One-Parameter Family of Linear Representations of Artin's Braid Groups

Toshitake Kohno

§ 1. Introduction

The central theme of this note is linear representations of Artin's braid groups. There is a classical series of such representations called the Burau representations, which is defined by means of an embedding of the braid group in the automorphism group of a free group. Recently V. Jones [9] and several authors studied the one-parameter family of linear representations of the braid groups induced from representations of the Hecke algebra of the symmetric group. These representations turn out to be a generalization of the Burau representation. In this note we propose another generalization. Namely we shall consider the integral of the form

$$
F\left(x_{1}, \cdots, x_{n}\right)=\int_{1 \leq i<j \leq n+p}\left(x_{i}-x_{j}\right)^{-\mu_{i j}} d x_{n+1} \wedge \cdots \wedge d x_{n+p}
$$

and we study the monodromy of the above multivalued functions. This permits us to define a one-parameter family of linear representations of the braid groups. As a special case $p=1$, it is shown that this representation is equivalent to the Burau representation. The study of this direction is motivated by the work of K . Aomoto [2], in which he computed the system of differential equations satisfied by the above multivalued functions. This note is organized in the following way. Section 2 is concerned with the definition and basic properties of the Artin's braid groups. In Section 3 we shall explain the principle of the vanishing of cohomology of a "generic" local system and by using this formulation, Section 4 focuses our new one-parameter family of linear representations of the braid groups. In Section 5 we discuss the image and the kernel of the Burau representation for special values. Our principal tool is the theorem of Picard type for hypergeometric functions proved by Deligne-Mostow [5] and Terada [16].

§ 2. Review of basic facts on Artin's braid groups

Let $X_{n}=\left\{\left(z_{1}, \cdots, z_{n}\right) \in C^{n} ; z_{i} \neq z_{j}\right.$ if $\left.i \neq j\right\}$. The symmetric group S_{n} acts on X_{n} by $\left(z_{1}, \cdots, z_{n}\right) \cdot g=\left(z_{g(1)}, \cdots, z_{g(n)}\right), g \in S_{n}$. We denote by Y_{n} the quotient space X_{n} / S_{n}. The Artin's braid group is by definition the fundamental group of Y_{n}. We shall denote it by B_{n}. The fundamental group of X_{n}, which is denoted by P_{n}, is called the pure braid group. We have an exact sequence

$$
\begin{equation*}
1 \longrightarrow P_{n} \longrightarrow B_{n} \longrightarrow S_{n} \longrightarrow 1 . \tag{2.1}
\end{equation*}
$$

Let us denote by $p: X_{n} \rightarrow Y_{n}$ the natural projection. We choose a base point $x_{0}=(0,1, \cdots, n-1) \in X_{n}$. Any element in $\pi_{1}\left(Y_{n}, p\left(x_{0}\right)\right)$ is represented by a path $f:(I,\{0\}) \rightarrow\left(X_{n}, x_{0}\right)$. Let $b_{j}, 1 \leq j \leq n-1$, be the element of $\pi_{1}\left(Y_{n}, p\left(x_{0}\right)\right)$ corresponding to the path in X_{n} given by

$$
f(t)=\left(0, \cdots, j-2, f_{j-1}(t), f_{j}(t), j+1, \cdots, n-1\right)
$$

where

$$
f_{j-1}(t)=(j+t-1)-\sqrt{-1} \sqrt{t-t^{2}}, \quad f_{j}(t)=(j-t)+\sqrt{-1} \sqrt{t-t^{2}} .
$$

Let $A_{i j}, 1 \leq i<j \leq n$, denote the element of P_{n} defined by

$$
\begin{equation*}
A_{i j}=b_{j-1} b_{j-2} \cdots b_{i+1} b_{i}^{2} b_{i+1}^{-1} \cdots b_{j-1}^{-1} . \tag{2.2}
\end{equation*}
$$

Let us recall the following fundamental theorems.
(2.3) Theorem (Artin [1]). The braid group B_{n} admits a presentation with generators b_{1}, \cdots, b_{n-1} and defining relations

$$
\begin{array}{cc}
b_{i} b_{j}=b_{j} b_{i} & i f|i-j| \geq 2 \\
b_{i} b_{i+1} b_{i}=b_{i+1} b_{i} b_{i+1}, & 1 \leq i \leq n-2 .
\end{array}
$$

The pure braid group P_{n} is generated by $A_{i j}, 1 \leq i<j \leq n$.
(2.4) Theorem (Chow, see [3]). If $n \geq 3$, the center of B_{n} is the infinite cyclic group generated by

$$
\left(b_{1} b_{2} \cdots b_{n-1}\right)^{n}=\left(A_{12}\right)\left(A_{12} A_{13}\right) \cdots\left(A_{1 n} A_{2 n} \cdots A_{n-1, n}\right) .
$$

We have a faithful representation of B_{n} as an automorphism group of a free group $F_{n}=\left\langle x_{1}, \cdots, x_{n}\right\rangle$ ([3] Corollary 1.8.3). The representation is induced by a mapping h from B_{n} to Aut $\left(F_{n}\right)$ defined by:

$$
\begin{align*}
h\left(b_{i}\right): & x_{i} \mapsto x_{i} x_{i+1} x_{i}^{-1} \\
& x_{i+1} \mapsto x_{i} \tag{2.5}\\
& x_{j} \mapsto x_{j} \quad \text { if } j \neq i, i+1 .
\end{align*}
$$

The pure braid group P_{n} is characterized as the subgroup of Aut $\left(F_{n}\right)$ consisting of the elements $g \in \operatorname{Aut}\left(F_{n}\right)$ satisfying:

$$
\begin{align*}
& g\left(x_{i}\right) \sim x_{i} \quad \quad \text { (conjugate), } 1 \leq i \leq n \tag{2.6}\\
& g\left(x_{1} \cdots x_{n}\right)=x_{1} \cdots x_{n} .
\end{align*}
$$

From this point of view the profinite braid groups defined by Y. Ihara [7] may be considered as an arithmetic analogy of the pure braid group.

There is a well-known family of linear representations called the Burau representations which are induced from the above representation h. The Burau representation $\beta_{n}: B_{n} \rightarrow G L_{n-1}\left(Z\left[t, t^{-1}\right]\right)$ is given by
(2.8) Definition. For $n \in N, n \neq 0$ and $q \in C$, we denote by $H_{n}(q)$ the algebra over C generated by $\left(t_{i}\right)_{i=1, \cdots, n-1}$ with relations:

$$
\begin{aligned}
& \left(t_{i}+1\right)\left(t_{i}-q\right)=0, \quad 1 \leq i \leq n-1 \\
& t_{i} t_{j}=t_{j} t_{i}, \quad|i-j| \geq 2 \\
& t_{i+1} t_{i} t_{i+1}=t_{i} t_{i+1} t_{i}, \quad 1 \leq i \leq n-2 .
\end{aligned}
$$

The algebra $H_{n}(q)$ is called the Hecke algebra (or Iwahori algebra) of the symmetric group S_{n}. The original definition for any Coxeter system is due to [8].

The irreducible representations of $H_{n}(q)$ are parametrized by Young tableau for a generic g. Since we have a natural homomorphism from the group ring $C\left[B_{n}\right]$ to $H_{n}(q)$, we obtain a family of linear representations of B_{n} with one-parameter. V. Jones and several authors studied these representations systematically and obtained new polynomial invariants of links (see [4], [9]). These linear representations of B_{n} contain the Burau representation in the following way.
(2.9) Theorem (Jones [9]). The representation of B_{n} corresponding to the Young tableau of type $(n-1,1)$ is the tensor product of the Burau representation and the one dimensional parity representation.

§ 3. Cohomology of rank one local systems

Let us preserve the notations of Section 2. For $n, p>0$, we consider the natural projection $\pi: X_{n+p} \rightarrow X_{n}$, which has a structure of a fibration. We see that the induced homomorphism $\pi_{*}: \pi_{1}\left(X_{n+p}\right) \rightarrow \pi_{1}\left(X_{n}\right)$ admits a natural section, which we denote by s. Let $\tau: \pi_{1}\left(X_{n+p}\right) \rightarrow C^{*}$ be a homomorphism which is trivial on $s\left(\pi_{1}\left(X_{n}\right)\right)$. Let L be the local system over X_{n+p} associated with the representation τ. Let us recall that $\pi_{1}\left(X_{n+p}\right)=$ P_{n+p} is generated by the elements $A_{i j}, 1 \leq i<j \leq n+p$ (see (2.3)). We choose $\mu_{i j} \in C$ such that $\exp 2 \pi \sqrt{-1} \mu_{i j}=\tau\left(A_{i j}\right)$. Let us put $I_{k}=\{(i, j)$; $1 \leq i<j \leq k\}$. Since τ is trivial on $s\left(\pi_{1}\left(X_{n}\right)\right)$, we have $\mu_{i j} \in \boldsymbol{Z}$ if $(i, j) \in I_{n}$.

We shall assume the following condition on $\mu_{i j}$:
(3.1) For any subset S of $I_{n+p}-I_{n}, \sum_{(i, j) \in S} \mu_{i j}$ is not an integer.
(3.2) Proposition. Under the hypothesis (3.1), we have
(i) $\boldsymbol{R}^{j} \pi_{*} L=0$ if $j \neq p$.
(ii) The local system $\boldsymbol{R}^{p} \pi_{*} L$ has rank $(n+p-2)!/(n-2)$!.

Proof. Let Z denote a fiber of π. The first assertion is a special case of the vanishing of cohomology of a local system discussed in [12]. Let V be a smooth compactification of Z such that $D=V-Z$ is a divisor with normal crossings. Let $i: Z \rightarrow V$ be the inclusion map. By means of the hypothesis (3.1), we have

$$
\begin{equation*}
\left.i_{*} L\right|_{z}=\left.i_{1} L\right|_{z} \tag{3.3}
\end{equation*}
$$

where $\left.i_{!} L\right|_{Z}$ is an extension of $\left.L\right|_{Z}$ by zero. We have the following isomorphisms.

$$
\begin{align*}
& \boldsymbol{H}^{j}\left(V,\left.i_{*} L\right|_{Z}\right) \cong H^{j}\left(Z,\left.L\right|_{Z}\right) \tag{3.4}\\
& \boldsymbol{H}^{j}\left(V,\left.i_{!} L\right|_{Z}\right) \cong H_{C}^{j}\left(Z,\left.L\right|_{Z}\right)
\end{align*}
$$

Here the right hand side stands for the cohomology with compact support. By the Poincaré duality we have an isomorphism

$$
\begin{equation*}
H_{C}^{j}\left(Z,\left.L\right|_{Z}\right) \cong H_{2 p-j}\left(Z,\left.L\right|_{Z}\right) \tag{3.5}
\end{equation*}
$$

Since Z has a homotopy type of a $C W$ complex of dimension p, we have $H^{j}\left(Z,\left.L\right|_{z}\right)=0$ if $j>p$. This completes the proof of (i). By an elementary computation we see that the Euler characteristic of Z is

$$
(-1)^{p}(n+p-2)!/(n-2)!.
$$

Hence the assertion (ii) follows immediately. For more details and extensive treatments of the vanishing theorem of this type see [12]. (cf. [2], [11]).

The rest of this section is devoted to the study of Hodge structure on $\boldsymbol{P R}^{p} \pi_{*} L$ in the case $p=1$. We put $\mu_{i}=\mu_{i, n+1}, 1 \leq i \leq n, \mu_{n+1}=2-\sum_{i=1}^{n} \mu_{i}$. The following Lemma is due to Deligne-Mostow [5].
(3.6) Lemma. If $0<\mu_{i}<1,1 \leq i \leq n+1$, then the projective local system $\boldsymbol{P} \boldsymbol{R}^{1} \pi_{*} L$ admits a global Hermitian form of signature $(1, n-2)$. This determines a linear representation of the pure braid group P_{n} in $P U(1, n-2)$.

Proof. Let Z be the fiber over $\left(a_{1}, \cdots, a_{n}\right) \in X_{n}$. Any section u of $\Omega^{1}\left(\left.L\right|_{Z}\right)$ can be written in the form $u=z^{-\mu_{i}} \cdot e \cdot f \cdot d z$ locally around a_{i}, where e is a horizontal section of $\left.L\right|_{z}$ and f is a holomorphic function on a punctured neighbourhood of a_{i}. If f is meromorphic at a_{i}, we define $v_{i}(u)$ by $v_{a_{i}}(f)-\mu$. Let $H^{1,0}\left(Z,\left.L\right|_{Z}\right)$ be the space of the forms of the first kind, i.e., the meromorphic forms u on \boldsymbol{P}^{1} satisfying $v_{i}(u)+\mu_{i} \geq 0$ for $1 \leq i \leq n+$ 1 , where we put $a_{n+1}=\infty$. Let $H^{0,1}\left(Z,\left.L\right|_{z}\right)$ be the complex conjugate of $H^{1,0}\left(Z,\left.\bar{L}\right|_{Z}\right)$, where $\left.\bar{L}\right|_{z}$ denotes the complex conjugate local system of $\left.L\right|_{z}$. We have the Hodge decomposition:

$$
\begin{equation*}
H^{1}\left(Z,\left.L\right|_{Z}\right)=H^{1,0} \oplus H^{0,1} \tag{3.7}
\end{equation*}
$$

with $\operatorname{dim} H^{1,0}=1$, $\operatorname{dim} H^{0,1}=n-2$. There exists a Hermitian form on $H^{1}\left(Z,\left.L\right|_{Z}\right)$ which is positive definite on $H^{1,0}$ and is negative definite on $H^{0,1}$. Such a form is unique up to positive constant. Hence we obtain a horizontal Hermitian form of signature $(1, n-2)$ on $\boldsymbol{P} \boldsymbol{R}^{1} \pi_{*} L$, which proves Lemma.
(3.8) Notations. By means of the above argument, we obtain a multivalued holomorphic map $w: X_{n} \rightarrow D_{n-2}$, where D_{n-2} denotes the ($n-$ 2)-dimensional complex ball. If $\mu_{1}=\cdots=\mu_{n}=\mu$, this map descends to a multivalued holomorphic map from Y_{n} to D_{n-2}, which we denote by the same letter w. The corresponding linear representation of B_{n} in $P G L(n-$ $1, C)$ is denoted by $\beta_{n}\langle\mu\rangle$.
§ 4. Examples of one-parameter families of linear representations of braid groups

The local system $\boldsymbol{R}^{p} \pi_{*} L$ over X_{n} defined in Section 3 determines a linear representation of the pure braid group

$$
\begin{equation*}
\rho: P_{n} \longrightarrow \text { Aut } H^{p}\left(Z,\left.L\right|_{Z}\right) \tag{4.1}
\end{equation*}
$$

where Z denotes a fiber of π. If we suppose moreover that

$$
\begin{equation*}
\mu_{1 i}=\cdots=\mu_{n i}, \quad n+1 \leq j \leq n+p \tag{4.2}
\end{equation*}
$$

then the local system $\boldsymbol{R}^{p} \pi_{*} L$ is invariant under the operation of S_{n} on X_{n}. Hence this defines a local system over $Y_{n}=X_{n} / S_{n}$. In this situation the representation ρ gives a representation of the braid group B_{n} in Aut $H^{p}\left(Z,\left.L\right|_{z}\right)$, which we denote by the same letter ρ.

Let us consider the case $p=1$. We put $\mu_{1, n+1}=\cdots=\mu_{n, n+1}=\mu$, $\alpha=\exp 2 \pi \sqrt{-1}(-\mu)$. We observe that the dual representation $\rho^{*}: B_{n}$ \rightarrow Aut $H^{1}\left(Z,\left.L\right|_{z}\right)$ is obtained from the Burau representation

$$
\beta_{n}: B_{n} \longrightarrow G L_{n-1}\left(Z\left[t, t^{-1}\right]\right) \quad(\text { see Section } 2)
$$

by putting $t=\alpha$.
We consider the case $p>1$. Let us suppose that $\mu_{i j}=\mu$ for any (i, j) $\in I_{n+p}-I_{n}$, with some $\mu \in C$ satisfying the condition (3.2). By considering $\exp 2 \pi \sqrt{-1}(-\mu)$ as a parameter, we get a one-parameter family of linear representations:

$$
\begin{equation*}
\beta_{n, p}: B_{n} \longrightarrow G L_{N}\left(Z\left[t, t^{-1}\right]\right), \quad N=(n+p-2)!/(n-2)!. \tag{4.3}
\end{equation*}
$$

Since $\beta_{n}=\beta_{n, 1}$, these representations may be considerd as a generalization of the Burau representations.

For $p>1$, the representation $\beta_{n, p}$ is not irreducible. In fact the following method permits us to decompose the local system $\boldsymbol{R}^{p} \pi_{*} L$. By our hypothesis on $\mu_{i j}$, the symmetric group S_{p} acts naturally on $H^{p}\left(Z,\left.L\right|_{z}\right)$. Let $\Gamma=\left(d_{1}, \cdots, d_{k}\right)$ be a partition of p, i.e., $d_{1} \geq d_{2} \geq \cdots \geq d_{k} \geq 0, \sum_{i=1}^{k} d_{i}$ $=p$. We denote by e_{Γ} an idempotent element of the group ring $C\left[S_{p}\right]$ corresponding to the Young tableau of type Γ (see [18]). Let V_{Γ} be the left ideal of $C\left[S_{p}\right]$ generated by e_{Γ}. We have

$$
\begin{equation*}
\operatorname{Hom}_{S_{p}}\left(V_{\Gamma}, H^{p}\left(Z,\left.L\right|_{Z}\right)\right) \cong e_{\Gamma} \cdot H^{p}\left(Z,\left.L\right|_{Z}\right) \tag{4.4}
\end{equation*}
$$

We denote the right hand side by U_{Γ}. We observe that the action of S_{p} on $H^{p}\left(Z,\left.L\right|_{Z}\right)$ is commutative with the operation of B_{n}. Hence we obtain the following Proposition by using standard arguments in representation theory.
(4.5) Proposition. We have a direct sum decomposition

$$
H^{p}\left(Z,\left.L\right|_{z}\right)=\bigoplus_{\Gamma: \text { partition of } p}\left[V_{\Gamma} \otimes U_{\Gamma}\right]
$$

and for any Γ, U_{Γ} and $V_{\Gamma} \otimes U_{\Gamma}$ are invariant subspaces with respect to the operation of the braid group B_{n}.

By means of the above Proposition, the representation $\beta_{n, p}$ has a factor corresponding to Γ, which we denote by $\beta_{n, p, \Gamma}$.
(4.5) Example. Let us consider the case $n=3, p=2, \Gamma=(1,1)$. The representation $\beta_{3,2, \Gamma}: B_{3} \rightarrow G L_{3}\left(Z\left[t, t^{-1}\right]\right)$ is given by

$$
b_{1} \mapsto\left[\begin{array}{rrr}
-t^{2} & 0 & 1 \\
0 & -t & 1 \\
0 & 0 & 1
\end{array}\right] \quad b_{2} \mapsto\left[\begin{array}{rrr}
1 & 0 & 0 \\
t & -t & 0 \\
t^{2} & 0 & -t^{2}
\end{array}\right] .
$$

This representation cannot be obtained from the representations of B_{3} induced from the natural homomorphism $C\left[B_{3}\right] \rightarrow H_{3}(q)$.

§ 5. Image and kernel of $\boldsymbol{\beta}_{n}\langle\boldsymbol{\mu}\rangle$

The object of this section is to study the linear representations $\beta_{n}\langle\mu\rangle$ for special values of μ (see Section 3 for notations). We shall prove the following Theorem.
(5.1) Theorem. Let μ be a real number such that
(i) $n^{-1}<\mu<2 n^{-1}$
(ii) $(1-2 \mu)^{-1} \in \boldsymbol{Z} \cup\{\infty\}$, $((n-1) \mu-1)^{-1} \in \boldsymbol{Z} \cup\{\infty\}$.

We put $\kappa=(1-2 \mu)^{-1}, \kappa_{\infty}=((n-1) \mu-1)^{-1}$. Then the kernel of the linear representation $\beta_{n}\langle\mu\rangle: B_{n} \rightarrow P U(1, n-2), n \geq 3$, defined in (3.8) is normally generated by the following elements:

$$
b_{1}^{2 \kappa}, \quad\left(b_{1} \cdots b_{n-2}\right)^{(n-1) \kappa_{\infty}}, \quad\left(b_{1} \cdots b_{n-1}\right)^{n} .
$$

The complete list of μ satisfying the hypothesis of Theorem is given in the following table:
(5.2) Table
the case $n=3$
(i) $\mu=2^{-1}\left(1-\kappa^{-1}\right), \kappa \geq 3, \kappa \in N$
(ii) $\mu=2^{-1}, \kappa=\infty$
(iii) $\mu=2^{-1}\left(1+\kappa_{\infty}^{-1}\right), \kappa_{\infty} \geq 3, \kappa \in N$
the case $n \geq 4$

	$n=4$					$n=5$			$n=6$	$n=7$
μ	1/3	3/8	2/5	5/12	4/9	1/4	1/3	3/8	$1 / 4$	1/4
κ	3	4	5	6	9		3	4	2	2
κ_{∞}	∞	8	5	4	3	∞	3	2	4	2

We devide the proof of Theorem (5.1) into several steps. First we review briefly the theory of M. Kato [10] on branched coverings (see also [19]).

Let us start with a pair (G, M), where M is a connected complex manifold and G is a properly discontinuous group of holomorphic transformations of M. We obtain the orbit space X, which is an irreducible normal analytic space. Let $b: X \rightarrow N$ be a function defined by $b(x)=\# G_{z}$ for $x \in X$, where $z \in M, G . z=x$ and G_{z} denote the isotropy subgroup of G at z. We write $G \backslash M=(X, b)$. Conversely, given a pair (X, b), where X is an irreducible normal analytic space and $b: X \rightarrow N$ is a function, we shall say that (X, b) is uniformizable if and only if there exists (G, M) such that $(X, b)=G \backslash M$. The pair (G, M) is called a uniformization of (X, b). We call (X, b) an orbifold if (X, b) is locally uniformizable. Let (X, b) be an orbifold. We put $\Sigma X=\{x \in X ; b(x) \geq 2\}$ and $X_{0}=X-\Sigma X$. Let $\left\{D_{j}\right\}_{j \in J}$ be the set of irreducible hypersurfaces is ΣX. The function b attains a constant value b_{j} on the regular part of D_{j}. Let μ_{j} denote a normal loop around D_{j}. Let N be the smallest normal subgroup of $\pi_{1}\left(X_{0}\right)$ containing $\left\{\mu_{j}^{b_{j}{ }_{j}}{ }_{j \in J}\right.$. We shall only state the correspondence between coverings and groups. The following Proposition is a part of Theorem 1 of [10].
(5.3) Proposition (M. Kato [10]). Let (X, b) be a uniformizable orbifold. There is a one-to-one correspondence between the normal subgroups of $\pi_{1}\left(X_{0}\right)$ containing N and the covering maps of orbifolds: $\left(X^{\prime}, b^{\prime}\right) \rightarrow(X, b)$.

The above correspondence may be illustrated in the following diagram:

$$
\begin{aligned}
\left\{\begin{array}{l}
K: \text { normal subgroup of } \\
\pi_{1}\left(X_{0}\right) \text { containing } N
\end{array}\right\} & \longrightarrow\left\{\begin{array}{l}
X_{0}^{\prime} \longrightarrow X_{0}: \text { covering } \\
\text { corresponding to } K
\end{array}\right\} \\
& \longrightarrow\left\{\begin{array}{l}
X^{\prime}: \text { Fox completion of } \\
X_{0}^{\prime} \text { over } X([6])
\end{array}\right\}
\end{aligned}
$$

In particular, if we start with $K=N$, we obtain the universal uniformization $\left(\pi_{1}\left(X_{0}\right) / N, M\right)$.
(5.4) Notation. We put $M_{n}=\left\{\left(z_{1}, \cdots, z_{n+1}\right) \in \boldsymbol{P}^{1} \times \cdots \times \boldsymbol{P}^{1} ; z_{i} \neq\right.$ z_{j} if $\left.i \neq j\right\}$. Let $P G L(2, C)$ act diagonally on M_{n} and we put $Q_{n}=$ $M_{n} / P G L(2, C)$.

We see that there is a natural inclusion $X_{n} \rightarrow M_{n}$. We denote by $P G L(2, C)_{\infty}$ the isotropy subgroup of $\operatorname{PGL}(2, C)$ at ∞. We have $Q_{n}=$ $X_{n} / P G L(2, C)_{\infty}$, where $P G L(2, C)_{\infty}$ acts diagonally on X_{n}. We have an isomorphism:

$$
\begin{equation*}
P_{n} / \operatorname{Cent}\left(B_{n}\right) \cong \pi_{1}\left(Q_{n}\right) \tag{5.5}
\end{equation*}
$$

Since the natural projection $\pi_{1}\left(X_{n}\right) \rightarrow \pi_{1}\left(Q_{n}\right)$ has a section, we shall consider $\pi_{1}\left(Q_{n}\right)$ as a subgroup of P_{n}.

We have defined in (3.8) a multivalued holomorphic map $w: X_{n} \rightarrow D_{n-2}$. This map descends to a multivalued holomorphic map from Q_{n} to D_{n-2}, which we denote by the same letter w.

Following Deligne and Mostow [5], we consider the following stable partial compactification of Q_{n} (cf. [14]). Let us fix $\left(\mu_{1}, \cdots, \mu_{n+1}\right)$ with $0<$ $\mu_{i}<1,1 \leq i \leq n+1$ and $\sum_{i=1}^{n+1} \mu_{i}=2$. We shall assume moreover the following integer condition:
(5.6) (INT) For any $i \neq j$ such that $\mu_{i}+\mu_{j}<1,\left(1-\mu_{i}-\mu_{j}\right)^{-1}$ is an integer.

Let S denote the set $\{1, \cdots, n+1\}$ and let $\left(\boldsymbol{P}^{1}\right)^{S}$ be the set of functions from S to \boldsymbol{P}^{1}. We consider M_{n} as a subset of $\left(\boldsymbol{P}^{1}\right)^{S}$ and we define $M_{n}^{s t}$ to be the set of functions $f: S \rightarrow \boldsymbol{P}^{1}$ such that for any $x \in \boldsymbol{P}^{1}$ with $f^{-1}(x) \neq \phi$ we have

$$
\begin{equation*}
\sum_{f(s)=x, s \in S} \mu_{s}<1 \tag{5.7}
\end{equation*}
$$

Let $P G L(2, C)$ act diagonally on $M_{n}^{s t}$. We define $Q_{n}^{s t}$ to be the quotient space $M_{n}^{s t} / P G L(2, C)$. The partial compactification $Q_{n}^{s t}$ has a natural structure of a complex manifold.

Let $\widetilde{Q}_{n} \rightarrow Q_{n}$ be the covering corresponding to the kernel of the linear representation of P_{n} in $P U(1, n-2)$ defined in Section 3. Let $Q_{n}^{s t}$ be the Fox completion of $\widetilde{Q}_{n} \rightarrow Q_{n}$ over $Q_{n}^{s t}$. Let $\tilde{w}: \widetilde{Q}_{n} \rightarrow D_{n-2}$ denote the lift of w on \widetilde{Q}_{n}. The following Picard type theorem was proved by Deligne and Mostow [5], and independently by Terada [16].
(5.8) Theorem (Picard [15], Terada [16], Deligne-Mostow [5]). If $\left(\mu_{1}, \cdots, \mu_{n+1}\right)$ satisfies the condition (INT) (see (5.6)), then the corresponding map $\tilde{w}: \widetilde{Q}_{n} \rightarrow D_{n-2}$ extends to a homeomorphism $\bar{w}: Q_{n}^{s t} \rightarrow D_{n-2}$ which is equivariant with the action of $\pi_{1}\left(Q_{n}\right)$.

Under the condition (INT), we consider the orbifold ($Q_{n}^{s t}, b$) defined in the following way. Let $K_{i j}$ be the divisor of $Q_{n}^{s t}$ corresponding to the divisor $z_{i}=z_{j}$ in $M_{n}^{s t}$. We define the value of b at a regular point of $K_{i j}$ by $\kappa_{i j}=\left(1-\mu_{i}-\mu_{j}\right)^{-1}$. Let $c_{i j}$ denote a normal loop around $K_{i j}$. By using the notion of orbifolds, the theorem of Picard type (5.8) may be interpretated in the following way.
(5.9) Theorem. Under the condition (INT), the universal uniformization of the orbifold $\left(Q_{n}^{s t}, b\right)$ defined above is isomorphic to $\left(\pi_{1}\left(Q_{n}\right) / N, D_{n-2}\right)$,
where N is the smallest normal subgroup of $\pi_{1}\left(Q_{n}\right)$ containing $c_{i j}^{\pi_{i j}}$ for $i \neq j$ with $\mu_{i}+\mu_{j}<1$.

Proof. Let $\left(\pi_{1}\left(Q_{n}\right) / N^{\prime}, M\right)$ be the universal uniformization of the orbifold $\left(Q_{n}^{s t}, b\right)$. We observe that the order of $\left(\beta_{n}\langle\mu\rangle\right)\left(c_{i j}\right)$ is equal to $\kappa_{i j}$. Hence by means of Theorem (5.8) and Proposition (5.3), we obtain an unramified covering $M \rightarrow D_{n-2}$. Since D_{n-2} is simply connected we have $M=D_{n-2}, N=N^{\prime}$. This completes the proof of Theorem (5.9).

We shall now complete the proof of Theorem (5.1). By the hypothesis on μ, the condition (INT) is satisfied. We have a natural action of S_{n} on $Q_{n}^{s t}$. Hence ($\pi_{1}\left(Q_{n}\right) / N, D_{n-2}$) may also be considered as the universal uniformization of ($\left.Q_{n}^{s t} / S_{n}, b\right)$ with certain b. By using the correspondence in (5.3), we conclude that $\operatorname{Ker} \beta_{n}\langle\mu\rangle$ is equal to N. The proof of Theorem (5.1) is reduced to show the following conjugate relations in $B_{n} / \operatorname{Cent}\left(B_{n}\right)$:

$$
\begin{align*}
& c_{i j} \sim b_{i j}^{2}, \quad 1 \leq i<j \leq n, \tag{5.10}\\
& c_{i, n+1} \sim\left(b_{1} b_{2} \cdots b_{n-2}\right)^{n-1}, \quad 1 \leq i \leq n .
\end{align*}
$$

These relations are checked by using relations of type:

$$
\begin{equation*}
\left(b_{1} b_{2} \cdots b_{n-1}\right)^{n}=\left(b_{1} b_{2} \cdots b_{n-1}\right)^{n-1}\left(b_{n-1} b_{n-2} \cdots b_{2} b_{1}^{2} b_{2} \cdots b_{n-1}\right) \tag{5.11}
\end{equation*}
$$

This completes the proof of Theorem (5.1).
(5.12) Remarks. (i) In the case $n=3$, the image of representations of P_{3} in $P U(1,1)$ associated with $\left(\mu_{1}, \cdots, \mu_{4}\right)$ satisfying the condition (INT) is the Schwarz triangle group. In general, we obtain a series of complex reflection groups operating on the complex ball D_{n-2} as the image of P_{n} in $P U(1, n-2)$. The image of B_{n} in $P U(1, n-2)$ in the case listed in the table (5.2) is arithmetic if $n \geq 4$.
(ii) Let us consider the case $n=4$ and $\mu=2 / 5$. Let Γ denote the image of P_{4} in $P U(1,2)$ by this representation. In this case the commutator subgroup [$\Gamma, \Gamma]$ acts freely on D_{2} and the quotient variety $D_{2} /[\Gamma, \Gamma]$ is one of the Hirzebruch's examples of surfaces of general type with $c_{1}^{2}=3 c_{2}$ (see [19]).
(iii) We now consider the case $\mu=1 / 2$. This representation gives an isomorphism $B_{3} / \operatorname{Cent}\left(B_{3}\right) \cong P S L(2, Z)$ in the case $n=3$. This fact was used to show that the Burau representation is faithful if $n=3$ (see [3] Theorem 3. 15).

The faithfulness of the Burau representation is an open problem in the case $n \geq 4$. It is known by Varchenko that the image of the representation of B_{n} in $S L(n-1, Z)$ obtained in this way is equal to $\operatorname{Sp}(n-1, Z)$
(see [17]). This representation may be lifted to a representation of B_{n} in the Steinberg group $S t(n-1, Z)$. The proof of this fact is based on Lemma 9.4 of [13].

References

[1] Artin, E., Theorie der Zöpfe, Hamburg Abh., 4 (1925), 47-72.
[2] Aomoto, K., Gauss-Manin connection of integrals of difference products, preprint, 1985.
[3] Birman, J. S., Braids, links, and mapping class groups, Ann. of Math. Studies, 82 (1975).
[4] Connes, A., Indice des sous facteurs, algèbres de Hecke et théorie des noeuds (d'après V. Jones), Sem. Bourbaki, 1984-1985.
[5] Deligne, P. and Mostow, G. D., Monodromy of hypergeometric functions and non-lattice integral monodromy, Publ. IHES, 63 (1986), 5-90.
[6] Fox, R. H., Covering spaces with singularities, Lefschetz Symposium, Princeton Univ. Press, (1957), 243-262.
[7] Ihara, Y., Profinite braid groups, Galois representations and complex multiplication, Ann. of Math., 123 (1986), 43-106.
[8] Iwahori, N. and Matsumoto, H., On some Bruhat decomposition and the structure of the Hecke rings of p-aidc Chevalley groups, Publ. IHES, 25 (1965), 5-48.
[9] Jones, V., Braid groups, Hecke algebra and type II_{1} factors, Proc. of US-Japan Seminar, Kyoto 1983, Pitman Research Notes in Math., 123 (1986), 242273.
[10] Kato, M., On uniformization of orbifolds, preprint.
[11] Kita, M. and Noumi, M., On the structure of cohomology groups attached to certain many valued analytic functions, Japan. J. Math., 9 (1983), 113157.
[12] Kohno, T., Homology of a local system on the complement of hyperplanes, Proc. Japan Acad., 62, Ser. A, (1986), 144-147.
[13] Milnor, J., Introduction to algebraic K-theory, Ann. of Math. Studies, 72 (1971).
[14] Mumford, D., Geometric invariant theory, Springer Verlag.
[15] Picard, E., Sur les fonctions hyperfuchsiennes provenant des séries hypergéométriques de deux variables, Ann. ENS III2, (1985), 357-384.
[16] Terada, T., Fonctions hypergéométriques F_{1} et fonctions automorphes I. J. Math. Soc. Japan, 35 (1983), 451-475.
[17] Varchenko, A. N., On the bifurcation of multiple integrals depending on a parameter, Funct. Anal. Appl., 3 (1969), 322-324.
[18] Weyl, H., Classical groups, Princeton Univ. Press, 1939.
[19] Yamazaki, T. and Yoshida, M., On Hirzebruch's examples of surfaces of general type with $c_{1}^{2}=3 c_{2}$, Math. Ann., 266 (1984), 421-431.

Department of Mathematics

Faculty of Science
Nagoya University
Chikusa-ku, Nagoya 464
Japan

