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Vanishing Cycles and Differentials of Curves 
over a Discrete Valuation Ring 

Takeshi Saito 

In this paper, we study curves over a discrete valuation ring as a 
sequel to [13]. We study the relation of 1-adic vanishing cycles and differ­
entials, both of which represent how far curves are from being smooth. 
We compare the length of the cohomology of the torsion parts of the 
sheaves of differentials and the dimension or the "total dimension" of the 
cohomology of the sheaves of vanishing cycles. For this, we use a special 
differential on the special fiber called "the relative canonical differential" 
defined in Section 2. It gives the dimension of the space of vanishing 
cycles in a special case. 

We always use the following notations and terminology. S: the 
spectrum of a strict local discrete valuation ring A with algebraically 
closed residue field k of ch= p ~ 0. s (resp. 17): the closed (resp. the generic) 
point of S. S-curve: flat and separated S-scheme of finite type purely of 
relative dimension 1 such that the generic fiber is smooth over 17. 

A relation between vanishing cycles and differentials will be given by 
the following conjecture. Let A:= Q1, where ( is a prime number different 
from p and R<f>A (resp. Rt/IA) be the complex of the sheaves of the vanishing 
cycles (resp. the nearby cycles) (for the definition, see [4]). Let dimtot 
denote the total dimension i.e. dimA + Sw, where Sw is the Swan conductor. 

Conjecture (0.1). Suppose Xis a regular flat separated S-scheme of 
finite type and Z is a subscheme of x. such that Z is proper over s and 
that X - Z is smooth over S. Then, 

dimtot RI'(Z, R<f>A) = - length 0 s RI'(Z, Qx;s, tor.). 

Or equivalently, 

dimtot RI'(Z, Rt/IA) =dim RI'(Z, A)-length 0 s RI'(Z, Qx;s,tors). 

Here the supports of Qx;s, tors and R<f>A are included in Z. This 
conjecture generalizes that of P. Deligne, Conjecture 1.9 of [5], which treats 
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the case that Z consists of isolated singularities. The case where X is 
proper over S and Z = X s is conjectured by K. Kato. There are several 
special cases where the conjecture has been already known. 
0) In the case of relative dimension 0, it immediately follows from the 
definition of the Swan conductor (cf. [5]). 
1) The case that dim Z = 0 and that S is of equal characteristics is proved 
by P. Deligne (loc. cit.). 
2) The case that X is proper over S and of relative dimension 1, Z = X s 

and S is the strict localization at a closed point of a smooth curve over an 
algebraically closed field is proved by K. Kato (cf. Section 4). 

We consider the case that the relative dimension of X over S is 1. 
We prove Conjecture (0.1) in some special cases. In Section 3, we prove 
it under the assumption that the wild ramification group P acts trivially on 
RI'(Z, RI/IA) using our relative canonical differential. In Section 4, we 
prove it in the case that S is the strict localization of a smooth curve over an 
algebraically closed field at a closed point. 

We briefly explain what is the relative canonical differential. Let X be 
a regular S-curve. For simplicity, we assume C:=Xs,red is regular and 
irreducible. Let ~ be the maximal point of C and put le:=length,,,x,~ 
(Q};s,, 0 r.){ and re:=length,,,x,~0x,.~· It is well known that always 
l~ 'ii;; re -1 and the equality holds if and only if p,t'r e ( cf. Proposition 13 
Chapter III [14]). We assume pl re so that le'i;;re, Then, in Section 2, 
we define a canonical differential We EI'( C, Qb;,). This we is not O if 
and only if le= re and C is of type II in the sense of Kurihara [9] ( cf. 
Definition (2.3)). It is expected that We knows the behavior of vanishing 
cycles in the case that le=re and C is of type II. We show that this is true 
for the dimension of the space of vanishing cycles and give a conjecture 
on its conductor. 

After the author wrote this paper, he obtained a preprint of S. Bloch 
[2] in which he proves a formula representing the left hand side of 
Conjecture (0.1) as a certain intersection number in the case that X is a 
proper curve over S and Z = X s· It is probable that Bloch's formula is 
equivalent to that of Conjecture (0.1) in that case though the author has not 
yet shown it. As mentioned above, Section 2 of this paper contains 
some pointwise study of vanishing cycles at non-isolated non smooth points, 
which is not covered by Conj~cture (0.1) and raises further problems (cf. 
Conjecture (2.10)). 

The author wishes to express his sincere gratitude to Professor 
Kazuya Kato for his valuable advice. In particular, his suggestion 
on Proposition (1.5) is crucial. He also thanks Professors Shuji Saito, 
Osamu Hyodo, and Masato Kurihara for their encouragement and 
stimulating conversation. 
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Notations and terminology 

For a scheme X and its geometric point x, Xx denotes the strict 
localization of X at x. A { x, y} denotes the strict localization of the 
polynomial ring A[x, y] at the maximal ideal (n, x, y), where n is a prime 
element of A. 

For a noetherian scheme X, K~(X) denotes the Grothendieck group of 
the category of the coherent 0x-modules and [ J denotes the class of a 
coherent 0x-module or a complex of coherent 0x-modules. When F-G 
is a morphism of coherent 0x-modules, [F -GJ denotes [Coker]-[Ker]. 

An extension S' of S means the spectrum of a strictly local discrete 
valuation ring finite over A such that the fraction field is separable. 

A normal crossing divisor (abbreviated n.c.d.) is a closed subscheme 
of a regular scheme defined etale locally by an ideal (llf;) where (f); forms 

i 

a part of a regular system of parameters. Note that an n.c.d. is reduced in 
our terminology. 

§ 1. The length of cohomology of the torsion part of the differential sheaf 

In this section, we always assume that X is a regular S-curve and Z is 
a subscheme of Xs such that Z is proper over s and that X - Z is smooth 
over S. 

If we admit Conjecture (0.1 ), the following proposition follows from 
the proper base change theorem. Here, we prove it directly. 

Proposition (1.1). Suppose (X, Z) and (X', Z') satisfy the assumption 
above and f: X'-X is a proper S-morphism which induces isomorphisms 
z;ed ~(Z X X')red and X' -Z' ~x - z. Then, 

X 

(1.1.1) x(Z)-x(Z, QX/S,tors)=x(Z')-x(Z', QX'/S,tors), 

where x(Z): = dim A RI'(Z, A) and 

Proof. We note that Qi:;s,tors=0 if i#l, 2 and Qf1s is of torsion. 
First we prove • 

(1.1.2) x(Z, QX/S,tors)=x(Z', Lf*QX/S,tors). 

In fact for a coherent 0x-module ffe", we have Rf *Lf*ffe"=Rf *0x,L<8>exffe". 
Here f *0x· = @x and Supp Ri f *{l)X' are finite over s for i # 0. Since 
Q};s,tors and Qf1s are isomorphic in codimension 1, it is sufficient to show 
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the following fact; for any coherent 0x-modules §' and <§ of finite length 
whose supports are contained in Z, we have x(Z, §' L® 0x '#)=0. This 
fact immediately follows from x(Z, K(x1)L® 0xK(x2))=0 for any closed 
points x 1 and x 2 of Z. 

We may assume that X' is the blowing-up Y of X at a closed point x 
of Z (cf. [15]). In this case it is clear that x(Z')=x(Z)+l. Hence it is 
sufficient to show 

(1.1.3) x(E, [QYJS,torsJ-[Lj*(Qx/S,tors)J)= 1, 

where E denotes .r-1(x). Since X is regular of dimension 2, locally there 
is an S-immersion i: X--+ T which satisfies the following condition: 

(1.1.4) T--+S is smooth and purely of relative dimension 2 and X--+ Tis a 
regular immersion of codimension 1. 

From this, we have following exact sequences 

(1.1.5) 

(1.1.6) 0-----+ Nx1r® Ql1s,tors -----+ Nx1r® Ql1s-----+ 

i* Q}1s -----+ Q} 1s -----+ 0. 

The second induces the exact sequence 

Here wx,s = N<fj/ ® i*Q} 1s is the relative canonical sheaf of X over S 
(cf. [7]). 

Since the question is local at x, there is a commutative diagram 

E -----+ Y ~ U 

l l l 
(1.1.8) x-----+ X -4 T 

~ '\ !)a 
s-----+ S 

such that i: X--+Tsatisfies (1.1.4), x=XxS, U is the blowing-up of T 
T-+a 

with center a and that Y=Xx U. Hencej: Y--+U satisfies the condition 
T 

(1.1.4). 
Since f*N xir=Ny 1u, 
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By this and (1.1.7), we have 

(1.1.9) [QY/S, torsJ- [Lf*Qx;s,torsJ 

= [Q};s---> Wr;s]-[Lf*(Q};s---> Wx;s)] 

= [Q} ;s ---> Wy;s]- [f*(Q};s ---> Wx;s)] 

(since Lf*Q} 1s=J*Q} 1s and Lf*wx 1s=f*wx 1s) 

= [f*wx,s ---> Wy;s]- [f*Q};s---> Q} ;sJ · 

Since there are exact sequences 

(1.1.10) 

(1.1.11) 

we have 

Hence we have 

(1.1.13) x(E, [Qi, JS, tors]- [Lf*(Qx/S,tors)J) 

= x(E, Q};x® N E/Y )- x(E, Q};x) 

=degNE;r=l. 

269 

Q.E.D. 

Remark (1.3). As a consequence of Proposition (1.1), we have the 
following compatibility. Suppose that (X, Z) and (X', Z') satisfy the 
condition of Conjecture (0.1) and that there exists a birational S-rational 
map f: X'--+X which induces an isomorphism X'-Z'--+X -Z. Then, 
Conjecture (0.l) holds for (X, Z) if and only if so does it for (X', Z'). 

In the rest of this section, we give a formula which represent x(Z, 
Qx;s,tors) by intersection theory. It is an analogue of Bloch's version of 
S. Saito's formula for the Lefschetz number of algebraic surfaces [1] 
(cf. [12]). First we give some elementary facts on the structure of the 
0x-modules Q};s,tors and Q} 18• Let D (resp. D') be the closed subscheme 
of X corresponding to the ideal ..Fn:=Ann(Q};s,, 0 ,.) (resp.Jn,:=Ann 
(Q} 18)) of 0x, Then, Q};s,tors (resp. Qf 1s) is an invertible 0n-module 
(resp. invertible 0n,-module) and in,*Q}1s is a locally free 0n--module of 
rank 2. ..Fn is an invertible 0x-ideal, ..Fn-=>..Fn, and ..Fn/..Fn, is of finite 
length. These facts are easily deduced from the exact sequences (1.1.5) 
and (1.1.6). 

We define a 0-cycle R of Z by 

(1.4) 
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Proposition (1.5). Under the above notations, we have the .following 
formula. 

(1.5.1) x(Z, .QX/S,lors)=degR-(D, D-K). 

Proof. By (1.1.7), the canonical morphism .Q}18--+wx1s induces an 
exact sequence 

(1.5.2) 

By applying iv,*, we obtain the following sequence 

(1.5.3) 0-----> .Q}/S,tors-----> iv,*D}1s-----> iv,*(Jn,Wx1s)-----> 0. 

Since .Q}1s,tors is an invertible 0v-module, this is exact. From this we 
have an equality in K 0(D') 

(1.5.4) 

Since iv,*.Q}1s (resp. wx1s) is a locally free 0v,-module of rank 2 (resp. 
an invertible 0x-module), we have an equality in K 0(D') 

(1.5.5) [iv,*D}1s--+ iv *.Q}1s] = [in,* Jn,Wx1s--+ iv* .FnWx1sJ · 

Since iv*D} 1s is a locally free 0v-module of rank 2, we have an equality 
in K 0(D) 

(1.5.6) 

By (1.5.4)-(1.5.6), we have 

(1.5.7) [0v]+[iv*.Q} 18]=[.Q} 1s,tocsJ+[iv*.Fnwx1s] in Ko(D). 

It is clear that R+[iv*D¼ 1s]=[.Q} 18]. Thus we have 

(1.5.8) 

By taking the degrees of both sides, we complete the proof since 

deg([iv*.Fnwx 1s]-[0v])=(D, K-D). 

§ 2. The relative canonical differential 

In this section, we assume that X is a regular S-curve and C is a 
component of the special fiber x. with maximal point ~- We put 
lc:=length 0 x,s (.Q}15, 10,.)~ and rc:=length 0 x,s 0x,,"' We have always 
lc~rc-1 and the equality holds if and only if p,/'rc, For a component 
C with p I re, we define the relative canonical differential and its variants. 
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Lemma (2.1). Let X and C be as above. Suppose C is contained in 
the regular part (X.,,.d)reg of Xs,red• and is a principal divisor. Let 
r = re and assume p Ir. Let n (resp. x) be a prime element of S at s 
(resp. of X at C). Then 

(2.1.1) w:=dlog(n/x')EI'(C, i~D} 1s) 

does not depend on the choice of n nor x. The differential w is not O if 
and only if le=re. If le=re, the image of D} 1s,tors in i~D}1s by the 
canonical morphism is generated by w. 

Proof. The independence from the choices of n and x is straight­
forwards. For the second assertion, since the question is local, we may 
assume X=SpecB where B:=A{x, y}/(n-ux') and uEA{x, y}x. Then 

D} 1s~(BdxtI,Bdy)J(x'(du+: -dx)). Since x 2 lr, l=r occurs if and 

only if du is not divisible by x in BdxtI,Bdy. Since i~D} 18~ B/(x)dxtf) 
B/(x)dy, this means that du-t,O in i~D} 18• If l=r, D} 1s,tors is generated 

by du+ !.__ dx. The last assertion follows from this fact. 
X 

Definition (2.2). Let X and C be as in the beginning of this section 
and assume that r=re is divisible by p. Then Wx;s,eEI'(C n (X.,,.d)reg, 
i~D};s) is locally defined by (2.1.1). 

For further study of w, we review the definition of the types of 
extention of discrete valuation rings of M. Kurihara (cf. [9]). 

Definition (2.3). Let X be a regular flat separated S-scheme of 
finite type and e be a maximal point of the special fiber X. and put C: = 
{e}. Then C is of type I (resp. type II) if the canonical morphism D};s,tors 
-+Dl,,,.. 1• is O (resp. non-0) at e. 

Definition (2.4). Let X, C and r be as in Definition (2.2). We put 
C0 :=C n (X.,,.d)reg· Then the relative canonical differential Wx;s,e= 
WeEI'(C 0 , Db1.) of X over Sat C is the canonical image of Wx1s,e· If C 
is of type I, Vx;s,e=VeEI'(C°, Ne 1x) is wx 1s,e, which is defined by the 
exact sequence 

Remark (2.5). Under the same assumption of Definition (2.4), We 
is not O if and only if le= re and C is of type II. If C is of type I, Ve is 
not O if and only if le= re· 

We give a relation of We or Ve with the 0-cycle R= L Rec defined 
by (1.4). 
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Proposition (2.6). Let X be a regular S-curve such that Xs,red is 
an n.c.d. in X. 

(2.6.1) Let c be a smooth point of xs,red and C be the component of 
X., which contains c. We assume that C satisfies le=re and is of type II 
(resp. I). Then Rc = 0 if we( c) # 0. (resp. Then Rc = 0 if and only if 
Ve(c) "i'O, and if vc(c) =0, then we have Rc~ordc vc-) 

(2.6.2) Let c be a singular point of xs,red and, if xs,red is irreducible 
(resp. not irreducible) at c, C and C' (resp. C) be the two components 
(resp. the unique component) of Xs which contain(s) c. We assume 
plre. In respect case, we put C'=C. 

1) Assume p.,t'rc. Then le=re, C is of type II, Rc=O and ordcwc= 
-1. 

2) Assume plrc. Then WEI'(C°, i~Q}; 5) (resp. WEI'(C°, Qb1.)) 

comes from I'(C 0 U {c}, i~Q_l,15) (resp. I'(C° U {c}, Qb1.)). Further assume 
C is of type I and let <p: C----+C be the normalization. Then vEI'(C 0 , 

NCfx) comes from I'(C 0 U <p-1(c), <p*NCfx). 
3) Assume le=re, le,=rc and C is of type I. Then, if C',tC, we 

have Re ~ordc Ve. Further assume C' is of type I. Then (f C' # C (resp. 
C'=C and <p-1(c)={c 1, c2 }), we have 

Re~ ordc Ve+ ordc Ve -1 and ordc Ve, ordc Ve~ 1 

(resp. Rc~ordc, ve+ordc 2 Ve+l). 

Further if ordc Ve=ordc Ve= 1 (resp. ordc, Ve=ordc 2 Ve=O), we have 
Re= 1. 

Proof of (2.6.1). By assumption, Xe~ Spec B, where B=A{x, y} /(n­

ux') and u E A{x, yy. We have Rc=length B/( ~~ +:, ~;-) since 

Q} 1A=B-dxAdy/(d(ux')Ady, d(ux')Adx)~BJ(x')·({~ + :, ~;). 

We note that _!_ E (x). Then the assertion for type II follows from the 
X 

fact that ~; ( c) # 0 if and only if we( c) # 0. The assertion for type I 

au follows from the fact that, if C is of type I, ay E (x) and ordc Ve,= ordc 

(~~ modx). 

Proof of(2.6.2). By assumption, xc~SpecB, where B=A{x, y}/(n-
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uxryr'), uEA{x,yY and p\r=re. If p,,l'r'=re, we may take u=l. 

Then by an easy calculation we have We=dlogyr'=r'· dy and ffi;A~ 
y 

B/(xryr'- 1). The assertion I) immediately follows from this. We assume 

p Ir'= re. Then we have We= d log u. Except the last assertion in the 
case that c is a singular point of C, the assertion 2) follows from this. This 
exceptional case follows from the inequalities ordc Ve, orde Ve~ 1 of the 
second assertion of 3), since the question is etale local and cp* N cuc;x = 
Ne;x(-c)0:)NC'fx(-c) etale locally at c. We prove the assertion 3). 
Assume le= re, le= r c and C is of type I. Then it is shown similarly 

as above that we have Re= length B/(1-. ~u__ + _,._ J_ · __c)}'-+ _,-_'_) and 
U uX X' U uy y 

ordc Ve= ordc ( (¾-· ~i-+ : ) mod x). By the assumption that C is of 

type I, we have ___1_ · ~u + _,-_'_ E (x). The first assertion follows from this. 
U uy y 

Further assume that C' is of type I. Since the question is etale local 
and cp*Ncue;x=Nc;x(-c)0:>Ne;x(--c) etale locally at c, it is sufficient to 
show the case C#-C'. Then similarly as above, we have Rc=lengthB/ 

( _!__ _ __c)_u_+_,-_ _l__i'._il_+_,-_'_), ord Vc=ord ((__!_·i'._il_+_,-_) modx) and 
u ox x, u oy y c c u ox x 

ordc Ve=ordc ( (-t---~; +f )mod y). By assumption, we have ~ . ~;-+ 
r' 1 ou r ~E(x) and --.~-+~E(y). The rest of the assertion 3) follows from 
y U OX X 

this. 

The main result of this section is the following theorem which gives 
the relation between the vanishing cycles and the relative canonical differ­
ential. 

Theorem (2.7). Let X be a regular S-curve such that Xs,red is an 
n.c.d. in X and c be a closed point of x.. Let P be the wild ramification 
group of S. We assume any component of x. which contains c satisfies 
l = r and is of type II. For an integer r, m denotes the prime-to-p part 
of r. 
i) Assume that c is a regular point of Xs,red and that C is the component 

of X. which contains c. Then 

ii) Assume that C is a singular point of xs,red· 

is contained in two components of x., C1 and C2 • 

We may assume that c 
Then 
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codim(R',frA)c (R1t/lA)f =(re, -me.)(ordc We,+ 1) +(re 2 -me 2)(ordc We2 + 1). 

Remark (2.8). The dimension of the P-invariant part R*tfJAP is 
determined by Theorem 3.3 of [3]. In particular, under the assumption 
of i), we have (R1t/JA)f =0. 

Proof. i) It is easy to see that we may assume m = 1 ( cf. Lemma 
(1.3) of [13]). Let S' be an arbitrary extention of S of degree r. Then 
S'~SpecA', where A'=A{n'}/(n-vn'') and veA{n'}x. By assumption, 
xc~SpecB, where B=A{x, y}/(n-ux'), ueA{x, yy and du modx#O 
in Dl{yl/k· It is not difficult to see that the normalization X' of Xe x S' 

s 
is isomorphic to SpecB', where B'=A'{x, y}[w]/(n'-wx, w'-u-v- 1). 

Hence X' is essentially smooth over S' outside its unique closed point c'. 
By the definition of vanishing cycles, the dimension of RitfJAc is equal to 
that of RitfJAc' with respect to X'-+S'. By the dimension formula (Prop­
osition 5.9 [8] or Proposition (4.2) [13]), it is sufficient to calculate the 
value of {> (cf. (2.9) below) of B'®k. Thus we are reduced to show the 

A' 

following lemma since B'®k=k{y}[w]/(w'-ii -v-1). 
A' 

Lemma (2.9). Let A=k{x}, teA such that dt#O' in D11k and r=pn. 
We put A'=A[w]/(w'-t). For the strict henselization B of the local ring 
of a reduced curve over k at a closed point, we put {>(B)=dimk (B00 •m•1/B). 
Then 

{>(A')=~ (r-1) ord dt. 

Proof. For O~i~n, we put 

A;: =A[t;]/(tf-t)=A;- 1 [t;]/(tf-ti- 1), 

so that we have A=A 0 c··· cAn=A', A;:=(the normalization of Ai) 
and A 1=A;®Ai-i· Then it is clear that {>(A;)=b(AD+ p{>(A1_ 1). 

Ai-1 

Since ord dt (in D11k) = ord dt; (in D¼,1k), we are reduced to show the 
case n=l. We put orddt=m-1. Then it is clear that p,j,'m and there 
exist a, beA such that t=a+b, orda=m and beAP. Thus we may 
assume p,j,'m = ord t. In this case, the lemma is just the formula 

ii) Similarly as above, we may assume that me,= me,= 1. We put 
r =re, I r' =re, and r = r' · r". Let S' be an arbitrary extention of S of 
degree r. Then S'~SpecA', where A'=A{n'}/(n-vn'') and veA{nT. 
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By assumption, xc~specB, where B=A{x, y}/(n-uxryr'), UEA{x, YY 
and du 1 :=dumodx,i,O in Qklyl/k and du 2 :=du mody,i,O in Qfrxl/k' 
Here C1 =(x=O) and C2 =(y=O). It is not difficult to see that the 
normalization X' of Xe x S' is isomorphic to Spec B', where B' = 

s 
A'{x, y}[z, w]/(n'-xz, zr"--w·y, wr'-u·v- 1). Then by the same 
argument as above, it is sufficient to show that 

(2,7.1) b(B' 0k) = 21 ((r-1) · ord du 1 + r+(r' -1) · ord du 2 + r'). 
A' 

Since B' 0k is reduced, the following sequence is exact. 
A' 

0---> B'0k---> B'/(x) x B'/(z)---> B'/(x, z)----> 0. 
A' 

From this, we have 

(2.7.2) b(B' 0k)=b(B' /(x)) + b(B' /(z))+dimk B'/(x, z). 
A' 

Here B'/(x) = (k{y}[w]/(w'' - u · v-1)) [z]/(zr" -w · y), B' /(z) = k{x}[w] / 
(wr"-u·v- 1) and B'/(x, z)=k[w]/(w''-u-v- 1). It immediately follows 
from this and Lemma (2.9) that 

b(B'/(x))= ~ ((r' -1) · r" · ord du 1 +(r" - l)(ord du 1 + r')) 

= ~((r-1)-orddu 1 +(r-r')), 

b(B'/(z))= ~(r'-1)-orddu 2 and dimkB'/(x, z)=r'. From this and 

(2.7.2), (2.7.1) follows. Q. E. D. 

To conclude this section, we propose the following conjecture. The 
reason of this conjecture is the compatibility with Lemma (3.5). 

Conjecture (2.10). Under the same assumption of Theorem (2.7); 
i) Assume that c is a regular point of Xs,red and that C is the component 

of x. which contains c. Then 

ii) Assume that c is a singular point of Xs,red and that c is contained in 
two components of Xs, C1 and C2 . Then 
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§ 3. Comparison of dimension and length 

Using the results of previous sections, we prove Conjecture (0.1) in 
a special case. 

To study (0.1), clearly there are not any loss of generality if we assume 
that X and Z are connected. We show that we may further assume that X,1 

is geometrically connected over 17. If Z i= Xs, there is a component of X, 
whose multiplicity in Xs is 1. Hence Xq is geometrically connected over 17. 
If Z =Xs, Xis proper over Sand there is an extension S' (=Spec I'(X, @x)) 
of S such that X-+ S factors S'-+ S and X, 1 is geometrically connected over 
17': = S' x 17. We have 

s 

Lemma (3.1). Suppose S'-+S is an extension of Sand f: X-+S' is a 
regular proper S'-curve. Then Conjecture (0.1) holds for (X, X 5 ,)/S' {f 
and only if so does it for (X, Xs)/S. 

Proof. Since the Gal (i7/1J)-module RI'(Xs, RI/I A) is the induced 
representation of the Gal (IJ/11')-module RI'(X 5 ,, RI/IA), we have 

(3.1.1) dimtots RI'(X 5 , RcpA) 

=dimtots RI'(S;, RcpA) · dim RI'(X;., RI/IA) 

+dimtots· RI'(X,., RcpA), 

Thus it is sufficient to show that 

(3.1.2) x(Xs, QX/S,torJ 

= x(s;, QS' /S,tors) · x(Xq-)+ x(Xs', QX/S',torJ. 

We have the following exact sequences 

(3.1.3) 

(3.1 .4) 

0--> f*Q½·;s --> Q};s,tors--> Q};s',tors--> 0 

Hence we are reduced to show the following equality 

(3, 1.5) x(Xs., j*Q!·;s)- x(Xs, f*Q!,;s®Q}wftors) 

= length 05 , (Q½, ;s) · x(X q-). 

This follows from 

(3.1.6) x(Xs,, f*Q!, 1s)- x(X,, f*Q½, 1s®Q} 1s./tors) 

=length 05 , (Q½,1s)·(x(Xs., @x5 ,)-x(Xs, @xs.®Q};s·/tors) and 

(3.1.7) x(Xw)=x(X,,, @x")-x(Xq, Q}";q·) 

=x(Xs., @xs,)-x(Xs., @xs,®Q};s·/tors) 
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The equality (3.1.7) follows from the invariance of the Euler-Poincare 
characteristic since @x and Q} 1s)tors are f-flat. 

The main results of this section are as follows. We note that if Xq 
is geometrically connected over I'/, the action of the inertia group I of S 
on Hi(Z, Rt/IA) is trivial for i# I. 

Theorem (3.2). Suppose Xq is geometrically connected and Z is 
connected. We assume that, if X is proper with genus Xq= 1 and if 
Z=Xs, then the g.c.d. of the multiplicities of the components of Z is not 
divisible by p. Then, if the action of the wild ramification group Pon 
H 1(Z, Rt/IA) is trivial, Conjecture (0.1) holds for (X, Z) i.e. 

(3.2.1) dim Rr(Z, R<f,A) = - x(Z, QX/S. tors). 

In [13] Section 3 (resp. Section 4) we obtain a geometric condition 
that the action of Pon H 1(Z, Rt/IA) (resp. R 1t/1Ay) is trivial when Z=Xs 
(resp. Y is a normal S-curve and y is an isolated non-smooth point of 
Y-S). lf Z#Xs, there exist a normal S-curve Y, a closed pointy of Y. 
and a proper S-morphism f: X - Y such that f induces an isomorphism 
X -Z~ Y-{y} and that Z,ed = f- 1(y),ed (cf. [6] Lemmas A and B). Hence 
the results of [13] Section 4 apply to this case. By Theorem (3.11) of [13] 
(resp. Theorem(4.12) of [13] and the argument above), we see that if 
(X, Z) satisfies the assumption of Theorem (3.2) and if Z = Xs (resp. 
Z#X.), there exist (X', Z') which satisfies the condition i) of Theorem 
(3.3) below and a birational S-rational map X' -x which induces an 
isomorphism X' - Z' ~X -Z. Hence by Remark (1.3), Theorem (3.2) 
follows from the following Theorem (3.3). 

Theorem (3.3). Suppose Xq is geometrically connected and Z is 
connected and purely of dimension 1. We assume: 
1. x.,,ed is a normal crossing divisor in X. 
2. For CEZ 1 , pirc implies rc=lc. 
3. Further if C is of type I and C is exceptional of first kind, then C 
intersects with other components of x. at more than three points. 
Here Z 1 denotes the set of points of dimension 1 of Z. Then we have the 
inequality 

(3.3.1) dimRI'(Z, Rt/JA)"?;x(Z)-x(Z, QX/S,tors). 

If the equality holds, (X, Z) satisfies either of the following conditions. 
i) If CE Z1 satisfies p I re, then it is isomorphic to Pl, intersects with 

other components of x. at exactly two points and the multiplicities of the 
components which intersect with C are prime to p. 
ii) Xis proper, Z=Xs, genus Xq=l and Xis of type I in the sense of 
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Kodaira's symbol. 
Conversely if the condition i) is satisfied, the equality holds. 

Since Sw RI'(Z, Rt/IA)= -Sw R 1I'(Z, Rt/JA)~O, (3.3.1) follows from 
Conjecture (0.1 ). Here we prove it without using it. The assumption 3 
is not essential since, if there is an exceptional curve of first kind which 
intersects with other components at less than two points, its contraction 
preserves other assumptions. 

Proof. First we rewrite (3.3.1) by using intersection theory. For 
CEZ;, let re be the multiplicity of C in Xs. We put E: = L rcC, E0 : = 

CeZ 1 

L C and F = ( , £ 0 + K - E), where K is the relative canonical divisor of 
CeZ 1 

X over S. Then in [13], we have the equality 

(3.3.2) dim RI'(Z, Rt/IA)= -F(E). 

We put W: =(Xs,red)sing n Z and also let W denote the 0-cycle L X. 
xeW 

Since Xs,red is an n.c.d. in X, we can easily see that 

(3.3.3) x(Z)=deg W-(E 0 , E0 +K-E) 

by using the Riemann-Roch formula x( (!) c) = -( C, C + K) for CEZ 1 and 
the fact that the number ( C, E0 - C - E) is equal to the intersection number 
of C with other components of Y,. By (3.3.2), (3.3.3) and Proposition (1.5), 
(3.3.1) becomes 

(3.3.4) deg R+(D-(E-E 0 ), E0 +K-E) 

We study each term. 

tion, the second term is; 

-(D-(E-E 0 ), D)-deg W~O. 

Since we have D -(E - E0) = L C by assump­
P lrc 

(3.3.5) (D-(E-E 0 ), E0 +K-E)= L F(C) 
plrc 

and the third term is; 

(3.3.6) -(D-(E-E 0 ), D)= L -(C, D). 
plrc 

Since D = E - L C', by assumption, 
pA'rc, 

(3.3.7) -(C, D)=(C, -E)+ L (C, C'), 
p re, 

Next we compute R in some easy cases. 

Lemma (3.4). ff B is an A-algebra, I (resp. I') denotes the annihi­
lator of Qh/A,tors (resp. Qi/A). 
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1. Suppose B=A{x, y}/(n-xm) such that (p, m)= 1. Then 

(3.4.1) J =I' =(xm-1). 

2. Suppose B=A{x, y}/(n-xmyn) such that (p, m)=l. Then 

(3.4.2) 

(3.4.3) 

l=(xm-lyn-l) and I'=I·(x,y) if (p,n)=l, 

I =I' =(xm-lyn) if PI n. 

Since this lemma is very easy, we omit the proof, 

We decompose the 0-cycle W. Force W, we put 

Bc:={the two branches of x. at c}:=((X.);:') 1. 
W0 : ={c E W; both of re for CE Bc are not divisible by p} 
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W1: = {c E W; one of re for CE Bc is divisible by p and the other is not} 

W2: = {c E W; both of re for CE Bc are divisible by p}. 

Then clearly W= W0 + W1 + W2 and L -(C, D)=deg W1 by (3.3.7). 
Pirc 

By Lemma (3.4), R ~ W0 as 0-cycles. Thus (3.3.4) becomes: 

(3.3.8) deg(R-W 0)+ L F(C)-deg W2 ~0. 
Pirc 

Further we decompose the 0-cycle W2 • We put: 

Z1:={CeZ 1; re is divisible by p and C is of type I} 

Zu: = {CE Z1 ; re is divisible by p and C is of type II} 

W2,1: = {c E W2 ; both of CE Be are of type I} 
W2,2: = { c E W2 ; one of CE Bc is of type I and the other is of type II} 

W2,3 := {c E W2 ; both of CE Bc are of type II}. 

We put We:= Wn C, We:=Csing and 
W21:= U We, W21:=W21-W21, 

' eez1 ' ' ' 

Wc:=Wc-We for CeZ 1, and 
W2,3:= U We, W2,3:=W2,3-

cezn 
W2,3· 

We define positive 0-cycles N: = L N cc and Q: = L QcC as follows. 
ceZo ceZo 

(if C is a regular point Of Xs,red, 

ceC and CeZ 1) 

ordcivc+ordc,ve+l (ifceW 2,1, eCand 

Ne:= {c1, c2 }=<p- 1(c), where <p: C---+C is the normalization) 

ordc Vc+ordc Ve,-1 (if c E W2,1 and Bc={C, C'}) 

(if c E W2 ,2 , c E C and CE Z1) 

(otherwise) . 
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(if C is a regular point Of Xs,red• 

ceC and CeZ 11) 

ordc, We+ordc2 We (if CE W2,3, EC and 

Qc:= {c1, c2 }=q,- 1(c), where q,: C-+C is the normalization) 

ordcwe+ordcwC' (if CE W2,3 and Bc={C, C'}) 

(if c E W2 ,2 , c E C and CE Z11) 

(otherwise) . 

Then by Proposition (2.6.2.1), we have 

(3.3.9) degN= L (-(C, C)+degWc)-degW 2,1 , 
eez, 

since Ve is a section of the conormal bundle N eix· Also by Proposition 
(2.6.2.3), R ~ W0 + N as 0-cycles. As for deg Q, we put W1,e: = We n ff; 
for i = 1, 2. Then by Proposition (2.6.2.1), 

(3.3.10) deg Q = L ( - 2 · x( 0 c) + deg Wt, c) , 
eezn 

since We is a rational section of Qt/,· 
By the definition of F( C), 

(3.3.11) F(C)=(C, C+K)+(C, E0 -C)+(C, -E). 

Here (C, E0 -C)+(C, -E)=deg We. On the other hand, by the 
Riemann-Roch formula, we have 

(3.3.12) (C, c+K)= -2· x(@e)= -2- x(0c)+2-deg w~. 

Thus we have 

(3.3.13) F(C)=(C, C)+(C, K)+deg We 

= -2· x(0c)+2-deg Wc+deg We. 

Now by (3.3.9), (3.3.10) and (3.3.13), the l.h.s. of (3.3.8) becomes 

(3.3.14) deg(R-W 0)+ L F(C)-deg W2 
Pirc 

=deg(R-W 0 -N)+deg Q 

+ L (F(C)-(-2·x(0c)+degW 1c)) 
CeZ11 ' 

+ L (F(C)-(C, C)+deg Wc)-deg W2,1 -deg W2 eez, 

=deg(R-W 0 -N)+degQ+ L (2-deg Wc+deg W2c) 
CeZn ' 
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+ L ((C, K)+deg Wc+deg Wc)-deg Wt 1 -deg W2 
CEZ! 

=deg(R- Wo-N)+degQ+deg W2 , 3 

+deg W2 2 + L (C, K). 
' CEZ! 

Here R- W0 -N, Q and W2 , 3 are positive 0-cycles. We put W2 ,;,c= 
W2 ,; n C, for CE z,, so that we have W2 ,2 = c~, W2 ,2 ,c, Thus (3.3.8) 

becomes 

(3.3.15) deg(R-W 0 -N)+degQ+deg W2,3 

+ L (deg W2 2 c+(C, K))~O. 
CEZI ' ' 

We show that deg W2 , 2 ,c +(C, K)~O for CE z,. If (C, K)~O, this is 
clear. We study the case (C, K)<O. Always (C, C+K)~ -2 and is 
even by the Riemann-Roch formula, and (C, C)~O. It follows from this 
that (C, K)~ -2 and that, if(C, K)= -2 (resp.= -1), we have (C, C)=O 
(resp. =-1). If CEZ 1 satisfies (C, K)=-2, by the assumption of 
connectedness and (C, C)=O, X is proper over S, C=Xs,red and c~P}. 
In this case, we have re= 1. In fact, 2 ~ x(Xq)=2x(0x,)=2x(0x)= 
-(rcC, rcC+K)=2rc~2. We show that if(C, K)= -1 and CEZ,, then 
we have deg W2 ,2 ,c+(C, K)>O. In this case, by assumption 3, deg We~ 
3. On the other hand, we have -(C, C)= L ordc Vc~deg W2 , 1,c by 

CEC 

Proposition (2.6). From these inequalities, we have -(C, C)+deg W2 2 ,c 

~ 3, since We= W2 , 1,c+ W2 ,2 ,c (cf. Proposition (2.6)). Thus it is sufficient 
to note that (C, C+K)~ -2. Thus we have shown that each term of 
the l.h.s of (3.3.15) is positive and the inequality (3.3.1) is proved. 

Now we assume that the equality holds in (3.3.1) i.e. in (3.3.15). 
This implies 

(3.3.16) R=W 0 -N, Q=O, W2 ,3 =0 and 

deg W2 ,2 ,c+(C, K)=O for C EZ 1 • 

Since deg W2 , 2 ,c+(C, K)=O, for all CE z,, we have W2 , 2 ,c=0 and (C, K) 
=0. In fact, as we have seen above, (C, K)= -1 or -2 does not occur. 
Thus we have W2 , 2 = 0. By the connectedness assumption, W2 ,2 = 0 
and Proposition (2.6), we have Z 1 =Z, or z, = ¢. We assume Z 1 =Z,. 
Then we have (C, K)=O for all C. It is easily checked that this means 
that the condition ii) is satisfied. Now we assume Z 1 = ¢. Let CE Z 11• 

Then since W2 , 3 =0 and Q=O, we have We= w;,c and 2- x(0c)=deg w;,c, 
by (3.3.10). Since x(0c)~ 1, we have x(0c)=0 or 1. We assume there 
exists CEZ 11 such that x(0c)=0. Then we have Wc=W;,c=O. By the 
connectedness assumption, X is proper over Sand C=Xs,red· It is also 
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easily checked that the condition ii) is satisfied. Now we assume every 
C eZ 11 satisfies x(@c)= 1. Then we have C!::!,!P;, We= W;,c and deg w;,c 
=2. This is just the condition i). 

Conversely, we assume that (X, Z) satisfies the condition i) of (3.3). 
Then 

(3.3.17) deg(R-W 0 -N)+deg.Q+degW 23 + L (degW 22 c+(C, K)) 
' CeZ1 ' ' 

= deg (R - Wo) + deg .Q. 

Here 

deg .Q= I: (-2- x(@c)+deg w;,c)= I: (-2+2)=0. 
CeZn CeZn 

Thus it is sufficient to show that R = W0 • Since .Q = 0, we( c) ;e 0 for c E C n 
(X,,,ed), 08 such that CE Z11• It follows from this, Proposition (2.6) and 
Lemma (3.4) that R = W0 • Q. E. D. 

The following is shown in the proof of the theorem. 

Lemma (3.5). Under the same assumption of Theorem (3.3) except 
the condition 3, if we admit Conjecture (0.1), 

(3.5.1) Sw H 1(Z, Rt/IA) 

= deg (R - W0 - N) + deg Q + deg W2 ,3 

+ L (deg W2 2 c+(C, K)). 
CeZ1 ' ' 

§ 4. The case that S is the strict localization at a closed point of a smooth 
curve over an algebraically closed field 

In this section, we always assume that S is the strict localization at a 
closed point of a smooth curve over an algebraically closed field k. Let ,r 

be a prime element of S so that S!:!,!Spec k{n}. We prove Conjecture (0.1) 
in this case. 

Proposition (4.1). Let S be as above. Suppose X is a regular S­
curve and Z is a closed subscheme of X, such that Z is proper overs and 
X -Z is smooth over S. Then Conjecture (0.1) holds, i.e. 

(4.1.1) dimtot RI'(Z, Rcf>A) = - x(Z, QX/S, tors). 

Proof. First, we note that this is clear if x. is a (reduced) n.c.d. of X. 
We may assume Z is connected. The proof is divided into the following 
two cases. 

X is proper over S and Z = X. ( the global case) . 
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otherwise ( the local case) . 
We first prove the global case. This proof is due to K. Kato. There 

exist a proper smooth connected curve C over k, a regular proper C-curve Y 
smooth over the generic point of C and a closed point c of C which satisfies 
the following condition. Sis k-isomorphic to the strict localization of C at 
c and by this isomorphism X is S-isomorphic to Yx S. We need the 

C 

following global lemma. 

Lemma (4.2). Suppose C is a proper smooth connected curve over 
an algebraically closed field k and f: Y---+C is a regular proper flat 
generically smooth C-scheme. Then the summation of the both sides of 
(4.1.1) are equal i.e. 

(4.2.1) L dimtot RI'(Yc, R</>A)= - L x(Yc, QY/C,tors). 
ceCo ceCo 

Proof. Since Yis a proper smooth variety over k, the Euler-Poincare 
characteristicx(Y):= L(-l)idimHi(Y, A)ofYis equal to x(Y, Dr;k):= 

ieZ 

L L (-l)i+idimkHi(Y, D{ 1k). By the Grothendieck-Ogg-Shafarevich 
ieZ jeZ 

formula, we have 

x(Y)= x(C) · x(Y;,)- L dimtot RI'(Yc, R</>A). 
ceCo 

Hence, it is sufficient to show 

x(Y)- x(C) · x(Y;,)= x(Y, QY/C, tors). 

Here we have 

Thus it is sufficient to show that 

[QY/k]-[f*Dc;k] [Di,;cJ = [QY/C,torsJ. 

This follows from the exact sequence 

We return to the proof of the global case. By the stable reduction 
theorem, there is a finite covering <p: C'---+ C which completely splits at c 

and, for c' such that q,( c') # c, Y admits a stable reduction at c'. By the 
remark at the beginning of the proof and Lemma (4.2), the global case 
is proved. 

We show the local case. As in Section 3, there exist a normal S-curve 
Y, a closed point y of Y. and a proper S-morphism f: X---+ Y such that 
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f- 1(y),ed=Z,ed and f: X-Z~Y-{y}. Thus it is sufficient to show the 
following. 

Lemma (4.3). Suppose Y is a normal S-curve and y is a closed 
point of Ys such that Y-{y} is smooth over S. Then for any proper 
surjective S-morphism f: X----+ Y of a regular S-curve X to Y such that 
f: X - Z~ Y-{y }, the pair (X, f- 1(y)) satisfies (4.1.1) i.e. 

(4.3.1) dimtot Rr(f- 1(y), Ref>A) = - x(f- 1(y), Qx;s,10,.). 

Proof. By Proposition 6.4.1 of [11], there exists an integer N such 
that if g: 1\----+S satisfiesf(n) =g(n) mod m~, there exists an S-isomorphism 
off: 1\----+S to g: }'y----+S. Using this fact, we prove the lemma by a 
global argument. There is a projective normal connected surface Tc PZ 
over k and a closed point t of T such that T- {t} is smooth over k and 
that :i\ is k-isomorphic to Tt. We need the following lemma. 

Lemma (4.4). Suppose TcP=PZ is a projective normal connected 
surf ace over k and t0 is a closed point of T such that T- { t0 } is smooth over 
k. Suppose a positive integer N and a jet j 0 Elr(t 0 , N):=(!)r,, 0 /m~ 
such that the image in K(t 0)=k is O are given. Then, if we take a 
sufficiently large integer r, there exist two homogeneous forms of degree 
r, F O and F 00 E I'(P, (!)(r)) such that (F 0 /F 00 ) 10 = j 0 in J(t 0 , N) and that 
TnH 0 -{t 0 }, TnH 00 and TnH 0 nH 00 are smooth over k, where H* 
denotes the hypersurface of degree r defined by F*=O. 

Admitting this lemma we continue the proof. We take r, F O and F 00 

satisfying the conditions of Lemma ( 4.4) for the integer N above and the 
jetf(n) E J(t, N). Replacing the original immersion i: Tc P" by i followed 
by the r-uple embedding, we may assumer= 1. Then the pencil given by 
(F 0 , F 00 ) defines the morphism g: T----+ Pl, where f is the blowing-up of T 
at Tn H 0 n H 00 • Since Tn H 00 is smooth and T----+PI is flat, T----+PI is 
generically smooth. Since Tn H 0 -{t} is smooth, tis the unique singularity 
of the morphism f x (Pl)"0----+(P1)0, Thus by the global case, Lemma (4.3) 

P l 
- k 

holds for TX (PDo ----+(PDo and t. lf we identify s and (PDo by Jrf-7 
Pi 

F0 /F 00 , J\----+S and Yi----+(PD0 are S-isomorphic. Thus we have completed 
the proof of the local case modulo Lemma ( 4.4). 

Although the fact like Lemma (4.4) is used in [10] (4.0, 4.6), the 
detail of the proof is not given. So here we give it a proof. 

Proof of ( 4.4). It is easy to see the following facts. 
lf we take a sufficiently large integer r, 
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1) for any hotnogeneous r-form F 1 such that t0 rt H 1 : = (F 1 = 0), and for 
any closed point t=I- t 0 of T- Tn H 1 , the following linear map is surjective. 

2) for any homogeneous r-forms F 1 and F 2 such that F 1 =I-F 2 and t 0 rt H 1 , 

and for any closed point t of T n H 1 - T n H 1 n H 2 , the following linear 
map is surjective. 

We fix such r. By Bertini's theorem there is a homogeneous r-form F '° 
such that T n H 00 is smooth over k and t0 rt T n H 00 • Let V be the inverse 
image of j 0 by r(P, @(r))-Jit 0 , N) (F-._,,(F/F co),0 ). By the above 
surjectivity, for any closed point t=l-t 0 of T-H 00 n T (resp. Tn H 00 ), the 
codimension of the subvariety of V consisting of the r-forms F such that 
Tn H is not smooth at t (resp. Tn H 00 n H is not smooth at t), where 
H:=(F=0), is greater than 3 (resp. 2). Since dim T=2 and dim Tn H 00 = 1, 
the codimension of the subvariety W of V consisting of the r-forms F such 
that H n T or H n H 00 n T is not smooth is greater than 1. Thus if we 
take an r-form F O contained in V- W, F O and F 00 satisfy the conditions of 
Lemma (4.4). 

Added in Proof. 
The author recently proved that Bloch's formula is equi:valent to 

that of Conjecture (0.1), as mentioned in the introduction. This fact is 
shown in "Self-intersection 0-cycles and coherent sheaves on arithmetic 
schemes" (preprint, Univ of Tokyo, 1987). 
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