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Separated Ultraproducts and Big Cohen-Macaulay Modules 

Yuji Yoshino 

This short note is meant to be a brief introduction to my theory 
which is developed in my paper, "Toward the construction of big Cohen
Macaulay modules." (Nagoya Math. J. 103 (1986), 96-125.) The reader 
should consult with my original paper for the details. 

Section 1 

Let (T, m) be an Artin local ring (commutative with unity) and let R 
be a T-algebra. We consider the following 

Question. When does there exist a (non-trivial) T-injective R-module? 

Roughly speaking my answer to this question is that many T-algebras 
have such modules, while only a few do not. The aim of this section is to 
explain this fact. For the convenience I make the following 

Definition. A T-algebra R is a rich T-algebra if R has a T-injective 
R-module. Non-rich T-algebras are called poor. 

The following lemma is an immediate consequence. 

Lemma. Flat ==}Rich ==}Pure. 

Proof If R is T-flat and E=Er(T/m), then Homr(R, E) is a T
injective R-module, hence R is a rich T-algebra. If M is a T-injective 
R-module, then Mis a direct sum of copies of E as a T-module, so there is 
an injection of E into M. Taking the dual of this injection, one has the 
mapping f: Homr(M, E)-+Homr(E, E)=T. Thus there is an element 
x in Homr (M, E) satisfying f(x) = 1. Define an R-module map g by 
g(l)=x.(Homr(M, E) is an R-module.) Then the composition J,g is a 
T-homomorphism of R onto T, hence Tis a pure subring of R. 

The converses of the implications in Lemma do not hold in general. 

Example. (1) Let T=k[x, w]/(x2, w4) and let 

R=k[x, y, z, w]/(x2, w4, xw-yz, x 2z-y3, yw2 -z3, xz 2 -y2w) 
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where k is a field. Then one can show that R is rich but not flat over T. 
(2) Let V be a discrete valuation ring with a prime element t, and let 

T= V/t 2 V, R=T[X]/(tX, X 2+t). Then it can be seen that Tis a direct 
summand of R, hence pure, and poor. 

We would like to show a theorem giving some conditions for 'poorness'. 
Before that, we should note the fact that the family of all poor T-algebras is 
closed under specialization. 

Theorem 1. There is a family of poor r:.algebras {u1(T)}z=1,2,3, ... such 
that a T-algebra R is poor if and only if R contains a specialization of some 
u1(T). Each uz(T) is uniquely determined by a minimal free resolution of 
T/m as a T-module. 

The concrete description of uz(T) is not difficult but rather complicated. 
So we do not give its concrete form here, but we would like to give an ex
ample to explain it. 

Example. Let V be a discrete valuation ring with a prime element t 
and let T=V/t 2 V. Let Yn=(yt>,yt>, ···,Y~n',0,0, ···) be a lXoo 
matrix of indeterminates and O for each n, and let zi1, wn be indeterminates 
and E=(l, 0, 0, . · · ). Then 

and 

One can observe that R=T[X]/(tX, X 2 +t) is obtained from us(T) by the 
following specialization; 

Y1~(-x, 0, 0, · · · ), Y2~(l, 0, 0, · · · ), Y8~(0, 0, x, 0, · · ·) 

Zu~X, Z21~0, z.,2~0, 

W1~0, W2~l, W8~X. 

Hence R is a poor T-algebra. 
In the sence of Theorem 1 one can say that only a few T-algebras are 

poor because all poor algebras are dominated by generic ones. Now in 
the next section we shall consider some sufficient conditions for a special 
kind of T-algebras to be rich. 
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Section 2 

In this section (T, m, k) is always a regular local ring and R is a finite 
local T-algebra such that d=dim(T)=dim(R). First we recall the defini
tion of big Cohen-Macaulay modules. 

Let x={x,, x2, · · ·, xd} be a system of parameters of R. An R-module 
M (not necessarily finitely generated) is called a big Cohen-Macaulay module 
with respect to x if xis a regular sequence on M, i.e., xM =t=M and xi is a 
non-zero divisor on M/(x 1, • • ·, X;_,)M for all i. M. Hochster proved 
that, for any system of parameters x of an equicharacteristic local ring R, 
there exists a big Cohen-Macaulay module with respect to x. However 
this existence problem is still open in general. 

Before stating the second theorem of this paper, we need one more 
definition. 

Definition. R is a very rich T-algebra if Rf I is a rich T/ /-algebra for 
any m-primary ideal /, or equivalently R/mn R is a rich T/mn-algebra for 
each n. 

Theorem 2. The following two conditions are equivalent. 
(1) Risa very rich T-algebra. 
(2) R has a big Cohen-Macaulay module with respect to some (any) 

system of parameters of R. 

One shows that this theorem reduces the existence problem of big 
Cohen-Macaulay modules to a problem for Artin rings. The proof of the 
implication (2)::}(l) is done by using the usual big CM argument and is 
not difficult. The most surprising part of Theorem 2 is in showing the 
implication (1)=}(2). We postpone the proof of this part until the last of 
this paper and we next introduce the notion of separated ultraproducts of 
modules which will be necessary in this proof. 

Section 3 

Let {(Ri, ni)he 1 be a family of local rings and let {Mihe 1 be a family 
of R;-modules indexed by I. 

ff c 21 is an co-incomplete ultrafilter on I if (1) efi $ ff, (2) if A, Be ff 
then An Be ff, (3) if A e ff and Ac Bel then Be ff, (4) if A$ ~ then 
I-A e ff and (5) there is a countable family {A;};- 1, 2 , ••• of elements in ff 
satisfying nr-,Ai $ ff. 

By Zorn's lemma if #(/) = oo then there is an co-incomplete ultrafilter 
ff on I. In the following of this paper we always fix such a filter % on I. 

Let {Pi};e1 be a family of propositions. We say that Pi holds for 
almost all i (abbr. P; for a.a. i) if {i E /IP; is true} E %. 
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Definition. fLerMi is called the separated ultraproduct of Mi and is 
defined as n iEIM;/- where - is the equivalence relation given by the 
following; (ai)ier -(bi)ier if and only if, for any integer n, ai-bi en~ Mi 
for a.a. i. We denote the class of (ai)ier in fLerMi by (ai)ter· 

In the following for the simplicity we assume that there is an integer n 
such that the embedding dimension of Ri is not bigger than n for a.a. i. 
Under this assumption the following facts are easily observed. 

Facts. (1) fJterRi is a Noetherian local ring with maximal ideal 
fi={(ai)-lai E ni for a.a. i} and 11iEIMi is a l1ierRcmodule. 

(2) 11 iEIMi is always complete and separated in fi-adic topology. 
In particular 11 i EI Ri is a complete local ring. 

Let (R, n) be a local ring and let NcM be R-modules. Then the 
Artin-Rees number of N c Mis defined as follows: 

In general the computation of separated ultraproducts is quite difficult or 
impossible. However in some cases it is possible to compute it by the fol
lowing theorem which I call the exactness theorem. 

Theorem 3. Let 0-+M;-+Mc-+M;'-+0 be an exact sequence of Ri
modules for i e I. Assume that there is an integer r satisfying a R,( M;, Mi)< r 
for a.a. i. Then the following sequence of 11 i er Rcmodules is exact: 

o~ 11 M;~ 11 Mi~ 11 M;' ~o. 
iEI iEI iEI 

As an application of this theorem one can compute separated ultra
products in some cases. 

Example. (1) If Ri = R for all i e I and k is a coefficient field of R, 
then the separated ultrapower R = 11 R is isomorphic to R®kk* where k* 
is the ultrapower of the field k in the usual sence. In general it can be 
proved that R is always faithfully flat over R. 

(2) If l=N and Ri=k[x, y]/(x 2+ yi) then 11 iEIRi=k*[x, y]/(x 2). 

Section 4 

We now show the brief sketch of the proof of the implication from 
(1) to (2) in Theorem 2. 

Recall that Tis a regular local ring and R is a finite local T-algebra 
such that d=dim(T)=dim(R). Let x={x 1, • • ·, xd} be a regular system 
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of parameters for T and let Tn = T/(xf, · · ·, xa) and Rn =R/(xf, · · ·, Xa)R 
for all n. By the assumption there is a T11-injective R11-module M 11 for each 
n, where one should remark that every Mn is T11-free. Consider M = 
n,eNM,. We claim that .Mis a big Cohen-Macaulay module with respect 
to x. Equivalently we show the following 

Claim. xi(si)-+ · · · +xitt)-+xk+iCut)-=0 (O<k<d) implies (u~)- e 
(xi, · · ·, x,.)M. 

Under the assumption of this claim, one can easily prove that, for any 
integer n, ui belongs to (Xi, • • •, X1t,, xt;:f, X~+2• • • •, Xa)Mi for a.a. i. If we 
denote Mt= Mtf(xi, · · ·, xk)Mt and denote the class of u, in M, by ilt, then 
this shows that, for any n, ilt belongs to (x~:;:f, x~+2, · · ·, xa)M, for a.a. i. 
This implies (ut)-=0 in fl Mt. 

On the other hand by Theorem 3 the following sequence is exact: 

0~ fl (xi, · · ·, xk)Mi~ fl Mi~ fl Mt~O 
I g 

(One can check the validity of the assumption of Theorem 3 in this case.) 
As we have seen above, we have g((ut)-)=(u 1)-=0. Hence there is an ele
ment(xia1+ • • • +x,.bk)-in n tez(Xi, • • •, xk)M1 which satisfiesf((xia,+ • • • 
+xkb,.)-)=(ut)-, equivalently(ut)-=xi(at)-+ · · · +xibt)- e (xi,··· ,xk)M. 
This completes the proof of the claim, hence Theorem 2. 
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