Local Densities of Quadratic Forms

Yoshiyuki Kitaoka
Dedicated to Professor I. Satake on his 60th birthday

Introduction

Let $A^{(m)}, B^{(n)}$ be integral positive definite matrices. Our problem is to study when the quadratic equation $A[X]=B$ has an integral solution. We know already that $A[X]=B$ has an integral solution provided that $m \geqq 2 n+3$, it has an integral solution over Z_{p} and $\min _{0 \neq x \in Z^{n}} B[x]$ is sufficiently large. But we know nothing about this problem for $m \leqq 2 n+2$ except in the case of $n=1$. To have a perspective, we know empirically that it is better to study the magnitude of the number $r(B, A)$ of integral solutions of $A[X]=B$. Siegel showed that the weighted average of $r\left(B, A_{i}\right)$ for $A_{i} \in \operatorname{gen} A$ is an infinite product of the amount $\alpha_{p}(B, A)$ of local solutions, roughly speaking. Hence the local density $\alpha_{p}(B, A)$ may suggest something global. If, for example, the average is relatively large, that is, $\prod_{p} \alpha_{p}(B, A)>\kappa(>0)$, then we can expect $r\left(B, A^{\prime}\right)>0$ for every A^{\prime} in gen A. If, to the contrary, the average is relatively small, then we may expect that it is almost equal to $r\left(B, A^{\prime \prime}\right)$ for some $A^{\prime \prime}$ in gen A, in other words, $r\left(B, A^{\prime}\right) / r\left(B, A^{\prime \prime}\right)$ may be sufficiently small for every A^{\prime} in gen A with cls $A^{\prime} \neq \mathrm{cls} A^{\prime \prime}$, and it leads us to the linear independence of theta series like in the case of $m=n+1$ (cf. the conjectures in [2, 3, 13]). Although there is a gap between the behaviour of the infinite product $\prod_{p} \alpha_{p}(B, A)$ and the one of each $\alpha_{p}(B, A)$, we want to give sufficient conditions in order that $\lim _{i} \alpha_{p}\left(B_{i}, A\right)=0$ or $\lim _{i} \inf \alpha_{p}\left(B_{i}, A\right)>0$ at the outset.

Theorem A. Let $M, N=N_{1} \perp N_{2}$ be regular quadratc lattices over Z_{p} and let $\left\{M_{i}\right\}_{i=1}^{s}$ be representatives of submodules in M isometric to N_{1} which are not transformed mutually by isometries of M. Then there are positive constants $c_{i}\left(N_{1}, M_{i}\right)$ such that

$$
\alpha_{p}(N, M)=\sum_{i} c_{i}\left(N_{1}, M_{i}\right) \alpha_{p}\left(N_{2}, M_{i}^{\perp}\right) .
$$

Hence the behaviour of $\alpha_{p}\left(N_{1} \perp N_{2}, M\right)$ with N_{1} fixed is reduced to the one of $\alpha_{p}\left(N_{2}, M_{i}^{\perp}\right)$.

Received October 7, 1986.

Theorem B. Let M, N be regular quadratic lattices over Z_{p} with rk $N=n<\mathrm{rk} M=m$ and $N \subset M$.
a) If there is a submodule N_{0} of M such that $N_{0} \cong N$ and $\left[M \cap \boldsymbol{Q}_{p} N_{0}: N_{0}\right]<c_{1}$, then $\alpha_{p}(N, M)>c_{2}$ for a positive constant c_{2} depending only on M, c_{1}.
b) If $m \geqq 2 n+1$ and $\alpha_{p}(N, M)>c_{1}^{\prime}(>0)$, then there is a submodule N^{\prime} of M such that $N^{\prime} \cong N$ and $\left[M \cap \boldsymbol{Q}_{p} N^{\prime}: N^{\prime}\right]<c_{2}^{\prime}$ for some constant c_{2}^{\prime} depending only on M, c_{1}^{\prime}.

If $m \geqq 2 n+3$, then the assumption of a) holds and hence $\alpha_{p}(N, M)>$ $c_{1}(>0)$ for $N \subset M$. This corresponds just to the global fact stated at the very beginning from the viewpoint of an analytic approach. For $m \geqq 2 n$ +1 , the local density is away from zero if and only if an almost primitive representation of N by M exists. Does this suggest that the above global fact holds for primitive representations if $m \geqq 2 n+1$? The spinor exceptions must be taken account of in the case of $m=3, n=1$.

Theorem C. Let $M \supset N$ be regular quadratic lattices with $\mathrm{rk} M=m$, $\operatorname{rk} N=n$, ind $M=r$ and suppose $n+1 \leqq m \leqq 2 n$. Then there is a positive constant $c(M, N)$ such that $\alpha_{p}\left(p^{t} N, M\right)>c(M, N) p^{t(n-r)(n+r+1-m)}$ for $t \geqq 0$.

Unless $n=r+2, m=2 n$, it is easy to see $(n-r)(n+r+1-m) \geqq 0$. If $n=r+2$ and $m=2 n$, then $\alpha_{p}\left(p^{t} N, M\right)>c(M, N) p^{-2 t}$ holds. The almost converse inequality $\alpha_{p}\left(p^{t} N, M\right)<c p^{(\varepsilon-2) t}$ holds for any $\varepsilon>0$ if the following holds:

Put

$$
\begin{aligned}
& {\left[\begin{array}{l}
k \\
g
\end{array}\right]=\frac{\prod_{1 \leqq i \leqq k}\left(1-q^{i}\right)}{\prod_{1 \leqq i \leqq g}\left(1-q^{i}\right) \cdot \prod_{1 \leqq i \leqq k-g}\left(1-q^{i}\right)}(\text { Gaussian polynomial })} \\
& H_{n}(x)=\sum_{r=0}^{n}\left[\begin{array}{c}
n \\
r
\end{array}\right] x^{r}
\end{aligned}
$$

and define $F(a, k, z)$ inductively:

$$
\begin{aligned}
& F(0, k, z)=\sum_{0 \leqq g \leqq k}(-1)^{k-g} H_{k-g}(-q)\left[\begin{array}{l}
k \\
g
\end{array}\right] q^{g(g+3) / 2-k} z^{g}-1, \\
& F(a+1, k, z)=\sum_{a+1 \leqq g \leqq k} F(a, g, z)(-1)^{k-g} H_{k-g}(-q)\left[\begin{array}{l}
k \\
g
\end{array}\right] q^{g(g+3) / 2-k} z^{g} \\
& -F(a, k, z) q^{(a+1)(a+2) / 2} z^{a+1} .
\end{aligned}
$$

If, then $F\left(n-2, n-1, q^{-n}\right)=F\left(n-2, n, q^{-n}\right)=0(n=r k N)$ holds, then the above almost converse inequality holds, and it is the case if $n \leqq 9$.

It may be interesting to study the case when $\alpha_{q}\left(N_{i}, M\right) \rightarrow 0$ (or $\rightarrow \infty$) and $\alpha_{p}\left(N_{i}, M\right)<c_{p}$ (or $>c_{p}$) for some constant c_{p} for every prime $p \neq q$.

It might be a next problem to give a sufficient and/or necessary condition to $\lim \alpha_{p}(K, M)=0, \underline{\varliminf} \alpha_{p}(K, M)>0$ where K runs over submodules in a fixed lattice.

We denote by $\boldsymbol{Z}_{p}, \boldsymbol{Q}_{p}$ the ring of p-adic integers, the field of p-adic numbers respectively. For a quadratic lattice M over $Z_{p}, Q(x), B(x, y)$ are the quadratic form and the bilinear form on it with $Q(x+y)-Q(x)-$ $Q(y)=2 B(x, y) . \quad M^{\#}$ is, by definition, $\left\{x \in \boldsymbol{Q}_{p} M \mid B(x, M) \subset Z_{p}\right\} . \quad \mathfrak{n}(M)$, $\mathfrak{\xi}(M)$ denote $Z_{p}\{Q(x) \mid x \in M\},\{B(x, y) \mid x, y \in M\}$ respectively and then $2 \mathfrak{Z}(M) \subset \mathfrak{n}(M) \subset \mathfrak{Z}(M)$ is obvious.

§ 1.

In this section we define the local density for the sake of completeness, and give a reduction formula.

Let $M=Z_{p}\left[u_{1}, \cdots, u_{m}\right], N=Z_{p}\left[v_{1}, \cdots, v_{n}\right]$ be regular quadratic lattices over \boldsymbol{Z}_{p} with $\operatorname{rank} M=m \geqq \operatorname{rank} N=n$, and suppose that there is a submodule $K=Z_{p}\left[w_{1}, \cdots, w_{n}\right]$ of M which is isometric to N. These are fixed through this section.

We put

$$
\begin{aligned}
& A_{p^{t}}(N, M)=\left\{\sigma: N \longrightarrow M / p^{t} M^{\#} \left\lvert\, \begin{array}{l}
\sigma \text { is a linear mapping with } Q(\sigma x) \\
\equiv Q(x) \bmod 2 p^{t} Z_{p} \text { for } x \in N
\end{array}\right.\right\}, \\
& B_{p^{t}}(N, M)=\left\{\sigma: N \longrightarrow M / p^{t} M \left\lvert\, \begin{array}{l}
\sigma \text { is a linear mapping with } Q(\sigma x) \\
\equiv Q(x) \bmod 2 p^{t} \boldsymbol{Z}_{p} \text { for } x \in N
\end{array}\right.\right\}, \\
& C_{p t}(N, M)=\left\{\sigma: N \longrightarrow M / p^{t} M \left\lvert\, \begin{array}{l}
\sigma \text { is a linear mapping with } B(\sigma x, \sigma y) \\
\equiv B(x, y) \bmod p^{t} Z_{p} \text { for } x, y \in N
\end{array}\right.\right\}, \\
& D_{p^{t}}(N, M)=\left\{\begin{array}{l|l}
\sigma \in A_{p^{t}}(N, M) & \begin{array}{l}
\sigma \text { induces an injective mapping } \\
\text { from } N / p N \text { to } M / p M
\end{array}
\end{array}\right\}, \\
& E_{p t}(N, M)=\left\{\sigma \in B_{p^{t}}(N, M) \left\lvert\, \begin{array}{l}
\sigma \text { induces an injective mapping } \\
\text { from } N / p N \text { to } M / p M
\end{array}\right.\right\}, \\
& F_{p^{t}}(N, M ; K)=\left\{\sigma \in C_{p^{t} t}(N, M) \left\lvert\, \begin{array}{l}
\text { There is an isometry } \eta \text { of } M \text { such } \\
\text { that } \left.\eta(K)=Z_{p} \mid \sigma\left(v_{1}\right), \cdots, \sigma\left(v_{n}\right)\right]
\end{array}\right.\right\} .
\end{aligned}
$$

Proposition 1. Let h_{N}, h_{M} be integers such that $p^{h_{N}} \mathfrak{n}\left(N^{*}\right) \subset 2 Z_{p}$, $p^{h_{M}} \mathfrak{n}\left(M^{\#}\right) \subset 2 Z_{p}$ respectively. Then the following assertions hold where $\mathfrak{n}(M) \subset 2 Z_{p}$ is supposed in (ii) $\sim(\mathrm{v})$.
(i) For $t \geqq h_{M}, A_{p^{t}}(N, M)$ is well-defined.
(ii) $\quad B_{p t}(N, M)$ is well-defined for $t \geqq 0$ and $\left(p^{t}\right)^{n(n+1) / 2-m n} \# B_{p^{t}}(N, M)$ is constant for $t \geqq h_{N}+1$, and $\# B_{p^{t}}(N, M)=\left[M^{\#}: M\right]^{n} \# A_{p t}(N, M)$ if $t \geqq h_{M}$.
(iii) $\quad C_{p t}(N, M)$ is well-defined for $t \geqq 0$ and $\left(p^{t}\right)^{n(n+1) / 2-m n} \# C_{p^{t}}(N, M)$ is constant if either $t \geqq h_{N}+1$ for $p \neq 2$, or $t \geqq h_{N}+2$ for $p=2$, and $\# C_{p t}(N, M)=2^{n \delta_{2}, p} \# B_{p t}(N, M)$ for $t \geqq 0$ if $p \neq 2$ and for $t \geqq h_{N}+2$ if $p=2$.
(iv) For $t \geqq h_{M}+1$, we have $\# E_{p^{t}}(N, M)=\left[M^{\#}: M\right]^{n} \# D_{p^{t} t}(N, M)$, and $\left(p^{t}\right)^{n(n+1) / 2-m n} \# D_{p t}(N, M)$ is constant for $t \geqq h_{M}+1$.
(v) There is a constant a such that for $t \geqq a, F_{p^{t}}(N, M ; K)$ is welldefined and $\left(p^{t}\right)^{n(n+1) / 2-m n} \# F_{p^{t}}(N, M ; K)$ is constant.

Proof. Suppose $t \geqq h_{M}$; then we have $\mathfrak{\xi}\left(M^{\#}\right) \subset \frac{1}{2} \mathfrak{n}\left(M^{\#}\right) \subset p^{-t} Z_{p}$ and hence $B\left(M^{\#}, p^{t} M^{\#}\right) \subset Z_{p}$. Thus we have $p^{t} M^{\#} \subset\left(M^{\#}\right)^{\#}=M$. Moreover for $x \in M, y \in M^{\#}$ we have $Q\left(x+p^{t} y\right)=Q(x)+2 p^{t} B(x, y)+p^{2 t} Q(y) \equiv$ $Q(x) \bmod 2 p^{t} \boldsymbol{Z}_{p}$. Thus $A_{p^{t}}(N, M)$ is well-defined. Suppose $\mathfrak{n}(M) \subset 2 \boldsymbol{Z}_{p}$. If $t \geqq h_{M}$, then $p^{t} M \subset p^{t} M^{\sharp} \subset M$ implies $\# B_{p^{t}}(N, M)=\left[p^{t} M^{\#}: p^{t} M\right]^{n}$ $\# A_{p^{t}}(N, M)=\left[M^{\#}: M\right]^{n} \# A_{p^{t}}(N, M)$. Put $S=\left(B\left(u_{i}, u_{j}\right)\right), T=\left(B\left(v_{i}, v_{j}\right)\right)$; then\# $B_{p^{t}}(N, M)$ is the cardinality of the set $r\left(T, S ; p^{t}\right)$ of $X \in M_{m, n}\left(Z_{p} / p^{t} Z_{p}\right)$ which satisfies that $S[X][x] \equiv T[x] \bmod 2 p^{t} Z_{p}$ for every $x \in Z_{p}^{n}$. We claim that $p^{n m} \# r\left(T, S ; p^{t}\right)=\sum_{i} \# r\left(T_{i} S ; p^{t+1}\right)$ where $\left\{T_{i}\right\}$ runs over symmetric matrices such that $T_{i}[x] \equiv T[x] \bmod 2 p^{t} Z_{p}$ for every $x \in Z_{p}^{n}$ and $x \rightarrow$ $T_{i}[x] \bmod 2 p^{t+1} Z_{p}$ gives a distinct mapping if $i \neq j$. This is clear, considering the mapping $X \rightarrow X$ from $\coprod_{i} r\left(T_{i}, S ; p^{t+1}\right)$ onto $r\left(T, S ; p^{t}\right)$. By Corollary 1 on p. 180 in [6], there is $G_{i} \in G L_{n}\left(Z_{p}\right)$ such that $T_{i}=T\left[G_{i}\right]$ if $t \geqq h_{N}+1$, and then $\# r\left(T_{i}, S ; p^{t+1}\right)=\# r\left(T, S ; p^{t+1}\right)$. Since the cardinality of $\left\{T_{i}\right\}$ is $p^{n(n+1) / 2}$, we have, for $t \geqq h_{N}+1$,

$$
\# B_{p^{t}}(N, M)=p^{-n m+n(n+1) / 2} \# B_{p^{t+1}}(N, M) .
$$

This completes the proof of (ii). Since $B_{p^{t}}(N, M)=C_{p^{t}}(N, M)$ for $p \neq 2$, we may suppose $p=2$ to prove the assertion (iii). By $r^{\prime}\left(T, S ; 2^{t+1}\right)$ we denote the set $\left\{X \in M_{m, n}\left(Z_{2} / 2^{t+1} \boldsymbol{Z}_{2}\right) \mid S[X] \equiv T \bmod 2^{t+1} Z_{2}\right\}$. Let $\left\{T_{i}^{\prime}\right\}$ be the set of $T_{i}^{\prime}={ }^{t} T_{i}^{\prime} \in M_{n}\left(Z_{2} / 2^{t+1} \boldsymbol{Z}_{2}\right)$ which are distinct if $i \neq j$ and satisfies $T_{i}^{\prime}[x] \equiv T[x] \bmod 2^{t+1} \boldsymbol{Z}_{2}$ for every $x \in \boldsymbol{Z}_{2}^{n}$. Considering the mapping $X \rightarrow X$ from $\coprod_{i} r^{\prime}\left(T_{i}, S ; 2^{t+1}\right) \rightarrow r\left(T, S ; 2^{t}\right)$, we have

$$
\sum_{i} \# r^{\prime}\left(T_{i}, S ; 2^{t+1}\right)=2^{m n} \# r\left(T, S ; 2^{t}\right),
$$

and as above for $t \geqq h_{N}+1 \# r^{\prime}\left(T_{i}, S ; 2^{t+1}\right)=\# r^{\prime}\left(T, S ; 2^{t+1}\right)$ implies $2^{n(n-1) / 2} \# r^{\prime}\left(T, S ; 2^{t+1}\right)=2^{m n} \sharp r\left(T, S ; 2^{t}\right)$. Thus we have, tor $t \geqq h_{N}+1$,

$$
\begin{aligned}
\# C_{2^{t+1}}(N, M) & =\# r^{\prime}\left(T, S ; 2^{t+1}\right)=2^{m n-n(n-1) / 2} \# r\left(T, S ; 2^{t}\right) \\
& =2^{n} \# r\left(T, S ; 2^{t+1}\right) .
\end{aligned}
$$

This completes the proof of the assertion (iii). The first assertion of (iv) is proved similarly to (ii). The second assertion follows from (14.2) and
(14.3) in [9], applying it to $N \rightarrow E, \boldsymbol{Q}_{p} M \rightarrow H, G \rightarrow M^{\#}, u \in D_{p^{t}}(N, M)$. Lastly we show (v). Let $\sigma \in C_{p^{t}}(N, M)$ and $y_{i}, z_{i} \in M$ satisfy $y_{i} \equiv z_{i} \equiv$ $\sigma\left(v_{i}\right) \bmod p^{t} M$. Since $B\left(y_{i}, y_{j}\right) \equiv B\left(v_{i}, v_{j}\right) \bmod p^{t}$, by virtue of Corollary 4 on p. 184 and its proof in [6], there is an isometry α of M such that $\alpha\left(Z_{p}\left[y_{1}, \cdots, y_{n}\right]\right)=Z_{p}\left[z_{1}, \cdots, z_{n}\right]$. Thus $F_{p t}(N, M ; K)$ is well-defined for a sufficiently large t. Put $S=\left(B\left(u_{i}, u_{j}\right)\right), T=\left(B\left(v_{i}, v_{j}\right)\right)$ and for $\sigma \in$ $F_{p^{t}}(N, M ; K)$ we take any element $y_{i} \in M$ such that $y_{i} \equiv \sigma\left(v_{i}\right) \bmod p^{t} M$, and define $Y \in M_{m, n}\left(Z_{p}\right)$ by $\left(y_{1}, \cdots, y_{n}\right)=\left(u_{1}, \cdots, u_{m}\right) Y$. Then for an isometry η in the definition of $F_{p^{0}}(N, M ; K)\left(\eta\left(w_{1}\right), \cdots, \eta\left(w_{n}\right)\right)=$ $\left(y_{1}, \cdots, y_{n}\right) G$ for some G in $G L_{n}\left(\boldsymbol{Z}_{p}\right)$. Defining $A \in G L_{m}\left(\boldsymbol{Z}_{p}\right), Z \in$ $M_{m, n}\left(\boldsymbol{Z}_{p}\right)$ by $\left(\eta\left(u_{1}\right), \cdots, \eta\left(u_{m}\right)\right)=\left(u_{1}, \cdots, u_{m}\right) A,\left(w_{1}, \cdots, w_{n}\right)=\left(u_{1}, \cdots, u_{m}\right) Z$, we have $\left(u_{1}, \cdots, u_{m}\right) A Z=\left(\eta\left(u_{1}\right), \cdots, \eta\left(u_{m}\right)\right) Z=\left(\eta\left(w_{1}\right), \cdots, \eta\left(w_{n}\right)\right)=$ $\left(y_{1}, \cdots, y_{n}\right) G=\left(u_{1}, \cdots, u_{m}\right) Y G$ and thus $A Z=Y G$. It is easy to see that the mapping $\sigma \rightarrow Y$ is a bijection from $F_{p^{t}}(N, M ; K)$ to $r\left(N, M ; K ; p^{t}\right)=$ $\left\{Y \in M_{m, n}\left(Z_{p}\right) \bmod p^{t} \left\lvert\, \begin{array}{l}S[Y] \equiv T \bmod p^{t}, Y G=A Z \text { for some } G \text { in } \\ G L_{n}\left(Z_{p}\right) \text { and } A \in G L_{m}\left(Z_{p}\right) \text { with } S[A]=S\end{array}\right.\right\}$. Since the second condition $Y G=A Z$ holds also for every $Y^{\prime} \equiv Y \bmod p^{t}$ for a sufficiently large t as noted above in terms of lattices, the assertion (v) is proved similarly to (ii).

We define the local densities by

$$
\begin{array}{rlr}
\alpha_{p}(N, M) & =2^{n \delta_{2}, p-\delta_{m, n}}\left[M^{\#}: M\right]_{t}^{n} \lim \left(p^{t}\right)^{n(n+1) / 2-m n} \# A_{p^{t}}(N, M) \\
& =2^{n \delta_{2}, p-\delta_{m}, n} \lim _{t \rightarrow \infty}\left(p^{t}\right)^{n(n+1) / 2-m n} \# B_{p^{t} t}(N, M) & \text { if } \mathfrak{n}(M) \subset 2 Z_{p} \\
& =2^{-\delta_{m, n}} \lim _{t \rightarrow \infty}\left(p^{t}\right)^{n(n+1) / 2-m n} \# C_{p^{t}}(N, M) & \text { if } \mathfrak{n}(M) \subset 2 Z_{p},
\end{array}
$$

and in the case of $\mathfrak{n}(M) \subset 2 Z_{p}$,

$$
\begin{aligned}
d_{p}(N, M) & =2^{-\delta_{m, n}} \lim _{t \rightarrow \infty}\left(p^{t}\right)^{n(n+1) / 2-m n} \# E_{p^{t}}(N, M) \\
& =2^{-\delta_{m}, n}\left[M^{\#}: M\right]^{n} \lim _{t \rightarrow \infty}\left(p^{t}\right)^{n(n+1) / 2-m n} \# D_{p^{t}}(N, M), \\
\alpha_{p}(N, M ; K) & =\lim _{t \rightarrow \infty}\left(p^{t}\right)^{n(n+1) / 2-m n} \# F_{p^{t}}(N, M ; K) .
\end{aligned}
$$

The following is due to Siegel.
Proposition 2. $\alpha_{p}(N, M)=2^{n \delta_{2}, p} \sum_{\varrho_{p} N \supset N_{0} \supset N}\left[N_{0}: N\right]^{n-m+1} d_{p}\left(N_{0}, M\right)$ if $\mathfrak{n}(M) \subset 2 Z_{p}$.
Proof. Put $S=\left(B\left(u_{i}, u_{j}\right)\right), \quad T=\left(B\left(v_{i}, v_{j}\right)\right)$ and $\quad \tilde{C}_{p^{t}}(T, S)=\{X \in$ $\left.M_{m, n}\left(\boldsymbol{Z}_{p}\right) \bmod p^{t} \mid S[X] \equiv T \bmod p^{t}\right\}$. $\# \tilde{C}_{p^{t}}(T, S)=\# C_{p^{t}}(N, M)$ is clear. For $G \in G L_{n}\left(\boldsymbol{Q}_{p}\right) \cap M_{n}\left(\boldsymbol{Z}_{p}\right)$ we put $\tilde{C}_{p^{t}}(T, S ; G)=\left\{X \in M_{m, n}\left(\boldsymbol{Z}_{p}\right) \bmod p^{t} \mid\right.$ $S[X] \equiv T \bmod p^{t}, X G^{-1}$ is primitive $\}$ and then $\# \widetilde{C}_{p^{t}}(T, S)=\sum_{G} \# \widetilde{C}_{p^{t}}(T, S ; G)$
where G runs over $G L_{n}\left(Z_{p}\right) \backslash G L_{n}\left(\boldsymbol{Q}_{p}\right) \cap M_{n}\left(Z_{p}\right)$, noting that if $X G_{i}^{-1}(i=1,2)$ is primitive, then $G_{1} G_{2}^{-1} \in G L_{n}\left(Z_{p}\right)$ holds. Suppose $S[X] \equiv T \bmod p^{t}$ and $X G^{-1}$ is primitive for $G \in G L_{n}\left(\boldsymbol{Q}_{p}\right) \cap M_{n}\left(Z_{p}\right)$. Put $S[X]=T+p^{t} R$; then $R={ }^{t} R \in M_{n}\left(Z_{p}\right)$ and $S\left[X G^{-1}\right]=T\left[G^{-1}\right]+p^{t} R\left[G^{-1}\right]$. Denote by $\left\{R_{1}, \cdots, R_{a}\right\}$ the representatives of the set $\left\{p^{t} R\left[G^{-1}\right] \mid R={ }^{t} R \in M_{n}\left(Z_{p}\right)\right\} \bmod \left\{p^{t} R \mid R=\right.$ $\left.{ }^{t} R \in M_{n}\left(Z_{p}\right)\right\}$. Then we have $S\left[X G^{-1}\right] \equiv T\left[G^{-1}\right]+R_{i} \bmod p^{t}$ for some i. Since $|T| \equiv\left|S\left[X G^{-1}\right]\right||G|^{2} \bmod p^{t}$, we have 2 ord $|G| \leqq \operatorname{ord}|T|$ if $t>\operatorname{ord}|T|$, and then R_{i} and hence $T\left[G^{-1}\right]$ are integral for a sufficiently large t. The mapping $X \mapsto X G^{-1}$ is a bijection from

$$
\begin{aligned}
\widetilde{C}_{p^{t}}^{\prime}(T, S ; G)= & \left\{X \in M_{m, n}\left(Z_{p}\right) \bmod p^{t} M_{m, n}\left(Z_{p}\right) G \left\lvert\, \begin{array}{l}
S[X] \equiv T \bmod p^{t} \\
X G^{-1} \text { is primitive }
\end{array}\right.\right\} \\
& \longrightarrow \coprod_{i} \widetilde{C}_{p^{t}}\left(T\left[G^{-1}\right]+R_{i}, S ; 1_{n}\right)
\end{aligned}
$$

For a sufficiently large $t, R_{i} \equiv 0 \bmod p^{[t / 2]}$ holds and then $T\left[G^{-1}\right]+R_{i}=$ $T\left[G^{-1}\right]\left[G^{\prime}\right]$ for some $G^{\prime} \in G L_{n}\left(Z_{p}\right)$. Thus we have

$$
\begin{aligned}
\# \widetilde{C}_{p^{t}}^{\prime}(T, S ; G)= & \sum_{i} \# \widetilde{C}_{p^{t}}\left(T\left[G^{-1}\right], S ; 1_{n}\right) \\
= & \left(p^{\text {ord }|G|}\right)^{n+1} \# \widetilde{C}_{p^{t}}\left(T\left[G^{-1}\right], S ; 1_{n}\right) \\
= & \left(p^{\text {ord }|G|}\right)^{n+1} 2^{n \delta_{2}, p} \\
& \times \#\left\{X \bmod p^{t} \left\lvert\, \begin{array}{l}
S[X][x] \equiv T\left[G^{-1} x\right] \bmod 2 p^{t} Z_{p} \text { for } \\
\text { every } x \in Z_{p}^{n} \text { and } X \text { is primitive }
\end{array}\right.\right\}
\end{aligned}
$$

as in the proof of (iii) in Proposition 1,

$$
=\left(p^{\text {ord }|G|}\right)^{n+1} 2^{n \delta_{2}, p} \# E_{p^{t}}\left(T\left[G^{-1}\right], M\right),
$$

identifying $T\left[G^{-1}\right]$ with the quadratic lattice corresponding to it. Since $\# \widetilde{C}_{p^{t}}^{\prime}(T, S ; G)=\left(p^{\text {ord }|G|}\right)^{m} \# \tilde{C}_{p^{t}}(T, S ; G)$, we have $\# C_{p t}(N, M)=\# \widetilde{C}_{p^{t}}(T, S)$ $=\sum_{G} \# \widetilde{C}_{p^{t}}(T, S ; G)=\sum_{G}\left(p^{\text {ord }|G|}\right)^{n+1-m} 2^{n \delta_{2}, p} \# E_{p^{t}}\left(T\left[G^{-1}\right], M\right)$. Using terms of lattices, we complete the proof.

Remark. By (iv) of the previous proposition, there exist constants c_{1}, c_{2} dependent only on M such that $c_{1}<d_{p}(N, M)<c_{2}$ if $d_{p}(N, M) \neq 0$. Hence we have

$$
\begin{aligned}
& \alpha_{p}(N, M) \cup \sum_{\substack{0_{p} N \supset N_{0} \supset N^{2} \\
d_{p}\left(N_{0}, M\right) \neq 0}}\left[N_{0}: N\right]^{n-m+1} \\
& =\sum_{H} p^{(n-m+1) / 2 \cdot o r d(d N / d H)} \#\left\{L \mid \boldsymbol{Q}_{p} N \supset L \supset N, L \cong H\right\},
\end{aligned}
$$

where H runs over representatives of isometry classes of primitive submodules of rank $=n$ of M. On the other hand, the proposition implies
directly $\alpha_{p}(N, M)=2^{n \delta_{\Sigma}, p} d_{p}(M, M) p^{\operatorname{ord}(d N / d M) / 2} \#\left\{N_{0} \mid \boldsymbol{Q}_{p} N \supset N_{0} \supset N, N_{0} \cong M\right\}$ if $n=m$.

If $n=m=2$, then the following is easily shown by checking the reduction formula in [5].

Suppose $p \neq 2$ and $N=\left\langle\varepsilon_{1} p^{A_{1}}\right\rangle \perp\left\langle\varepsilon_{2} p^{A_{2}}\right\rangle, \quad M=\left\langle\delta_{1} p^{B_{1}}\right\rangle \perp\left\langle\delta_{2} p^{B_{2}}\right\rangle$, where $\varepsilon_{1}, \varepsilon_{2}, \delta_{1}, \delta_{2}$ are p-adic units in Z_{p} with $\varepsilon_{1} \varepsilon_{2}=\delta_{1} \delta_{2}$ and $0 \leqq A_{1} \leqq A_{2}$, $0 \leqq B_{1} \leqq B_{2}, A_{1}+A_{2} \equiv B_{1}+B_{2} \bmod 2, A_{1} \geqq B_{1}, A_{2} \geqq B_{2}$. (These conditions are necessary to $\alpha_{p}(N, M) \neq 0$.) Then we have

$$
\begin{aligned}
& \alpha_{p}(N, M) / \alpha_{p}(M, M) \\
& \qquad \begin{array}{ll}
\frac{1}{2}\left(1+\chi\left(\varepsilon_{1} \delta_{1}\right)\right) p^{A_{1}-B_{1}+\left(A_{2}-B_{2}\right) / 2} & \text { if } A_{1}<B_{2}, \\
0 & A_{i} \equiv B_{i} \bmod 2(i=1,2) . \\
& \text { if } A_{1}<B_{2}, \text { and either } \\
& A_{1} \not \equiv B_{1} \bmod 2 \text { or } \\
\frac{1}{2}\left(1+\chi\left(\varepsilon_{1} \delta_{1}\right)\right) p^{\left(A_{1}+A_{2}-1\right) / 2-B_{1}} & A_{2} \not \equiv B_{2} \bmod 2, \\
& \text { if } B_{1} \not \equiv B_{2} \bmod 2, B_{2} \leqq A_{1} \text { and } \\
\frac{1}{2}\left(1+\chi\left(\varepsilon_{2} \delta_{1}\right)\right) p^{\left(A_{1}+A_{2}-1\right) / 2-B_{1}} & A_{1} \equiv B_{1} \bmod 2, \\
& \text { if } B_{1} \not \equiv B_{2} \bmod 2, B_{2} \leqq A_{1} \text { and } \\
p^{\left(A_{1}+A_{2}\right) / 2-B_{2}\left(\sum_{r=0}^{A_{1}-B_{2}} \chi\left(-\varepsilon_{1} \varepsilon_{2}\right)^{r}\right)} & A_{1} \not \equiv B_{1} \bmod 2, \\
& \\
\times \begin{cases}\frac{1}{2} p^{B_{2}-B_{1}-1}\left(p-\chi\left(-\varepsilon_{1} \varepsilon_{2}\right)\right) & \text { if } B_{1} \equiv B_{2} \bmod 2, B_{2} \leqq A_{1} \text { and } \\
1 & B_{1}<B_{2}, \\
1 & \text { if } B_{1} \equiv B_{2} \bmod 2, B_{2} \leqq A_{1} \text { and } \\
& B_{1}=B_{2},\end{cases}
\end{array} .
\end{aligned}
$$

where $\chi(\varepsilon)=\left(\frac{\varepsilon}{p}\right)$ (Legendre symbol).
We give another reduction formula.
Proposition 3. Suppose $\mathfrak{n}(M) \subset 2 Z_{p}$ and $N=N_{1} \perp N_{2}$ with rk $N_{i}=$ $n_{i}>0(i=1,2)$ and let $\left\{M_{i}\right\}_{i=1}^{s}$ be representatives of submodules of M isometric to N_{1} which are not transformed mutually by isometries of M. Then we have

$$
\alpha_{p}(N, M)=\sum_{i=1}^{s}\left(\left[M_{i}^{\#}: M_{i}\right] /\left[M: M_{i} \perp M_{i}^{\perp}\right]\right)^{n_{2}} \alpha_{p}\left(N_{1}, M ; M_{i}\right) \alpha_{p}\left(N_{2}, M_{i}^{\perp}\right) .
$$

Lemma 1. We have, for a sufficiently large t
$\# C_{p^{t}}(N, M)=\sum_{i=1}^{s} \# F_{p^{t}}\left(N_{1}, M ; M_{i}\right) \cdot \#\left\{\sigma_{2} \in C_{p^{t}}\left(N_{2}, M\right) \mid B\left(M_{i}, \sigma_{2} N_{2}\right) \equiv 0\left(p^{t}\right)\right\}$.
Proof. For σ_{1} in $C_{p^{t}}\left(N_{1}, M\right)$ we take and fix $\sigma_{1}\left(x_{i}\right)$ as an element of M where $\left\{x_{i}\right\}$ is a basis of N_{1}, and fix an isometry α of M such that $\alpha \boldsymbol{Z}_{p}\left[\sigma_{1}\left(x_{1}\right), \cdots, \sigma_{1}\left(x_{n_{1}}\right)\right]=M_{i}$ for some i. Suppose that $\sigma \in C_{p^{t}}(N, M)$ is given, and put $\sigma_{1}=\left.\sigma\right|_{N_{1}}$ which is in $F_{p^{t}}\left(N_{1}, M ; M_{i}\right)$ for some i. For α, M_{i} corresponding to σ_{1} as above, we put $\sigma_{2}=\left.\alpha \sigma\right|_{N_{2}}$. Then $B\left(N_{1}, N_{2}\right)=0$ implies $B\left(M_{i}, \sigma_{2}\left(N_{2}\right)\right) \equiv 0 \bmod p^{t}$, and the correspondence $\sigma \rightarrow\left(\sigma_{1}, \sigma_{2}\right)$ is injective from $C_{p^{t}}(N, M)$ to

$$
\coprod_{i} F_{p^{t}}\left(N_{1}, M ; M_{i}\right) \times\left\{\sigma_{2} \in C_{p^{t}}\left(N_{2}, M\right) \mid B\left(M_{i}, \sigma_{2}\left(N_{2}\right)\right) \equiv 0 \bmod p^{t}\right\} .
$$

Conversely for $\sigma_{1} \in F_{p^{t}}\left(N_{1}, M ; M_{i}\right), \sigma_{2} \in C_{p^{t}}\left(N_{2}, M\right)$ with $B\left(M_{i}, \sigma_{2}\left(N_{2}\right)\right)$ $\equiv 0 \bmod p^{t}$ we get $\sigma=\sigma_{1} \perp \alpha^{-1} \sigma_{2} \in C_{p^{t}}(N, M)$. Thus the mapping is surjective.

Lemma 2. $\#\left\{\sigma_{2} \in C_{p^{t}}\left(N_{2}, M\right) \mid B\left(M_{i}, \sigma_{2} N_{2}\right) \equiv 0 \bmod p^{t}\right\}$

$$
=\left(\left[M_{i}^{\#}: M_{i}\right] /\left[M: M_{i} \perp M_{i}^{\perp}\right]\right)^{n_{2}} \# C_{p^{t}}\left(N_{2}, M_{i}^{\perp}\right) .
$$

Proof. We claim $\left\{x \in M \mid B\left(M_{i}, x\right) \equiv 0 \bmod p^{t}\right\}=p^{t} M_{i}^{\#} \perp M_{i}^{\perp}$. The left contains clearly the right, noting that $p^{t} M_{i}^{\#} \subset M$ for a sufficiently large t. Conversely suppose that $x \in M$ satisfy $B\left(M_{i}, x\right) \equiv 0 \bmod p^{t}$, and decompose $x=x_{1}+x_{2}, x_{1} \in \boldsymbol{Q}_{p} M_{i}, x_{2} \in \boldsymbol{Q}_{p} M_{i}^{\perp}$. Then $B\left(M_{i}, x\right)=B\left(M_{i}, x_{1}\right)$ $\equiv 0 \bmod p^{t}$ follows and hence we have $x_{1} \in p^{t} M_{i}^{\#} \subset M$. Thus $x_{2}=x-x_{1} \in$ $M \cap \boldsymbol{Q}_{p} M_{i}^{\perp}=M_{i}^{\perp}$ holds. Taking an integer a such that $p^{a} M_{i}^{\#} \subset M_{i} \subset M$, we have

$$
\begin{aligned}
& \#\left\{\sigma_{2} \in C_{p^{t}}\left(N_{2}, M\right) \mid B\left(M_{i}, \sigma_{2} N_{2}\right) \equiv 0\left(p^{t}\right)\right\} \\
= & \#\left\{\sigma_{2} \in C_{p^{t}}\left(N_{2}, M\right) \mid \sigma_{2}\left(N_{2}\right) \subset p^{t} M_{i}^{\#} \perp M_{i}^{\perp}\right\} \\
= & {\left[M: p^{a} M_{i}^{\#} \perp M_{i}^{\perp}\right]^{-n_{2}} } \\
& \times \#\left\{\begin{array}{l|l}
\sigma_{2}: N_{2} \longrightarrow p^{t} M_{i}^{\#} \perp M_{i}^{\perp} / p^{t}\left(p^{a} M_{i}^{\#} \perp M_{i}^{\perp}\right) & \begin{array}{l}
\sigma_{2} \text { is linear and } \\
B\left(\sigma_{2} x, \sigma_{2} y\right) \equiv \\
B(x, y) \bmod p^{t} \\
\text { for any } x, y \in N_{2} .
\end{array}
\end{array}\right)
\end{aligned}
$$

Write $\sigma_{2}(x)=\gamma_{1}(x)+\gamma_{2}(x)$ with $\gamma_{1}(x) \in p^{t} M_{i}^{\#} / p^{t+a} M_{i}^{\#}, \quad \gamma_{2}(x) \in M_{i}^{\perp} / p^{t} M_{i}^{\perp}$; then we have $B\left(\gamma_{1}(x), \gamma_{1}(y)\right) \equiv 0 \bmod p^{2 t} \xi\left(M_{i}^{*}\right)$ and $p^{2 t} \xi\left(M_{i}^{\#}\right)=p^{2(t-a)} \mathfrak{\xi}\left(p^{a} M_{i}^{\#}\right)$ $\subset p^{2(t-a)} \mathfrak{\xi}\left(M_{i}\right) \subset p^{t+(t-2 a)} Z_{p} \subset p^{t} Z_{p}$ for $t \geqq 2 a$. Thus we have

$$
\begin{aligned}
& \#\left\{\sigma_{2} \in C_{p^{t}}\left(N_{2}, M\right) \mid B\left(M_{i}, \sigma_{2} N_{2}\right) \equiv 0 \bmod p^{t}\right\} \\
= & {\left[M: p^{a} M_{i}^{\#} \perp M_{i}^{\perp}\right]^{-n_{2}} p^{a n_{1} n_{2}} \# C_{p^{t}}\left(N_{2}, M_{i}^{\perp}\right) . }
\end{aligned}
$$

$$
\begin{aligned}
p^{a n_{1}} /\left[M: p^{a} M_{i}^{\#} \perp M_{i}^{\perp}\right] & =p^{a n_{1}} /\left[M: M_{i} \perp M_{i}^{\perp}\right]\left[M_{i} \perp M_{i}^{\perp}: p^{a} M_{i}^{\#} \perp M_{i}^{\perp}\right] \\
& =\left[M_{i}^{\#}: M_{i}\right] /\left[M: M_{i} \perp M_{i}^{\perp}\right]
\end{aligned}
$$

completes the proof of the lemma and then the proposition, combining with the previous lemma.

Remark. In the proposition, $\left[M_{i}^{\#}: M_{i}\right] /\left[M: M_{i} \perp M_{i}^{\perp}\right]$ is integral, and it is not hard to see that

$$
\begin{aligned}
& \alpha_{p}(N, M ; K) \\
& \quad=\left[M \cap \boldsymbol{Q}_{p} K: K\right]^{n+1-m} \#\left(O(K) / O(K) \cap O\left(M \cap \boldsymbol{Q}_{p} K\right)\right) \\
& \quad \times \lim _{t \rightarrow \infty}\left(p^{t}\right)^{n(n+1) / 2-m n} \#\left\{\begin{array}{l}
\sigma: M \cap \boldsymbol{Q}_{p} K \\
\longrightarrow M / p^{t} M
\end{array} \begin{array}{l}
\sigma \text { is linear and } B(\sigma x, \sigma y) \\
\equiv B(x, y) \bmod p^{t} \boldsymbol{Z}_{p} \text { for } \\
x, y \in M \cap \boldsymbol{Q}_{p} K, \\
\text { and there is } \eta \in O(M) \\
\text { such that } \eta \sigma K=K, \\
\eta \sigma\left(M \cap \boldsymbol{Q}_{p} K\right)=M \cap \boldsymbol{Q}_{p} K
\end{array}\right.
\end{aligned}
$$

where $O\left(^{*}\right)$ means the group of isometries of $*$.
§ 2.
Proposition 4. Let M, M^{\prime}, N and N^{\prime} be regular quadratic lattices over Z_{p} with $\operatorname{rk} M=\operatorname{rk} M^{\prime}=m, \operatorname{rk} N=\operatorname{rk} N^{\prime}=n$. Then we have
a) $\alpha_{p}\left(p^{r} N, p^{r} M\right)=p^{r n(n+1)} \alpha_{p}(N, M)$,
b) if $M \subset M^{\prime}$, then $\alpha_{p}(N, M) \leqq\left[M^{\prime}: M\right]^{n} \alpha\left(N, M^{\prime}\right)$,
c) if $M \subset M^{\prime}$ and $p^{r} M^{\prime} \subset M$,
then $\alpha_{p}\left(N, M^{\prime}\right) \leqq p^{-r n(n+1)}\left[M: p^{r} M^{\prime}\right]^{n} \cdot \alpha_{p}\left(p^{r} N, M\right)$,
d) if $N \subset N^{\prime}$, then $\alpha_{p}\left(N^{\prime}, M\right) \leqq\left[N^{\prime}: N\right]^{m-n-1} \alpha_{p}(N, M)$,
e) if $M^{\prime} \subset M$ and for every isometry σ from N to $M, \sigma(N)$ is contuined in M^{\prime}, then $\alpha_{p}(N, M)=\left[M: M^{\prime}\right]^{-n} \alpha_{p}\left(N, M^{\prime}\right)$.

Proof. For the assertion a) we may suppose $r \geqq 0$. For a sufficiently large t, we have

$$
\begin{aligned}
\alpha_{p}\left(p^{r}\right. & \left.N, p^{r} M\right) \\
& =2^{n \delta_{2}, p-\delta_{m, n}}\left[\left(p^{r} M\right)^{\#}: p^{r} M\right]^{n}\left(p^{t}\right)^{n(n+1) / 2-m n} \# A_{p^{t}}\left(p^{r} N, p^{r} M\right) \\
& =2^{n \delta_{2}, p-\delta_{m, n}} p^{2 r m n}\left[M^{\#}: M\right]^{n}\left(p^{t}\right)^{n(n+1) / 2-m n} \# A_{p^{t-2 r}}(N, M) \\
& =2^{n \delta_{2}, p^{-\delta_{m, n}}}\left[M^{\#}: M\right]^{n}\left(p^{t-2 r}\right)^{n(n+1) / 2-m n} \# A_{p^{t-2 r}}(N, M) p^{r n(n+1)} \\
& =p^{r n(n+1)} \alpha_{p}(N, M) .
\end{aligned}
$$

By virtue of a) we may assume $\mathfrak{n}(M), \mathfrak{n}\left(M^{\prime}\right) \subset 2 Z_{p}$ for the assertions b) \sim
e). Using the canonical mapping $i: M / p^{t} M \rightarrow M^{\prime} / p^{t} M^{\prime}$, we define the mapping $\varphi \rightarrow i \circ \varphi$ from $C_{p^{t}}(N, M)$ to $C_{p^{t} t}\left(N, M^{\prime}\right)$. Since $\#\{\varphi: N \rightarrow$ $M / p^{t} M \mid \varphi$ is linear and $\left.i \circ \varphi=0\right\}=\left[M^{\prime}: M\right]^{n}$, we have $\# C_{p^{t}}(N, M)=$ $\sum_{i \circ \varphi} \#\left\{\varphi^{\prime} \in C_{p^{t}}(N, M) \mid i \circ \varphi^{\prime}=i \circ \varphi\right\} \leqq\left[M^{\prime}: M\right]^{n} \# C_{p^{t}}\left(N, M^{\prime}\right)$ and this completes the proof of b). For c) we have

$$
\begin{aligned}
\alpha_{p}\left(N, M^{\prime}\right) & =p^{-r n(n+1)} \alpha_{p}\left(p^{r} N, p^{r} M^{\prime}\right) & & \text { by a) } \\
& \leqq p^{-r n(n+1)}\left[M: p^{r} M^{\prime}\right]^{n} \alpha_{p}\left(p^{r} N, M\right) & & \text { by b) }
\end{aligned}
$$

For d), from Proposition 2 follows

$$
\begin{aligned}
\alpha_{p}(N, M) & =2^{n \delta_{2}, p} \sum_{\varrho_{p} S N_{0} \supset N}\left[N_{0}: N\right]^{n-m+1} d_{p}\left(N_{0}, M\right) \\
& \geqq 2^{n \delta_{\delta}, p} \sum_{Q^{\prime} N^{\prime} \supset N_{0} \supset N^{\prime}}\left[N_{0}: N^{\prime}\right]^{n-m+1} d_{p}\left(N_{0}, M\right)\left[N^{\prime}: N\right]^{n-m+1} \\
& =\left[N^{\prime}: N\right]^{n-m+1} \alpha_{p}\left(N^{\prime}, M\right)
\end{aligned}
$$

For e) we fix a natural number h such that $p^{h} \mathfrak{n}\left(N^{*}\right) \subset 2 Z_{p}$. For an integer t greater than h and $\sigma \in B_{p^{t}}(N, M)$, there is an isometry σ^{\prime} from N to M such that $\sigma^{\prime}(N)=\sigma(N)$ by virtue of Corollary 1 on p. 180 in [6], considering σ as a homomorphism from N to M. Since $\sigma^{\prime}(N) \subset M^{\prime}$ follows from the assumption, we have $\sigma(N) \subset M^{\prime}$. Thus we have

$$
\begin{aligned}
\# B_{p^{t}}(N, M) & =\#\left\{\sigma \in B_{p^{t}}(N, M) \mid \sigma(N) \subset M^{\prime}\right\} \\
& =\left[M: M^{\prime}\right]^{-n} \# B_{p^{t}}\left(N, M^{\prime}\right),
\end{aligned}
$$

and hence

$$
\alpha_{p}(N, M)=\left[M: M^{\prime}\right]^{-n} \alpha_{p}\left(N, M^{\prime}\right)
$$

Theorem 1. Let N, M be regular quadratic lattices over Z_{p} with $\operatorname{rk} N=n<\mathrm{rk} M=m$ and $N \subset M$, and c a positive number.
a) If there is a submodule N_{0} of M such that $N_{0} \cong N$ and $\left[M \cap \boldsymbol{Q}_{p} N_{0}\right.$: $\left.N_{0}\right]<c$, then $\alpha_{p}(N, M)>c(M) c^{n+1-m}$ holds for positive constant $c(M)$ dependent only on M.
b) If $m \geqq 2 n+1$ and $\alpha_{p}(N, M)>c$, then there is a submodule N^{\prime} of M such that $N^{\prime} \cong N$ and $\left[M \cap \boldsymbol{Q}_{p} N^{\prime}: N^{\prime}\right]<c^{\prime}(M)$ for some constant $c^{\prime}(M)$ dependent only on M, c.

Proof. Since

$$
\begin{aligned}
\alpha_{p}(N, M) & =\alpha_{p}\left(N_{0}, M\right) \\
& =2^{n \varepsilon_{2}, p} \sum_{Q_{p} N_{0} \supset K \supset N_{0}}\left[K: N_{0}\right]^{n-m+1} d_{p}(K, M) \\
& \geqq 2^{n \delta_{2}, p}\left[M \cap \boldsymbol{Q}_{p} N_{0}: N_{0}\right]^{n-m+1} d_{p}\left(M \cap \boldsymbol{Q}_{p} N_{0}, M\right),
\end{aligned}
$$

we have only to define $c(M)$ by $\min _{\mathrm{rk} K=n, d_{p}(k, M) \neq 0} 2^{n \delta_{2}, p} d_{p}(K, M)$, noting that $d_{p}(K, M)$ can take only a finite number of values. To prove b), we put $r=\min _{\substack{\mathcal{Q}_{p} N \supset N_{0}>N \\ d_{p}\left(N_{0}, M\right) \neq 0}} \operatorname{ord}\left[N_{0}: N\right]$ and suppose $m \geqq 2 n+1$. Then

$$
\begin{aligned}
\alpha_{p}(N, M) & =2^{n \delta_{2, p}} \sum_{Q_{p} S N_{0} \supset N}\left[N_{0}: N\right]^{n-m+1} d_{p}\left(N_{0}, M\right) \\
& \leqq 2^{n \delta_{2}, p} \max _{Q_{p} N \supset N_{0} \supset N} d_{p}\left(N_{0}, M\right) \sum_{s \geq r} p^{s(n-m+1)} A(n, s),
\end{aligned}
$$

where $A(n, s)$ is the number of lattices over Z_{p} which contains a given lattice with index p^{s}, and $A(n, s) \leqq\left(1-p^{-1}\right)^{1-n} p^{(n-1) s}$ is easy,

$$
\begin{aligned}
& \leqq c_{1}(M) \sum_{s \leqq r} p^{s(2 n-m)} \\
& \leqq c_{2}(M) p^{r(2 n-m)} .
\end{aligned}
$$

Thus we have $c<\alpha_{p}(N, M)<c_{2}(M) p^{r(2 n-m)}$ and hence

$$
r<\log \left(c_{2}(M) / c\right) /(m-2 n) \log p
$$

For a lattice $N_{0} \supset N$ which satisfies $d_{p}\left(N_{0}, M\right) \neq 0$ and [$\left.N_{0}: N\right]=r$, there is an isometry σ from N_{0} to M such that $\sigma\left(N_{0}\right)$ is primitive in M. Hence we have $\left[M \cap \boldsymbol{Q}_{p} \sigma(N): \sigma(N)\right]=\left[M \cap \boldsymbol{Q}_{p} \sigma\left(N_{0}\right): \sigma(N)\right]=\left[\sigma\left(N_{0}\right): \sigma(N)\right]=\left[N_{0}: N\right]$ $=p^{r}$ and have only to take $\sigma(N)$ as N^{\prime} to complete the proof.

Next we will give a sufficient condition to the assumption of a) in Theorem 1.

Lemma 3. Let M be a regular quadratic lattice over \boldsymbol{Z}_{p} with $\mathrm{rk} M=$ $m \geqq 2 n$, ind $M \geqq n$. Then there is a constant $c(M)$ such that for a regular submodule N of M with rk $N=n$, there is a submodule N_{0} of M which satisfies $N_{0} \cong N$ and $\left[M \cap Q_{p} N_{0}: N_{0}\right]<c(M)$.

Proof. We use the induction on m. Take and fix a maximal sublattice $M^{\prime} \subset M$ once and for all. Since ind $M^{\prime}=$ ind $M \geqq n, M^{\prime}$ is split by $\perp_{n}\left\langle p^{a} / 2\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\rangle$ for an integer a with $\mathfrak{n}\left(M^{\prime}\right)=p^{a} Z_{p}$, which represents primitively any regular quadratic lattice K of $\operatorname{rk} K=n$ with $\mathfrak{n}(K) \subset p^{a} \boldsymbol{Z}_{p}$. Suppose $\mathfrak{n}(N) \subset p^{a} Z_{p}$ and take a primitive submodule N_{0} of M^{\prime} isometric to N. Noting the canonical injection from $M \cap \boldsymbol{Q}_{p} N_{0} / N_{0}$ to M / M^{\prime}, we have $\left[M \cap \boldsymbol{Q}_{p} N_{0}: N_{0}\right] \leqq\left[M: M^{\prime}\right]$. Next suppose $\mathfrak{n}(N) \supset p^{a} \boldsymbol{Z}_{p}$, and decompose $N=N_{1} \perp N_{2}$ so that N_{1} is modular and $\mathfrak{n}\left(N_{1}\right) \supset p^{a} Z_{p}$. Put $S=$ $\left\{K \subset M \mid K\right.$: modular, $\left.\mathfrak{n}(K) \supset p^{a} Z_{p}\right\}$ and let $\left\{M_{1}, \cdots, M_{r}\right\}$ be representatives of $O(M) \backslash S$, and $\sigma\left(N_{1}\right)=M_{i}$ for some i and $\sigma \in O(M)$. If $N_{2}=0$, then $\left[M \cap Q_{p} N: N\right] \leqq \max _{i}\left[M \cap Q_{p} M_{i}: M_{i}\right]$. Suppose $N_{2} \neq 0$. We claim
ind $M_{i}^{\perp} \geqq \operatorname{rk} N_{2}$. To do it, write $\boldsymbol{Q}_{p} N_{1}=\perp_{s_{1}} H \perp V, \boldsymbol{Q}_{p} M_{i}^{\perp}=\perp_{s_{2}} H \perp W$, where H denotes the hyperbolic plane and V, W are anisotropic. Since $2 s_{1}+\operatorname{dim} V+\operatorname{dim} \boldsymbol{Q}_{p} N_{2}=\operatorname{dim} \boldsymbol{Q}_{p} N_{1}+\operatorname{dim} \boldsymbol{Q}_{p} N_{2}=n \leqq \operatorname{ind} M=\operatorname{ind}\left(\boldsymbol{Q}_{p} M_{i} \perp\right.$ $\left.\boldsymbol{Q}_{p} M_{i}^{\perp}\right)=\operatorname{ind}\left(\boldsymbol{Q}_{p} N_{1} \perp \boldsymbol{Q}_{p} M_{i}^{\frac{1}{i}}\right)=s_{1}+s_{2}+\operatorname{ind}(V \perp W)$, we have ind $M_{i}^{\perp}-$ $\operatorname{rk} N_{2}=\mathrm{s}_{2}-\operatorname{rk} N_{2} \geqq s_{1}+\operatorname{dim} V-\operatorname{ind}(V \perp W) \geqq s_{1} \geqq 0$. Applying the assumption of the induction to $\sigma\left(N_{2}\right) \subset M_{i} \frac{1}{i}$, there is a constant $c\left(M_{i}^{\frac{1}{i}}\right)$ such that there is a submodule N_{2}^{\prime} of M_{i}^{\perp} isometric to $\sigma\left(N_{2}\right)$ with [$M_{i}^{\frac{1}{i}} \cap \boldsymbol{Q}_{p} N_{2}^{\prime}$: $\left.N_{2}^{\prime}\right]<c\left(M_{i}^{\perp}\right)$. Putting $N_{0}=M_{i} \perp N_{2}^{\prime}$, we have $N_{0} \cong N_{1} \perp N_{2}^{\prime} \cong N$ and

$$
\begin{aligned}
{\left[M \cap \boldsymbol{Q}_{p} N_{0}: N_{0}\right] } & =\left[M \cap \boldsymbol{Q}_{p} N_{0}:\left(M_{i} \perp M_{i}^{\perp}\right) \cap \boldsymbol{Q}_{p} N_{0}\right]\left[\left(M_{i} \perp M_{i}^{\perp}\right) \cap \boldsymbol{Q}_{p} N_{0}: N_{0}\right] \\
& \leqq\left[M: M_{i} \perp M_{i}^{\perp}\right]\left[M_{i} \perp\left(M_{i}^{\perp} \cap \boldsymbol{Q}_{p} N_{2}^{\prime}\right): M_{i} \perp N_{2}^{\prime}\right] \\
& \leqq\left[M: M_{i} \perp M_{i}^{\perp}\right]\left[M_{i}^{\perp} \cap \boldsymbol{Q}_{p} N_{2}^{\prime}: N_{2}^{\prime}\right] \\
& <c\left(M_{i}^{\perp}\right)\left[M: M_{i} \perp M_{i}^{\perp}\right]
\end{aligned}
$$

Hence we have only to put $c(M)=\max \left(\left[M: M^{\prime}\right], \quad\left[M \cap \boldsymbol{Q}_{p} M_{i}: M_{i}\right]\right.$, $\left.c\left(M_{i}^{\perp}\right)\left[M: M_{i} \perp M_{i}^{\perp}\right]\right)$. The first step of the induction is the case when rk $M=2$ and M is isotropic, but the assertion is clear by the above argument in this case.

Theorem 2. Let $0 \leqq r \leqq n \leqq m$ be integers and M, N_{1} regular quadratic lattices over Z_{p} with rk $M=m$, rk $N_{1}=r$ where $N_{1}=0$ if $r=0$. Moreover we assume that there is a quadratic space V such that $\boldsymbol{Q}_{p} M \cong \boldsymbol{Q}_{p} N_{1} \perp V$ and ind $V \geqq n-r$. Then there is a constant $c=c\left(M, N_{1}, n, r\right)$ such that if $N=$ $N_{1} \perp N_{2}$ is a regular quadratic lattice of $\mathrm{rk} N=n$ represented by M, then there is a submodule $N_{0} \subset M$ isometric to N with $\left[M \cap \boldsymbol{Q}_{p} N_{0}: N_{0}\right]<c$.

Proof. Put $S=\left\{K \subset M \mid K \cong N_{1}\right\}$ and let $\left\{M_{1}, \cdots, M_{t}\right\}$ be representatives of $O(M) \backslash S$. Suppose that $N=N_{1} \perp N_{2}$ is a regular lattice of rk $N=n$ represented by M; then there is an isometry σ from N to M satisfying $\sigma\left(N_{1}\right)=M_{i}$ for some i. Since $N_{1} \cong M_{i}, V \cong \boldsymbol{Q}_{p} M_{i}^{\frac{1}{i}}$ and ind $\boldsymbol{Q}_{p} M_{i}^{\perp} \geqq n-r$ $=\operatorname{rk} N_{2}$. From Lemma 3 follows that there is a submodule N_{2}^{\prime} of M_{i}^{\perp} isometric to N_{2} with [$M_{i}^{\frac{1}{i}} \cap Q_{p} N_{2}^{\prime}: N_{2}^{\prime}$] $<c\left(M_{i}^{\frac{1}{i}}\right)$ where $c\left(M_{i}^{\perp}\right)$ is a constant dependent only on M_{i}^{\perp}. Putting $N_{0}=M_{i} \perp N_{2}^{\prime}$, we have $N_{0} \cong N$ and

$$
\begin{aligned}
{\left[M \cap \boldsymbol{Q}_{p} N_{0}: N_{0}\right]=} & {\left[M \cap \boldsymbol{Q}_{p} N_{0}:\left(M_{i} \perp M_{i}^{\perp}\right) \cap \boldsymbol{Q}_{p} N_{0}\right] } \\
& \times\left[\left(M_{i} \perp M_{i}^{\perp}\right) \cap \boldsymbol{Q}_{p}\left(M_{i} \perp N_{2}^{\prime}\right): M_{i} \perp N_{2}^{\prime}\right] \\
\leqq & {\left[M: M_{i} \perp M_{i}^{\perp}\right]\left[M_{i}^{\perp} \cap \boldsymbol{Q}_{p} N_{2}^{\prime}: N_{2}^{\prime}\right] } \\
\leqq & \max _{i}\left[M: M_{i} \perp M_{i}^{\frac{1}{i}}\right] c\left(M_{i}^{\perp}\right),
\end{aligned}
$$

which is to be denoted by $c\left(M, N_{1}, n, r\right)$.

Remark．Without assumption ind $V \geqq n-r$ ，Theorem 2 does not hold．Since for a regular quadratic space U over \boldsymbol{Q}_{p} we have ind $U \geqq n$ if $\operatorname{dim} U \geqq 2 n+3, m+r \geqq 2 n+3$ is a sufficient condition to ind $V \geqq n-r$ ． Hence we have $\alpha_{p}(N, M)>\kappa(>0)$ for some κ if rk $M \geqq 2$ rk $N+3$ and $\alpha_{p}(N, M) \neq 0$ ，taking $r=0$ ．

§ 3.

In this section we study the behaviour of $\alpha_{p}\left(p^{r} N, M\right)$ as $r \rightarrow \infty$ ．
Lemma 4．Let M be a regular quadratic lattice over \boldsymbol{Z}_{p} of ind $M=r$ ． Then there are constants c_{1}, c_{2} dependent only on M satisfying the following： Let $N=N_{1} \perp N_{2}$ be a regular quadratic submodule of M with $\mathrm{rk} N_{1}=r$ and suppose that the scale of any Jordan component of N_{1} contains $\xi\left(N_{2}\right)$ ．If， then $\mathfrak{B}(N) \subset p^{c_{1}} Z_{p}$ ，then there is an isometry σ from N to M such that $\left[M \cap \boldsymbol{Q}_{p} \sigma\left(N_{1}\right): \sigma\left(N_{1}\right)\right] \leqq c_{2}$.

Proof．We take and fix any maximal sublattice $M^{\prime}=M_{0} \perp M_{1}$ of M once and for all，where $n\left(M_{0}\right)=p^{a} Z_{p}$ ，ind $M_{0}=r$ ，rk $M_{0}=2 r$ and M_{1} is anisotropic．Let c_{1} be an integer such that $c_{1} \geqq a+4$ and $p^{4-c_{1}} Z_{p} \supset 马\left(M_{i}^{\#}\right)$ ． Suppose $\mathfrak{B}(N) \subset p^{c_{1}} Z_{p}$ ；then $\mathfrak{n}\left(p^{-2} N_{1}\right) \subset \mathfrak{\xi}\left(p^{-2} N_{1}\right)=\mathfrak{B}\left(p^{-2} N\right) \subset p^{c_{1}-4} Z_{p} \subset$ $\mathfrak{n}\left(M_{0}\right)$ implies that there is a primitive submodule N_{1}^{\prime} of M_{0} isometric to $p^{-2} N_{1}$ and $N_{1}^{\prime \perp}$ in M_{0} is isometric to $\left(N_{1}^{\prime}\right)^{(-1)}$（the scaling of N_{1}^{\prime} by -1 ）．Since $\mathfrak{n}\left(\left(N_{1}^{\prime \perp} \perp M_{1}\right)^{\#}\right) \subset 马\left(\left(N_{1}^{\prime \perp} \perp M_{1}\right)^{\#}\right)=\xi\left(N_{1}^{\prime \perp} \perp M_{1}^{\#}\right)=\xi\left(\left(p^{-2} N_{1}\right)^{\#}\right)+\xi\left(M_{1}^{\#}\right) \subset$ $p^{4} 弓\left(N_{1}^{*}\right)$ follows from $p^{4} \Xi\left(N_{1}^{*}\right) \supset p^{4} \mathfrak{\xi}\left(N_{1}\right)^{-1} \supset p^{4-c_{1}} Z_{p} \supset 马\left(M_{1}^{*}\right)$ ，we can take a $p^{4} \mathfrak{j}\left(N_{1}^{*}\right)$－maximal lattice \tilde{M} on $\boldsymbol{Q}_{p}\left(N_{1}^{\prime \perp} \perp M_{1}\right)$ containing（ $\left.N_{1}^{\prime \perp} \perp M_{1}\right)^{\#}$ ，and then $N_{1}^{\prime \perp} \perp M_{1} \supset \tilde{M}^{\#}$ ．Decompose \tilde{M} as $\tilde{M}_{0} \perp \tilde{M}_{1}$ where rk $\tilde{M}_{0}=2$ ind \tilde{M}_{0} and \tilde{M}_{1} is anisotropic，and then $\tilde{M}_{0}^{\#}$ is a $4 p^{-4} \mathcal{B}\left(N_{1}^{\#}\right)^{-1}$－maximal lattice． Putting $\tilde{M}_{1}=p^{b} K$ where K is \boldsymbol{Z}_{p} or $p \boldsymbol{Z}_{p}$－maximal，we have $\tilde{M}_{1}^{\#}=p^{-b} K^{\#}$ つ $p^{-b} K$ ．Since $\mathfrak{n}\left(p^{-b} K\right)=p^{-2 b} \mathfrak{n}(K)=\mathfrak{n}(K)^{2} \mathfrak{n}\left(\tilde{M}_{1}\right)^{-1} \supset \mathfrak{n}(K)^{2} p^{-4} \mathfrak{Z}\left(N_{1}^{*}\right)^{-1} \supset$ $\mathfrak{j}\left(N_{1}^{\#}\right)^{-1}, \tilde{M}_{1}^{\#}$ contains an $\tilde{\zeta}\left(N_{i}^{\#}\right)^{-1}$－maximal lattice．Thus $\tilde{M}^{\#}$ contains an $\mathfrak{\zeta}\left(N_{1}^{\#}\right)^{-1}$－maximal lattice since $\tilde{M}_{0}^{\#}, \tilde{M}_{1}^{\#}$ do．Since $\boldsymbol{Q}_{p} N_{1} \perp \boldsymbol{Q}_{p} N_{2}=\boldsymbol{Q}_{p} N \subset$ $\boldsymbol{Q}_{p} M=\boldsymbol{Q}_{p} N_{1}^{\prime} \perp \boldsymbol{Q}_{p}\left(N_{1}^{\prime \perp}\right.$ in $\left.M_{0}\right) \perp \boldsymbol{Q}_{p} M_{1}$ implies that $\boldsymbol{Q}_{p} N_{2}$ is represented by $\boldsymbol{Q}_{p}\left(N_{1}^{\prime \perp}\right.$ in $\left.M_{0}\right) \perp \boldsymbol{Q}_{p} M_{1} \cong \boldsymbol{Q}_{p} \tilde{M}^{\#}$ ，and $\mathfrak{n}\left(N_{2}\right) \subset \mathfrak{\xi}\left(N_{2}\right) \subset \mathfrak{\xi}\left(N_{1}^{*}\right)^{-1}$ ，there is a sub－ module $N^{\prime \prime}$ of $\tilde{M}^{\#}$ isometric to N_{2} ．Defining an isometry σ from N to M by $\sigma\left(N_{1}\right)=p^{2} N_{1}^{\prime}$ and $\sigma\left(N_{2}\right)=N^{\prime \prime}$ ，we have

$$
\begin{aligned}
{\left[M \cap \boldsymbol{Q}_{p} \sigma\left(N_{1}\right): \sigma\left(N_{1}\right)\right] } & =\left[M \cap \boldsymbol{Q}_{p} N_{1}^{\prime}: p^{2} N_{1}^{\prime}\right] \\
& =\left[M \cap \boldsymbol{Q}_{p} N_{1}^{\prime}: M^{\prime} \cap \boldsymbol{Q}_{p} N_{1}^{\prime}\right]\left[M^{\prime} \cap \boldsymbol{Q}_{p} N_{1}^{\prime}: p^{2} N_{1}^{\prime}\right] \\
& \leqq\left[M: M^{\prime}\right]\left[N_{1}^{\prime}: p^{2} N_{1}^{\prime}\right] \\
& =p^{2 r}\left[M: M^{\prime}\right]
\end{aligned}
$$

which is to be c_{2} ．

Lemma 5. Let M, N be a regular quadratic lattice over Z_{p} and its regular submodule with $\operatorname{rk} M=m$, rk $N=n$. Suppose that $n+1 \leqq m$, $r=\operatorname{ind} M, N=N_{1} \perp N_{2}$ with $\mathrm{rk} N_{1}=r$ and that there is an isometry σ from N to M such that $\left[M \cap \boldsymbol{Q}_{p} \sigma\left(N_{1}\right): \sigma\left(N_{1}\right)\right]<c$. Then we have $\alpha_{p}(N, M)>$ $c_{1} \alpha_{p}\left(N_{2},\left(\sigma\left(N_{1}\right)^{\perp}\right.\right.$ in $\left.K\right) \perp\left(K^{\perp}\right.$ in $\left.\left.M\right)\right) \neq 0$ if $ß(N) \subset p^{c_{2}} Z_{p}$. Here K is a primitive submodule of M such that $\mathrm{rk} K=2 r, K \supset \sigma\left(N_{1}\right)$ and ord $d K \leqq c_{3}$, and c is any gvien positive number and c_{1}, c_{2}, c_{3} are positive numbers dependent only on M, c.

Proof. We may assume $\mathfrak{n}(M) \subset 2 Z_{p}$. For $N^{\prime}=\sigma^{-1}\left(M \cap Q_{p} \sigma\left(N_{1}\right)\right) \perp$ $N_{2}(\supset N)$ we have

$$
\begin{array}{rlr}
\alpha_{p}(N, M) \geqq & {\left[N^{\prime}: N\right]^{n+1-m} \alpha_{p}\left(N^{\prime}, M\right)} & \text { (Proposition 4) } \\
\geqq\left[N^{\prime}: N\right]^{n+1-m} \alpha_{p}\left(M \cap \boldsymbol{Q}_{p} \sigma\left(N_{1}\right), M ; M \cap \boldsymbol{Q}_{p} \sigma\left(N_{1}\right)\right) \\
& \times \alpha_{p}\left(N_{2}, \sigma\left(N_{1}\right)^{\perp}\right) \neq 0 & \text { (Proposition 3). }
\end{array}
$$

Now we claim that there is a positive constant c_{4} (and also c_{5}, \cdots, hereafter) dependent only on c, M such that $\alpha_{p}\left(M \cap \boldsymbol{Q}_{p} \sigma\left(N_{1}\right), M ; M \cap\right.$ $\left.\boldsymbol{Q}_{p} \sigma\left(N_{1}\right)\right)>c_{4}$. Putting $L=M \cap \boldsymbol{Q}_{p} \sigma\left(N_{1}\right)=Z_{p}\left[w_{1}, \cdots, w_{r}\right]$, we have

$$
\begin{aligned}
\alpha_{p}(L, M ; L)= & {\left[M^{\#}: M\right]^{r} \lim _{t \rightarrow \infty}\left(p^{t}\right)^{r(r+1) / 2-m r} \#\left\{\sigma: L \longrightarrow M / p^{t} M^{\#} \mid B(\sigma x, \sigma y) \equiv\right.} \\
& B(x, y) \bmod p^{t} Z_{p} \text { for } x, y \in L \text { and } \eta(L)=Z_{p}\left[\sigma\left(w_{1}\right), \cdots,\right. \\
& \left.\left.\sigma\left(w_{r}\right)\right] \text { for some } \eta \in O(M)\right\} . \\
\geqq & {\left[M^{\#}: M\right]^{r} \lim _{t \rightarrow \infty}\left(p^{t}\right)^{r(r+1) / 2-m r} \#\left\{\sigma \in D_{p^{t}}(L, M) \mid \eta(L)=Z_{p}\left[\sigma\left(w_{1}\right),\right.\right.} \\
& \left.\left.\cdots, \sigma\left(w_{r}\right)\right] \text { for some } \eta \in O(M)\right\},
\end{aligned}
$$

where $\sigma\left(w_{i}\right)$ is an appropriate representative in M

$$
\geqq\left[M^{\#}: M\right]^{r} \lim _{t \rightarrow \infty}\left(p^{t}\right)^{r(r+1) / 2-m r} \#\left\{\begin{array}{l|l}
\sigma \in D_{p^{t}}(L, M) & \begin{array}{l}
\sigma x \equiv x \bmod p^{h} M^{\#} \\
\text { for } x \in L
\end{array}
\end{array}\right\}
$$

where h is an integer such that $p^{h} \mathfrak{n}\left(M^{\#}\right) \subset 2 p Z_{p}$, since for $t \geqq h$ and $\sigma \in$ $D_{p^{t}}(L, M)$, there is an isometry σ^{\prime} from L to M such that $\sigma \equiv \sigma^{\prime} \bmod p^{t} M^{\#}$ and by Corollary 2 on p. 182 in [6] σ^{\prime} extends to an isometry η of M if $\sigma^{\prime}(x) \equiv x \bmod p^{h} M^{\#}$ for $x \in L$, and thus $\eta L=Z_{p}\left[\sigma^{\prime}\left(w_{1}\right), \cdots, \sigma^{\prime}\left(w_{r}\right)\right]$. The last sequence is constant for $t \geqq h$. Hence $\alpha_{p}(L, M ; L) \geqq\left[M^{\#}: M\right]^{r}$ $\cdot\left(p^{h}\right)^{r(r+1) / 2-m r}$. Thus we have $\alpha_{p}\left(M \cap \boldsymbol{Q}_{p} \sigma\left(N_{1}\right), M ; M \cap \boldsymbol{Q}_{p} \sigma\left(N_{1}\right)\right)>c_{4}$. It is easy to see $\left[N^{\prime}: N\right]<c$ and thus we have

$$
\alpha_{p}(N, M) \geqq c^{n+1-m} c_{4} \alpha_{p}\left(N_{2}, \sigma\left(N_{1}\right)^{\perp}\right)=c_{5} \alpha_{p}\left(N_{2}, \sigma\left(N_{1}\right)^{\perp}\right) \quad(\neq 0) .
$$

By virtue of Lemma 1 in Section 3 in [8] there is a submodule K of M such that $K \supset \sigma\left(N_{1}\right)$, rk $K=2 r$ and ord $d K \leqq c_{6}$. Here we may suppose that K is primitive in M. We will show that for any isometry η from N_{2} to $\sigma\left(N_{1}\right)^{\perp}, \eta\left(N_{2}\right)$ is contained in $\left(\sigma\left(N_{1}\right)^{\perp}\right.$ in $\left.K\right) \perp\left(K^{\perp}\right.$ in $\left.M\right)$. To do it, we have only to show that $x \in \sigma\left(N_{1}\right)^{\perp}$ with $Q(x) \in \xi(N)$ is in $\left(\sigma\left(N_{1}\right)^{\perp}\right.$ in $\left.K\right) \perp$ (K^{\perp} in M) if $\mathfrak{z}(N) \subset p^{c_{2}} Z_{p}$ for a sufficiently large c_{2}. Since [$M: K \perp K^{\perp}$] $\cdot \sigma\left(N_{1}^{\perp}\right) \subset \sigma\left(N_{1}\right)^{\perp} \cap\left(K \perp K^{\perp}\right)=\left(\sigma\left(N_{1}\right)^{\perp}\right.$ in $\left.K\right) \perp K^{\perp}$, there are $y \in \sigma\left(N_{1}\right)^{\perp}$ in $K, z \in K^{\perp}$ such that $\left[M: K \perp K^{\perp}\right] x=y+z$. First we note that the number of the isometry classes of K, K^{\perp} is finite since ord $d K \leqq c_{6}$. Suppose $\xi(N) \subset p^{4 c_{7}} \boldsymbol{Z}_{p}$, where c_{7} will be fixed in process of the proof. Since $K \supset \sigma\left(N_{1}\right), \quad \Xi\left(\sigma\left(N_{1}\right)\right) \subset p^{4 c_{7}} Z_{p}$ and ord $d K \leqq c_{6}$, we can take c_{7} so that ind $K=r$. For a Z_{p}-maximal lattice \tilde{K} containing K we have ord $[\tilde{K}: K] \leqq$ $c_{6} / 2$ and $\left[\tilde{K} \cap \boldsymbol{Q}_{p} \sigma\left(N_{1}\right): \sigma\left(N_{1}\right)\right]=\left[\tilde{K} \cap \boldsymbol{Q}_{p} \sigma\left(N_{1}\right): K \cap \boldsymbol{Q}_{p} \sigma\left(N_{1}\right)\right] \cdot\left[K \cap \boldsymbol{Q}_{p} \sigma\left(N_{1}\right)\right.$: $\left.\sigma\left(N_{1}\right)\right] \leqq[\tilde{K}: K]\left[M \cap \boldsymbol{Q}_{p} \sigma\left(N_{1}\right): \sigma\left(N_{1}\right)\right]<c p^{c_{6} / 2}$. Putting $N_{1}^{\prime}=\tilde{K} \cap \boldsymbol{Q}_{p} \sigma\left(N_{1}\right)$, we have $N_{1}^{\prime \perp}$ in $\widetilde{K} \cong N_{1}^{\prime(-1)}$ and $\left[N_{1}^{\prime}: \sigma\left(N_{1}\right)\right]<c p^{c_{6} / 2}$, and hence $\mathfrak{B}\left(N_{1}^{\prime}\right) \subset p^{3 c_{7}} Z_{p}$ holds for a sufficiently large c_{7} since $\xi\left(N_{1}\right) \subset 马(N) \subset p^{4 c_{7}} Z_{p}$. From $y \in$ $\sigma\left(N_{1}\right)^{\perp}$ in $K \subset \sigma\left(N_{1}\right)^{\perp}$ in $\widetilde{K}=N_{1}^{\prime \perp} \cong N_{1}^{\prime(-1)}, Q(y) \in p^{3 c_{7}} \boldsymbol{Z}_{p}$ follows. Then $\left[M: K \perp K^{\perp}\right]^{2} Q(x)=Q(y)+Q(z)$ implies $Q(z) \in p^{3 c_{7}} \boldsymbol{Z}_{p}$. Since K^{\perp} is anisotropic and ord $d K^{\perp} \leqq c_{8}$, we can take c_{7} so that $\left[M: K \perp K^{\perp}\right]^{-1} z \in K^{\perp}$, and hence $\left[M: K \perp K^{\perp}\right]^{-1} y=x-\left[M: K \perp K^{\perp}\right]^{-1} z \in Q_{p}\left(\sigma\left(N_{1}\right)^{\perp}\right.$ in $\left.K\right) \cap M=$ $\sigma\left(N_{1}\right)^{\perp}$ in K. Thus we have proved $x \in \sigma\left(N_{1}\right)^{\perp}$ in $K \perp K^{\perp}$, and then by virtue of Proposition 4, $\alpha_{p}(N, M) \geqq c_{5} \alpha_{p}\left(N_{2}, \sigma\left(N_{1}\right)^{\perp}\right)=c_{5}\left[\sigma\left(N_{1}\right)^{\perp}:\left(\sigma\left(N_{1}\right)^{\perp}\right.\right.$ in $\left.K) \perp K^{\perp}\right]^{-(n-r)} \cdot \alpha_{p}\left(N_{2},\left(\sigma\left(N_{1}\right)^{\perp}\right.\right.$ in $\left.\left.K\right) \perp K^{\perp}\right) \neq 0$. Since $\left[M: K \perp K^{\perp}\right]$ $\cdot \sigma\left(N_{1}\right)^{\perp} \subset \sigma\left(N_{1}\right)^{\perp} \cap\left(K \perp K^{\perp}\right)=\left(\sigma\left(N_{1}\right)^{\perp}\right.$ in $\left.K\right) \perp K^{\perp}$, we have $\left[\sigma\left(N_{1}\right)^{\perp}:\left(\sigma\left(N_{1}\right)^{\perp}\right.\right.$ in $\left.K) \perp K^{\perp}\right] \leqq\left[M: K \perp K^{\perp}\right]^{m-r}$ and hence $\alpha_{p}(N, M) \geqq c_{5}\left[M: K \perp K^{\perp}\right]^{(m-r)(r-n)}$. $\alpha_{p}\left(N_{2},\left(\sigma\left(N_{1}\right)^{\perp}\right.\right.$ in $\left.\left.K\right) \perp K^{\perp}\right) \neq 0$. This completes the proof.

Lemma 6. We keep everything in Lemma 5. There is a positive constant c^{\prime} dependent only on M such that x in $\left(\sigma\left(N_{1}\right)^{\perp}\right.$ in $\left.K\right) \perp K^{\perp}$ with $Q(x) \in$ $\mathfrak{\xi}(N)$ is contained in $\left(\sigma\left(N_{1}\right)^{\perp}\right.$ in $\left.K\right) \perp p^{[a / 2]-c^{\prime}} K^{\perp}$ where a is defined by $\mathfrak{s}(N)=$ $p^{a} \boldsymbol{Z}_{p}$.

Proof. We may assume $\mathfrak{n}(M) \subset 2 Z_{p}$ and use notations in the proof of the previous lemma. Let x be an element of $\left(\sigma\left(N_{1}\right)^{\perp}\right.$ in $\left.K\right) \perp K^{\perp}$ with $Q(x) \in \Xi(N)$, and write $x=y+z$ with $y \in \sigma\left(N_{1}\right)^{\perp}$ in $K, z \in K^{\perp}$. Since $y \in$ $\sigma\left(N_{1}\right)^{\perp}$ in $K \subset \sigma\left(N_{1}\right)^{\perp}$ in $\widetilde{K}=N_{1}^{\prime \perp}$ in $\widetilde{K} \cong N_{1}^{\prime(-1)}$ and $d=\left[N_{1}^{\prime}: \sigma\left(N_{1}\right)\right]<c p^{c_{6} / 2}$, we have $Q(y) \in \mathfrak{n}\left(N_{1}^{\prime}\right) \subset \mathfrak{n}\left(d^{-1} \sigma\left(N_{1}\right)\right) \subset d^{-2} p^{a} Z_{p}$ and hence $Q(z)=Q(x)-$ $Q(y) \in d^{-2} p^{a} Z_{p}$. Take a $p^{c_{9}}$-maximal sublattice K^{\prime} of K^{\perp}, and then we have $Q\left(p^{c_{9}-[a / 2]} d z\right)=p^{2 c_{9}-2[a / 2]} d^{2} Q(z) \subset p^{2 c_{9}} Z_{p}$. Hence $p^{c_{9}-[a / 2]} d z$ is contained in K^{\prime} since $\boldsymbol{Q}_{p} K^{\prime}=\boldsymbol{Q}_{p} K^{\perp}$ is anisotropic. Thus z is in $p^{[a / 2]-c_{9}} d^{-1} K^{\prime}$ $\subset p^{[\alpha / 2]-c^{\prime}} K^{\perp}$ for some positive constant c^{\prime} depending only on c, c_{9}, c_{6}.

Theorem 3. Let M, N be regular quadratic lattices over Z_{p} with rk $M=m$, rk $N=n$ satisfying $n+1 \leqq m$. Assume that $N=N_{1} \perp N_{2}$ with rk $N_{1}=\operatorname{ind} M(=r$, say) and there is an isometry σ from N to M such that $\left[M \cap Q_{p} \sigma\left(N_{1}\right): \sigma\left(N_{1}\right)\right]<c$ for a given constant c. Then there are positive constants c_{1}, \cdots, c_{4} depending only on M and c such that if ord $弓(N)(=a$, say $) \geqq c_{1}$, then $\alpha_{p}(N, M)>c_{2} p^{[a / 2](n-r)(n+r+1-m)} \alpha_{p}\left(p^{-[a / 2]} N_{2}, p^{-[a / 2]}\left(\sigma\left(N_{1}\right)^{\perp}\right.\right.$ in $\left.K) \perp p^{-c_{3}} K^{\perp}\right) \neq 0$, where K is a primitive submodule of M such that $K \supset$ $\sigma\left(N_{1}\right)$, rk $K=2 r$, ind $K=r$ and ord $d K \leqq c_{4}$.

Proof. By virtue of the previous two lemmas and Proposition 4, we have

$$
\begin{aligned}
\alpha_{p}(N, M)> & c_{5} \alpha_{p}\left(N_{2},\left(\sigma\left(N_{1}\right)^{\perp} \text { in } K\right) \perp K^{\perp}\right) \\
= & c_{5}\left[\left(\sigma\left(N_{1}\right)^{\perp} \text { in } K\right) \perp K^{\perp}:\left(\sigma\left(N_{1}\right)^{\perp} \text { in } K\right) \perp p^{[a / 2]-c^{\prime}} K^{\perp}\right]^{-(n-r)} \\
& \times \alpha_{p}\left(N_{2},\left(\sigma\left(N_{1}\right)^{\perp} \text { in } K\right) \perp p^{[a / 2]-c^{\prime}} K^{\perp}\right)
\end{aligned}
$$

where we assume that $a / 2 \geqq c^{\prime}$ in Lemma 6,

$$
\begin{aligned}
= & c_{5} p^{\left[[a / 2]-c^{\prime}\right)(m-2 r)(r-n)+[a / 2](n-r)(n-r+1)} \\
& \times \alpha_{p}\left(p^{-[a / 2]} N_{2}, p^{-[a / 2]}\left(\sigma\left(N_{1}\right)^{\perp} \text { in } K\right) \perp p^{-c^{\prime}} K^{\perp}\right) \\
= & c_{5} p^{c^{\prime}(m-2 r)(n-r)} \cdot p^{[a / 2](n-r)(n+r+1-m)} \\
& \times \alpha_{p}\left(p^{-[a / 2]} N_{2}, p^{-[a / 2]}\left(\sigma\left(N_{1}\right)^{\perp} \text { in } K\right) \perp p^{-c^{\prime}} K^{\perp}\right) .
\end{aligned}
$$

Remark. Lemma 4 gives a sufficient condition for the assumption in the theorem.

Corollary. Let $M \supset N$ be regular quadratic lattices with $\mathrm{rk} M=m$, $\operatorname{rk} N=n \geqq \operatorname{ind} M=r$, and suppose $n+1 \leqq m$. Then there is a positive constant $c(M, N)$ such that $\alpha_{p}\left(p^{t} N, M\right)>c(M, N) p^{t(n-r)(n+r+1-m)}$ for $t \geqq 0$.

Proof. There is a lattice N^{\prime} which contains N and is an orthogonal sum of one-dimensional lattices and $\left[N^{\prime}: N\right]$ is less than a number depending only on n. From Proposition 4 follows $\alpha_{p}\left(p^{t} N, M\right) \geqq$ $\left[N^{\prime}: N\right]^{n+1-m} \alpha_{p}\left(p^{t} N^{\prime}, M\right) . \quad M \supset N$ implies $p^{t} N^{\prime} \subset M$ for t with $p^{t} \geqq\left[N^{\prime}: N\right]$. Write $N^{\prime}=N_{1} \perp N_{2}$ where rk $N_{1}=r$ and the scale of any Jordan component of N_{1} contains $\xi\left(N_{2}\right)$. By virtue of Lemma 4, there is an isometry σ from $p^{t} N^{\prime}$ to M such that $\left[M \cap Q_{p} \sigma\left(p^{t} N_{1}\right): \sigma\left(p^{t} N_{1}\right)\right] \leqq p^{c_{2}}$ if $\mathfrak{s}\left(p^{t} N^{\prime}\right) \subset p^{c_{1}} Z_{p}$ and $p^{t} \geqq\left[N^{\prime}: N\right]$ for c_{1}, c_{2} in it. From the theorem $\alpha_{p}\left(p^{t} N^{\prime}, M\right)>$ $c p^{[a / 2](n-r)(n+r+1-m)} \alpha_{p}\left(p^{t-[a / 2]} N_{2}, p^{-[a / 2]}\left(\sigma\left(p^{t} N_{1}\right)^{\perp}\right.\right.$ in $\left.\left.K\right) \perp p^{-c_{3}} K^{\perp}\right)$ if $a=$ ord $\mathfrak{\xi}\left(p^{t} N^{\prime}\right)$ is sufficiently large, where K is a primitive submodule of M such that $K \supset \sigma\left(p^{t} N_{1}\right)$, rk $K=2 r$, ind $K=r$ and ord $d K \leqq c_{4}$ and c, c_{5}, c_{4} depend only on M. Since $N, N^{\prime}, N_{1}, N_{0}$, are fixed, $|a-2 t|$ is bounded
and hence $p^{t-[a / 2]} N_{2}$ can run over only a finite number of isometry classes. Let \tilde{K} be a maximal Z_{p} lattice containing K : then $[\tilde{K}: K] \leqq p^{c_{4 / 2}}$ and $M \cap$ $\boldsymbol{Q}_{p} \sigma\left(p^{t} N_{1}\right)=K \cap \boldsymbol{Q}_{p} \sigma\left(p^{t} N_{1}\right)$ is contained in $\tilde{K} \cap \boldsymbol{Q}_{p} \sigma\left(p^{t} N_{1}\right)$ with index \leqq [$\tilde{K}: K]$. Noting that $\sigma\left(p^{t} N_{1}\right)^{\perp}$ in \tilde{K} is isometric to $\left(\tilde{K} \cap \boldsymbol{Q}_{p} \sigma\left(p^{t} N_{1}\right)\right)^{(-1)}$, we have $\left(p^{-c_{2}}[\tilde{K}: K]^{-1} \sigma\left(p^{t} N_{1}\right)\right)^{(-1)} \supset\left(\tilde{K} \cap \boldsymbol{Q}_{p}\left(\sigma\left(p^{t} N_{1}\right)\right)\right)^{(-1)} \cong \sigma\left(p^{t} N_{1}\right)^{\perp}$ in $\tilde{K} \supset$ $\sigma\left(p^{t} N_{1}\right)^{\perp}$ in $K \supset[\tilde{K}: K]\left(\sigma\left(p^{t} N_{1}\right)^{\perp}\right.$ in $\left.\tilde{K}\right) \cong[\tilde{K}: K]\left(\tilde{K} \cap \boldsymbol{Q}_{p}\left(\sigma\left(p^{t} N_{1}\right)\right)\right)^{(-1)} \supset$ $[\tilde{K}: K] \sigma\left(p^{t} N_{1}\right)^{(-1)}$ and hence $p^{t-[a / 2]}[\tilde{K}: K] N_{1}^{(-1)} \longrightarrow p^{-[a / 2]}\left(\sigma\left(p^{t} N_{1}\right)^{\perp}\right.$ in $\left.K\right)$ $\longrightarrow p^{t-[a / 2]-c_{2}}[\tilde{K}: K]^{-1} N_{1}^{(-1)}$. Thus $p^{-[a / 2]}\left(\sigma\left(p^{t} N_{1}\right)^{\perp}\right.$ in $\left.K\right)$ runs over a finite number of isometry classes depending only on M, N, and hence we have $\alpha_{p}\left(p^{t-[a / 2]} N_{2}, p^{-[a / 2]}\left(\sigma\left(p^{t} N_{1}\right)^{\perp}\right.\right.$ in $\left.\left.K\right) \perp p^{-c_{3}} K^{\perp}\right) \geqq c_{5}(>0)$ where c_{5} depends only on M, N. Therefore we have proved the theorem.

Remark. For integers $0 \leqq r \leqq n \leqq m$ with $n+1 \leqq m \leqq 2 n, 0 \leqq m-2 r \leqq 4$ it is easy to see $(n-r)(n+r+1-m)<0$ if and only if $n=r+2$ and $m-2 r$ $=4$. Unless, hence $\operatorname{rk} M-2$ ind $M=4$, rk $N=$ ind $M+2$, there is a positive constant c such that $\alpha_{p}\left(p^{t} N, M\right)>c$ if $\alpha_{p}(N, M) \neq 0$.

§ 4.

In this section we show that $\alpha_{p}\left(p^{t} N, M\right)$ seems to tend to zero as $t \rightarrow \infty$ in the exceptional case in the last remark.

We assume that p is an odd prime in this section. We will prove
Theorem 4. Let M be a quadratic lattice $\frac{1}{r}\left\langle\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\rangle \perp\langle 1\rangle \perp\langle-\delta\rangle \perp$ $\langle p\rangle \perp\langle-\delta p\rangle$ where δ is a non-square unit. For a regular quadratic lattice N over \boldsymbol{Z}_{p} with $\mathrm{rk} N=n \leqq \mathrm{rk} M$ we consider the formal power series

$$
f(x)=\sum_{t=0}^{\infty} \alpha_{p}\left(N^{\left(p^{t}\right)}, M\right) x^{t}
$$

Then $f(x)$ is a rational function in x whose denominator is

$$
\prod_{0 \leqq j \leqq n}\left(1-p^{(n-j)(n+j+1-2 r-4) / 2} x\right)
$$

Remark. If $n=r+2$, then the denominator of $f(x)$ seems to become

$$
\begin{aligned}
\prod_{0 \leqq j \leqq n-2}\left(1-p^{(n-j)(n+j+1-2 r-4) / 2} x\right) & =\prod_{0 \leqq j \leqq n-2}\left(1-p^{(n-j)(j+1-n) / 2} x\right) \\
& =\prod_{2 \leqq j \leqq n}\left(1-p^{-j(j-1) / 2} x\right),
\end{aligned}
$$

and this is the case at least $n \leqq 9$. If this is the case, $f(x)$ converges for $|x|<p$ and so $\alpha_{p}\left(N^{\left(p^{t}\right)}, M\right)\left(p^{1-\varepsilon}\right)^{t}<c$ for any positive number ε and some
constant c. Hence we have $\alpha_{p}\left(p^{t} N, M\right)<c\left(p^{\varepsilon}\right)^{2 t} p^{-2 t}$. Let M^{\prime} be a regular quadratic lattice over Z_{p} with rk $M^{\prime}-2$ ind $M^{\prime}=4$ and $n=\mathrm{rk} N=$ ind $M^{\prime}+2$, and M a Z_{p}-maximal lattice containing M^{\prime}. Then we have

$$
\begin{aligned}
c\left(M^{\prime}, N\right) p^{-2 t} & <\alpha_{p}\left(p^{t} N, M^{\prime}\right) & & \text { (Corollary in § 3) } \\
& \leqq\left[M: M^{\prime}\right]^{n} \alpha_{p}\left(p^{t} N, M\right) & & \text { (Proposition 4) } \\
& \leqq c\left[M: M^{\prime}\right]^{n}\left(p^{\varepsilon}\right)^{2 t} p^{-2 t} . & &
\end{aligned}
$$

Hence in the exceptional case in the last remark $\alpha_{p}\left(p^{t} N, M^{\prime}\right)$ tends to zero under the reduction of the denominator of $f(x)$. Is the estimate of $\alpha_{p}(N, M)$ from below in Theorem 3 and the corollary almost best?

We need several lemmas to prove the theorem.
Put $S=S_{r}=\operatorname{diag}(\underbrace{\left(\begin{array}{ll}(1 & 1 \\ 1 & 0\end{array}\right), \cdots,\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)}, 1,-\delta, p,-\delta p)$ where δ is a
nonsquare unit, and denote by \mathbb{S}_{n} the set of all integral symmetric matrices of size n with entries in Z_{p}.

Lemma 7. For non-negative integers $a \leqq t$, we have for any $\varepsilon \in \boldsymbol{Z}_{p}^{\times}$

$$
\sum_{g \in Z_{p}^{2 r+4} \bmod p^{t}} e\left(S[g] \varepsilon p^{a} / p^{t}\right)=\left\{\begin{array}{cl}
-p^{(r+2)(t+a)+1} & \text { if } a<t, \\
p^{(r+2)(t+a)} & \text { if } a=t,
\end{array}\right.
$$

where $e(x)=\exp (2 \pi i x)$.
Proof. For $a=t$, the lemma is obvious. We suppose $a<t$. Since

$$
\begin{aligned}
& \sum_{g} e\left(S[g] \varepsilon p^{a} / p^{t}\right) \\
&=\left\{\sum_{x, y \bmod p^{t}} e\left(2 x y \varepsilon p^{a-t}\right)\right\}^{r}\left(\sum_{x \bmod p^{t}} e\left(x^{2} \varepsilon p^{a-t}\right)\right)\left(\sum_{x \bmod p^{t}} e\left(-x^{2} \delta \varepsilon p^{a-t}\right)\right) \\
& \times\left(\sum_{x \bmod p^{t}} e\left(x^{2} \varepsilon p^{a+1-t}\right)\right)\left(\sum_{x \bmod p^{t}} e\left(-x^{2} \delta \varepsilon p^{a+1-t}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{x, y \bmod p^{t}} e\left(2 x y \varepsilon p^{a-t}\right) & =p^{t} \#\left\{x \bmod p^{t} \mid x \equiv 0 \bmod p^{t-a}\right\} \\
& =p^{t+a}, \\
\sum_{x \bmod p^{t}} e\left(x^{2} \varepsilon p^{a-t}\right)= & p^{(t+a) / 2}\left(\frac{\varepsilon}{p}\right)^{t-a} \begin{cases}1 & \text { if } p^{t-a} \equiv 1 \bmod 4, \\
\sqrt{-1} & \text { otherwise },\end{cases}
\end{aligned}
$$

we have

$$
\begin{aligned}
& \sum_{\delta} e\left(S[g] \varepsilon p^{a} / p^{t}\right) \\
&= p^{r(t+a)} p^{(t+a) / 2}\left(\frac{\varepsilon}{p}\right)^{t-a} p^{(t+a) / 2}\left(\frac{-\delta \varepsilon}{p}\right)^{t-a}\left(\frac{-1}{p}\right)^{t-a} \\
& \times p^{(t+a+1) / 2}\left(\frac{\varepsilon}{p}\right)^{t-a-1} p^{(t+a+1) / 2}\left(\frac{-\delta \varepsilon}{p}\right)^{t-a-1}\left(\frac{-1}{p}\right)^{t-a-1} \\
&=-p^{(t+2)(t+a)+1} .
\end{aligned}
$$

We put

$$
\begin{aligned}
\alpha_{p}^{\prime}(T, S) & =2^{\delta_{m, n}} \alpha_{p}(T, S) \\
& =\lim _{t \rightarrow \infty}\left(p^{t}\right)^{n(n+1) / 2-m n} \sharp\left\{G \in M_{m, n}\left(Z_{p}\right) \bmod p^{t} \mid S[G] \equiv T \bmod p^{t}\right\},
\end{aligned}
$$

where T is a regular matrix in \widetilde{S}_{n} and $m=2 r+4$. We denote by $\boldsymbol{Q}_{p} \widetilde{S}_{n}$ the set of all symmetric matrices of size n with entries in \boldsymbol{Q}_{p}. For $R \in$ $\boldsymbol{Q}_{p} \widetilde{S}_{n}$, let $\left\{p^{a_{1}}, \cdots, p^{a_{r}}\right\}\left(a_{1} \leqq \cdots \leqq a_{k}<0 \leqq a_{k+1} \leqq \cdots\right)$ be non-zero elementary divisors and put $w(R)=(-p)^{k}$ and $\nu(R)=p^{-\sum_{i=1}^{k} a_{i}}$, where $w(R)=$ $\nu(R)=1$ if all elementary divisors are integral.

Lemma 8. $\quad \alpha_{p}^{\prime}(T, S)=\lim _{t \rightarrow \infty} \sum_{\substack{R \in Q_{2} \mathscr{S}_{n} \mathbb{\Phi}_{n} \\ p^{t} R \in \Phi_{n}}} e(-\operatorname{tr} T R) w(R) \nu(R)^{-r-2}$ and if $r \geqq n$, then $\alpha_{p}^{\prime}(T, S)=\sum_{R \in \varrho_{p} 厅_{n} / \varsigma_{n}} e(-\operatorname{tr} T R) w(R) \nu(R)^{-r-2} \quad$ is absolutely convergent.

Proof. $\#\left\{G \in M_{m, n}\left(Z_{p}\right) \bmod p^{t} \mid S[G] \equiv T \bmod p^{t}\right\}$

$$
\begin{aligned}
& =p^{-t n(n+1) / 2} \sum_{G \bmod p^{t}} \sum_{X \in \Theta_{n} / p t \Phi_{n}} e\left(\operatorname{tr}((S[G]-T) X) p^{-t}\right) \\
& =p^{-t n(n+1) / 2} \sum_{X \in \Im_{n} / p t \Phi_{n}} e\left(-\operatorname{tr}(T X) p^{-t}\right) \sum_{G} e\left(\operatorname{tr}(S[G] X) p^{-t}\right) .
\end{aligned}
$$

Here we put $X=\operatorname{diag}\left(\varepsilon_{1} p^{a_{1}}, \cdots, \varepsilon_{n} p^{a_{n}}\right)[U], U \in G L_{n}\left(Z_{p}\right)$ and may assume $\varepsilon_{i} \in \boldsymbol{Z}_{p}^{\times}, 0 \leqq a_{1} \leqq \cdots \leqq a_{n} \leqq t$; then we have

$$
\begin{aligned}
\sum_{G} e(\operatorname{tr} & \left.(S[G] X) p^{-t}\right) \\
& =\prod_{i=1}^{n}\left(\sum_{g \bmod p t} e\left(S[g] \varepsilon_{i} p^{a_{i} t}\right)\right) \\
& =p^{(r+2) \sum_{i=1}^{n}\left(t+a_{i}\right)} w\left(p^{-t} X\right) \\
& =p^{2(r+2) t n} \nu\left(p^{-t} X\right)^{-(r+2)} w\left(p^{-t} X\right),
\end{aligned}
$$

and this gives the first expression of $\alpha_{p}^{\prime}(T, S)$. The second follows from usual arguments.

Let C, D be matrices in $M_{n}\left(Z_{p}\right)$ and write $(C, D)=1$ if $C^{t} D$ is symmetric and all elementary divisors of $n \times 2 n$ matirx (C, D) are 1 . Let $\left\{p^{\lambda_{1}}, \cdots, p^{\lambda_{n}}\right\}$ be elementary divisors of $C(|C| \neq 0)$ and put $\chi=$ $\operatorname{diag}\left(p^{\lambda_{1}}, \cdots, p^{\lambda_{n}}\right), C=V \chi U, \quad U, V \in G L_{n}\left(Z_{p}\right)$ and $D=V D^{\prime t} U^{-1}$; then $\left.C^{-1} D=\left(\chi^{-1} D^{\prime}\right){ }^{t} U^{-1}\right]$ and its non-integral elementary divisors are $\left\{p^{-\lambda_{i}} \mid \lambda_{i}>0\right\}$ and we may suppose that U is uniquely determined as one of representatives of $\left(G L_{n}\left(Z_{p}\right) \cap \chi^{-1} G L_{n}\left(Z_{p}\right) \chi\right) \backslash G L_{n}\left(Z_{p}\right)$. It is easy to see that any element of $Q_{p} \widetilde{S}_{n}$ can be expressed as $C^{-1} D$ with $(C, D)=1$. Hence the sum $\sum_{R} e(\operatorname{tr} T R)$ where R runs over $Q_{p} \widetilde{S}_{n} / \mathbb{S}_{n}$ so that the nonintegral elementary divisors of R are $\left\{p^{-\lambda_{i}} \mid \lambda_{i}>0\right\}$ is equal to

$$
\begin{aligned}
& \left.\sum_{\substack{\left.U \in\left(G L_{n}\left(Z_{p}\right) \cap X-1, G L_{n}\left(Z_{p}\right) x\right) \backslash G L_{n}\left(Z_{p}\right) \\
D \in M_{n}\right)=1 \\
D \mathcal{Z}^{\prime} / X \Xi_{n}}} e\left(\operatorname{tr}\left(\chi^{-1} D\right)\left[^{t} U^{-1}\right] \cdot T\right)\right) \\
& =\sum_{U} \sum_{D} e\left(\operatorname{tr} T\left[U^{-1}\right] \cdot \chi^{-1} D\right) .
\end{aligned}
$$

We put $\Lambda=\left\{\left(\lambda_{1}, \cdots, \lambda_{n}\right) \mid 0 \leqq \lambda_{1} \leqq \cdots \leqq \lambda_{n}, \lambda_{i} \in Z\right\}$ and for $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ $\in \Lambda$ we put $\chi(\lambda)=\operatorname{diag}\left(p^{\lambda_{1}}, \cdots, p^{\lambda_{n}}\right)$ and

$$
R_{n}(T, \lambda)=\sum_{D} e\left(\operatorname{tr} T \chi(\lambda)^{-1} D\right)
$$

where D runs over $M_{n}\left(Z_{p}\right) \bmod \chi(\lambda) \mathbb{S}_{n}$ so that $(\chi(\lambda), D)=1$, and put $w(\lambda)=$ $(-p)^{n-k}$ if $\lambda_{k}=0<\lambda_{k+1}$. Now we have a new expression for $\alpha_{p}^{\prime}(T, S)$

$$
\alpha_{p}^{\prime}(T, S)=\sum_{\lambda \in \Lambda} w(\lambda) p^{-\left(\Sigma \lambda_{i}\right)(r+2)} \sum_{U \in G_{n}(\lambda)} R_{n}\left(-T\left[U^{-1}\right], \lambda\right)
$$

if $r \geqq n$, where we put $G_{n}(\lambda)=\left(G L_{n}\left(Z_{p}\right) \cap \chi(\lambda)^{-1} G L_{n}\left(Z_{p}\right) \chi(\lambda)\right) \backslash G L_{n}\left(Z_{p}\right)$.
We define $\beta(s, T)$ by

$$
\beta(s, T)=\sum_{\lambda \in \Lambda} w(\lambda) p^{-\left(\Sigma \lambda_{i}\right) s} \sum_{U \in G_{n}(\lambda)} R_{n}\left(T\left[U^{-1}\right], \lambda\right) .
$$

$\beta(s, T)$ is absolutely convergent if $s \geqq n+2$, and $\alpha_{p}^{\prime}(T, S)=\beta(r+2,-T)$ if $r \geqq n$.

Lemma 9. For a regular $T \in \mathbb{S}_{n}, \beta(s, T)$ is a polynomial in p^{-s} and $\beta(r+2,-T)=\alpha_{p}^{\prime}\left(T, S_{r}\right)$ if $2 r+4 \geqq n$.

Proof. For a sufficiently large t, which is dependent not on r but on T,

$$
\begin{aligned}
\alpha_{p}^{\prime}\left(T, S_{r}\right) & =\sum_{\substack{R \in Q_{p} \tilde{S}_{1} / \Im_{\nwarrow} \\
p^{t} R \in \Xi_{n}}} e(-T R) w(R) \nu(R)^{-r-2} \\
& =\beta(r+2,-T ; t) \quad \text { for } r \geqq n / 2-2
\end{aligned}
$$

where $\beta(s, T ; t)$ is the partial sum on $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \Lambda$ with $\lambda_{n} \leqq t$. Since $\beta(s, T ; t)$ and $\beta(s, T ; t+1)$ are polynomials in p^{-s} and $\beta(r+2, T ; t)=$ $\beta(r+2, T ; t+1)=\alpha_{p}^{\prime}\left(-T, S_{r}\right)$ for $r \geqq n / 2-2$, we have $\beta(s, T ; t)=$ $\beta(s, T ; t+1)=\cdots=\beta(s, T)$. Hence it completes the proof.

Lemma 10. For a natural number k, the number of symmetric regular matrices of size k with entries in $Z / p Z$ is equal to $p^{k(k+1) / 2} \prod_{\substack{1 \leq i \leq k \\ \text { odd }}}\left(1-p^{-i}\right)$.

Proof. A symmetric regular matrix with entries in $F=\boldsymbol{Z} / p \boldsymbol{Z}$ is equivalent to one of $S_{1}=\operatorname{diag}(1, \cdots, 1)$ or $S_{2}=\operatorname{diag}(1, \cdots, 1, \delta)$ where δ is a non-square. Thus the number in question is equal to

$$
\frac{\# G L_{k}(F)}{\# O\left(S_{1}\right)}+\frac{\# G L_{k}(F)}{\# O\left(S_{2}\right)} .
$$

It is known that $\# G L_{k}(F)=\left(p^{k}-1\right)\left(p^{k}-p\right) \cdots\left(p^{k}-p^{k-1}\right), \# O\left(S_{1}\right)=$ $\# O\left(S_{2}\right)=2 p^{k(k-1) / 2} \prod_{1 \leqq i \leqq(k-1) / 2}\left(1-p^{-2 i}\right)$ if k is odd, and $\# O(\operatorname{diag}(1, \cdots$, $1, \eta))=2 p^{k(k-1) / 2}\left(1-\left(\frac{(-1)^{k / 2} \eta}{p}\right) p^{-k / 2}\right) \prod_{1 \leqq i \leqq k / 2-1}\left(1-p^{-2 i}\right)$ for $\eta \in F^{\times}$if k is even where (-) is the quadratic residue symbol. The lemma follows immediately from these.

For $0 \leqq k \leqq h \leqq n$ we put

$$
\begin{aligned}
\Lambda_{k} & =\left\{\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right) \in \Lambda \mid \lambda_{i}>0 \text { if and only if } i>k\right\}, \\
\Lambda_{k, h} & =\left\{\lambda \in \Lambda_{k} \mid \lambda_{i}=1 \text { if } k<i \leqq h, \lambda_{i} \geqq 2 \text { if } i>h\right\} .
\end{aligned}
$$

It is obvious that

$$
\begin{aligned}
\Lambda_{0} & =\left\{\lambda \in \Lambda \mid \lambda_{1} \geqq 1\right\}, \Lambda_{n}=\{(0, \cdots, 0)\}, \\
\Lambda_{k, k} & =\left\{\lambda \in \Lambda \mid 0=\cdots=\lambda_{k}<\lambda_{k+1} \leqq \cdots, \lambda_{k+1} \geqq 2\right\} \\
\Lambda & =\coprod_{0 \leqq k \leqq n} \Lambda_{k}, \Lambda_{k}=\coprod_{k \leqq n \leqq n} \Lambda_{k, h} .
\end{aligned}
$$

Lemma 11. For $T \in \mathbb{S}_{n}$ and $\lambda \in \Lambda_{k, h}(0 \leqq k \leqq h \leqq n)$, we have

$$
R_{n}(p T, \lambda)=p^{(n-k)(n-k+1) / 2} \prod_{\substack{\leq i \leq h-k \\ i} 0 d d}\left(1-p^{-i}\right) R_{n}(T, \lambda-1),
$$

where $\lambda-1=\left(0, \cdots, 0, \lambda_{k+1}-1, \cdots, \lambda_{n}-1\right) \in \Lambda_{h}$.
Proof. First we claim that for $\lambda \in \Lambda_{k}$, we have $R_{n}(T, \lambda)=$ $R_{n-k}\left(T^{\prime},\left(\lambda_{k+1}, \cdots, \lambda_{n}\right)\right)$ where T^{\prime} is the lower right $(n-k) \times(n-k)$ submatrix. For $P=\operatorname{diag}\left(p^{\lambda_{k+1}}, \cdots, p^{\lambda_{n}}\right), \chi(\lambda)=\left(\begin{array}{l}1_{k} \\ \\ P\end{array}\right)$ holds and it is easy to see that $(\chi(\lambda), D)=1$ if and only if $D_{1}={ }^{t} D_{1}, D_{3}=P^{t} D_{2},\left(P, D_{4}\right)=1$ where $D=\left[\begin{array}{ll}D_{1}^{(k)} & D_{2} \\ D_{3} & D_{4}\end{array}\right]$. Since $\chi(\lambda)\left[\begin{array}{ll}S_{1} & S_{2} \\ { }^{t} S_{2} & S_{4}\end{array}\right]=\left[\begin{array}{cc}S_{1} & S_{2} \\ P^{t} S_{2} & P S_{4}\end{array}\right]$, the representatives
$\bmod \chi(\lambda) \Im_{n}$ of D which satisfies $(\chi(\lambda), D)=1$ can be chosen to be $\left\{\left.\left[\begin{array}{cc}0 & 0 \\ 0 & D_{4}\end{array}\right] \right\rvert\,\left(P, D_{4}\right)=1 \quad D_{4} \bmod P \Im_{n-k}\right\}$, and then we have

$$
\begin{aligned}
R_{n}(T, \lambda) & =\sum_{D_{4}} e\left(\operatorname{tr} T\left[\begin{array}{ll}
1_{k} & \\
& P^{-1}
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & D_{4}
\end{array}\right]\right) \\
& =\sum_{D_{4}} e\left(\operatorname{tr} T^{\prime} P^{-1} D_{4}\right) \\
& =R_{n-k}\left(T^{\prime},\left(\lambda_{k+1}, \cdots, \lambda_{n}\right)\right) .
\end{aligned}
$$

Suppose that $\lambda \in \Lambda_{0,0}$, i.e., $\lambda_{1} \geqq 2$. It is easy to see that $(\chi(\lambda), D)=1$ holds if and only if

$$
\begin{aligned}
& \chi(\lambda)^{-1} D \text { is symmetric and } D \text { is in } G L_{n}\left(Z_{p}\right) \\
\Leftrightarrow & \chi(\mu)^{-1} D \text { is symmetric for } \mu=\left(\lambda_{1}-1, \cdots, \lambda_{n}-1\right) \\
& D \text { is in } G L_{n}\left(Z_{p}\right) \\
\Leftrightarrow & (\chi(\mu), D)=1
\end{aligned}
$$

since $\chi(\lambda)=p \chi(\mu) \equiv 0 \bmod p^{2}$.
Putting $D=D_{1}+\chi(\mu) X, D$ runs over the representatives $\bmod \chi(\lambda) \Im_{n}$ of D safisfying $(\chi(\lambda), D)=1$ if and only if D_{1} runs over the representatives $\bmod \chi(\mu) \Im_{n}$ of D_{1} satisfying $\left(\chi(\mu), D_{1}\right)=1$ and X runs over $\mathbb{S}_{n} / p \mathbb{S}_{n}$. Hence we have

$$
\begin{aligned}
R_{n}(p T, \lambda) & =\sum_{D_{1}} e\left(\operatorname{tr} p T p^{-1} \chi(\mu)^{-1}\left(D_{1}+\chi(\mu) X\right)\right) \\
& =\sum_{D_{1}} e\left(\operatorname{tr} T \chi(\mu)^{-1} D_{1}\right) \sum_{X} e(\operatorname{tr}(T X)) \\
& =p^{n(n+1) / 2} R_{n}(T, \mu)
\end{aligned}
$$

Suppose that $\lambda \in \Lambda_{0, h}(h \geqq 1)$, i.e., $1=\lambda_{1}=\cdots=\lambda_{h}<\lambda_{h+1} \leqq \cdots$. Putting $\chi(\lambda)=\left[\begin{array}{ll}p 1_{h} & \\ & P\end{array}\right], D=\left[\begin{array}{ll}D_{1}^{(h)} & D_{2} \\ D_{3} & D_{4}\end{array}\right]$, it is easy to see $(\chi(\lambda), D)=1$ if and only if $D_{1}={ }^{t} D_{1} \in G L_{h}\left(Z_{p}\right), D_{3}=p^{-1} P^{t} D_{2}$ and $\left(P, D_{4}\right)=1$. Hence we have

$$
R_{n}(p T, \lambda)=\sum_{D_{1}, D_{2}, D_{4}} e\left(\operatorname{tr} p T\left[\begin{array}{ll}
p^{-1} 1_{h} & \\
& \\
& P^{-1}
\end{array}\right]\left[\begin{array}{cc}
D_{1} & D_{2} \\
p^{-1} P^{t} D_{2} & D_{4}
\end{array}\right]\right)
$$

where D_{1}, D_{2} and D_{4} run over $\left\{D_{1} \in \Im_{h} / p \widetilde{S}_{h}| | D_{1} \mid \not \equiv 0 \bmod p\right\}, \quad D_{2} \in$ $M_{h, n-h}(\boldsymbol{Z} / p \boldsymbol{Z})$ and $\left\{D_{4} \in M_{n-h}\left(Z_{p}\right) \bmod P \mathbb{S}_{n-h} \mid\left(P, D_{4}\right)=1\right\}$ respectively,

$$
=\#\left\{D_{1}\right\} p^{n(n-h)} R_{n-h}\left(p T^{\prime},\left(\lambda_{n+1}, \cdots, \lambda_{n}\right)\right)
$$

where T^{\prime} is the right lower $(n-h) \times(n-h)$ submatrix of T,

$$
\begin{aligned}
= & p^{n(h+1) / 2} \prod_{\substack{1 \leq i \leq h \\
i=0 d d}}\left(1-p^{-i}\right) \cdot p^{h(n-h)} \cdot p^{(n-h)(n-h+1) / 2} \\
& \times R_{n-h}\left(T^{\prime},\left(\lambda_{h+1}-1, \cdots, \lambda_{n}-1\right)\right) \\
= & p^{n(n+1) / 2} \prod_{\substack{1 \leq i \leq h \\
i \leq o d d}}\left(1-p^{-i}\right) R_{n}(T, \lambda-1)
\end{aligned}
$$

Finallyfor $\lambda \in \Lambda_{k, h}$, we have

$$
R_{n}(p T, \lambda)=R_{n-k}\left(p T^{\prime},\left(\lambda_{k+1}, \cdots, \lambda_{n}\right)\right)
$$

where T^{\prime} is the right lower $(n-k) \times(n-k)$ submatrix of T

$$
\begin{aligned}
& =p^{(n-k)(n-k+1) / 2} \prod_{\substack{1 \leq i \leq n-k \\
i=0 d d}}\left(1-p^{-i}\right) \cdot R_{n-k}\left(T^{\prime},\left(\lambda_{k+1}-1, \cdots, \lambda_{n}-1\right)\right) \\
& =p^{(n-k)(n-k+1) / 2} \prod_{\substack{1 \leq i \leq n-k \\
i \leq o d d}}\left(1-p^{-i}\right) \cdot R_{n}(T, \lambda-1) .
\end{aligned}
$$

We denote by $F(x), F(x ; k, h)(0 \leqq k \leqq h \leqq n)$

$$
\sum_{t \geqq 0} \beta\left(s, p^{t} T\right) x^{t}, \quad \sum_{t \geqq 0}\left(\sum_{\lambda \in \Lambda_{k}, n} w(\lambda) p^{-\left(\Sigma \lambda_{i}\right) s} \sum_{U \in\left(\xi_{n}(\lambda)\right.} R_{n}\left(p^{t} T\left[U^{-1}\right], \lambda\right)\right) x^{t}
$$

respectively. To prove Theorem 4, we have only to prove that the above formal power series $F(x)$ is a rational function whose denominator is $\prod_{0 \leq j \leq n}\left(1-p^{(n-j)(n+j+1-2 s) / 2} x\right)$. Obviously $F(x)=\sum_{0 \leq k \leq n \leq n} F(x ; k, h)$ holds.

Lemma 12. For $0 \leqq k \leqq h \leqq n$ we have

$$
F(x ; k, h)=F(0 ; k, h)+c(k, h) p^{(k-n) s} x \sum_{h \leqq f \leqq n} F(x ; h, f)
$$

where

$$
c(k, h)=p^{(n-k)(n+k+3) / 2+h-n} \prod_{\substack{1 \leqq \prod_{\begin{subarray}{c}{i} }}^{i \in e v e n}}\end{subarray}}\left(1-p^{-i}\right)^{-1} \prod_{k+1 \leqq i \leqq h}\left(p^{-i}-1\right) .
$$

Proof. For $\lambda=\left(0, \cdots, 0, \lambda_{k+1}, \cdots, \lambda_{n}\right) \in \Lambda_{k, h}$ we denote $(0, \cdots, 0$, $\left.\lambda_{h+1}-1, \cdots, \lambda_{n}-1\right) \in \Lambda_{h}$ by $\mu=\lambda-1$. The mapping $\lambda_{\mapsto} \rightarrow \lambda-1$ gives obviously a bijection from $\Lambda_{k, h}$ to Λ_{h}. Putting $P=\operatorname{diag}\left(p^{\lambda_{n+1}-1}, \cdots, p^{\lambda_{n}-1}\right)$, we have

$$
\chi(\lambda)=\left[\begin{array}{lll}
1_{k} & & \\
& p 1_{h-k} & \\
& & p P
\end{array}\right], \quad \chi(\mu)=\left[\begin{array}{ll}
1_{h} & \\
& \\
&
\end{array}\right] \quad \text { and } P \equiv 0 \bmod p
$$

It is easy to see that for $U=\left[\begin{array}{lll}U_{1}^{(k)} & U_{2} & U_{3} \\ U_{4} & U_{5}^{(h-k)} & U_{6} \\ U_{7} & U_{8} & U_{9}\end{array}\right] \in M_{n}\left(Z_{p}\right), \quad U \in G L^{n}\left(Z_{p}\right) \cap$
$\chi(\lambda)^{-1} G L_{n}\left(Z_{p}\right) \chi(\lambda)$ if and only if $U_{1} \in G L_{k}\left(\boldsymbol{Z}_{p}\right), U_{5} \in G L_{h-k}\left(Z_{p}\right), U_{9} \in$ $G L_{n-h}\left(Z_{p}\right), \quad U_{2} \equiv 0 \bmod p, \quad U_{3} \in p M_{k, n-h}\left(Z_{p}\right) P, \quad U_{6} \in M_{n-k, n-h}\left(Z_{p}\right) P$ and $U_{9} \in G L_{n-h}\left(\boldsymbol{Z}_{p}\right) \cap P^{-1} G L_{n-h}\left(\boldsymbol{Z}_{p}\right) P$, and for $V=\left[\begin{array}{ll}V_{1}^{(h)} & V_{2} \\ V_{3} & V_{4}\end{array}\right] \in M_{n}\left(\boldsymbol{Z}_{p}\right)$,

$$
V \in G L_{n}\left(Z_{p}\right) \cap \chi(\mu)^{-1} G L_{n}\left(Z_{p}\right) \chi(\mu)
$$

if and only if $V_{1} \in G L_{h}\left(\boldsymbol{Z}_{p}\right), V_{4} \in G L_{n-h}\left(Z_{p}\right), V_{2} \in M_{h, n-h}\left(Z_{p}\right) P$ and $V_{4} \in$ $G L_{n-h}\left(Z_{p}\right) \cap P^{-1} G L_{n-h}\left(Z_{p}\right) P$. Hence $G L_{n}\left(Z_{p}\right) \cap \chi(\lambda)^{-1} G L_{n}\left(Z_{p}\right) \chi(\lambda) \subset$ $G L_{n}\left(Z_{p}\right) \cap \chi(\mu)^{-1} G L_{n}\left(Z_{p}\right) \chi(\mu)$ holds and then we have

$$
\begin{aligned}
\sum_{U \in G_{n}(\lambda)} & R_{n}\left(p^{t} T\left[U^{-1}\right], \mu\right) \\
= & {\left[G L_{n}\left(Z_{p}\right) \cap \chi(\mu)^{-1} G L_{n}\left(Z_{p}\right) \chi(\mu): G L_{n}\left(Z_{p}\right) \cap \chi(\lambda)^{-1} G L_{n}\left(Z_{p}\right) \chi(\lambda)\right] } \\
& \times \sum_{U \in G_{n}(\mu)} R_{n}\left(p^{t} T\left[U^{-1}\right], \mu\right)
\end{aligned}
$$

since $R_{n}(T[U], \mu)=R_{n}(T, \mu)$ for $U \in G L_{n}\left(Z_{p}\right) \cap \chi(\mu)^{-1} G L_{n}\left(Z_{p}\right) \chi(\mu)$. The index is equal to $p^{k(n-k)} \prod_{k+1 \leqq i \leqq n}\left(p^{-i}-1\right) \prod_{1 \leqq i \leqq n-k}\left(p^{-i}-1\right)^{-1}$ by [1]. Now we have

$$
\begin{aligned}
& F(x ; k, h) \\
& =F(0 ; k, h)+\sum_{t \geq 1}\left(\sum_{\lambda \in \Lambda_{k}, h} w(\lambda) p^{-\left(\Sigma \lambda_{i}\right) s} \sum_{U \in G_{n}(\lambda)} R_{n}\left(p^{t} T\left[U^{-1}\right], \lambda\right)\right) x^{t} \\
& =F(0 ; k, h)+p^{(n-k)(n-k+1) / 2} \prod_{\substack{\leq \leq i \leq h-k \\
i: o d d}}\left(1-p^{-i}\right) \\
& \times \sum_{t \geqq 1}\left(\sum_{\lambda \in \Lambda_{k}, h} w(\lambda) p^{-\left(\Sigma \lambda_{i}\right) s} \sum_{U \in G_{n}(\lambda)} R_{n}\left(p^{t-1} T\left[U^{-1}\right], \lambda-1\right)\right) x^{t} \\
& =F(0 ; k, h)+p^{(n-k)(n-k+1) / 2} \prod_{\substack{1 \leq i \leq h-k \\
i: \text { odd }}}\left(1-p^{-i}\right) \\
& \times p^{(n-k) k} \prod_{k+1 \leq i \leq h}\left(p^{-i}-1\right) \prod_{1 \leqq i \leqq n-k}\left(p^{-i}-1\right)^{-1} \\
& \times x \sum_{t \geqq 0}\left(\sum_{\lambda \in A_{k}, h} w(\lambda) p^{-\left(\Sigma \lambda_{i}\right) s} \sum_{U \in G_{n}(\lambda-1)} R_{n}\left(p^{t} T\left[U^{-1}\right], \lambda-1\right)\right) x^{t} \\
& =F(0 ; k, h)+p^{(n-k)(n+k+3) / 2-(n-k) s}(-1)^{n-k} \prod_{\substack{1 \leq i \leq h-k \\
i: o d d}}\left(1-p^{-i}\right) \\
& \times \prod_{k+1 \leqq i \leqq h}\left(p^{-i}-1\right) \prod_{1 \leqq i \leqq h-k}\left(p^{-i}-1\right)^{-1} \\
& \times x \sum_{t \geq 0}\left(\sum_{\mu \in \Lambda_{h}} p^{-\left(\sum \mu_{i}\right) s} \sum_{U \in G_{n}(\mu)} R_{n}\left(p^{t} T\left[U^{-1}\right], \mu\right)\right) x^{t} \\
& =F(0 ; k, h)+p^{(n-k)(n+k+3) / 2+h-n-(n-k) s} \prod_{\substack{1 \leq i \leq n-k \\
i: \text { even }}}\left(1-p^{-i}\right)^{-1} \\
& \times \prod_{k+1 \leqq i \leq h}\left(p^{-t}-1\right) \cdot x \sum_{h \leq f \leqq n} F(x ; h, f) \\
& =F(0 ; k, h)+c(k, h) p^{(k-n) s} x \sum_{h \leqq f \leqq n} F(x ; h, f) \text {. }
\end{aligned}
$$

Lemma 13. For $0 \leqq a \leqq n$ we have

$$
\prod_{0 \leqq j \leqq a}\left(1-p^{(n-j)(n+j+1-2 s) / 2} x\right) F(x)
$$

$=$ a polynomial in x of degree a

$$
+x^{a+1} \sum_{a+1 \leqq k \leqq n \leqq n} A(a, k) F(x ; k, h),
$$

where $A(a, k)$ is inductively defined as follows:

$$
\begin{aligned}
A(0, k)= & \left(\sum_{0 \leqq g \leqq k} c(g, k) p^{g s}-p^{n(n+1) / 2}\right) p^{-n s} & \text { for } 1 \leqq k \leqq n, \\
A(a+1, k)= & \sum_{a+1 \leqq g \leqq k} A(a, g) c(g, k) p^{(g-n) s} & \\
& -A(a, k) p^{(n-a-1)(n+a+2-2 s) / 2} & \text { for } a+2 \leqq k \leqq n .
\end{aligned}
$$

Proof. We use the induction on a. For $a=0$ we have

$$
\begin{aligned}
&\left(1-p^{n(n+1-2 s) / 2} x\right) F(x) \\
&= F(0)+\sum_{0 \leq k \leq h \leqq n} c(k, h) p^{(k-n) s} x \sum_{h \leq f \leqq n} F(x ; h, f) \\
&-p^{n(n+1-2 s) / 2} x \sum_{0 \leq k \leqq n \leqq n} F(x ; k, h) \\
&= F(0)+p^{-n s} x \sum_{0 \leqq k \leq h \leqq n} F(x ; k, h)\left\{\sum_{0 \leq g \leqq k} c(g, k) p^{g s}-p^{n(n+1) / 2}\right\} \\
&= F(0)+x \sum_{1 \leqq k \leq n \leqq n} A(0, k) F(x ; k, h) .
\end{aligned}
$$

Suppose that the assertion is true for a; then we have

$$
\begin{aligned}
\prod_{0 \leqq j \leqq a+1} & \left(1-p^{(n-j)(n+j+1-2 s) / 2} x\right) F(x) \\
= & \left(1-p^{(n-a-1)(n+a+2-2 s) / 2} x\right)\{a \text { polynomial in } x \text { of degree } a \\
& \left.+x^{a+1} \sum_{a+1 \leqq k \leqq h \leqq n} A(a, k) F(x ; k, h)\right\} \\
= & \text { a polynomial in } x \text { of degree } a+1 \\
& +x^{a+1} \sum_{a+1 \leqq k \leqq n \leqq n} A(a, k) F(x ; k, h) \\
& -p^{(n-a-1)(n+a+2-2 s) / 2} x^{a+2} \sum_{a+1 \leq k \leqq n \leqq n} A(a, k) F(x ; k, h) \\
= & \text { a polynomial in } x \text { of degree } a+1 \\
& +x^{a+1} \sum_{a+1 \leqq k \leq n \leqq n} A(a, k) c(k, h) p^{(k-n) s} x \sum_{n \leqq f \leqq n} F(x ; h, f) \\
& -p^{(n-a-1)(n+a+2-2 s) / 2} x^{a+2} \sum_{a+1 \leqq k \leqq n \leqq n} A(a, k) F(x ; k, h)
\end{aligned}
$$

$$
\begin{aligned}
= & \text { a polynomial in } x \text { of degree } a+1 \\
& +x^{a+2} \sum_{a+1 \leq k \leqq h \leqq n} F(x ; k, h)\left\{\sum_{a+1 \leq g \leqq k} A(a, g) c(g, k) p^{(g-n) s}\right. \\
& \left.-p^{(n-a-1)(n+a+2-2 s) / 2} A(a, k)\right\} \\
= & \text { a polynomial in } x \text { of degree } a+1 \\
& +x^{a+2} \sum_{a+2 \leqq k \leqq h \leqq n} F(x ; k, h) A(a+1, k),
\end{aligned}
$$

since the coefficient of $F(x ; a+1, h)$ vanishes. Thus we have proved Lemma 13 and hence Theorem 4, putting $a=n$.

In order to show that the denominator of $f(x)$ in Theorem 4 is $\prod_{2 \leqq j \leqq n}\left(1-p^{-j(j-1) / 2} x\right)$ in the case of $n=r+2$, it is necessary and sufficient to show $A(n-2, n-1) \sum_{n-1 \leqq n \leqq n} F(x ; n-1, h)+A(n-2, n) F(x ; n, n)=0$ for $s=n$. We show hereafter that the coefficients of the formal power series $F(x ; n-1, n-1), F(x ; n-1, n), F(x ; n, n)$ do not have a pole at $s=n$. Hence $A(n-2, n-1)=A(n-2, n)=0$ at $s=n$ is sufficient for the denominator of $f(x)$ to be $\prod_{2 \leqq j \leqq n}\left(1-p^{-j(j-1) / 2} x\right)$.

Lemma 14. The coefficients of the formal power series $F(x ; n-1$, $n-1), F(x ; n-1, n), F(x ; n, n)$ do not have a pole at $s=n$.

Proof. First we note that $\Lambda_{n, n}=\{(0, \cdots, 0)\}, \Lambda_{n-1, n}=\{(0, \cdots, 0,1)\}$, $\Lambda_{n-1, n-1}=\{(0, \cdots, 0, a) \mid a \geqq 2\}$. Hence the assertion is obvious from the definition for $F(x ; n-1, n), F(x ; n, n)$. By definition, $F(x ; n-1, n-1)$ is equal to

$$
-p \sum_{t \geqq 0} \sum_{a \geqq 2} p^{-a s} \sum_{U \in G_{n}((0, \cdots, 0, a))} R_{n}\left(p^{t} T\left[U^{-1}\right],(0, \cdots, 0, a)\right) x^{t} .
$$

It is not hard to see that the correspondence $U \mapsto$ the transpose of the n-th column of U^{-1} is the bijective mapping from $G_{n}((0, \cdots, 0, a))$ to $\left\{\left(x_{1}, \cdots, x_{n}\right) \mid x_{i} \in Z_{p},\left(x_{1}, \cdots, x_{n}\right)=1\right\} / \widetilde{a}$ where $\left(x_{1}, \cdots, x_{n}\right)_{\widetilde{a}}\left(y_{1}, \cdots, y_{n}\right)$ if and only if there is an element $w \in \boldsymbol{Z}_{p}^{\times}$such that $\left(x_{1}, \cdots, x_{n}\right) \equiv$ $w\left(y_{1}, \cdots, y_{n}\right) \bmod p^{a}$. Using the claim at the beginning of the proof of Lemma 11, the coefficient $c\left(p^{t} T\right)$ of x^{t} of $(-p)^{-1} F(x ; n-1, n-1)$ is

$$
\begin{aligned}
\sum_{a \geqq 2} p^{-a s} & \sum_{\left\{\left(x_{1}, \cdots, x_{n}\right) \mid\left(x_{1}, \cdots, x_{n}\right)=1\right\} / \widetilde{a}} R_{1}\left(p^{t} T[x], a\right) \\
& =\sum_{a \geqq 2} p^{-a s} \sum_{\left\{\left(x_{1}, \cdots, x_{n}\right) \mid\left(x_{1}, \cdots, x_{n}\right)=1\right\} / \widetilde{a}} \sum_{\substack{\text { mod } p^{a} \\
(d, p)=1}} e\left(p^{t} T[x] d / p^{a}\right) .
\end{aligned}
$$

We have only to prove that this is, in fact a polynomial in p^{-s}. It is easy to see

$$
\begin{aligned}
& \sum_{\substack{x_{i} \bmod p^{a}=1 \\
\left(x_{1}, \cdots, x_{n}\right)=1}} \sum_{\substack{a \bmod p^{a} \\
(d, p)=1}} e\left(p^{t} T[x] d / p^{a}\right) \\
& \quad=\sum_{\left\{\left(x_{1}, \cdots, x_{n}\right) \mid\left(x_{1}, \cdots, x_{n}\right)=1\right\} / \widetilde{a}} \sum_{y \text { mod } p^{a}} \sum_{\substack{d \bmod p^{a} \\
(y, p)=1 \\
(d, p)=1}} e\left(p^{t} T[x] y^{2} d / p^{a}\right) \\
& \quad=p^{a}\left(1-p^{-1}\right) \sum_{\left\{\left(x_{1}, \cdots, x_{n}\right)\left(\sum_{1}, \cdots, x_{n}\right)=1\right\} / \widetilde{a}} \sum_{\substack{d \bmod p^{a} \\
(d, p)=1}} e\left(p^{t} T[x] d / p^{a}\right) .
\end{aligned}
$$

Therefore, putting $D\left(p^{t} T, a\right)=\sum_{x_{i} \bmod p^{a}} \sum_{\substack{d \bmod p^{a} \\(d, p)=1}} e\left(p^{t} T[x] d / p^{a}\right)$, we have

$$
\begin{aligned}
& \quad \sum_{\left\{\left(x_{1}, \cdots, x_{n}\right) \mid\left(x_{1}, \cdots, x_{n}\right)=1\right\} / \widetilde{a}} \sum_{\substack{d \bmod p a \\
(d, p)=1}} e\left(p^{t} T[x] d / p^{a}\right) \\
& =p^{-a}\left(1-p^{-1}\right)^{-1}\left\{D\left(p^{t} T, a\right)-p^{n+2} D\left(p^{t} T, a-2\right)\right\} .
\end{aligned}
$$

To evaluate $D\left(p^{t} T, a\right)$, we may suppose $T=\operatorname{diag}\left(\varepsilon_{1} p^{b_{1}}, \cdots, \varepsilon_{n} p^{b_{n}}\right), \varepsilon_{i} \in \boldsymbol{Z}_{p}^{\times}$, $0 \leqq b_{1} \leqq \cdots \leqq b_{n}$. If $a>b_{n}+t$, then

$$
\begin{aligned}
& D\left(p^{t} T, a\right)=\sum_{\substack{x_{i} \text { mod } p a \\
\text { and } \\
(d, p)=1}} e\left(d \sum_{i=1}^{n} \varepsilon_{i} p^{b_{i}} x_{i}^{2} / p^{a-t}\right) \\
& =\sum_{\substack{d \text { mod } p^{a} \\
(d, p)=1}} \prod_{i=1}^{n} \sum_{x \bmod p^{a}} e\left(\varepsilon_{i} d x^{2} / p^{a-t-b_{i}}\right) \\
& =\sum_{\substack{d, p)=1 \\
d \bmod p^{a}}} \prod_{i=1}^{n} p^{t+b_{i}} \sum_{x \bmod p^{a}-t-b_{i}} e\left(\varepsilon_{i} d x^{2} / p^{a-t-b_{i}}\right) \\
& =p^{n t+\Sigma b_{i}} \sum_{\substack{d \bmod p^{a} \\
(d, p)=1}} \prod_{i=1}^{n} p^{\left(a-t-b_{i}\right) / 2}\left(\frac{\varepsilon_{i} d}{p}\right)^{a-t-b_{i}} \\
& \times \begin{cases}1 & p^{a-t-b_{i}} \equiv 1 \bmod 4, \\
\sqrt{-1} & p^{a-t-b_{i}} \equiv 3 \bmod 4\end{cases} \\
& =p^{\left(n t+\Sigma b_{i}\right) / 2+n a / 2+a-1} \sum_{\substack{d \text { mod } p \\
(a, p)=1}} \prod_{i=1}^{n}\left(\frac{\varepsilon_{i} d}{p}\right)^{a-t-b_{i}} \\
& \times \begin{cases}1 & p^{a-t-b_{i}} \equiv 1 \bmod 4, \\
\sqrt{-1} & p^{a-t-b_{i}} \equiv 3 \bmod 4 .\end{cases}
\end{aligned}
$$

Hence $D\left(p^{t} T, a+2\right)=p^{n+2} D\left(p^{t} T, a\right)$ follows for $a>b_{n}+t$ and the coefficient of x^{t} of $F(x ; n-1, n-1)$ is a polynomial in p^{-s}. Thus Lemma 14 has been proved.

The condition $A(n-2, n-1)=A(n-2, n)=0$ at $s=n$ is easily transformed to the one stated in the introduction.

References

[1] A. N. Andrianov, Spherical functions for $G L_{n}$ over local fields, and summation of Hecke series, Math. USSR Sbornik, 12 (1970), 429-452.
[2] - Integral representations of quadratic forms by quadratic forms: Multiplicative Properties, Proc. of the International Congress of Math. 1983, Warszawa, 465-474.
[3] J. S. Hsia, Regular positive ternary quadratic forms, Mathematika, 28 (1981), 231-238.
[4] J. S. Hsia, Y. Kitaoka and M. Kneser, Representations of positive definite quadratic forms, J. Reine Angew. Math., 301 (1978), 132-141.
[5] Y. Kitaoka, A note on local densities of quadratic forms, Nagoya Math. J., 92 (1983), 145-152.
[6] -, Lectures on Siegel modular forms and representation by quadratic forms, Tata Institute of Fundamental Research, 1986.
[7] -, Local densities of quadratic forms and Fourier coefficients of Eisenstein series, Nagoya Math. J., 103 (1986), 149-160.
[8] -, Modular forms of degree n and representation by quadratic forms IV, Nagoya Math. J., 107 (1987), to appear.
[9] M. Kneser, Quadratische Formen, Vorlesungs-Ausarbeitung, Göttingen, 1973-74.
[10] O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag, 1973.
[11] F. Sato, The rationality of a certain formal power series related to local densities of quratic forms, to appear.
[12] C. L. Siegel, Über die analytische Theorie der quadratischen Formen, Ann. of Math., 36 (1935), 527-607.
[13] H. Yoshida, On Siegel modular forms obtained from theta series, J. Reine Angew. Math., 352 (1984), 184-219.

Department of Mathematics
Faculty of Science
Nagoya University
Chikusa-ku, Nagoya 464
Japan

