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§ 0. Introduction

In articles [10], [11], Shimura investigated the relation between the
arithmetic of real quadratic fields and cusp forms of real “Neben’-type of
weight 2. He showed that the eigenvalues of Hecke operators for such
forms are closely connected with the reciprocity law in certain abelian ex-
tensions of a real quadratic field k and, moreover, such extensions can be
generated by the coordinates of certain points of finite order on an abelian
variety associated with these cusp forms. Later, his results were enriched
by several authors Doi-Yamauchi [2], Ohta [8] and Koike [4]. Especially,
in [4], we understood his result through congruences between the cusp
forms of weight 2 and cusp forms of weight 1 which are obtained from
Mellin transform of L-functions of the real quadratic field k. These cusp
forms of weight 1 correspond to dihedral representations of the Galois
group G,.

In this paper, we investigate several examples of cusp forms of real
“Neben”-type of weight 2 which are congruent to cusp forms of weight 1
corresponding to representations of the Galois group G, of type S,. We
also discuss arithmetic properties analogous to the above Shimura’s result
induced from these congruences.

To state our result precisely, we introduce several notations. Let p,
p=1(mod 4) be a prime. Let f(z)=>7,4a,9", a;=1, g=¢"""-1%, be a

primitive form in S 2( D, (-1;—)) where <—’5—> denotes the Legendre symbol.

Put K;=Q(a,|n=1) the coefficient field of the cusp form f(z). Then K,
is an imaginary CM-field. Let F, denote the maximal real subfield of X.
We denote by oy (resp. o) the ring of integers in K (resp. F,). Put 2d=
[K;: Q]. We fix a prime divisor p of the algebraic closure Q of Q lying
over p. Let p denote the complex conjugation.

Prime ideals which Shimura considered in [10] [11] are ramified in the
relative quadratic extension K, over F,, and they are closely related to the
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fundamental unit of the real quadratic field k= Q(/p).
The cusp forms we are interested in in this paper are such that the
level p is ramified in the coefficient field K,. In fact we consider the fol-

lowing condition on f(z):
Both p-th Fourier coefficients of f(z) and f*(z) are divisible by b,
69)] ie.,

a,=a;=0 (mod p).
This condition () induces that p is ramified in K.

Theorem 0.1. (i) For p=229, 257, there exists a primitive form in

Sz( J 2 (—;)) satisfying the condition (%).
(i) For any p, 29< p<760, p 2229, 257, there exists no form in

SZ( D, (7)) satisfying the condition (}).
Let f(z) be the cusp form satisfying the condition (§). Let p, (resp.

pr) denote the prime divisor of K, (resp. F,) lying under p. By observing
several numerical examples, we notice the following conjecture.

Conjecture 0.1. The notation being as above, the Fourier coefficient
a, of f(z) satisfies one of the following congruences for any prime I, l#p:

0

©.1) a=|+yT (modpy) if (—l—)=1,
27 p
0

0.2) g= (mod p) if (L);- —1.
2 P

Moreover, for each type of congruences, there exists some prime [ satisfying
that type of congruences.

These congruences are considered as an analogous statement to
Proposition 7.38 in [10].
2
satisfying the condition (). Then Conjecture 0.1 is true for these forms.

Theorem 0.2. For p=229, 257, let f(z) be the cusp formin S, (p,( ))

‘We prove this by showing that there exists a cusp form of weight I
on I"y(p?) which is congruent to the above form modulo § and of type S,.
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We recall several facts about Shimura’s abelian variety. Let 4 denote
the abelian variety rational over Q of dimension 2d associated with f. Then
via Shimura [10], there exists an abelian subvariety B rational over the real
quadratic field k£ of dimension d such that

A=B+ B

where ¢ denotes the non-trivial element in Gal (k/Q). We may assume that
there exists an injection 4, from F, to End, B such that #(v;) C End B.
Put

Blpsl={t € B|0:(pr)t=0}.

Let M, denote the field generated over k& by the coordinates of all
points in B[p,]. Then via pp-adic representation of B, we obtain an in-
jective map

R: Gal (M /k)~——>GLy(0,/pr).

Let G denote the image of Gal (M,/k) by R, and C denote the intersection
of G and the center of GL,(0,/9z).

Theorem 0.3. The notation being as above, we assume that Conjecture
0.1 is true. Then the following statements are valid.

(i) GJ/C is isomorphic to A,

(ii) Let M denote the subfield of M, corresponding to C and let L de-
note the subfield of M corresponding to the unique normal subgroup of A,
of order 4 via Galois theory. Then L/k is an unramified abelian cubic ex-
tension of k.

(iii) The class number of k is divisible by 3.

We can translate the above result into the result on 2-adic represen-
tation associated with cusp forms on SL,(Z). In this case, the image of
the Galois group in PGL, becomes isomorphic to S,.

We used FACOM M-382 at Nagoya University Computation Center
for these calculations.

Notation

We denote by Z, Q and C respectively, the ring of rational integers,
the rational number field and the complex number field. The algebraic
closure of Q in C is denoted by Q. If x is a complex number, x* denotes
its complex conjugate.

Let K be a field and F a subfield of K. If K is a Galois extension of
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F, Gal (K/F) denotes the Galois group of K over F.

Let K be an algebraic number field of finite degree over Q. We
denote by o the ring of algebraic integers in K. For any prime ideal p
of 0g, 0x/p denotes the residue field of 0, modulo p. . G denotes the
Galois group Gal (Q/K). For an abelian variety 4, we denote by End (4)
the ring of all endomorphism of 4 and put End,(4)=End (4)® Q. For
any positive integer n, S,, 4, denote the symmetric and alternating group
of degree n.

§1.

Let f(z)=Z.° a,q™ be a primitive cusp form in Sz(p, (—p—)) Then
n=1

f "(z)=f‘_, acq™ is also a primitive cusp form in S2( P, (—b—)) It is well-
n=1

known that

(1.1 a;’,:(%)an it (n, p)=1,
(1.2) a,-a,=p,

0 —-11_ a ,
(13) flz[p NE e

For any p-adic integer « in @, put =« (mod p). We denote by S, and
S, the space of cusp forms of weight k on SL,(Z) and the space of cusp
form mod p attached to S,. Then it is known that S,cS,, o-1- The
weight of cusp form mod p 4 is defined by the smallest integer k such that
heS..

For any g=> 7 ,b,q" in S2< D, (—p—)) such that b, are p-adic integers
in @ for all n>1, put =3, b.g*. Then &is a cusp form mod p.

Lemma 1.1. The notation being as above, the following statements are
equivalent,

(i) the weight of f is (p+3)/2,
(i) az=0 (mod f).

Proof. This is obvious from Theorem 4.2 in [5].

Hence we get

Corollary l~.1. The following statements are equivalent;
(1) both f and f* belong to S, .5
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(i) f(2) satisfies the condition ().

Remark 1.1. It is not generally known that f== f° holds for any
above f.

Theorem 1.1.  The following statements are equivalent;

(i) there exists a primitive cusp form f(z)=> =, a,q"™ in Sz( P, (;—))
satisfying the condition (}).

(ii) zero is the eigenvalue of the Hecke operator T(p) on .§(p+3) /-

Proof. By Lemma 1.1, it follows that (i) induces (ii). We assume
that (i) is true. Then there exists an element A=) 7 ,b,q" in .S~'(p+3>/2
satisfying

(i) #his acommon elgenfunctlon of all the Hecke operators T'(n),

(ii) b,=1and b,=0.

By using Theorem 1. 2 in [5], we know that there exists a primitive cusp

form f(z)=> a,q™ in S,z(p,‘(-p—)) such that f=h, hence a,=0 (mod p).
Then it is obvious that ;=0 (mod p) by Lemma 1.1.

Corollary 1.2. Let f(z)=>,7,a,9™ be a primitive cusp form in
S, ( D, 7)) which satisfies the statement (i) in the above Theorem. Assume

that f+#f¢. Then the following statements are valid.
(i) The multiplicity of 0 in the eigenvalues of the Hecke operator
T(p) on S, s is greater than 1. ,

(i) For any prime I such that (Tl’—) = —1, —a, is also the eigenvalue
of T() on S, 52
(iii) For any prime I such that ('117) =1, the multiplicity of @, in eigen-

values of T(I) on 8, s, is greater than 1.

Proof. The above claims follow easily from the fact that both f and
f? belong to 8,4

Theorem 1.2. Let f(z) be a primitive cusp form in Sz( D, (—p—))
satisfying the statement (ii) of Theorem 1.1. Let p, be a prime divisor of
K, lying under p. Then K, is ramified at {y.

Proof. From the assumption, it follows that a,=a;=0 (mod py).
Since a,-a5=p, p=0 (mod p%). Hence K, is ramified at p,.
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§ 2. Proof of Theorem 0.1

The proof is done by inspecting the tables in Appendix. They show
(I) the characteristic polynomial of T(p) on S, »
(11) the characteristic polynomial of T'() on §(p+ 52 for some / when
p=229 and 257,
1

(IIT)  the characteristic polynomial of T(/) on S, 4, with (7) =

—1 for some larger p than those given in (I).
By these tables and Corollary 1.2, we get the proof of Theorem 0.1. We
can also see that Conjecture 0.1 is true for these eigenvalues.

Theorem 1.2 says that, for p=229 and 257, there is a primitive cusp

form fin SZ( P ( F)) such that p, is ramified in K,/Q. But, in fact, p is
already ramified in F,/Q. To see this, we first note that

—\=C.U® NILD)
S2<229, (229 ))-—C Uu®@c.U
and
N\ c.U'® Las
S2<257, (257 ))-—C U'epC.u'es,

where U@ and U’‘®’ denote certain irreducible Hecke modules over Q of
dimension d. The characteristic polynomials of T(2), T(3) and T(5) for
p=229 and T(2) and T(3) for p=257 are given in Shimura [11] and Wada
[13]. The prime factorization mod p of these characteristic polynomials
are as follows:

p=229
) (L) U® )
P
3 41 | (x—1y (x*4-165x° 421 1x2-4+ 73x 4 60)* (x -+ 120)?
(x+31) (x+71)*
p=257
/ (L> u® U’ae
P
2 | 41 | (egly | GFH209%Fdx 4 LY (' 17727+ Tx +235)°
(x+-9)* (x-+60)*
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Hence we know that the primitive cusp form f(z) satisfying the statement
(i) of Theorem 1.1 belongs to C-U® (resp. C-U’“®) for p=229 (resp.
257). For p==229, the maximal real subfield F, of K, is generated by a,
and its minimal polynomial has discriminant 2°.3*.71%. 229.659.297779.
For p=257, F, is generated by g, and the discriminant of its minimal
polynomial is —2'°:11.257.8950888981849. Hence p,, is already ramified
in F,/Q. Tt is expected that this is the case for all f(2) satisfying the con-
dition (§). These primes are contrary to the ones considered by Shimura
in [10] and [11].

Remark 2.1. The primes such that 29 < p< 2089 and the class number
of @(4/p) is divisible by 3 are 229. 257, 733, 761, 1129, 1229, 1373, 1489,
1901 and 2089. By extended calculations, cusp forms with the property
(#) seem to exist when p=761, 1129, 1229, 1489 and 2089. All eigenvalues
that we have calculated for these forms satisfy Conjecture 0.1. But there
is no such forms for the other primes in the above list.

§3. Proof of Theorem 0.3

Let f(z)=) 7 ,a,q™ be a primitive cusp form in Sz( P, (—p—)) We

assume that Conjecture 0.1 is true for f(z) in this section. To prove
Theorem 0.3, it is convenient to consider a primitive cusp form g(z)=
>w_1b.gr, by=1in S, such that

a,=b, (mod p) for all n>1,
at the same time.
Proposition 3.1. The notation being as above, we have
bi.l1-®+0r=(, 1, 2, or 4 (mod p)
for all prime |+ p.

Proof. Since <ﬁ’{‘>zl“"”/2 (mod p), these are obvious from (0.1)
and (0.2).

Put E=Q(b,|n=1) and let 2 denote the prime divisor of E lying under
p.  We consider the reduction mod 1 of the i-adic representation of G,
associated with g(z). Namely, there exists a continuous homomorphism

¢: Go—>GLy(05/2)

which is unramified outside p and ¢(g,) has characteristic polynomial
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(3.1) X*—b,X+122  (mod 2)

for any prime /+=p. Here o, denotes a Frobenius element of / in G,. Let
G’ denote the image of G, by ¢ and let H’ denote the image of G’ in
PGLy(05/2).

We assume that 0,/A=F,. Then, by virtue of Corollary 1 in [12] and
Proposition 3.1, we conclude that H’ is isomorphic to S,. However, it
does not hold in general that 0,/A=F,.

Hence we need to consider a p- adlc representation of G, obtalned
from Shimura’s abelian variety.

We recall Shimura’s theory for the abelian variety assoc1ated with
cusp forms.

Let f(z)=>.7.,a,9", a,=1, be a primitive cusp form in SZ( D, (;))

By virtue of [10], we obtain an abelian variety 4 of dimension 24 and an
isomorphism 4 of K, into Endy(4). A and 6(a) for all a € K, are rational
over Q. Further, 4 has an automorphism g rational over k=Q(v/p)
such that

©=1
p-0@y=0(a?) - p forallae K|,
#S=_# .

where ¢ denotes the generator of Gal (k/Q). Put
B=(1+4pA.
Then B is an abelian subvariety of 4 rational over k, and
A=B+ B

We can define an injection 6 of F, into Endy(B) such that §.(a) is the re-
striction of (@) to B for all a ¢ F,. Changing (4, §) by an isogeny over Q
if necessary, we may assume that

0(0) CEnd (4),  04(0,) CEnd (B).

Hereafter we assume that Conjecture 0.1 is valid for f(z), and we are
interested in the points of B annihilated by 6(ps). Put

B[pF] = {t € BlaF(pF)t':O}‘

Then B[p;] is isomorphic to (0,/ps)* as o-module. We denote by M the
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fields generated over k by the coordinates of the points in B[p,]. These are
Galois extensions over k. Taking a basis of B[p,] as 0,-module, we obtain
a representation R

R: Gal (MB/k)—‘—)GLZ(OF/pF)

satisfying that .

X'—q X+l (mod §)  if (L)=1,

det (X —R(g,)= ?
X — (@20 X +1* (mod ) if (L) — 1
P

where [ is a prime divisor of k£ over / and ¢, denotes a Frobenius element
in Gal (My/k) of {.

By virtue of congruences (0.1) and (0.2) in Conjecture 0.1, we see that
all coefficients of det (X— R(¢,)) belong to F,. Hence, by Lemma 6.13 in
[1], there is a semi-simple representation R’

R': G,—>GL,(F,)

such that det (X— R’(¢))=det (X — R(c,)) for all [.

By virtue of Conjecture 0.1, we see that R is not reducible. Hence R
is isomorphic to R’ by Lemma 3.2 in [1].

With these preparations, we can prove Theorem 0.3 as follows. The
notation is the same as in Introduction. By the above argument, G is
considered to be a subgroup of GL,(F,). Then by virtue of Conjecture
0.1 and Lemma 2 in [12], we know that G/C is isomorphic to 4, or S,. On
the other hand R is isomorphic to the restriction of ¢ to Gal (Q/k). Hence
we know that A’ has a subgroup of index 2 which is isomorphic to G/C.
So the order of G’ is prime to p. Therefore, by the classification theorem
of finite group contained in GL,(F) where F is a finite field, we conclude
that

3.2) -G/ C is isomorphic to A4,,
3.3 H'’ is isomorphic to S,.

The statement (iii) follows from the similar argument in pages 34 and 35
in [12]. This completes the proof.

Corollary 3.1. The notation being as above, it holds that H' is iso-
morphic to S,. :
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Proof. This is obvious from the above argument.

§ 4. Proof of Theorem 0.2

In this section we shall give the proof of Theorem 0.2. The method
is the same as in K. Haberland [3] where he showed that the prime 59 is
an exceptional prime of type S, for the cusp form 4Q of weight 16 on
SL,(Z) (see also H.P.F. Swinnerton-Dyer [12]).

Let p=229 or 257. Letk=Q(,/p) and L the absolute class field of
k. Since the class number of k is 3, the degree of L over kis 3 and L is a
Galois extension over Q with the Galois group isomorphic to S,.

We take a prime ideal p over p in Q anp fix it. Let X, denote the
Teichmiiller character for p i.e.

1,(1)=Imod p

for all / prime to p.
Let X be a Dirichlet character mod p and let

2 S s udgr

1,x n=1dln

EI,Z(Z) =1-
where B, , is the generalized Bernoulli number. Then E, , is a modular
form of weight 1 on I"y(p) with character X. 1t is well known that

E =1 mod p.

In order to prove our theorem, we first construct a Galois extension
M over Q satisfying the following condition:

“.1 M is unramified at all finite primes outside p,
“4.2) Gal (M/Q)=S..

We should remark that, when p=229, Tate constructed such exten-
sions and showed the existence of cusp forms f;, f; of type S, on [",(229) of
weight 1. 1In [9] 8.2, Serre showed that f,, f;, £, f# are the basis of this
space. But we know that all §-transforms of these forms are not congru-
ent to f(z) in Theorem 0.2. Therefore we have to search for cusp forms
of weight 1 on [",(226%).

We put

Fpg(x)=x"—4x—1

and
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Fopr(X)=x*4+2x*—3x—1.

The field L is the splitting field of F,(x) over Q. Let x{® (i=1, 2, 3) be
the roots of F,(x)=0, and let M be the field generated by all ¥/x{. Then
M is a Galois extension over Q with the Galois group S,. We denote by
P (resp. p,) the prime ideal under p in M (resp. L). We will write x, for
x{® if there is no fear of confusion.

Lemma 4.1. Let the notation be as above and let Z and T denote the

decomposition and inertia group for 9, respectively. Then the following
statements are valid.

(i) M satisfies (4.1),

(ii) M is unramified over L at p,,

(iii) Z is an abelian group of type (2, 2) generated by two transposi-
tions, and T is a subgroup of index 2.

Proof. (i) Itis clear that M is unramified over @ at /+2, p. For
[=2, we note first that L is unramified over Q at 2. On the other hand,
we have

x,=(x}—2)—4=(x2—2)* mod 4 for p=229,
and
x,=X2(x, + 1) —4)=[x,(x,+ 1] mod 4 for p=257.

By Kummer theory any prime over 2 is unramified in L(v'x,)/L for all i,
therefore 2 is unramified in M/Q.

(ii) It is clear because the p -exponent of (x,) is zero for any 7.

(iii) By (ii) and the group theoretical considerations, the structures of
Z and T are one of the following types:

(@ Z={l, s, 1,07} T={l, 0} where ¢ and 7 are transpositions and

oT=10.
(b) Z=T={l, ¢} for some transposition o.
But we have

X 58 200
Fng(X)=(x—58) (x—200 mod 229, (-229‘>=1’ (ng)r

and

18 247
Fyor(X) = (x— 18) (x—247) mod 257, <§§7>= 1, (’ﬁ): —1,

Therefore the case (b) is impossible. q.e.d.
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We fix an embedding of Gal (M/Q) into PGL,(C) and get a projective
representation
5 Gal (Q/Q)—>PGLy(C).

This is essentially unique because any two embeddings of S, in PGL,(C) are
conjugate.. The conductor of g is p* by Serre [9] Section 6. Furthermore,
0 has a lifting “

ot Gal(Q/Q)—>GLy(C)
such that
(4.3) pis odd and tamely ramified at p,
(4.4) the conductor of p is p?, ’
(4.5) the conductor of e=det p is p.

We can regard ¢ as a Dirichlet character mod p. Since the Artin conjecture
is proved by Langlands [7] for this case, we get, by the theorem of Weil-
Langlands, the following

Lemma 4.2. There exists a primitive form iz)=73 5_, c,q™ in Si(*, €)
such that '

(i) e,=trplo), e(l)=det p(g;) for any I5=p, where g, is a Frobenius
element of 1,

4 if plo) is of order 1,

. o2 0 ” 2,
(i) L=

) |1 , 3,

2 ” 4,

Hereafter we will denote by §(/) the right hand side of (ii).
Let e=%7. Ase(—1)=—1, mis an odd number. We have

h-E, ;;1=h mod b,
h-Ey o TO)=ch-E; 50 mod §,
hence there exists a cusp form g(z)=>7_, b;q" € Sy(p’, X;~) such that g is
a common eigenfunction for all T(!) I+p, and b/, =c, mod p. ;
Put £=X,™ Y2 and g, =3 ~_,&(mb,q" the &-twist of g. g, belongs

to Sy(p?). The Fourier coefficients of g,=> ., b,q" satisfy the following
congruences:

b,=I1"™"b2¢, mod p.

Hence the property (ii) of Lemma 4.2 is equivalent to
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b? -
(4.6) —Z‘— =4d(/) mod .

Let o/ be the ring generated by all Hecke operators mod p % with
I+ p, and o7 =/ QF, Let 6 be the operator on F,[[¢]] defined by

6’(75':‘1 anq"> =ni]1nanq“.
According to Koike [6], the components of .&7-module %i) are
given by
7S, 2<k<(p—D)2
and
(Ewyy  2<a<(p—-3)2,
where E ,,=> =, ¢, (n)g™ with

l-a )
d“<—"—> if
e, ()= {dwé:w d pin
0 if p|n.
It is easy to see that any E,, does not satisfy the congruence relation

(4.6). So that we only have to look for the weight # such that there exists
a cusp form G(z)=> 7 ,a,9™ € S, with

. l p+1-t¢ az -
@7 Al—‘_—:‘é(l) mod p.

First we consider the case p=229, Put/=3and 5. The decompo-
sition group for a prime over / is cyclic. On the other hand, F,,(x) mod/
is an irreducible polynomial of degree 3, so g(g,) is of order 3. Thus the
coefficient b, satisfies

bi=I! mod p.

By direct calculations we see that only in S, S,,, and S,,, there exist forms
with the required congruence. We list the Fourier coefficients mod 229 of
the forms in Sy, and S|, in the following table.

\ 58 ‘ 172

p NJormy g hs hg ha

2 0 123 0 108

3 1 i 228 1 228
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5 122 122 107 107

7 121 0 106 0
11 107 107 122 122
13 106 0 121 0
17 1 228 1 228
19 228 1 228 1
23 123 106 108 121
29 0 0 0 0
31 0 106 0 121
229 122 1 107 1

Next we take /=13. Since

Fpy(x)=(x*+5x+8)(x+8) mod 13
and

Fo(x) =(x*+45x*+8)(x*+8) mod 13,
where each factor of the right hand sides is irreducible over F,,, 3(¢,) has
order 4. Thus b=2/mod p. But the Fourier coefficients of 4, and 4,
are zero mod 229, which contradicts the above congruence. For the forms
h, and h,, we take /=31. Similarly we have

Fop(x)=(x"+21x 4 3)(x+10) mod 31,
and

Fooe(x)=(x"+21x"+3)(x*4- 10) mod 31,

where each factor of the right hand sides is irreducible over F,,. By the
same reason, the forms 4, and 4, are not compatible with our congruence.

Consequently there must be a cusp form G(z)=> 7 ,a,9™ € Sy;, such
that

B=g= (2—;9—>a§ mod §, for any prime /, I=p.

Next we consider the case p=257. F,;(x) mod/ is an irreducible
polynomial of degree 3 for /=11 and 13. So g(¢,) has order 3. This time
only S,,, has the forms with congruence relation:
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I-tg?=] mod p

for /=11 and 13. Hence there is a form G(z)=>_ 7., a,4" € Sy, such that

l -
bi=1"g= ( 357 )a% mod p.

If (%) =1 (resp. —1), the order of j(s,) is 1,2 or 3 (resp. 2 or 4).

Since G(z) is congruent to f(z) or f*(z) modulo b, we get (0.1) and (0.2).
This completes the proof of Theorem 0.2.

Remark 4.1. If a,=+2+/ T mod §, (s, is an identity element. For
/<691, there are three such /’s, i.e.

/=193, 509 and 593 for p=229

and
=157, 643 and 653 for p=257.

In fact, for these cases, F,(x*) mod [ is completely reducible. For example,

@,4,==90 mod p,
Fop(x) =(x —42)(x — 157)(x — 187) mod 193,

( 42 >:(157>:(187>:1
193/ \'193/ 7 \'193

for p=229 and

a,5,=63 mod p,
Fo(x)=(x—25)(x —49)(x —81) mod 157

for p= 257.

Remark 4.2. The forms in the above table are congruent to the forms
constructed by Tate. It is easily seen that A =f], hy=f;, mod p where
f; is the forms stated in Serre [9] 8.2, and A,=f¢, h,=fF mod p. But we
must note that in Tate’s case, p,, is ramified over L and the decomposition

group is cyclic of order 4.

Remark 4.3. For p=229 and 257, the field M constructed in this
section coincides with that given in Theorem 0.3.
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Appendix
Table (I)
p:=prime w:=weight (p+3)/2
Hp(x): =factorization mod p of the characteristic polynomial of T(p)
on Sy,

p w Hy(x)

29 | 16 | x+6

37 20 x+2

41 |22 x+6

53 28 x24+12x+17

61 32 | (x+9(+44)

73 38 x2+16x+457

89 46 (x+12) (x2+79x+79)

97 50 x8424x%4-37x 438

101 52 (x+100) (x3+86x2+61x +64)

109 56 (x+2) (x-+19) (x2+72x+-38)

113 58 | (x-+26) (x-+88) (x2+19x-+105)

137 70 (x2+31x+475) (x84-120x2 4 50x -+ 64)

149 | 76 | (x427)(x3+112x4+139x3+67x2+83x+87)

157 80 | (x+22)(x+143x4+152x3+122x2+109x+31)

173 | 88 | (x++16x+157)(x5+24x4+30x8+83x2+121x-+151)

181 92 | (x24+9x+95) (x5+154x4 +12x8 4+ 232+ 37x+93)

193 98 | (x+11)(x2+107x+68) (x2-+160x +20) (x2+168x+123)

197 | 100 | (x+23)(e-+194) (x2-+95x + 158) (x4 -+72x +6x2 +63x +152)

229 | 116 | x2(x+69) (x+110) (x+215) (x4 +64x% + 14x2+195x +176)

233 118 X9+ 4x8435x74+147x8 +41x54-196x4 +207x% 4-133x%4-88x 4-216

241 122 (x34-43x2-169x +209) (x84 25x5 + 145x* + 95x% - 110x% 4-233x +129)

257 | 130 | x2(x+30) (x-+163) (x3+85x2+247x +5) (x3+252x2+178x +118)

(x44-63x3+175x%4-18x-+46) X

269 136 (x74210x6+233x5 4 108x* + 98x3 +88x2 4 172x +69)
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277 140 (x2+180x+182) (x*+197x3+60x2+273x +112) X
(x5 +185x44263x3+207x24+237x418)
231 142 (x44-76x%429x2+185x +269) X
(x74+203x84-127x%4-140x3+243x2 4+ 197x +271)
293 148 (x+83) (x+206) (x2+205x+40) X
(x84 136x7+281x8 4287 x5+ 131x4 428723 4-206x24- 51x+279)
313 158 (x+60) (x2+36x 4 66) (x2+56x+292) (x2+173x+4306) X
(x2+213x+59) (x3+172x2+173x+53)
373 188 (x+311) (x+371)2(x®+ 143 x5+ 564+ 252x3 +123x2-347x +48) X
(x84 302x5282x%+330x3 4 75x24-156x 4-348)
401 0 (x+288) (x2+4-242x -+ 98) (x13+288x22 4 81x11 -+ 372x10 4 682 11248
+337x74+202x8 +-45x5 4+ 132x% +241x8 427522+ 141x4-252
Table (I)
(i) p:=229 w:=116
Hy(x): =factorization mod 229 of the characteristic polynomial of T(l) on
s116 .
L(E) )
2 —1|x+ 15| x4214 | (x+37D(x+53)(x+120)(x* +48x3 4+32x2 4+ 146x +197)
3 41| x+ 71| x4 71| (x4+3D(E+120)(x-+228) (x4 + 16548 +211x2 +73x +60)
51 41 x+ 66| x+ 66| (x+17)(x+120)(x+226)(x4+195x34-9x24+208x +216)
71 —1]x4+ 98 | x+131 | x(x4+133)(x+196)(x¢+137x3+135x2+192x+80)
11 | +1 | x+195 | x4+195 | (x+177)(x+186)(x +226)(x*+167x3 +156x2+88x+201)
13 —1 | x4+ 64 | x+165 | x(x+44)(x4+190)(x*+179x3 +38x2--102x +83)
17 | +1 | x+186 | x+186 | (x43)(x+25)(x+101)(x% 4 182x% 4 54x2+198x+102)
19| 41| x+ 83 | x+ 83| (x+D(x+106)(x+136)(x*+51x8+89x2+135x+174)
231 —1 X X (x4 19 (x4 128)(x +155)(x*+ 968+ 56x2+131x+87)
29 | —1 x X (x+74)(x+142)(x 4+ 155) (x4 +4x8 4+ 26x2 +54x4-153)
31 | —1 | x4204 | x+ 25 | x(x+9)(x+125)(xt+18x3 4-66x2+73x+131)
37 41 x x (x+103)(x +215)(x +227)(xt+ 157x3+49x2 4-16x 1-44)
41 | —1 | x4+190 | x+ 39 | (x+146)(x+155)(x +208)(x4+147x3 4 183x24-225x+21)
53| +1 X x (x+20)(x+205)(x +223)(x*+ 18284161 x2+90x+198)
193 | +1 | x+139 | x+139 | (x+24)(x+111)(x+215)(x%+38x3+171x2+46x+72)
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229

0

X

x (x+69)(x+110)(x+215)(x4 4 64x3+ 14x2+195x +176)

509

+1

x+152

x+152 | (x+73)(x+212)(x4223)(x*+92x34107x2 +55x +215)

593

+1

x+178

x+178 | (x4120)(x +151)(x +223)(x4 + 1253 +223x2 + 8x +225)

@) p:=257
H;(x) : =factorization mod 257 of the characteristic polynomial of T (J)

on § 130

w:=130

H (%)

(x+60)2

(x+D(x+9) (34 17722+ Tx +235)(x8+209x2 +4x +111)

x246

(x+68)(x +234)(x3+76x% 4+ 51x+ 66)(x3+200x2 +242x +215)

x2410

(x+121)(x+188)(x3 +80x2 +46x + 166)(x3 +106x2+119x 4-56)

x+14

(x +18)(x +68)(x® + 382+ 180 +250)(x8 +195x2 +83x -+ 166)

1

(x+2212

2(x-+103)(x3 4242 +249x + 135)(x3 + 20232 + 136 x 1+ 65)

13

(x+229)2

(x+56)(x +255)(x8+27x2+90x 4 116)(x® +236x2+4225x +94)

17

(x+4187)%

(x+111)(x+253)(x3+81x24+152x 4-202)(x3+217x2+17x +221°

19

x2

(+94)(x +204)(x8 -+ 2182 +197x +254)(x3 +233x2 +234x +159)

23

(x+199)2

(x+67)(x+253)(x3+143x24+223x+121)(x3+173x2+26x +163)

29

(x+172)2

(x+91)(x+253)(x3+111x2+171 x +82)(x34+222x2+110x +7)

31

(x+4206)?

x(x+51)(x3482x2+86x+175)(x8+217x24138x4-194)

37

x24+74

(x +106)(x +160)(x® +79x2 +97x +45)(x3 + 9922 +153x +-91)

41

x?

2(x+248)(x3+39x2 +171x +179)(x3 + 16132+ 188x +71)

61

x2

(x+12)(x+36)(x3 +68x2+12x +152)(x3 + 1472+ 246+ 170)

67

x?

(X 12)(x +200)(x3 +72x2+ 94 + 148)(x3 +233x2 4+ 69x + 91)

157

(x+194)2

(x+235)(x +253)(x8+15x2+192x +115)(x® + 12532+ 69x - 162)

257

x2

(x+30)(x+163)(x34-85x2+247x+ 5)(x3+252x% 4+ 178x +118)

643

(x+60)?

(x+2)(x+40)(x3+31x2 4 29x +242)(x3+ 58x2+ 119x 4 185)

653

(x+82)2

(x+142)(x +253)(x3+213x24-143x 4+ 196)(x3 +236x2+75x 4-15)
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p:=prime

Table (IIT)
w:=weight (p+3)/2

Hy(x): =factorization mod p of the characteristic polynomial of T(l) of
on S, with (i)z—l

14
p | will Hi(x)
317 | 160 | 3 (x2+294x +108)(x11 4-200x10 4 54x9 4 180x8 +-237x7 4-201 x6 +231 x5+
121x44170x3+163x24+226x1+217)
3371170 | 5 (x+282)(x5 +225x4+ 174x3 41662 +255x +74) X
(x7+177x5+68x5+315x44288x34-58x2+ 153x +260)
2 x(x5+54x4+4143x34-320x2 4 334x +152) X
(X3 11x7+176x8+ 31125+ 104x4 421234157 x2+ 139x + 135)
349 | 176
7 (x4237)(x5+232x4+45x3+294x2 +248x +290) X
(x84-45x7+185x8+180x5+309x4+201x3 - 139x24-233x 4-92)
3531178 | 5 (x+100)(x2+344x +66) (x4 +327x3+104x2+73x+77) X
(x74350x8+314x5+214x4+68x3+ 324x2+278x+233)
2 (x4 104)(x +269)(x +355)(x8 4 11x5+ 309x4 4 200x3 4 52x24+-212x--329)
X (x8+212x5+214x4+366x3 4 119x2 4+ 175x 1-248)
373 | 188 | 5 (x+58)(x +165)(x +-208)(x8 + 108x5 4 138x% +-290x3 + 330x2 4+ 353x +
202)(x8+-366x5+354x4 4201 x3 + 128x24-329x +129)
1 x(x+41)(x+145)(x8+313x5+137x44+256x34-129x24-285x +161) X
(x8++365x5-4+269x44-198x3 +347x2+-253x 4 128)
389 | 196 | 3 (x+86)(x+378)(x7+235x8 - 129x5 4297 x4 +203x3 4 60x2 4 182x +255)
X (x7+312x8+202x5 4247 x4+ 197x3 +99x2 +227x -+ 98)
397 | 200 | 5 (x4 126)(x+294) (x4 +52x3 + 137x2 427 x +13)(x10+335x9 4+ 1518
+345x7+110x5+239x5 + 384 x4 4-377x3 4 61x2+200x +136)
401 1202 | 3 (x4 1)(x24-167x+338)(x12 4 336x12+ 116511 +290x10 4 11x9 4 322x8
+394x7 4 77x5+388x44-298x44-23x3 +312x2+212x 4 285)
409 | 206 | 7 (x+110)(x +196)(x24 +201x18 + 136x12 4 134x11 + 168x204- 197
+244x84-227x7+196x5 +353x5 4+ 70x% 4 321x2+49x+232)
(x+117)(x +407)(x2+338x +340)(x13+272x12 4 335x11 4 242410
421 1 212 | 2 | 4+401x9+386x84318x7+ 345x04236x5+ 349x4 +274x3 +13x24-261x
+162)
4332181 5 (x5 4 50x4 +420x3 4+ 3062 +205x +72)(x5 +83x% 4 332x8 4 136x2
4+108x +35)(x7+268x8 4 76x5 +-43x4+123x3 4-29x2 4 318x +18)
449 | 226 | 3 (x2+4+240x +373)(x2+294x +161) (x3+ 340x2+238x+ 384) (x11 4+ 17x104

367x%4267x8 +43x7+158x84-292x5 + 87x4+ 89x3-+-283x2 4 341x4-404)
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457

461

230

(X4 58)(x +437)(x2 +407x + 178)(xM4 -+ 36418 -+ 28x12 + 388x11 4 357x10
+271x9+ 1068 + 3867 + 350x8 4 3925+ 824+ 12518+ 224x2 4 198
+355) :

232

(x+220)(x5+356x4+4-22x3 +193x2 +-43x 4+ 12)(x84-397x5 4-455x4
+247x34322x2+225x +368)(x7 -+ 89x8 4237 x5 - 134x% + 36x2
+101x2--295x +263)

509

256

(x4356)(x20+ 10x19 4 334 x18 - 52x17  x16 4 252x15 424514 4-455x13
+83x124+316x11 407 x10 - 463x° 4487 x8 446517 +- 287 x8 4-408 x5
+128x4+447x34-318x24-36x -+ 113)

521

262

(x4374)(x +432)(x1® 4 335x18 + 6617+ 7216+ 206x15 - 332x14 {- 7818
+408x12 - 48x11 4207 x10 4-459x9 + 98x8 - 342x7 4 387x6 4- 174 x5
+202x4+101x8 4 351x2+511x +186)

541

272

(x+71)(x84-29x7 +435x8 4-31x8 - 371 x4+ 91x3 4 334x2+430x 4 80) X
(x13+-454x124 374511 4 47810+ 6319+ 22638+ 43x74-82x6 4 10x5
+347 x4+ 368x3+-280x24313x+391)

557

569

280

(x+376)(x2+455x-+424)(x3 + 105x2 4 387 x + 398)(x17 +- 497 x16 4 547 x15
+327x144-258x18 4-260x12 4 141 x11 - 184x7104-262x9 4-503x8 - 278x7
+14x64-331x54123x4 4+ 64x34-157x2+211x 4 528)

286

x284-90x22 + 116x2 +421x20 4 110x29 4-25x18 4 12x17+ 568 x16 - 108 x13
+92x144332x13 4 303 %224 67411 - 553x10 4+ 519x9+416x8 - 555x7
+87x8+442x5+497x*+4-38x34+109x24+239x -+ 146

577

290

(x2+ 2362+ 344)(x3 + 3794 + 4328 -+ 2022 4+ 199x -+ 110) X
(X194 6815 4 1614 + 85113 4+ 95 x12 4 53811 4 145x10 4+ 511x0
7882757+ 187x0 + 34535 +293 x4 +219x8 4 559x2 +208x + 131)

593

298

(x11-4-498x10 - 185x9+ 533x8 448727+ 112x6 4-46x5+ 111x4 42748
+294x2+165x +455)(x18 4 30x124- 378x11 - 25510 4 357x9 4 503x8
+157x7+229x8 + 328x5 4-516x% 297 x3 433612 4-557x +448)

601

302

(x%4+316x+351)(x3+ 188x2 +389x 4 122)(x19-- 154 x18 4-398x17 - 562x16
+566x15+446x14-403x13 +293x12 +290x11 +480x10 4- 329x9 4- 500x8
+320x7 - 5468 4-20x5 4464 x4 +209x3 4 81x2+4 187x +129)

613

308

(x+549)(x34-69x2 + 579x +206)(x3 +259x2+383x 4-174) (x184-189x17
442x16 135415 491 x14 4374 x18 4-65x12 - 331 %11 4- 248 %10 4-432x9
+165x84605x7 +127x84-48x5 +468x* 4-488x8 4 351x24220x+-510)

617

310

(x+579)(x¢+188x3 +161x2 261 x261)(x8+285x5+212x¢ 39213
+340x2 4247 x + 194)(x14+ 147 x18 - 77 x12 4- 253 x114- 13410 4-352x9
+389x8 - 185x7 4153 x84 42x5 4 521 x4+ 225x31-409x2 4 379x +537)
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641

322

(X+29)(x + 184)(x +277)(x + 387)(x +492)(x8 +533x7 + 508 x8 -+ 473x5
+TA 4 542x% + 5692+ 128x -+ 341)(x184-390x12-- 380111 4 116310 602x9
+60x8 +223x7 -+ 3300 -+ 1545 - 294 +-269x3 4 389x2 1+ 242x 1 570)

653

328

(x+278)(x +435)(x2+36x + 651)(x2+559x + 366)(x2+ 617x-+651) X
(xt4-180x% 4-273x2 4 649x 4-207)(x154-594x14 - 574 x134- 617 x12
+142x11 4 532x10+ 132x9-4- 57684 576x7 +279x8 + T0x5+ 171 x4
+435x3+644x%4-374x +-546)

661

332

(X +214)(x +475)(x2 +328x +4T)(x5 + 4164 + 46133+ 254x2 + 479x
+522)(x8+428x7 -+ 581x8 + 59615 +259x4 + 117x3+426x2+192x+44T) X
(x104-320x9+23x84-595x74-240x6 4-432x5 4-287 x4 4-222x3 - 604 x2
4-396x+99)

673

338

(x+160)(x + 181)(x3+347x2 431 1x +209)(x22 4 18221 4 63x20 + 526x19
+191x18 - 54717 4 389x16 4 5515 4 652x14 + 13418 -+ 56612 4 179x11
+ 142209 4 41339+ 475 x5 4 817 460x6 + 2765 4 575 x4 +- 2813 1- 4842
+18x+175)

677

340

(x+459)(x27 - 493x%6 - 464x25 +269x24 - 263x23 4 97 x22 4 342 x21
+338x204+ 58619 103x18 4 3525174 550x16 - 497 x15 - 41 x14 - 591113
+306x12 4417411 4 202x10 4 324x° 4 243x8 + 38x7 + 541 x8 + 267 x°
+663x4+252x34+289x%4320x + 98)

701

352

(x24543x4-14)(x4-+12x34-616x24-557x + 18)(x% + 169x3 + 575x2
+104x 4+443)(x8 4+ 135x5 - 543x4 +679x3 4-583x2 4+ 369x +281) X
(x84 529x5 4 572x4 +25x3 +422x2 4 284x + 125)(x7 + 140x6 4431 x5
+672x4-4-667x3+533x24-525x +443)

709

356

(x84-434x%4-330x3 +258x24-565x +351)(x8+615x7 - 1289+ 588x5
+625x4 45033 4373 x2 - 519x + 60)(x16 + 603x1% - 287 x14 + 380x13
+45x12 4185111 4321 x10+ 662x9 + 373x8 - 144x7+212x5 4 518 x5
+464x4+247x3 4-309x% 4 58x1-493)

733

368

(x%4-59x+731)(x28 4 465x27 4 683126 4- 59825 4-227x24 - 704 x23
+182x22+157x21 4-71x204-498x194-661x17 - 53x16 +-245x154- 610x14
+730x18 4 450x22 - 467x11 +139x10 +-295x9 +-498x8 + 577+ 51548
+555x%+310x%+43x8 4-644x2 -+ 204x - 83)

757

330

(x4 190)(x +539)(x12+ 575511 +439x10+-703x% 4-77 x84 30x7 + 103x8
+578x5+722x% 4+ 68x3 +486x24218x 4 116)(x17+-267x16 4137 x15
4267 x14 431 x13 4 645x12 477 x11 - 599x10 4 569x° 4- 351 x8 4 228x7
+363x84-291x5+ 575x4 - 380x3 472742 4-212x +200)
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