomial of degree 2 of the first invariant n, which takes any value of natural 
numbers. Then, the coefficient of the term of degree 2 is the square of 
the second invariant u, which takes any value of natural numbers of the 
form 26 TI p~' (o=O or 1, and prime P,=I mod4). The coefficients 2a 
and b of terms of degree 1 and O respectively are invariants depending on 
u and satisfying the relations a2 +4=bu 2 and 0<a<(l/2)u 2• 

Moreover, with terms of these invariants, a necessary condition of 
solvability of the diophantine equation x2 -py 2 = ±4m for any natural 
number m, an explicit formula of the fundamental unit of the real quad
ratic field Q( Jp), and an estimate formula from below of the class
number of Q( Jp) are given. 

Throughout this paper, the following notation is used: 

N: the set of all natural numbers 

Z: the ring of all rational integers 

Q: the rational number field 

N: the absolute norm mapping 

(-): Legendre-Jacobi-Kronecker symbol. 

Theorem. Almost all rational prime p congruent to I mod 4 are 
uniquely expressed in the form 

p=u 2n2 ±2an+b, 

where 
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ue U={2" }]
1
P1'; o=O or I, ei>l,primep/=.1 (mod4)}, 

a E Au={ ±a,; O~a,< ~ u2, A=I, 2, · · ·, 2.+r- 1}, 

which is a system of representatives of the residue classes of the solutions 
of x 2=. -4 (mod u2) (put a=O in the case r=O), and 

a2 +4 b=-- (i.e. a2 +4=bu 2). 
u2 

Moreover, then 

( i) 1 ;-
ep= 2 (u2n± a+u-v p )> I 

is the fundamental unit of the real quadratic field Q( [p). 
(ii) For a natural number m> I, if the diophantine equation x2 -py 2 

= ±4m has at least one non-trivial integral solution, then m>n holds. 
(iii) For the class-number h=h(p) of Q(Jp) and the least prime 

q0 =qo(p) such that (....!!__)=I, i.e. q0 splits completely in Q( [p), it holds 
qo 

h?:. logn . 
- logq 0 

To prove this theorem, we need two lemmas. 
In a square-free integer D> 1 and a natural number m> I, we say 

that an integral solution (u, v) of the diophantine equation x 2 -Dy 2 = ±4m 
is trivial if and only if m=n 2 is a square and u-=-v-=-0 (mod n). 

Lemma 1 (Davenport-Ankeny-Hasse-Ichimura). Let D > I be a 
square-free rational integer, and denote the fundamental unit of the real 
quadratic field Q( JD) bY_ 

1 ;-
eD= -(t + u,v D )> 1. 

2 

Then, for any natural number m >I, if the diophantine equation x2 -Dy 2 

= ±4m has at least one non-trivial integral solution, it holds 

m>j :2 · · -NsD= -1, 

- t-2 
--- · · -NsD=l. 

u2 
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Proof For proofs in the case of no square m, see N. C. Ankeny, S. 
Chowla and H. Hasse [1] or H. Hasse [2]. For arbitrary natural number 
m, this lemma was first proved by H. lchimura as follows in a letter to the 
author: 

We prove this lemma in the case Nev= -I only, because in another 
case it can be proved similarly. If there exists at least one non-trivial 
solution (x', y') of x 2 -Dy 2 = ±4m, then we know y'=;t=O at once. Hence, 
let (x 0, y 0) be the non-trivial solution such that x 0 >0 and y 0>0 is the 
smallest, then 

holds, and multiplying this by 

we obtain 

N( x 0t-; 0uD + x 0u~y 0t VD)= ±4m, 

and we see easily that both of 

are rational integers. 

Here, we can verify that (a, b) is also a non-trivial integral solution 
of x 2 -Dy 2 = ±4m. For, if not, then there exists a positive integer n such 
that m=n2, a=.b=.0 (modn). Writing en1 as 

and noting 

we obtain 

en1 = _!__(t' + u'vD ), 
2 

(t', u' E Z), 

_ 1D _ t'a+u'bD + t'b+u'a 1D 
Xo Yo'V ----- ---~,y · 

2 2 

Since en1 is an integer of Q(vD) and Dis square-free, we know t 1 =.U1 

(mod 2), and hence we obtain 
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t'a+u'bD _ 
X0=----=0 

2 

t'b+u'a _ 
-Yo=---- 0 

2 

(mod n), 

(mod n). 

This contradicts the assumption that (x0, y0) is non-trivial. Therefore, 
(a, b) and so (\a\, \b\) is also a non-trivial solution of x2-Dy 2 = ±4m. 

Finally, because of the minimum choice of Yo, we get 

i.e. 

t+2 t-2 
x 0>---y 0>0 or 0<x 0::S:: --Yo· 

u u 

Hence, from x~-Dyg= ±4m, we obtain either 

+ 4m >-{( t+2 )2 -D}yg>-__±£_ 
(-) u u 

or 

(+/m<{( t~2 )2-n}y~~-:! . 
Therefore, in each case, we obtain m > t / u2 as asserted in the lemma. 

Lemma 2. Let D> 1 be a square-free positive integer, and q be an 
odd prime. Then, the following two assertions are equivalent to each other: 

( i ) The number e is the smallest natural number such that the 
diophantine equation x 2 -Dy 2 = ±4q• has at least one integral solution. 

(ii) (;) = 1 and the natural number e is the order of prime factors 

q1 * q2 of q in Q( ../ D ) in the ideal class group. 

Proof Let e1 be the smallest natural number such that x 2 -Dy 2 = 

± 4q•1 is solvable, then (;) = 1. On the other hand, for an odd prime q 

satisfying (;) = 1, let e2 be the order of prime factors q1 (i = 1, 2) of q in 

Q(../ D) in the ideal class group. Moreover, put qt•=(w), w=½(u+v../D ), 
then we get 
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and so we have u2 -Dv 2= +4q••, which implies e2 >e 1• 

Conversely, for some (u, v), it holds u2 -Dv 2 = ±4q• 1 , and so u2=Dv 2 

(mod q), which implies ( ~)=1. Hence, putting ½(u+v-v'D)=a>, (a>)= 

U, and q=q 1 ·q2, we get 

Then, we know U=qt 1 or qg1, which implies e1"2::e2• 

For, putting U=qrq;i-r (0 < r::;;; e1), we get U = q•i-rqr-ei (resp. 
qrqg1- 2r) in the case r>e 1 -r (resp. r<e 1 -r). Hence, qr-• 1 (resp. qg1 - 2r) 
=(r;) is a principal ideal, and so putting r;=½(u1 +v 1.J D ), we get 

which implies u~-Dv~= ±4q 2r-• 1 (resp. ±4qei- 2r). Hence, it follows 
from 2r-e 1>e 1 (resp. e1-2r>e 1) that r=e 1 (resp. r=O), i.e. U=qf 1 (resp. 
qgi). 

Proof of theorem. For any prime p congruent to 1 mod 4, let 

be the fundamental unit of the real quadratic field Q( Jp). Then, we get 
first 

r 
u =2e TI p~i 

p i ' 
i=l 

(o=O or I, prime Pi= I mod 4),*l 

and 

NeP= -1, i.e. t;-pu;= -4. 

Hence, u = up is an invariant of p and belongs to U. 
Next, there is uniquely determined a number nP of N+ by the ine

quality 

*> C.f. Yokoi [5], Lemma 1. 
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For, if uP=2, then p=¼t~+ 1 = 1 (mod 4) implies tP=O (mod 4), and so 
tp/u~=tP/4 e N. Hence, n=nP is also an invariant ofp belonging to N+. 

Moreover, if we put 

then we get 

0:S~=/..!L-nJ<_!_, 
u· u2 2 

and hence O<a<½u 2• 

Here, a=O if and only if r=O. For, if a=O, i.e. tP=O (mod u~), 
then it follows from (tp, up)= 1 or 2 that uP= l or 2. Conversely, if r=O, 
i.e. uP= l or 2, then it follows easily from t~-pu~= -4 that tP=O (mod 
u~), i.e. a=O. 

Furthermore, from 

pu~= t~+4=(nu~±a)2+4 

=n 2u!±2anu~+a 2 +4, 

we get a2 +4=0 (mod u~). 
Hence, a is an invariant of p belonging to A, and b defined by a2 +4 

=bu 2 is also an invariant of p, and consequently the prime p is expressed 
by those invariants of p in the form 

Conversely, if a prime p congruent to 1 mod 4 is expressed in this 
form, then it is known by Yokoi-Nakahara**' that for almost all (i.e. 
except for finite number of) such primes p, 

is the fundamental unit of the real quadratic field Q( ./p). Hence, uP=u 
and tP=u2n±a, and moreover 

Therefore, u, n, a and b in p=u 2n2 ±2an+b are uniquely determined by 
primep. 

**> C.f. Yokoi [5], Nakahara [3]. 
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Furthermore, for a natural number m, if the diophantine equation 
x2 - py 2 = ±4m has at least one non-trivial integral solution, then by 
Lemma 1 we get m>tP/u~=n±a/u~, and noting O<a/u~<½, we obtain 
m?.n. 

Finally, for any rational prime q splitting completely in: Q( ~p), i.e. 

( ~ )= 1, by Lemma 2 we obtain 

i.e. h> logn . 
- logq 

Hence, in particular, for the least prime q0 =qo(p) satisfying (L)=l, 
qo 

h?. log n holds. 
- logq 0 

Example. 

(1) The case of u= I. 

(a, b)=(O, 4). Hence p=n 2 +4. 

For example, 

(p, n; h)=(5, 1; 1), (13, 3; 1), (29, 5; 1), (53, 7; 1), 

(173, 13; 1), (293, 17; 1), (1373, 37; 3), 

1 1-
e=-(n+v p ). 

2 

(2) The case of u=2. 

(a, b) =(0, 1). Hence p=2 2n2 + I. 

For example, 

(p, n; h)=(5, 1; 1), (17, 2; 1), (37, 3; 1), (101, 5; 1), 

(197, 7; 1), (677, 13; 1), (5477, 37; 3), · · · 

e=2n+~P-

(3) The case of u= 5. 

(a, b)= (11, 5). Hence p=5 2n2 ±2- lln+5. 

For example, 
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(p, n; h)=(6I, 2; 1), (317, 4; 1), (773, 6; I), 

(1429, 8; 5)- · ·P=5 2n2 -2- lln+5, 

(p, n; h)=(I49, 2; 1) ·. -p=5 2n2 +2- lln+5. 

(4) The case of u= IO. 

(a, b)=(36, 13). Hencep=l0 2n2 ±2-36n+13. 

For example, 

(p, n; h)=(4I, I; 1), (269, 2; 1), (2153, 5; 5), 

(3181, 6; 5), (4409, 7; 9)·. -p=I0 2n2 -2-36n+l3. 

(p, n; h)=(557, 2; 1), (1129, 3; 9), (1901, 4; 3), 

(5417, 7; 7)-. ·p=I0 2n2 +2-36n+13. 

(5) The case of p= 1,009. 

sv=540+17,vp. h(p)=7. 

Hence tv=l,080, uv=34, n=I. 

(a, b)=(76, 5). 

Therefore, p= 1,009=34 2 • 12-2· 76- 1 +5. 

(6) The case of p=2,677. 

1 -
SP= -(3,777 + 73,V p ). h(p)=3. 

2 

Hence tv=3,777, uv=73, n= I. 
(a, b)=(1552, 452). 

Therefore, p=2,677=73 2 • 12-2-1552-1 +452. 

(7) The case of p=5,273. 

8p=944+ 13,vp. h(p)=7. 

Hence tv= 1,888, uP=26, n=3. 

(a, b)=(140, 29). 

Therefore, p=5,273=26 2 - 32 -2-140-3+29. 
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