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On Kronecker's Limit Formula for 
Certain Biquadratic Fields 

Shoji Konno 

§ 1. Introduction 

In [l], Asai studied the Kronecker's limit formula for the Eisenstein 
series associated to an algebraic number field of class number one. He 
obtained the function h(e) as an analogy of log\11(z)\ and he showed that 
h(e) satisfies certain differential equation and transformation formula. 
Recently, Elstrodt, Grunewald and Mennicke [2], generalized the above 
limit formula for the case of imaginary quadratic fields with arbitrary class 
number. They also showed many interesting formulas for the function 
associated to h(e). 

Our aim in this paper is to consider the Kronecker's limit formula 
for the zeta-function of certain biquadratic fields in connection with h(e). 
To be more precise, let L be the composite of two imaginary quadratic 
fields k and K. We assume that the class number of k is one and that the 
discriminants of k and K have no common factor. Let C be any absolute 
ideal class of Land let r.is, C) be the zeta-function of the class C. We 
show that the limit formula for r.L(s, C) can be written by means of the 
curvilinear integral of the function h(e). Here the curve is a semi-circle in 
R3 cannonically associated to the ideal class C (§ 4, Theorem 1). Since 
the Fourier coefficients of h(~) are given by modified Bessel function, each 
term of the integral decreases rapidly. In Section 5, we give an approxi
mation formula for each term appearing in the limit formula (§ 5, 
Theorems 2, 3). Finally using the table for the modified Bessel function 
([6]), we give the approximate values for the integrals in the case L= 
Q(,v -4, ,v -3). 

Notations. We denote by Q, R and C, respectively, the rational 
number field, the real number field, and the complex number field. For 
an associative ring A with an identity, Ax denote the group of invertible 
elements. For z e C, z-.z denotes the complex conjugation, S(z)=z+z 
and \z\2 =zz. For an algebraic extension X of Y, Nx 1y means the relative 
norm. 
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§2. Preliminaries 

Let k and K be imaginary quadratic fields of discriminants - d, and 
-d 2, respectively. Let us define L=kK. Throughout this paper we as
sume that the class number of k is one and (d,, d2)= 1, (d,>O, d2>0). 
Hence L is a biquadratic extension of Q whose galois group is abelian of 
type (2, 2). 

Let g denote the ring of integers in k and wk be the number of roots 
of unity ink. Let M=Q(../d 1d2) be the real quadratic field. Let e,>1 
denote the fundamental unit of M. We define e=e 1 or et according as 
NM1a(e,)= + 1 or -1. Let e' denote the conjugate of e over Q. We see 
easily that e> 1 >.s'>O. Let a be the generator of Gal (L/k). The re
striction of a on K also generates Gal (K/Q). In what follows, we write 
X=X" for XE L. 

Let C be any absolute ideal class of L. As usual, we denote by 
(.is, C)= "E,.eo NL 1a(a)-•, (Re (s)> 1), the zeta function of the ideal class 
C. Let c- 1 be the inverse class of C. Since the class number of k is one, 
we may choose an ideal q e c- 1 such that q=g+gw, we L (wig). 

Lemma 1. With the notation above, we can.find(~ ~) e SLz(g) such 

that (r !)(~ ~,)=(~~)(ff). In particular, we have e=cw+d, e'= 

cw+d and e-e'=c(w-w). 

Proof. Recall that (Jd,d2Y=((../-d,)(-../-d 2)Y=../-d 1 ../-d 2 = 
-../d 1d2. Hence we see e"=e'. Since eq=q, we have ew=aw+b and e= 
cw+d for some a, b, c, de g. The action of a on these relations implies 

(ff)(~~,)=(~ ~)(ff). Consequently, we obtain ee'=l=ad-bc. 

Let B=C+Cj denote the quaternion division algebra over R, where 
j satisfies P= -1 and zj=jz for any z e C. Any element ~ e B can be 
written as ~=x+ yi+uj+vij (x, y, u, v e R). Let f-'>-~=x-yi-ui-vij 
denote the quaternionic conjugation of B and let N(~)=~~ denote the 
norm of~. (The quaternionic involution of B coincides with the complex 
conjugation on C. Therefore we use the same notation~-~ for~ e B.) 

By the three-dimensional hyperbolic space we mean the subset of B 
consisting of elements ~=x+yi+vj with x, y, v e R and v>O. Let H 
denote the three-dimensional hyperbolic space. We denote the point of 
Hby ~=z+vj (z e C, v>O). The group SLz(C) act on Hby 

( 1) SL 2(C)XH3 ((; !), ~)--+(ae+,B)(r~+o)-1 e H. 
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Here the quotient (ae+fi)(re+ot 1 is taken in B. To be more precise, it 
is given by 

(2) (ae+f,)(re+o)-1= (az+J3)(~+afV 2 + V .. 
\rz+o\2+\r\2. U2 \rz+o\2+\r\2. v21 

The hyperbolic metric on H is defined by 

(3) 

The group PSLlC)=SLlC)/{±l} act on Has the group of isometries. 
Moreover, the discrete subgroup PSLlg)=SLlg)/{± 1} of PSLlC) act on 
H properly discontinuously. 

§ 3. Eisenstein series and semi-circles in H 

We now introduce the Eisenstein series. Let e=z+vj e H. Consider 
the series 

(4) 
u2• 

E(~, s)= :I;'---
{m,nl N(m-en)2• 

V2s 

:I:'------
{m,n) (\m-nz\2+\n\2v2)2• (Re(s)>l). 

The summation is taken over all non-associated pairs {m, n} for (m, n) e 
gXg-{(O, O)}. We call two pairs (m., n.) (v=l, 2) are associated if m2 = 
7Jm1, n2 =7Jn1 with 7J e gx are satisfied. The series (4) converges uniformly 
on any compact set in Re (s)> 1. It satisfies 

( 5) E((ae+f,)(re+ot1, s)=E(e, s) 

for any (f ~) e SLlg). The Eisenstein series E(e, s) is the special case of 

the function studied in Asai [l], Elstrodt, Grunewald and Mennicke [2]. 
The following Lemma is proved in [1], [2]. 

Lemma 2. The function s-+E(~, s) has a meromorphic continuation to 
the whole s-plane. At s= l the continued function has expansion 

The constant ao and the function h(e) are given by 

21. (Wk,Vd1 y () 1 ) a 0= tm -----"---'-----'ok s --- , 
,-1 2n- s-1 
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h(!;)= wkdl(k(2)-v2+4wk I: Im 1·x1(4rr\mn\ v)ve2•iS(mnz/./-d1) 
2rr2 0a'mn,{m,n)' n ,./ d1 

(!;=z+vj e H). 

The summation I:oaCmn,fm,n)' is taken over all non-equivalent classes {m, n}' 
with respect to the equivalence relation (m, n)-(mr;, nr;- 1) for m, neg and 
r; e gx. In Lemma 2, K, is the modified Bessel function ([6], p. 183) 

(6) 2K,(X)= ( 1)'[ e-<t+<xf2)•i-')r•-1dt (X>O). 

Notations C, q, w, w, e, e' and (~ ~) being the same as in Lemma 1. 

Let us denote by I'., the half-circle in H, which is perpendicular to the 
complex z-plane at the points w and w. For any !; e H, we define u= 
c(!;-w)(w-!;)- 1• Observe that u is an element of B, but not always lie 
in H. 

Lemma 3. The point !; is on I'., if and only if u is written as u1j for 
some u1>0. To be more precise, if !;=z+vj is on I'., then u1 is given by u1= 
(e-e')v/N(w-!;). Conversely.for any u1>O the point !;=(u 1j+c)- 1(udcv+ 
cw) is on I'., and!; corresponds to u=uJ 

Proof For any !;=z+vj e H, we see that 

u= c (!;-w)(w-!;) 
N(w-!;) 

= c {(z-w)(cv-z)-v2} + (e-e')v j. 
N~-~ N~-~ 

Since c(w-w)=e-e'>O. Our aim is to show that!; is on I'., if and only 
if A=O, where we denoted A=(z-w)(w-z)-v 2. Put z=x+yi, cv=w1 

+wzi and w=w 1 +wi (x, y, cvJ, wJ e R;j= I, 2). We have 

A= {(x-w1)(w1 -x) + (y-w2)(w2-Y)-v 2} 

+ { (y-w2)(w1 -x)-(cv2 - y)(x-w1)}i. 

We now identify the point x+yi+vj in H with the point (x, y, v) in R 3• - -Suppose !; is on I'., then the vectors w!; and !;cv are orthogonal. This 
means that Re(A)=0. Since the point z=x+yi lies on a segment ww, it 
satisfies (y-w 2)/(cv2-y)=(x-w 1)/(w1-x). Hence we have Im(A) =0. 
Thus!; e I'., implies A=O. The converse is obvious. Finally, for a given 
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u1>0 the point ~ satisfying u=ud=c(~-w)(w-~)- 1 is on r .. by the 
above. Solving for~. we obtain ~=(u+c)- 1(uw+cw). 

Lemma 4. For any ~ e H, let u be as in Lemma 3. Then the trans
formation ~-~*=(a~+b)(c~+d)- 1 induces u-+u*=e 2u. In particular, the 
curve I'., goes onto itself. 

Proof We extend the transformation ~-~* of H to the transfor
mation of HU C in an obvious way. Then the points w and w are fixed 
points of this transformation. Thus u goes to u*=c(~*-w)(w-~*)- 1• 

Now we have 

~* -w=(a~ +h)(c~ +d)- 1-(cw+d)- 1(aw+b) 

= (cw+d)- 1{(cw+d)(a~ +b)-(aw+b)(c~ + d)}(c~ + d)- 1 

=(cw+dt 1(~-w)(c~+dt 1• 

Similarly, we have 

Consequently, by Lemma 1, we obtain 

By Lemmas 3 and 4, we can view u1 as a positive parameter for the 
curve I'.,. But in what follows, we sometimes choose µ=u 1lcl- 1 as the 
positive parameter for the curve I'... For ~ e I'.,, they are given by 

(7) ~=(u+ct 1(uw+cw), u=u 1j, O<u 1<+00 

or recalling that c(w-w)=e-e'=lcllw-wl, 

(8) µ2w+w + lw-wlµ . ~-~], 
µ2+1 µ2+1 

O<µ<+oo. 

The transformation~-~* also induces µ-+µE.2. 

(9) 

Let us now consider the restriction of E(~, s) to~ e I'.,. Put 

- 1-logµ. 
2loge 

We consider the restricted function to be a function of 1. We shall denote 
it by g(A). Obviously, g is a C1-class function. The transformation ~-~* 
induces 1-+1+1. In view of (5), we see that g(A+ l)=g(A). Thus g has 
Fourier expansion 
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00 

(10) g(A)= I; ckeMk\ 
k=-00 

where ck are given by 

(11) (k=O, ± I, ±2, · · -). 

We should remark that the constant 20 can be chosen arbitrarily, since 
the integrand is periodic with period I. 

§ 4. Proof of Theorem 1 

Let C be any absolute ideal class of L. It is well known that the 
function t;is, C) is continued to the whole s-plane meromorphically. It 
has simple pole only at s= I. The aim of this section is to prove the 

Theorem 1. With the notations above. We choose an ideal q e c- 1 

such that q=g+gw with w EL. Then t;is, C) has Laurent expansion 

where RL is the regulator of L. The integral is taken along the curve 

1::_ + ._ µ2w+w + \w-w\µ . ,,-Z VJ-~-~ --~], 
µ2+1 µ2+1 

with an arbitrarily chosen µ0>0. The constant a0 and the function h(~) 
are given in Lemma 2. 

Proof To prove this assertion, we compute the constant term of the 
Fourier expansion of g(l). By (9) and (11), we have 

(12) Co= g(J.)dA=-- I;'---- µ f lo+l 1 f µo•' V2s d 

,. 2 loge "• !m,nl N(m-~n) 2' µ 

where we denoted µ0 =e 2' 0• Replacing~ by (u+c)- 1(uw+cw), we have 

m - ~n = (u + c )- 1{ u(m -wn) + c(m -wn) }. 

Put [3=m-wn. Then we see [3 e q and ~=m-wn. Since u=µ\c\j and 
v=\w-w\µ(µ2+1)- 1, we have 
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Let e0 denote the fundamental unit of L satisfying leol>L Let (e 0) 

and (e) be the cyclic groups generated by e0 and e, respectively. We can 
view (e) to be a subgroup of (e 0). Put q=[(e 0): (e)]. Recall that e0e0 

is a unit of M of norm 1. Hence we can write e0e0 = er with r = 1 or 2. 
In fact, if r:::2::::3 then we see leoe-1\=e<r- 2>12> 1. But the fact eg=e implies 
\e0e- 1\q=e 1-q> 1. This is a contradiction. 

Note that eio is a root of unity in k. Thus if f3 is replaced by {,el 
U=O, ± 1, ±2, ···)in (13), we see that 

(14) (lw-wlµ) 2• (lw-&1µ) 28 (lw-wl(µeir))2• 
((µe!r)21f31z+IP!2)2•. 

In (12) the integrand converges uniformly on any compact set in R(s)> 1. 
We can interchange the summation and the integration. 

1 'f µo•• v2• dµ Co=---I; 
2 loge {m,n) PO N(m-~n) 2• µ 

1 f Po•• Vza d µ - I:' -----. 
2wk loge m,nEg PO N(m-~n) 2' µ 

(m,n);"(O,O) 

By definition, when (m, n) runs over all pairs in g X g-{(O, O)}, f, runs over 
all non-zero numbers in q. Let 131, f32 e q. We see that ({,1)=(/3 2) if and 
only if f32= ±etf, 1 U=O, ± 1, ±2, · · · ). Hence by (13) and (14), we have 

- 1(1)-(012• I fpo<• µ2• dµ 
Co-~-~ I: -

2wk loge o,epeq po (µ21f312+lf,12)2• µ 

lw-w\2• I:' f fpos• (µeir)2• - dµ 
wk loge o,ecp>eqJ=-~ Po ((µe1r)21f312+1/312)2' µ 

\w-w\Zs +~ fposJr+o µ2• dµ 

Wk loge o,eiii1
cqJ~~ Po•'' (µ21f3\2+lfil2) 2• µ · 

Since r= 1 or r=2, we have 

f f posJ•+: • • dµ =~f~ • • • dµ • 
J=-~ posJr µ Y O µ 

Thus we can write 

(15) Co 21w-wl 28 I;' f~ µ28 dµ. 
wkr loge o.-cp)cq o (µ21f312+1fi12)2• µ 
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Put µ1=(\fi//312)µ2. Then we have 

f~ µ28 dµ 

0 (µ2\fi\2+1/312)2• µ 

1 I'(s) 2 
-

2NL1a(fi)' I'(2s) 

Recall that \w-w\=\NL 1iq)\-v'd 2 =-v'NL1a(q)d2 and RL,=2 log\e 0\=rloge. 
Thus (15) can be written as 

(16) d' I'(s) 2 
Co=-2 ___ ,is, C). 

wkRL I'(2s) 

On the other hand, by Lemma 2 and (12), we have 

Co=-- -- --+ao-2-log v2+h(~) ---1:..+o(\s-I \) 1 f Po•• 2,r2 ( 1 ) d 
2 loge Po wkd1 s-l µ 

= 2.r2 (-1-+ao-2- 1 fpo••(logv2-h(~)) dµ)+o(\s-1\). 
wkdl s-1 2loge po µ 

In view of (16), we can write 

,is, C)= 2.r2RL dt· I'(2s)(_l_+ao-2- 1 fpo••(log v2-h(~)lµ) 
d1d2 I'(s) 2 s-1 2 loge Po µ 

+0(\s-l\). 

Ats= 1, I'(s) has expansion I'(s)= 1 +ai(s-1)+.. . . Hence, we have, 
I'(s)2= 1 +2ai(s-1)+ ... , I'(2s-l)= 1 +2ai(s-1)+ ... , and I'(2s)/I'(s) 2 

=(2s-l)I'(2s-1)/I'(s)2={1 +2(s-1)}{1 +bi(s-1)2+ .. · }. Consequently 
we obtain 

,L(s, C)= 2.r2RL {I-log d2-(s-l)+ .. · }{1 +2(s-l)}{l +bi(s-1) 2+ · · ·} 
d1d2 

x{-1-+ao-2- l fpo••. · · dµ +0(\s-1\)} 
s - I 2 log e 1•0 µ 

= 2.r2RL (-1-+ao-log d2- 1 f Po••(log v2-h(~)) dµ) 
d1d2 s-1 2 loge po µ 

+O(\s-1 \). 

This completes the proof. 



Kronecker's Limit Formula 305 

§ 5. Approximation formula 

By Theorem 1, the constant term of the expansion of Cis, C) was 

(log v2 -h(~))____E__,, 1 Jpos• d 
2 log .s Po µ 

Observe that only the term 

(17) I 1 JPo•• (log v2-h(~)) dµ 
2 log .s Po µ 

depends on the choice of C. Therefore our aim in this section is to con
sider an approximation formula for I. 

Throughout this section, we always assume that 

(18) 

and µ runs through the interval [µ0, µ0.s2]. For me g (m=;t=O), we define 
([2), (2, 18)) 

o'i(m)= I; \n\2, 
0¢(n)lm 

where the summation is taken over all non-zero ideals (n) dividing m. 
Then the function h(~) of Lemma 2 can be written as 

(19) 

h(~)= wkd1Ci2)v2 
2ir2 

+4wk I; ai(m) Ki(4ir\m\v/,v'di)vcos(4ir(m 1y+m2x)/-v'd1), 
0¢mEg \m\ 

where we denoted m = m1 + m2i and ~ = x + yi + vj. 
In (19), K 1(4ir\m\v/,v'di) tends to zero with great rapidity when \m\ is 

large. Therefore we are going to compute for each term in I. 

Lemma 5. We have 

(i) 1 J"0•• 2 dµ _ \w-w\2 ( 1 1 ) 
2 log .s Po v µ- 4 log .s 1 + µ~ - 1 + ~.s4 ' 

(ii) 1 JPo•• log v2 dµ =log \w-w\~+log (µo.s)2 
2 log.s •o µ 

+ 1 t (-l)n {(µoe2r-µ~n}. 
2 loge n=l n2 
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In the infinite series of (ii), the error obtained by stopping at any term is less 
than the absolute value of the next term. 

Proof (i) This follows by taking t= 1 + µ2. 
(ii) By (8), we see 

Applying Taylor's theorem for log (1 + X) with X = µ2, we have 

(O<B<l) 

1 N-1(-l)n-1 (-l)N-1 
=2 n~ n2 {(µoe2r-µ~n}+ 2N2 01{(µoe2)2N_µ~N} 

(0<0 1 <I). 
From this we obtain our assertions. 

In what follows, we denote 

w=w1+w2·i, 

(20) 

t=j,(1+µ2)- 1• 

(21) I(m)=fµoe• K1( 4ir\~\ V) V cos ( 41r(m1y+m2x)) dµ 
µo ./d1 a µ 

(me g, m=;t=O). 

By (8), we see that x=(µ2w 1+w 1)(1+µ2)-1,y=(µ2w 2+w 2)(1+µ2)-1, v= 
\ w-w \ µ(I + µ2)-1• Hence, by a simple computation we have 

(22) fµoe' d 
l(m) = K1(2Av)v cos (a+ t) 1, 

PO µ 
(m=;t=O). 

Let 
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00 

(23) cos (a+t)= I: aiti 
j=O 

be the Taylor expansion in t, where 

(-l)v+! • (-1)" 
a2v+1=--- sin a, a2.=--COS a (v=O, I, 2, ... ). 

(2v+l)! (2v)! 
(24) 

It is known that ([6], p. 80, (15)) 

(25) Ki(X)=_!_+ :E ~Xe)zi+i {log (X) _ _!_ t(i+ 1)-_!_ t(i+2)} 
X i=oi!(z+l)! 2 2 2 

(X>O), 

where t denotes the logarithmic derivative of the I'-function. For a 
positive integer i, it is known 

(26) 

Here r is the Euler's constant. For simplicity we denote 

(27) 

(28) 

sa(O=HtCi+ I)+t(i+2)} 

Let X =2.~v in (25). Then we have 

(i=O, I, 2, · · · ). 

1 00 (,1v)2i + 1v 
Ki(2iv)v=-+ I: . . {log (Av)-sa(i)}. 

2A i=oz!(z+l)! 

Recall that \t\<\,8\ and the range of vis of the form [v0, vi] (v1>v 0 >0). 
The right hand side of (23) and (28) converges absolutely and uniformly 
inµ. Thus, for any given 111>0, we can find positive integers p and q such 
that 

Ki(2iv)v cos (a+t) 

= (-1-+ ± ~ivt+iv {log (Av)-sa(i)})(f aii) +Rpq, 
2A i=oz!(z+l)! i=O 

(29) 

\Rpq\<111 (uniformly inµ). 
In the following we shall fix the numbers p and q. We let the indices 

i andj run through {0, 1, 2, ... , p} and {0, I, 2, ... , q}, respectively. Let 
us denote 
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Since log (lv)-9)(i)={log (l\w-w\)-9)(i)}+log µ-log (1 + µ2). The inte
grand of I(m) can be written as 

(30) 

where 

(31) 

4 

K 1(2lv)v cos (a+t)= I; I.+Rpq, 

11 =- 1-f:. a1[31(1 + µ2)-J, 
2A J=O 

11=1 

l2= I; B;jµZi+Z(I + µ2)-Zi-J-2, 
i,j 

ls= I; BtJµ2t+2(l + µ2)-n-J-2 logµ, 
i,j 

l4= - I;BiJµ2t+2(1 +µ2)-2t-1-2 log (1+µ2). 
i,j 

Let 7)1 be as in (29). Let 7J2 =¼7J1• Then we have 

Lemma 6. We can find positive integers rand r1 such that 

11= cos a +-1-f:. ± a1{31 (-j)µzk+Ti, 
2A 2A J=lk=O k 

l2= I; t B~1(-2i-j-2)µ2t +2k+2+ T2, 
i,3 k=O k 

ls= I;± BtJ (-2i-j-2)µ2t+2k+2 log µ+Ta, 
i,j k=O k 

where T. satisfies \T.\<7Jz (1<11<5) uniformly inµ. 

Proof Suppose µ e [µ0, w:2] and let M = j (j~ 1) or M = 2i + 2 + j 
(O<i<p, O<j:::;;.q). By Taylor's theorem with Lagrange's form of the 
remainder, we have 

\Tif>\< I (N.fi)µ2N+2 I {N>l). 

Since M <M' implies I (N_fi)µzN+z I< I (Nf;)µ 2N+2 I, we see that 
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Hence we can find a positive integer r satisfying the inequalities 

(32) 

(_1 t \a1.BJI) I ( -q )(µoe2)2r+2 I <TJ2, 
21 J=l r+l 

(f,j1Bf,µ2i+21) I (-2;;t-2)(µ 0e2)2r+21 <TJ2, 

(f,jlBtJµ2t+2 logµ\) I (-2:;:-2)(µoe2)2r+21 <712, 

(f,jlBtJµ2t+2 log (1 + µ2)1) I (-2;;1q-2)(µoe2)2r+21 <712, 

uniformly in µ. Recall that 

r,=_l_±a pru> 
I 21 J=l J T 

T __ '°' B' µ2t+2yc2t+1+2> 
2- L..J ij T ' 

i,j 

T4= - I: B,Jµ2t+2 log (1 + µ2). T;2t+J+2>. 
i,j 

We see that \T.\<712 (1 <v~4), uniformly inµ. Put 

N ( 1)!-1 
log(1+µ2)=~ - 1 µ21+LN, 

T<N)= - r: ± BiJ (-2i-j-2)µ2i+2k+2LN. 
i,j k=O k 

Since \LN\<(µ 0e2) 2N+2/(N+l)-O(N-oo), we can find a positive integer r 1 

such that I rcr,) I <TJ2· Then Ta= r<ri) satisfies our assertion. 

For any non-negative integers i,j, k we define 

(33) 

A _ 1zt+1\w-w\2t+2 J (-2i-j-2) 
ijk- i!(i+l)! j.a k ' 

A:,k=Aijk {log (A\w-wl)-sa(i)}. 

Then we have 
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Theorem 2. Let J(m) be as in (21). For any given 7J>0, we can find 
positive integers p, q, rand r1 such that 

l P q r I (µoe.2)2(i+k+l)_µ~(i+k+l) +- I:; I:; I:; A; 1k ~-.-~--

2 i=Oj=Ok=o z+k+l 

+_!_I: i; ± AiJk [(µ01:-2)2<1 +k+t) lo~ (µori)- µ~<i +k+t) log µo 
2 i=Oj=Ok=O z+k+l 

_ (µ01:-2)2(! +k+l) _ µ~(i +k+l)] 

2(i+k+ 1)2 

where R satisfies \ R \ <7J-

Proof Let 7J1=1)/(4loge:) in (29) and in Lemma 7. Since 

Iµ,,• µ2" logµ d µ = _1_ { (µoe2)2" log (µoe2)- µ~" log µo} 
PO µ 211 

__ l_ {(µoe:2)2•-µ~"} (11~ 1), 
4112 

we obtain our theorem. 

In particular, if we choose µ0e:2 =½ and µ0 =½e:'2, we obtain 

Theorem 3. Let l(m) be as in (21). For any given 7J>0, we can find 
positive integers p, q, rand r1 such that 

l-e:'4(i+k+l) ] 
2,4i+k+1(i+k+ 1)2 

l P q r r, (-1)1 1-e'4(i+k+L+I) +- I:; I:; I:; I:; Ai 1k---------+ R, 
2 i=Oj=Ok=Ol=I I 4i+k+l+1(i+k+l+ 1) 
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where \R\<1)-

Example. Let k =Q(,v-4), K=Q(,v-3), L=kK and q = g+g(l) 
with (1)=½(1+,v-3). Then we see M=Q(,v3) and s=s 1=2+,v3. We 
choose µ0 such that µ0s2 =0.99. Using the table for Ki(X) in [6], we can 
compute the approximate values for l(m). (We availed the value ex Ki(x) 
and ex for x=0.02n; n=l, 2, 3, .. -). Put t=2-v37!'\m\µ/(1+µ2) (=2.:lv). 
Then, by a little computation, we have 

(34) 

where t1=0.769647- · ·!ml, and t2=5.4411232- · -\m\. Using (34) and the 
values for Ki(t), we obtain /(1)=0.040±0.001, /(1 +i)= -0.0215±0.0004, 
/(1 +2i)=0.0065±0.0001, /(2+i)=0.0039±3 X 10-5, /(4+2i)=0.0004± 
10-5, /(2+4i)>0 and \/(2+4i)\<I0- 5, /(5)>0 and \/(5)\<I0- 5• 
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