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q-Version of Formulas Concerning Young Diagrams 

Yoshiaki Ueno 

We give here a survey of some recent results on some formulas con
cerning Young diagrams and their q-analogue formulas. The following 
exposition divides into two parts. In Part 1, we discuss the relative version 
of the generating functions of ordinary plane partitions, which go back to 
MacMahon [4]. In Part 2, we introduce the concept of the "reverse 
matching", which is so to say the "surjective counterpart" of the classical 
(complete) matching of an incidence structure in combinatorial theory. 
We give an incidence structure between two finite sets by a Young diagram 
..:l, and count the number of reverse matchings and see how its q-analogue 
can be constructed. 

Complete proofs and other details will be published elsewhere [7, 13]. 

§ 1. Enumeration of ordinary plane partitions 

1.1. Ordinary plane partitions 
Let ..:l be a Young diagram. 

Definition. By an "ordinary plane partition (opp) T of shape ,l and 
largest part~ r" we mean an array of integers 0, 1, ... , r placed in each 
of the squares of ..:l, subject to the restrictions that 

(1) these numbers must be non-increasing along each row; 
(2) and down each column. 
For example: 

T=3 1 1 0 0. 
2 1 0 
2 
0 

Definition. For any given ..:l and r, we put 
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where the sum is to be taken over all opp's T of shape ,'.! and largest part 
s r, and I Tl means the total sum of the integers placed in the boxes of ,'.!. 

We call this polynomial the "generating function of opp's of shape ,'.! and 
largest part S r ". 

Then.f.?'( q) can be expressed by a determinant-type formula as follows: 

Theorem ([l, Eq. (6.12)1). 

fY'(q)=lq<t-J><t-J-1)/z(~d~r ) I . , 
l-J+r q t,;=1, ... ,1 

where A=(A1, • • ·, A1) and (:t denotes the Gaussian binomial coefficient or 

so-called q~analogue of the binomial coefficient. 

This formula was known to MacMahon up to 1=4 [4, Section 495]. 

1.2. relative case 
Let ,'.! and µ be two Young diagrams such that µ is pictorially included 

in ,'.! when both diagrams are up- and left-justified. For example, A= 
(5 3 1 1 ) and µ=(2): 

Then by the skew diagram ,'.!/ µ we mean the crowd of boxes created by the 
set-theoretic difference ,'.!-µ (i.e. the non-shadowed boxes in the above 
picture). 

An opp of shape ,'.!/ µ and largest part s r can also be defined in the 
completely same way (see the picture below), 

T= 1 0 0 
2 1 0 
2 
0 

and we also define the "generating function" fl'i;(q) of such opp's in the 
same fashion. 

Then the functionff'i;(q) also allows a determinant-type formula: 

Theorem ([7, § 1.101). 
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where A=(A1, • • ·, -<1), ..<1 > · · · ~-<1>0, and µ=(µi, · · ·, µ 1), µ,~ · ·, ~µ, 
~O (We add a string of O's to the end ofµ if necessary). 

Putting q= 1 here, we obtain 

/ (rl(l) =I (Ai - µJ+r) I 
l/p • • ' l-J+r i,j=l,•••,I 

which gives the total number of opp's of shape A/µ and largest part < r, 
and was known to Kreweras (3, § 2.5.3.]. 

§ 2. Counting the number of reverse matchings on a Young diagram and its 
q-analogue 

2.1. reverse matchings 
Let A={l,2, ···,k} and B={l,2,. ··,n}, wherek,n>l. Let..<= 

(-<1, ···,-<t) be a partition such that n=-<1 ~-<2 ~···>-<1:>0. In what 
follows, we regard the corresponding Young diagram ..< as a subset of the 
direct product set A X B as the following picture indicates: 

B 
2 ... 1l 

1 * * * * * A 2 * * * 
* k * 

Definition. (a) ,Jr is a (complete) matching on A if ,Jr: A--+B is an 
injective mapping of A into B such that graph (,Jr) c ..<. 

(b) cp is a reverse matching on..< if cp: A+--B is a surjective mapping of 
B onto A and graph (cp)C..<. 

We will be concerned mainly with reverse matchings. Let e(A) be the 
number of reverse matchings on ..<. Then we observe that e(..<) has the fol
lowing properties: 

1) If -<=(n, n, .. . , n) (k times), i.e. the kXn-rectangle, then e(-<)= 
k! S~, where S~ is the Stirling number of the second kind. Similarly, the 

number of complete matchings is equal to k! ( % )· 

2) ,(l)S"O iff l contains the staircase V of sire k. 

Property 2) is proved by using Philip Hall's marriage theorem. If we 
take A to be the k X n-rectangle, then Property 2) implies 
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iff k~n. 

Most of the properties enjoyed by Stirling numbers can be extended 
into a form including e(i)'s in a similar way, so that they re-appear in a 
new fashionable style, in a "partition version", so to speak. The next two 
formulas are of such kind: 

3) (I. Amemiya [141). Let -<=(-<1, .<2, •• ·, Ak) be a partition such that 
-<1>-<2> · · · >lk>O, and put 

Then 

µ:=.<-(the last column); 

-9:=l-(the last column and the first row); 

i: = the length of the last column of .<. 

eO)= {e(µ) 
i (e(µ)+e(-9)) 

if -<1 > -<2 + 1 ; 

otherwise. 

Putting A= (n, n, ... , n) (k times), we have 

for k>2. 

i<il=i-(the last row and the lst-i-th columns). 

Then 

Putting A=(n, ... , n) (k times), we have 

S!= ! l:l=1 (: )s!:}. 

But there still seem to be some properties which don't come into 
picture among Stirling numbers. This stems from their being parametrized 
by partitions. Among such properties is: 

5) (T. Imai's duality [10, Section 2, B-1]). Let .<=(-<1,. · ., Ak) be a 
"strict" partition, i.e. n = A1 > l 2 > · · · > Ak > 0; Define the "complementary 
strict partition" i* = µ = (µ1, · · ·, µ1) of A by 

(a) n=µ1>µ2> · · · >µi>O; 
(b) {l, 2, · · ·, n-l}\{A 2, • • ·, Ak}={n-µ 2, · · ·, n-µ 1}. 

Then it holds that eO)=eO*). 
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Property 5), originally formulated as a puzzle using a square of size 
n+l and n pebbles following the traditional style of Japanese Yedo period 
mathematics, was dedicated to the Suwa Shrine, Yamanashi Prefecture and 
put to the public [10]. 

2.2. the q-analogue of e(1). 
Let us consider the q-analogue of e(A). This means it is required, and 

in fact it turns out to be possible, to attach to each partition A a polynomial 
e(A)q in a variable q: 

in such a way that 
(a) The value of e(-<)q at q=l coincides with e(A); 
(b) All formulas enjoyed by e(1)'s have an extension to fit e(A)/s; 
(b') (I am tempted to add here that) these q-formulas must satisfy 

one's sense of beauty. 
It seems that such an extension is unique in a sense, although the last 
requirements may sound rather vague. Anyway, we can construct "a q
analogue" of e(.<). 

Now it is observed that the coefficients of the polynomial e(A)q are 
always non-negative integers. Since e(A)q-i =e(-<) is the number of reverse 
matchings on the Young diagram .<, it suggests that we can define a 
"weight" r(SD) e z~0 of SD for each reverse matching SD on .<, such that 

where SD runs through all reverse matchings on .<. A natural way of doing 
this is to define r(SD) to be the natural extension of the number of inversions 
in a permutation, which one can read off easily from the graph of SD· 

The q-analogue of the duality 5): 

can be proved by a combinatorial correspondence using this weight func
tion [13, § 1.14.]. 

There is an effective algorithm to calculate e(.<) by filling in the boxes 
of the diagram A with numbers successively. e(A)q was first captured by 
extending this algorithm q-analogously [13, § 4.3.]. 

2.3. the weight function and some examples. 
Let us define the weight function r(SD) mentioned above and show 

briefly how it works. 
Let 1, A and B be as in 2.1. 
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Definition. For any subset a of Ax B included in .:!, we define the 
weight r(a) of a as follows: 

(1) Let the set a be graphically presented on the Young diagram .:! 
e.g. by filling in the boxes with 1 's, 

(2) Fill in the blank boxes of.:! with O's and *'s according to the fol
lowing rule: 

In successive rows, starting with the bottom row, 
(2a) mark with *'s all the blank boxes in the row which have no 

l's in the row to the left of them (if there is no mark 1 in the row, then 
fill up the row with *'s); 

(2b) if there are some 1 's in the row, then for the leftmost l, fill in 
all the boxes above it in the same column with O's and for all the other l's, 
fill in all the boxes above them in the same columns with *'s. 

(3) Finally, r(a) is the number of *'s drawn in the picture. 

Examples. (1) Let k=2, n=3 and .:!=(3, 3). There are 8=2 3 map
pings <p of B into A, 6=2!X3 of which are surjective. The resultant 
pictures are illustrated below("-" denotes blank box): 

1 1 1 

* * * 

0 1 1 

1 - -

1 1 0 

* * 1 

0 1 * 
1 - 1 

1 0 1 

* 1 -

0 * 1 
1 1 -

1 0 * 
* 1 1 

0 * * 
1 1 1 

(2) Let k = 2, n = 3 and .:! = (3, 3). There are 6 = 3 X 2 injective map
pings <p of A into B. The resulting pictures are: 

0 1 -

1 - -
0 * 1 
1 

1 0 -
* 1 -

* 0 1 

* 1 -

1 - 0 

* * 1 

* 1 0 

* * 1 

(3) Letk=3,n=3and.:!=(3,3,2). Thereare4=2X2Xl bijective 
mappings <p of A onto B, whose graphs lie within .:!, with pictures: 

1 0 0 

* 0 1 
* 1 

0 0 1 
1 0 -
* 1 

0 1 0 
0 * 1 
1 -

0 0 1 
0 1 -
1 -

Adding up these examples for each weight, or representing each picture 
by qrC~), one obtains the following polynomials: 

(1) · · · 1 +3q+3q 2 +q 3 =(1 +q)3; 

(2) ... 1 +2q+2q 2 +q 3 =(1 +q)(l +q+q 2); 

(3) ... 1 +2q+q 2 =(1 +q)2. 
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Moreover, taking only surjective ones in (1), one has: 

(l') ... 1 +3q+2q 2 =(1 +q)(l +2q). 

These examples show that our definition of the weight function is plausible. 

2.4. the geometric interpretation of e(A)q. 
It is natural to ask what we are in fact counting by e(l)q. The creature 

we are counting has been captured recently. It is to the flag in a finite 
dimensional vector space over a finite field of q elements what the surjective 
map is to the injective map; a sequence of subspaces subject to a set of tree
type inclusion relations. 

Definition. Let U be a finite dimensional vector space over the finite 
field Fq of q elements. A branching flag in U of length n is a sequence 
(U1, U2, • • ·, Un) of subspaces of U satisfying: 

(I) dim Un=I; 
(2) dim U!-dim Ut+i =0 or 1 (I <j<n-1); 
(3) if dim Ut=dim Ut+i = ... =dim U1u_ 1>dim U1+., then 

u 1, uj+l• ... , uj+s-l "2 uj+s· 
A branching flag (U1, U2, • • ·, Un) is called surjective if U1 = U, and 

injective if dim U1-dim Ut+i = I (1 <j<n-1). 
Let Ube a k-dimensional vector space over Fq. Let 1, k and n be as 

in 2.1 and 1' = Oi, i;, ... , 1~) be the conjugate partition of 1. We fix a 
flag (V1, V2, • • ·, Vn) in U such that dim Vt=A 1 (I <j<n). Then 

Theorem ([13, § 3.1]). The number of surjective branching flags 
(Ui, U2, •• ·, Un) in U of length n satisfying Ute V1 (1 ~j<n) is a polynomial 
in q over Z, and is equal to qd•g •Olq. e(A)q-i· 

The proof uses the q-analogue formula of the formula 3) in 2.1. 
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