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On Algebraic Groups of Mumford-Tate Type 

Takashi Ichikawa 

Introduction 

In [9], Serre introduced certain algebraic groups, which we call of 
Mumford-Tate type in this paper(for its definition, see 1.1), and classified 
these groups. The definition of these groups is obtained by generalizing 
that of Mumford-Tate groups of abelian varieties over C. The aim of this 
paper is to determine algebraic groups of Mumford-Tate type which satisfy 
certain conditions by using Serre's result, and to apply this result to abelian 
varieties over C and local fields. The statement and the proof of the main 
result will be given in 1.4 and 3.3 respectively . 

. As an application of this result, we can determine the Mumford-Tate 
group M of a simple abelian variety A over C of type 1, 2, or 3 (cf. [6], p. 
201) such that n=dim A/mr is an odd integer. Herem and r are positive 
integers such that m2 =[D: E] and r=[E: Q], where D=Endc (A)®z Q 
and Eis its center. When A is of type 1 or 2, Tankeev and Ribet proved 
that the semi-simple part S of M coincides with RE1Q(SE), where SE is an 
algebraic group over E which is isomorphic to Sp (n) ([10], Theorem 5.1, 
[7], Theorem 1). Moreover, they proved that the Hodge cycles on A"' (m: 
positive integers) are generated by those of degree 2. When A is of type 
3, we can show that S=RE 1Q(SE), where SE=S0(2n) or rb(SL(2b)). Here 

bis the positive integer satisfying (2f)=2n, and rb is the b-fold exterior 

power of the standard representation of GL(2b). In this case, the Hodge 
cycles on A"' are not generated by those of degree 2. 

As proved by Sen ([8], Theorem 1 ), for an abelian variety A over an 
t-adic local field with an algebraically closed residue field, the algebraic 
envelope Hof the.t-adic Galois group in GL(T,(A)) is of Mumford-Tate 
type, where Te(A) is the t-adic Tate module of A. Hence we can obtain a 
result for H, which is similar to the above result (see 2.4). As for an ab
elian variety over a global field, there is a similar result by Serre (Theorem 
2.2.8 in "Resume des cours de 1984--1985"). 

The author would like to thank Professor Y asutaka Ihara for his 
advice and encouragement. 
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Notations 

Let Z be the ring of integers, and let Q (resp. R, resp. C) be the field 
of rational (resp. real, resp. complex) numbers. For a vector space V over 
a field K, GLv (resp. SLv) denote the general (resp. special) linear algebraic 
groups defined over K. For a non-degenerate alternating K-bilinear form 
,fr: VX V--+K, Spv,+ denotes the symplectic algebraic subgroup of GLv 
over K with respect to ,fr. For an integer n, GL(n) (resp. SL(n)) denote 
the general (resp. special) linear algebraic groups of degree n, Sp(n) denotes 
the symplectic algebraic subgroup of GL(2n), and SO(n) denotes the special 
orthogonal algebraic subgroup of GL(n). For a finite separable extension 
E of a field K, and an algebraic group G over E, RE;x(G) denotes the 
scalar restriction of G from E to K. For a module M with an action of 
G, M 0 denotes the submodule of M consisting of its G-invariant elements, 
and End0 (M) denotes the ring of G-endomorphisms of M. 

§ 1. Main result 

In this section, we first recall the definition of algebraic groups of 
Mumford-Tate type according to [9]. Then we state the main result of 
this paper, which determines certain algebraic groups of Mumford-Tate 
type. 

1.1. Let K be a field of characteristic O contained in an algebraically 
closed field C, and V be a finite dimensional K-vector space. An algebraic 
subgroup G of GLv defined over K is said to be of Mumford-Tate type, if 
there exists a homomorphism h: Gm--+G(Gm: the multiplicative group) de-

, fined over C which satisfies the following conditions: 
1. Put Va= V@xC, and for an integer i, put Va(i)={v e Valh(z)v= 

ztv for all z e Gm}- Then Va= Va(0)EBVa(l). 
2. There is no proper normal algebraic subgroup N of G defined 

over K containing the image of h. 

1.2. An example of algebraic groups of Mumford-Tate type is the 
Mumford-Tate group of an abelian variety over C (cf. [5]). Let A be an 
abelian variety over C, and V=H 1(A, Q) be the first homology group with 
coefficients in Q. Let M be the Mumford-Tate group of A, which is a 
connected reductive algebraic subgroup of GLv defined over Q. Then M 
is of Mumford-Tate type, and the decomposition Ve= V0 (0)EBVc(l) is the 
Hodge decomposition. 

1.3. Another example concerns the image of the representation of 
the absolute Galois group by the £-adic Tate module of an abelian variety 
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over a local field. Let t be a rational prime, and K be a complete discrete 
valuation field of characteristic 0 having an algebraically closed residue 
field of characteristic t. Let K be the algebraic closure of K, and let 
Gal (K/K) denote the Galois group of Kover K. Let A be an abelian 
variety over K, and put V,= T,(A)@zQ, where Te(A) is the t-adic Tate 
module of A. Then Va is a vector space of dimension 2 dim (A) over the 
field Q, of t-adic numbers. The natural action of Gal (K/K) on V, induces 
a homomorphism p: Gal (K/K)-.GL(V,) whose image Im (p) is a compact 
t-adic Lie subgroup of GLtV,). Let H be the Zariski closure of Im (p) 
in GLve- Then Sen proved that Im (p) is open in H(Q,) with respect to 
the t-adic topology, and that the connected component of 1 in H is of 
Mumford-Tate type. The decomposition V0 = V0 (0)ffiVc(l) is the Hodge
Tate decomposition of V, where C is the completion of K ([8], Theorem I). 

1.4. We state the main result. Let G be a connected reductive 
algebraic subgroup of G Lv defined over K which is of Mumford-Tate type, 
and S be the connected component of I in Mn SLv, Then Mis generated 
by S and the homothety subgroup Gm of GLv. Assume that Vis a simple 
G(K)-module over K. Let D be the division algebra EndacKiCV) with 
center E, and let m and r be positive integers such that m2 =[D: E] and 
r=[E: K]. Let VE be the £-vector space V. 

Theorem 1. In the above situation, assume the following conditions: 
(1) There exists a non-degenerate alternating E-bilinear form ,fr: VE 

X VE-.E which is S(K)-invariant. 
(2) The integer dim (V)/mr is not divisible by 4. 

Then dim (V)/mr must be an even integer, and there exists an algebraic sub
group SE of GLvE defined over E such that S conicides with the scalar re
striction RE1x(S E). Moreover, only one of the following cases can happen: 

I. m= I, and the pair (of an algebraic group and its representation 
space) (SE, VE) is E-isomorphic to (SPvE,+• VE). 

2. m>I, dimK((AV)8)=(m!l)r, and(SE, VE) is C-isomorphic to 

(Sp(n), (C 2nyBm)for n=dim (V)/2mr. Here (Sp(n), C2n) is inducedfrom the 
natural inclusion Sp(n)-.GL(2n). 

3. m> I, dimK((A V)8)= (;)r, and(SE, VE) is C-isomorphic to either 
2 

(SO(2n), (C2n)(l)m) or (riSL(2b), (/\ C2b)(f)m)for the positive integer b satisfy-

ing (2i) =2n. Here (S0(2n), c2n) is induced from the natural inclusion 

S0(2n)-.GL(2n), and rb is the b-fold exterior power of the standard repre
sentation of GL(2b). 
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Remark. Let 'IF be the set of non-degenerate £-bilinear forms ,Jr: 
VEX vE-E, and let <P be the set of non-degenerate K-bilinear forms ,fa: 
VX v-K such that rp(ev, w)=rp(v, ew) for any e e E and v, we V. Then 
by [3], 4.7, the map w-<P given by +-TrE/K o rp (TrE1x: the trace from E 
to K) is a bijection. By the uniqueness, ,Jr is alternating (resp. S(K)
invariant) if and only if TrE1x o ,Jr is alternating (resp. S(K)-invariant). 
Hence Condition (1) can be replaced by the following: 

(l') There exists a non-degenerate alternating K-bilinear form ,fa: V 
X v-Kwhichis S(K)-invariant and satisfies the equality rp(ev, w)=rp(v,ew) 
for any e e E and v, w e V. 

§ 2. Applications 

In this section, we give some corollaries of Theorem 1. 

2.1. Let A be an abelian variety over C, and put V=Hi(A, Q). Let 
M be the Mumford-Tate group of A, and S be the connected component 
of 1 in Mn SLv. Then M is generated by S and Gm, and Lefschetz' 
theorem implies that EndMcxlV)=Endc(A)®zQ. Let A* be the dual 
abelian variety of A, and put V*=Hi(A*, Q). A polarization of A over 
C induces an identification of V with V*, which together with the natural 
pairing VX V*-Q induces a non-degenerate alternating Q-bilinear form 
,fa, on VX V. Then Sis contained in Spv,90• 

Put D=Endc(A)®zQ, and let Ebe its center. Let m and r be positive 
integers such that m2 =[D: E] and r=[E: Q]. As proved by Albert, Eis 
either a totally real :field or a CM-field, and in the former case, dim (A) is 
divisible by mr and D belongs to one of the following types ([6], p. 201): 

I. m= 1, i.e., D=E. 
2. m=2, and D®ER~MlRY. 
3. m=2, and D®ER~H', where His the quaternion division al

gebra over R. 

2.2. As a corollary of Theorem 1, we have: 

Corollary 1. Let A be a simple abelian variety over C which satisfies 
the following conditions: 

(1) Eis a totally real field. 
(2) dim (A)/mr is an odd integer. Put n=dimA/mr. 

Then there exists an algebraic subgroup SE of GLvE over E such that S= 
RE1Q(SE)- If A is of type I or 2, then (SE, VE) is C-isomorphic to (Sp(n), 
(C2ny:j)m). If A is of type 3, then (SE• VE) is C-isomorphic to either (S0(2n), 

(c 2nyj)m) or (riSL(2b), (AC 2b)®m)for the positive integer b satisfying (2i) 
=2n. 
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Proof. By Condition (2), Condition (2) of Theorem I is satisfied. By 
Condition (I), <fie(ev, w)=<pe(v, ew) for any e e E and v, we V. Then by 
Remark in 1.4, Condition (I) of Theorem I is satisfied. Therefore, by 
Theorem I, there exists an algebraic subgroup SE of GLvE over E satisfy
ing S=RE 1o(SE), and only one of Cases 1-3 can happen. The integer 

2 

dimq ((A V)8) is equal to the Picard number P(A) of A, and 

P(A)={r 
3r 

if A is of type 1 or 3, 
if A is of type 2, 

([6], p. 202). If A is of type I, then m= I, so Case 1 happens. If A is of 
type 2, then Case 2 happens. If A is of type 3, then Case 3 happens. 
This completes the proof. 

2.3. Let A be a simple abelian variety over C satisfying Conditions 
(I) and (2) of Corollary I. If A is of type I or 2, then Tankeev and Ribet 
proved that the Hodge cycles on A"' (m: positive integers) are generated 
by those of degree 2, by using the invariant theory of the symplectic groups. 
Especially, the Hodge conjecture holds for A"' by Lefschetz' theorem ([IO], 
Theorem 5.1, and [7], Theorems O and I). If A is of type 3, one can check 
that the Hodge cycles on A"' are not generated by those of degree 2 by 
the invariant theory of the special orthogonal groups ([121). The author 
does not know the validity of the Hodge conjecture in this case. 

2.4. Let the notation be as in 1.3. Let A* be the dual abelian variety 
of A over K, and put Vt=T,(A*)®zQ. A polarization(} of A over K 
induces an identification of V, with Vt, which, together with the Weil 
pairing V, X Vt-Q, induces a non-degenerate alternating Q,-bilinear form 
<fi8 on V, XV,. We may assume that His connected by replacing K by its 
certain finite extension in K. Let S be the connected component of I in 
H n SLv ,. Then H is generated by S and G,,,,, and Sis contained in Spv e,if>o· 
Assume that V, is a simple Gal (K/K)-module over Q,. Then one can see 
that His reductive. Put D=Endoar<Ktx>(V,), and let Ebe its center. Then 
there exists a unique involution t 8 : E-E such that 

<fie(ev, w)=<ps(v, ts(e)w) 

for any e e E and v, w e V,. Let m and r be positive integers such that 
m2 = [D: E] and r = [E: Q,]. Then as another corollary of Theorem 1, we 
have: 

Corollary 2. Let A be an abelian variety over K satisfying the follow
ing conditions: 
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(1) His connected. 
(2) Ve is a simple Gal (K/K)-module. 
(3) c0 is the identity map on E. 
(4) 2 dim (A)/mr is not divisible by 4. 

Then 2 dim (A)/mr is an even integer. There exists an algebraic subgroup SE 
of GLvE over E such that S=RE;Qe(SE), and the pair (SE, VE) is C-isomorphic 
to one of the following: 

2 

(Sp(n), (C 2n)<:Bm), (S0(2n), (C2n)0=>m), (rlSL(2b)), (/\C 2b)0=>m). 

Here n= dim A/mr and b is the positive integer satisfying ( 2g) = 2n. If m 

= 1, then (SE, VE)~(Sp(n), E 2n). 

Remark. From the stable reduction theorem ([4], IX, Theorem 3.6) 
and Tate's result ([11], Proposition 4), Conditions (1) and (2) imply that A 
admits a model over the valuation ring of a certain finite extension of Kin 
K, whose special fibre has the property that the associated £'-divisible group 
is connected. 

§ 3. Proof of Theorem 1 

In this section, we give a proof of Theorem 1. 

3.1. We recall Serre's result ([9], p. 182): 

Theorem A. Let GcGLv be a connected reductive algebraic group of 
Mumford-Tate type, and S=[G, G] be its semi-simple part. Let r be the 
root system of S, and ri (i E /) be all the irreducible components of r. Then 
ri are all of classical type. If w is the highest weight of an absolutely irre
ducible component of the inclusion representation S-->;GLv, then for any i E /, 

the i-component of w is either O or a minimal weight of ri. 

The definition and the description of the minimal weights of irreducible 
root systems are given in [2]. Here we review the description of the mini
mal weights for the classical type according to [9], Appendix. 

Theorem B. Let r be an irreducible root system of classical type, and 
c the representation associated with a minimal weight of r. Then a pair (r, c) 
is necessarily one of the following: 

r is of type An (n-:C. I), and c is equivalent to the i-fold (1 < i::::;:n) ex-

terior power of the standard representation, whose degree is ( n T 1). 

r is type Bn (n;:;;;;2), and c is equivalent to the spin representation of 
degree 2n, 
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r is of type Cn (n~4), and e is equivalent to the standard representation 
of degree 2n, 

r is type Dn (n>4), and e is equivalent to either the standard represen
tation of degree 2n, or one of the two half-spin representations of degree 2n- 1• 

3.2. We recall a result of the invariant theory according to [2], 
Chap. 8, 13.1. Let K be a field of characteristic 0, and V be a K-vector 
space of dimension n. For a positive integer m, let W be the m-fold ex-

m 

terior power /\ V of V, on which GL(V) acts as 

and 

Lemma C. Assume that n is even and m = n/2. Then 

2 

dimx ((® W))8LCVl)= 1, 

dimx ((A W)SL(Y))= {~ if mis even, 
ifm is odd. 

3.3. Now we shall prove Theorem 1. Let the notation and the as
sumption be as in its statement. If S were {l }, then G= Gm and dim V = 1, 
which contradicts Condition (1). Hence we have S=;i::{l}. By Condition 
(1), the center of S is contained in RE1x(GmE) n RE1x(SPE,-i,), which is a 
finite group. Hence Sis semi-simple. Let I' be the set of all K-isomorphisms 
of E into C. For each a e I', put V.= VE®E,.c, and let¢>.: RE1x(GLvE) 
_,,.GLv. be the natural projection. Then IT aer<fa.: RE1x(GLvE)_,,. IT aerGLv. 
is an isomorphism. Lets. be the image <jJa(S). Then s. is a connected 
semi-simple algebraic group defined over a(E). Since Sis connected, S(K) 
is Zariski dense in S ([1], 18.3), hence <fia{S(K)) is Zariski dense ins.. For 
an element x of S(K)cRE 1x(GLvE) (K), we have <jJ.(x)=a(t", a) (<jJa(x)), 
where a(t", <1)=t"o<1- 1 : a(E)....,,.t"(E). Therefore, we have 

(i) S,=S. ®•(E),a(<,a)t"(E) for any t", <J EI'. 

Since IT .er <jJ.: s....,,. IT .er s. is injective, s. is non-trivial for any a e I' be
cause S=;t={l }. 

Fix an element a of I', and let w. be a simple s.-module over C such 
that W.El:!m is s.-isomorphic to v.. Let {Stli e /} be the set of all simple 
normal subgroups of s. over C. Then the homomorphism IT ter st....,,.s. 
given by (x.)ter_,,. IT ter Xi is an isogeny. We regard w. as a IT ter s.
module via the above isogeny. Then there exists a simple s.-module Wt 



256 T. Ichikawa 

over C for each i e I such that Wa is IT tei Scisomorphic to ®;ei Wt. Let 
Pa: Sa-~GLva and p;: S;--+GL_;,, be the natural representation. Then we 
have 

(ii) 

We shall show that dim (W;) is even for any i e I. Suppose, on the 
contrary, that there exists an element i e I such that dim W, is odd. Then 
by Theorems A and B, there exist positive integers a and b (2 ~ a and 1::;: 
b<a- I) such that 

where rb: GL(a)-+GL( (i)) is the b-fold exterior power of the standard 

representation of GL(a). Especially, plSi) contains g?-Iw, IC e µa}, where 
Iw, is the unit matrix in GLw, and µa={C: a-th roots of 1 in C}. Then 
by (ii), Sa contains {Cb ·Iva IC e µa}- On the other hand, by Condition (1), 
Sa is contained in Spv.,-i,. (,fr.=,fr®E,,C), whose center is {±Iv,}- Hence 
a is even and b = a/2, so 

is even, which is a contradiction. Therefore, dim (W;) is even for any i e I. 
By Condition (2), IT ier dim (Wi) = dim (Wa) = dim (V)/mr is not 

divisible by 4, and as proved above, dim (W;) is even for any i e I. There
fore, s. is absolutely simple and dim (V)/mr is even. Put n=dim (V)/2mr, 

and let b be the positive integer satisfying (2;)=2n. Then b must be 

either 1 or an even integer because for any odd integer c> l, 

( 2c)= 4(2c-3) 2c-3 
c c-3 c-2 

is divisible by 4. Therefore, from Theorems A and B and the above argu
ment, only one of the following cases can happen: 

b 

[1] (Sa, Wa)~(rb(SL(2b)), /\C 2b) for b>I, 
[2] (Sa, W.)~(Sp(n), c2n), 
[3] (Sa, Wa)~(S0(2n), c2n). 

Hence Sa are defined over the prime field up to isomorphisms. Then by 
(i), Sa (a e I') are isomorphic to each other. If there were two elements 
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a, r-EI' satisfying D,=D,, then ¢.In. is equivalent to ¢.In,, which con
tradicts to the equality Ends (V 0 ) = Mm(C)' = EB,er Ends, (V.). Hence 
D,::/=-D, for any a, r- e I' such that a::/=-r-, so D. (a e I') generate S. There
fore, the homomorphism n •EI' \Va: S--+ n a EI' S, is an isomorphism, SO there 
exists an algebraic subgroup SE of GLvE defined over E such that RE;K(SE) 
=S. Then we have S,=SE©E,ac for any (J Er. 

2 

Assume that m=I. Then Condition (1) implies that (AV)s=,t={O}. 
2 2 2 2 

Since I\ V0 ~EB.er(AV.)EBEB.,,)V.©V,), we have(AV 0)s~EB.er(AV.)s•. 
2 2 

From Lemma C, (A V.)s·={O} for Case 1, and evidently (AV.)s·= {O} 
for Case 3. Therefore, (S., V.) ~ (Sp(n), C 2n) for any a e I', hence we 
have SE= SpvE,t· 

Assume that m> I. Then 

2 ( 2 (m) 2 ) I\Vo~EB m-AW.EB 2 ·EBW. EBEBm2 -(W.©W,), 
u EI' rr=l=--r: 

so we have 

If s.~Sp(n), then dimK ((/\ V)s)= (mi 1),. If s.~rb(SL(2b)) or S0(2n), 

then dimK((/\ V)s)= (;), by Lemma C. This completes the proof. 

Added in proof The group D. (a e I') in 3.3 is the normal subgroup 
of S such that ¢. \n. is an isogeny D.--+S •. 
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