Linear Diophantine Equations and Invariant Theory of Matrices

Yasuo Teranishi

Introduction

In this paper, we shall study the Poincaré series of the ring of invariants of $n \times n$ matrices under the simultaneous adjoint action of $G L(n)$. This ring of invariants was studied by Procesi [3] and others. If $n=2$, it is well known that the ring of invariants of two generic matrices X and Y is a polynomial ring generated by 5 algebraically independent invariants

$$
\operatorname{tr}(X), \operatorname{tr}\left(X^{2}\right), \operatorname{tr}(Y), \operatorname{tr}\left(Y^{2}\right), \operatorname{tr}(X Y)
$$

and hence the Poincaré series is

$$
1 /(1-s)\left(1-s^{2}\right)(1-t)\left(1-t^{2}\right)(1-s t) . \quad(\text { See }[1])
$$

However if $n \geq 3$, the ring of invariants is not polynomial ring. The Poincare series of the ring of invariants for generic $n \times n$ matrices is related with the following generating function $F(t)$ of a linear diophantine equations defined by

$$
F(t)=\sum_{r \geq 0} h(r) t^{r},
$$

where $h(r)$ is the number of $n \times n$ matrices $l=\left(l_{i j}\right) \in M(n, N)$ with the property:

$$
\sum_{i, j} l_{i j}=r \quad \text { and } \quad \sum_{j} l_{i j}=\sum_{j} l_{j i}, \quad 1 \leq i \leq n .
$$

General "reciprocity theorems" of the generating function of a linear diophantine equations is established by Stanley ([4], [5], [7]). We shall give simple proofs of some Stanley's results in [5].

By using a combinatorial method, we shall calculate the Poincare series of the ring of invariants of two 4×4 generic matrices.

Notations

N : the set of non-negative integers.
Z : the set of integers.
\boldsymbol{Q} : the set of rational numbers.
C : the set of complex numbers.
$M(r, n, \boldsymbol{Z})$: the set of $r \times n$ matrices with \boldsymbol{Z}-coefficients.
$M(n, R)$: the set of $n \times n$ matrices over a ring R.
For $a=\left(a_{1}, \cdots, a_{n}\right)$ and $b=\left(b_{1}, \cdots, b_{n}\right), a<b$ means that $a_{i}<b_{i}, 1 \leq i \leq n$.
For $l=\left(l_{i j}\right) \in M(n, R),|l|=\sum_{i, j} l_{i j}$.
For an integer $l, \underline{l}=(l, \cdots, l) \in \boldsymbol{Z}^{n}$.
For $x=\left(x_{1}, \cdots, \bar{x}_{n}\right) \in \boldsymbol{C}^{n},|x|<1$ means that $\left|x_{i}\right|<1,1 \leq i \leq n$.

Acknowledgment

The author is grateful to Daniel Montanari for pointing out some mistakes in the original manuscript.

§ 1. Stanley's combinatorial reciprocity theorems

Let us consider a finite system of linear inhomogeneous diophantine equations ($=$ I.D.E. system)

$$
\begin{gathered}
E_{1}(x): a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1} \\
\vdots \\
E_{r}(x): a_{r 1} x_{1}+\cdots+a_{r n} x_{n}=b_{r}
\end{gathered}
$$

Let $A=\left(a_{i j}\right), A \in M(r, n, \boldsymbol{Z})$, and $b=\left(b_{1}, \cdots, b_{r}\right) \in \boldsymbol{Z}^{r}$. We denote by (A, b) for the I.D.E. system above.

For an n tuple $l=\left(l_{1}, \cdots, l_{n}\right) \in \boldsymbol{Z}^{n}$, we denote by $E(A, b, l)$ the set of all solutions $m=\left(m_{1}, \cdots, m_{n}\right) \in \boldsymbol{Z}^{n}, m \geq l$, to the I.D.E. system (A, b). For $l=\left(l_{1}, \cdots, l_{n}\right) \in Z^{n}$, let

$$
F_{l}(A, b, x)=\sum_{m \in E(A, b, l)} x^{m}, \quad x^{m}=x_{1}^{m_{1}}, \cdots, x_{n}^{m_{n}} .
$$

Then $F_{l}(A, b, x)$ is a rational function in n variables x_{1}, \cdots, x_{n}. Let a_{i} be the i-th column vector of the matrix A. Let $\varepsilon_{1}, \cdots, \varepsilon_{r}$ be coordinate functions on \boldsymbol{C}^{r}, and write, for $l \in \boldsymbol{Z}^{r}$,

$$
\varepsilon^{l}=\prod_{i} \varepsilon_{i}^{l_{i}}, \quad l=\left(l_{1}, \cdots, l_{r}\right)
$$

Let (A, b) be an I.D.E. system. For $l=\left(l_{1}, \cdots, l_{n}\right) \in \boldsymbol{Z}^{n}$, let $G_{l}(X, \varepsilon)$. be the rational function in variables $\varepsilon_{1}, \cdots, \varepsilon_{r}, x_{1}, \cdots, x_{n}$ given by

$$
G_{l}(x, \varepsilon)=\frac{\prod_{i}\left(\varepsilon^{a_{i}} x_{i}\right)^{l_{i}} \varepsilon^{-b}}{\prod_{i}\left(1-\varepsilon^{a_{i}} x_{i}\right)} .
$$

If $l=(0, \cdots, 0)$, we write $G(x, \varepsilon)$ for $G_{l}(x, \varepsilon)$.
Lemma 1.1. Suppose $\left|x_{1}\right|<1, \cdots,\left|x_{n}\right|<1$. Then

$$
F_{l}(A, b, x)=\left(\frac{1}{2 \pi \sqrt{-1}}\right)^{r} \int \cdots \int G_{l}(x, \varepsilon) \frac{d \varepsilon_{1} \cdots d \varepsilon_{r}}{\varepsilon_{1} \cdots \varepsilon_{r}}
$$

where the j-th integral from inside is taken over the counterclockwise unit circle in the complex ε_{j}-plane.

Proof. For $m=\left(m_{1}, \cdots, m_{n}\right) \in \boldsymbol{Z}^{n}$, consider the integral

$$
\int_{0}^{1} \cdots \int_{0}^{1} \Pi \varepsilon^{a_{i} m_{i}} \varepsilon^{-b} d \varphi_{1} \cdots d \varphi_{r}, \quad \varepsilon_{i}=\exp 2 \pi \sqrt{-1} \varphi_{i} .
$$

Then this integral equals 1 or 0 according as $A m=b$ or not. Therefore we have;

$$
\begin{aligned}
F_{l}(A, b, x) & =\sum_{m \geq l} \int_{0}^{1} \cdots \int_{0}^{1} \prod_{i}\left(\varepsilon^{a_{i}} x_{i}\right)^{m_{i}} \varepsilon^{-b} d \varphi_{1} \cdots d \varphi_{r} \\
& =\int_{0}^{1} \cdots \int_{0}^{1} G_{l}(x, \varepsilon) d \varphi_{1} \cdots d \varphi_{r} \\
& =\left(\frac{1}{2 \pi \sqrt{-1}}\right)^{r} \int \cdots \int G_{l}(x, \varepsilon) \frac{d \varepsilon_{1} \cdots d \varepsilon_{r}}{\varepsilon_{1} \cdots \varepsilon_{r}}
\end{aligned}
$$

Suppose that $\left|x_{1}\right|>1, \cdots,\left|x_{n}\right|>1$. Then changing the variables $\varepsilon_{j} \rightarrow \varepsilon_{j}^{-1}$,

$$
F_{1-l}(A,-b, 1 / x)=(-1)^{n-1}\left(\frac{1}{2 \pi \sqrt{-1}}\right)^{r} \int \cdots \int G_{l}(x, \varepsilon) \frac{d \varepsilon_{1} \cdots d \varepsilon_{r}}{\varepsilon_{1} \cdots \varepsilon_{r}}
$$

where $\underline{1}=(1, \cdots, 1) \in \boldsymbol{Z}^{n}, 1 / x=\left(1 / x_{1}, \cdots, 1 / x_{n}\right)$ and the j-th integral is taken over the clockwise circle $\left|\varepsilon_{j}\right|=1$. Therefore we have the following

Theorem 1.1. Taking the integrals over the counterclockwise (resp. clockwise) unit circles, let $H_{0}(x)\left(\right.$ resp. $\left.H_{\infty}(x)\right)$ be the rational function in x_{1}, \cdots, x_{n} defined by, in $\left|x_{1}\right|<1, \cdots,\left|x_{n}\right|<1$ (resp. $\left.\left|x_{1}\right|>1, \cdots,\left|x_{n}\right|>1\right)$,

$$
\int \cdots \int G_{l}(x, \varepsilon) \frac{d \varepsilon_{1} \cdots d \varepsilon_{r}}{\varepsilon_{1} \cdots \varepsilon_{r}}
$$

Then $F_{l}(A, b, x)$ and $F_{1-l}(A,-b, 1 / x)$ are related by

$$
F_{l}(A, b, x)=(-1)^{n-r} F_{1-l}(A,-b, 1 / x)
$$

if and only if $H_{0}(x)=H_{\infty}(x)$.
For an I.D.E. system (A, b), we denote by $d(A)$ the number of variables appearing in (A, b) minus the rank of A. If

$$
F_{0}(A, b, x)=(-1)^{d(A)} F_{1}(A,-b, 1 / x),
$$

we say that (A, b) has the R-poroperty.
Lemma 1.2. (A, b) has the R-property if and only if, for any $l \in Z^{n}$,

$$
F_{l}(A, b+A l, x)=(-1)^{a(A)} F_{1-l}(A,-b-A l, 1 / x)
$$

Proof. It follows from the definition of $F_{l}(A, b, x)$ that

$$
F_{l}(A, b, x)=x^{l} F_{\underline{0}}(A, b-A l, x)
$$

and

$$
F_{1-l}(A,-b, 1 / x)=x^{l} F_{1}(A,-b+A l, 1 / x)
$$

Then the proof follows immediately.
For an I.D.E. system, pick an integer $k, 1 \leq k \leq n$. We consider a new I.D.E. system $\left(A^{\prime}, b^{\prime}\right), A^{\prime} \in M(r, n, \boldsymbol{Z}), b^{\prime} \in \boldsymbol{Z}^{r}$, defined as follows: $b^{\prime}=\left(b(k)_{1}, \cdots, b(k)_{r}\right)$,

$$
\begin{aligned}
E_{1}^{\prime}(x) & =0=b(k)_{1} \\
E_{2}^{\prime}(x) & =a_{2 k} E_{1}(x)-a_{1 k} E_{2}(x)=b(k)_{2}=a_{2 k} b_{1}-a_{1 k} b_{2} \\
\cdots & \cdots \\
E_{r}^{\prime}(x) & =a_{r k} E_{1}(x)-a_{1 k} E_{r}(x)=b(k)_{r}=a_{r k} b_{1}-a_{1 k} b_{r}
\end{aligned}
$$

We call $\left(A^{\prime}, b^{\prime}\right)$ the k-eliminated system of (A, b), and denote by $(A(k), b(k))$ the k-eliminated system $\left(A^{\prime}, b^{\prime}\right)$.

For an integer i, let C_{i} (resp. $-C_{i}$) denote the counterclockwise (resp. clockwise) unit circle in the complex ε_{j}-plane. We fix $\varepsilon_{2}, \cdots, \varepsilon_{r}$ $\left(\left|\varepsilon_{i}\right|=1,2 \leq i \leq r\right)$ and consider $G(x, \varepsilon)$ as a function in $x=\left(x_{1}, \cdots, x_{n}\right)$ and ε_{1}. The integral

$$
\int_{C_{1}} G(x, \varepsilon) \frac{d \varepsilon_{1}}{\varepsilon_{1}}, \quad\left|x_{1}\right|<1, \quad 1 \leq i \leq n,
$$

can be computed by the residue theorem of the complex function theory

$$
\frac{1}{2 \pi \sqrt{-1}} \int_{C_{1}} G(x, \varepsilon) \frac{d \varepsilon_{1}}{\varepsilon_{1}}=\operatorname{Res}_{\varepsilon_{1}=0} G(x, \varepsilon) / \varepsilon_{1}+\sum_{\lambda} \operatorname{Res}_{\varepsilon_{1}=\lambda} G(x, \varepsilon) / \varepsilon_{1}
$$

where \sum is taken over all poles. λ in $\left|\varepsilon_{1}\right|<1$.
If, $|x|>1$, similarly we have:

$$
\frac{1}{2 \pi \sqrt{-1}} \int_{-C_{1}} G(x, \varepsilon) \frac{d \varepsilon_{1}}{\varepsilon_{1}}=\operatorname{Res}_{\varepsilon_{1}=\infty} G(x, \varepsilon) / \varepsilon_{1}+\sum_{\lambda} \operatorname{Res}_{\varepsilon_{1}=\lambda} G(x, \varepsilon) / \varepsilon_{1}
$$

where \sum is taken over all poles λ of $G(x, \varepsilon)$ in $\left|\varepsilon_{1}\right|>1$.
Theorem 1.2. Let (A, b) be an I.D.E. system. Let $R_{0}(x)$ and $R_{\infty}(x)$ be rational function in n variables x defined by

$$
R_{0}(x)=\int_{C_{2}} \cdots \int_{C_{r}}\left(\operatorname{Res}_{\varepsilon_{1}=0} G(x, \varepsilon) / \varepsilon_{1}\right) \frac{d \varepsilon_{2} \cdots d \varepsilon_{r}}{\varepsilon_{2} \cdots \varepsilon_{r}},
$$

and

$$
R_{\infty}(x)=\int_{-C_{2}} \cdots \int_{-C_{r}}\left(\operatorname{Res}_{\varepsilon_{1}=\infty} G(x, \varepsilon) / \varepsilon_{1}\right) \frac{d \varepsilon_{2} \cdots d \varepsilon_{r}}{\varepsilon_{2} \cdots \varepsilon_{r}} .
$$

Suppose that the following conditions hold:
(1) $R_{0}(x)=R_{\infty}(x)$,
(2) for any integer k satisfying $a_{1 k}<0$, the k-eliminated system ($A(k), b(k))$ has the R-property.

Then (A, b) has the R-property.
Proof. Let λ be a pole of the function $G(x, \varepsilon),|x|<1$. Then λ is a root of the equation in ε_{1} :

$$
1-\varepsilon_{1}^{a_{1 k}} . \cdots \varepsilon_{r}^{a_{r k}} x_{k}=0, \text { for some } k \text { such that } a_{1 k}<0 .
$$

i.e., $\lambda=\left(\varepsilon_{2}^{a_{2 k}} \cdots \varepsilon_{r}^{a_{r k}} x_{k}\right)^{-1 / a_{1 k}}$ for some fixed choice of the $-a_{1 k}$-th root.

A direct computation shows that the residue of $G(x, \varepsilon)$ at $\varepsilon_{1}=\lambda$ is, under the assumption $|x|<1$, given by

$$
\operatorname{Res}_{\varepsilon_{1}=\lambda} G(x, \varepsilon) / \varepsilon_{1}=-\frac{x_{k}^{-b_{1} / a_{1 k}}}{a_{1 k}} G\left(y, \varepsilon^{-1 / a_{1 k}}\right),
$$

where $G(y, \varepsilon)$ denotes the function obtained from by the replacement a_{i}, $b \rightarrow a(k)_{i}, b(k)$, and $y_{i}=x_{k}^{-a_{1 i / a_{1 k}}} x_{i}, 1 \leq i \leq n$.

To compute $F(A, b, x)$ we can replace $\varepsilon_{j}, 2 \leq j \leq r$, with $\varepsilon^{-a_{1 k}}$ (p. 230, [5]) in the following integral

$$
\left(\frac{1}{2 \pi \sqrt{-1}}\right)^{n-1} \int_{C_{2}} \cdots \int_{C_{r}}\left(\operatorname{Res}_{\varepsilon_{1}=\lambda} G(x, \varepsilon) / \varepsilon_{1}\right)
$$

Then the integral above is, up to the factor $-x_{k}^{-1 / a_{1 k}} / a_{1 k}$ replaced with

$$
F(A(k), b(k), y)=\left(\frac{1}{2 \pi \sqrt{-1}}\right)^{n-1} \int_{C_{1}} \cdots \int_{C_{r}} G(y, \varepsilon) \frac{d \varepsilon_{1} \cdots d \varepsilon_{r}}{\varepsilon_{1} \cdots \varepsilon_{r}} .
$$

On the other hand, if $|x|>1$, all poles of $G(x, \varepsilon)$ are of the form

$$
\lambda=\left(\varepsilon_{2}^{a_{2} k} \cdots \varepsilon_{r}^{a_{r} x_{k}} x_{k}\right)^{-1 / a_{1 k}} .
$$

Therefore we can apply the same computation. Then our assumptions (1), (2), and Theorem 1.1 imply that (A, b) has the R-property.

We now suppose that the first equation of an I.D.E. system (A, b) has the R-property. Then by Proposition 10.3 in [5],

$$
\operatorname{Res}_{\varepsilon_{1}=0} G(x, \varepsilon) / \varepsilon_{1}=\operatorname{Res}_{\varepsilon_{1}=\omega} G(x, \varepsilon) / \varepsilon_{1}=0 .
$$

thus $R_{0}(x)=R_{\infty}(x)$. Therefore in this case, we have the following
Theorem 1.3. Let (A, b) be an I.D.E. system. Suppose that the first equation $a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1}$ of (A, b) has the R-property as an I.D.E. system with one equation and, for any k satisfying $a_{1 k}<0$, the k-eliminated system $(A(k), b(k))$ has the R-property. Then (A, b) has the R-property.

The next proposition gives a simple criterion to have the R-property.
Proposition 1.1. Let (A, b) be an I.D.E. system with r equations. Suppose the following inequalities hold:

$$
\sum_{i=} a_{j i}<-b_{j}+\sum_{i} a_{j i} l_{i}<\sum_{i+} a_{j i}, \quad 1 \leq j \leq r,
$$

where $\sum_{i-} a_{j i}$ (resp. $\sum_{i+} a_{j i}$) denotes the sum of all (j, i)-entries of A satisfying $a_{j i}<0($ resp. $>0)$.

Then, for $l \in \boldsymbol{Z}^{n}$,

$$
F_{l}(A, b, x)=(-1)^{a(A)} F_{1-l}(A, b, 1 / x) .
$$

Proof. We may assume that $l=0$ by Lemma 1.2. If $r=1$, the assertion is true by Proposition 10.4 in [5]. We proceed by induction on r. For any $k, 1 \leq k \leq n$, it is easy to show that

$$
\sum_{i=} a(k)_{j i}<-b(k)_{j}<\sum_{i+} a(k)_{j_{i}}, \quad 1 \leq j \leq r .
$$

Then by Theorem 1.3, (A, b) has the R-property.
Proposition 1.2. Let (A, b) be an I.D.E. system. Suppose that (A, b) has a solution $s=\left(s_{1}, \cdots, s_{n}\right) \in \boldsymbol{Q}^{n}, l_{i}-1<s_{i} \leq l_{i}$ and $(A, 0)$ has a positive solution. Then

$$
F_{l}(A, b, x)=(-1)^{d(A)} F_{1-l}(A,-b, 1 / x), \quad l \in Z^{n}
$$

Proof. We may assume that $l=0$ by Lemma 1.2. Then it follows from the assumption that (A, b) satisfies the condition in Proposition 1.1. Hence (A, b) has the R-property.

Proposition 1.3 (Proposition 8.3. [5]). Suppose an I.D.E. system $(A, 0)$ has a solution

$$
x=\left(x_{1}, \cdots, x_{n}\right), x_{1}>0, \cdots, x_{g}>0, x_{g+1}<0, \cdots, x_{n}<0 .
$$

Then,

$$
F_{l}(A, \underline{0}, x)=(-1)^{d(A)} F_{\underline{1}-l}(A, \underline{0}, 1 / x),
$$

where $l=(\underbrace{0, \cdots, 0}_{g}, \underbrace{1, \cdots, 1}_{n-g})$.
Proof. By the assumption we have:

$$
\sum_{1 \leq i \leq g}^{\prime} a_{j i}-\sum_{g+1 \leq i \leq n}^{\prime \prime} a_{j i} \geq 0, \quad-\sum_{1 \leq i \leq g}^{\prime \prime} a_{j i}+\sum_{g+1 \leq i \leq n} a_{j i} \geq 0, \quad 1 \leq j \leq r,
$$

where \sum^{\prime} (resp. $\Sigma^{\prime \prime}$) denotes the sum of all terms >0 (resp. <0). Hence if $A \neq(0)$, we have: $\sum_{i-} a_{j i}<0<\sum_{i+} a_{j i}$.

Then by Proposition $1.1,(A, 0)$ has the R-property. If $A=(0)$, it is obvious that $(A, \underline{0})$ has the R-property.

We shall need the following
Proposition 1.4 (13.3 Corollary [7]). If $\underline{1} \in E(A, \underline{0}, \underline{0}), \quad F_{0}(A, \underline{0}, x)$ satisfies the following functional equation:

$$
F_{0}(A, \underline{0}, 1 / x)=(-1)^{d(A)} x F_{0}(A, \underline{0}, x) .
$$

§ 2. The ring of invariant of a semisimple group

Let G be a connected semisimple linear algebraic group, $V_{i}, 1 \leq i \leq l$, vector spaces over the complex number field C and $\rho_{i}: G \rightarrow G L(V)$ rational representations of G. Let $C[V]$ denote the polynomial ring over the vector space $V:=\oplus_{i} V_{i}$.

We denote by $C[V]_{d}, d=\left(d_{1}, \cdots, d_{l}\right) \in N^{l}$, the vector space of polynomials with degree d_{1}, \cdots, d_{l} with respect to V_{1}, \cdots, V_{l}. This gives an N^{l}-graded structure of $C[V]^{G}$

$$
C[V]=\oplus_{d \in N^{d}} C[V]_{d} .
$$

Let R denote the ring of invariants of $C[V]$. Since $C[V]_{d}$ is a G-invariant subspace of $C[V], R$ has the structure of an N^{\imath}-graded algebra

$$
R=\bigoplus_{d \in \mathcal{N}^{2}} R_{d}, \quad R_{d}=R \cap C[V]_{d} .
$$

For $d=\left(d_{1}, \cdots, d_{l}\right) \in Z^{l}$, let us write $x^{d}=x_{1}^{d_{1}} \cdots x_{l}^{d_{l}} . \quad$ The Poincaré series of R is defined by

$$
F(R, x)=\sum_{d \in N^{d}} \operatorname{dim} R_{d} x^{d} .
$$

As well known, $F(R, x)$ is a rational function in l variables $x=\left(x_{1}, \cdots, x_{l}\right)$ and R is a Gorenstein ring by a theorem of Hochster-Roberts [2]. By Stanley's theorem [6], this is equivalent to say that $F(R, x)$ satisfies the following functional equation

$$
F(R, x)=(-1)^{d} x^{a} F(R, 1 / x)
$$

where $d=\operatorname{dim} R$ and $a \in Z^{l}$.
Let K be a maximal compact subgroup of G and T a maximal torus of K. Let $\alpha_{1}, \cdots, \alpha_{r}$ be roots of K with respect to T and W the Weyl group of K. Considering a root as a function on T, let $D(g)$ be the function on T defined by

$$
G(g)=\left(1-\alpha_{1}(g)\right) \cdots\left(1-\alpha_{r}(g)\right)
$$

Then by Molien-Weyl formula [9], we have

$$
\begin{equation*}
F(R, x)=\frac{1}{|W|} \int_{T} \frac{D(g)}{\prod_{i \geq 1} \operatorname{det}\left(1-x_{i} g\right)} d g, \quad\left|x_{i}\right|<1 \tag{*}
\end{equation*}
$$

where $d g$ is the Haar-measure on T.
Let us consider a special case.
Theorem 2.1. Let ρ_{i} be the adjoint representation of G and $V_{i}=$ Lie $G, 1 \leq i \leq l$. Then, if $l \geq 2, F(R, x)$ satisfies the following functional equation

$$
F(R, x)=(-1)^{d} x^{a} F(R, 1 / x)
$$

where $d=\operatorname{dim} V-\operatorname{dim} G, a=\operatorname{dim} G$.
Proof. Let $R\left(x_{1}, \cdots, x_{i}\right)$ be the function defined by

$$
R\left(x_{1}, \cdots, x_{l}\right)=\left(1-x_{1}\right)^{\operatorname{dim} T} F(R, x)
$$

Then, by ($*$),

$$
R\left(1, x_{2}, \cdots, x_{l}\right)=\frac{1}{|W|} \int_{T} \frac{d g}{\prod_{i \geq 2} \operatorname{det}\left(1-x_{i} g\right)}
$$

By Lemma 1.1, $|W| R\left(1, x_{2}, \cdots, x_{l}\right)$ is the generating function of solutions for an I.D.E. system $(A, \underline{0})$. Since G is semisimple,

$$
\underline{1} \in E(A, \underline{0}, \underline{0}) .
$$

Therefore by Proposition 1.4, $R\left(1, x_{2}, \cdots, x_{l}\right)$ satisfies: for some $r \in N$, $R\left(1, x_{2}, \cdots, x_{l}\right)=(-1)^{r}\left(x_{2} \cdots x_{l}\right)^{-\operatorname{dim} G} R\left(1,1 / x_{2}, \cdots, 1 / x_{l}\right)$, and hence $a=\operatorname{dim} G$. It follows from the following proposition that $d=\operatorname{dim} V$ $\operatorname{dim} G$.

Proposition 2.1. If $l \geq 2, \operatorname{dim} R=\operatorname{dim} V-\operatorname{dim} G$.
Proof. For $v \in V, G_{v}$ denotes the isotropy subgroup of G. Then one sees easily that min. $\operatorname{dim} G_{v}=0$, and we have:

$$
\begin{aligned}
\operatorname{dim} R & =\operatorname{dim} V-\max . \operatorname{dim} G_{v} \\
& =\operatorname{dim} V-\operatorname{dim} G+\min . \operatorname{dim} G_{v} \\
& =\operatorname{dim} V-\operatorname{dim} G .
\end{aligned}
$$

Specializing $x_{i}, 1 \leq i \leq l$, with a variable t, we consider R as an N graded algebra:

$$
R=\oplus_{m \in N} R_{m} .
$$

The Poincaré series in one variable t is defined by

$$
F(R, t)=\sum_{m \in N} \operatorname{dim} R_{m} t^{m}
$$

Let $f_{1}, \cdots, f_{m}, m=\operatorname{dim} R$, be a homogeneous system of parameters of R. Since R is a Cohen-Macaulay ring, R is a free module over $C\left[f_{1}, \cdots, f_{m}\right]$. Let $\varphi_{1}, \cdots, \varphi_{r}$ be a homogeneous system of generators of this module:

$$
R=\oplus_{i} \varphi_{i} C\left[f_{1}, \cdots, f_{m}\right] .
$$

Then

$$
F(R, t)=\frac{\sum t^{\operatorname{deg} \varphi_{j}}}{\prod\left(1-t^{\operatorname{deg} f_{j}}\right)} .
$$

It follows from the functional equation of $F(R, t)$ that

$$
\operatorname{dim} G=\sum_{j}\left(\operatorname{deg} f_{j}-1\right)-\frac{2}{r} \sum_{i} \operatorname{deg} \varphi_{i} .
$$

Let us consider the Laurent expansion of $F(R, t)$ at $x=1$:

$$
F(R, t)=\frac{a}{(1-t)^{m}}+\frac{b}{(1-t)^{m-1}}+\cdots
$$

Then the coefficients a, b are given by

$$
a=\frac{r}{\prod \operatorname{deg} f_{j}}
$$

and

$$
b=\frac{r \sum\left(\operatorname{deg} f_{j}-1\right)-2 \sum \operatorname{deg} \varphi_{i}}{2 \Pi \operatorname{deg} f_{j}}
$$

Thus a and b are related by $\operatorname{dim} G=2 b / a$.

§ 3. The Poincaré series of two generic $\boldsymbol{n} \times \boldsymbol{n}$ matrices

In this section, we shall study the invariant ring in the following situation:

$$
\begin{aligned}
& G=G L(n, C), \quad V_{1}=V_{2}=M(n, C), \quad V=V_{1} \oplus V_{2}, \\
& \rho_{i}=\text { the adjoint representation of } G L(n, C), \quad 1 \leq i \leq 2 .
\end{aligned}
$$

Let us denote by $X_{i j}\left(\right.$ resp. $\left.Y_{i j}\right), 1 \leq i, j \leq n$, the coordinate functions on V_{1} (resp. V_{2}) with respect to the canonical basis of $M(n, \boldsymbol{C})$. Let X and Y be $n \times n$ generic matrices defined by

$$
X=\left(x_{i j}\right), \quad Y=\left(y_{i j}\right) .
$$

The Poincaré series of R is, in this case, the formal power series in two variables:

$$
F(s, t)=\sum_{d \in N^{2}} \operatorname{dim} R_{d} s^{d_{1} t^{d_{2}}}, \quad d=\left(d_{1}, d_{2}\right) .
$$

By Molien-Weyl formula, $F(s, t)(|s|<1$ and $|t|<1)$ equals

$$
\begin{equation*}
\frac{1}{n!} \int_{0}^{1} \cdots \int_{0}^{1} \frac{\Delta \bar{\Delta}}{f(s) f(t)} d \varphi_{1} \cdots d \varphi_{n} \tag{**}
\end{equation*}
$$

where $\Delta=\prod_{i, j}\left(\varepsilon_{i}-\varepsilon_{j}\right), \varepsilon_{i}=\exp 2 \pi \sqrt{-1} \varphi_{i}, \bar{\Delta}$ is the complex conjugate of Δ and

$$
f(x)=\prod_{i, j}\left(1-x \varepsilon_{i} \varepsilon_{j}^{-1}\right) .
$$

The functional equation of $F(s, t)$ is given by

$$
F(1 / s, 1 / t)=(-1)^{n+1}(s t)^{n^{2}} F(s, t) .
$$

For a finite sequence $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ of nonnegative integers, the weight of λ is the sum of all terms of λ and is denoted by $|\lambda|$

A partition is a sequence $\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ of nonnegative integers in nonincreasing order $\lambda_{1} \geq \cdots \geq \lambda_{n}$.

We denote by Y_{n} the set of all partitions with n terms:

$$
Y_{n}:=\left\{\lambda=\left(\lambda_{1}, \cdots, \lambda_{n}\right): \lambda \text { is a partition }\right\} .
$$

For a partition λ, let s_{λ} denote the Schur function. For partitions λ, μ, ν in Y_{n}, let $c_{\lambda \mu}^{\nu}$ denote the nonnegative integer defined by

$$
S_{\lambda} S_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} S_{\nu} .
$$

Proposition 3.1.

$$
\operatorname{dim} R_{d}=\sum_{\substack{|\lambda|=d_{1} \\|\mu|=d_{2}}} \sum_{\nu}\left(c_{\lambda \mu}^{\nu}\right)^{2}, \quad d=\left(d_{1}, d_{2}\right) .
$$

Proof. Let Λ be the ring of symmetric polynomials in n independent variables with Z-coefficients. Let (,) be a scalar product defined by

$$
\begin{array}{r}
(f, g)=\frac{1}{n!} \int_{0}^{1} \cdots \int_{0}^{1} f\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right) g\left(\varepsilon_{1}, \cdots, \varepsilon_{n}\right) \Delta \bar{\Delta} d \varphi_{1} \cdots d \varphi_{n} \\
\varepsilon_{i}=\exp \left(2 \pi \sqrt{-1} \varphi_{i}\right), \quad 1 \leq i \leq n .
\end{array}
$$

Then the Schur function s_{2} form an orthonormal basis of A with respect to this scalar product. By $(* *)$ and the Cauchy identity

$$
\frac{1}{\prod_{i, j}\left(1-x_{i} y_{j}\right)}=\sum_{\lambda, \mu} s_{\lambda}\left(x_{1}, \cdots, x_{n}\right) s_{\mu}\left(y_{1}, \cdots, y_{n}\right)
$$

It follows that

$$
\begin{aligned}
F(s, t) & =\sum_{\lambda, \mu}\left(s_{\lambda} s_{\mu}, s_{\lambda} s_{\mu}\right) s^{|\lambda|} t^{|\mu|} \\
& =\sum_{\lambda, \mu} \sum_{\nu}\left(c_{\lambda \mu}^{\nu}\right)^{2} s^{|\lambda|} t^{|\mu|} .
\end{aligned}
$$

Thus we obtain the desired result.
Consider the function $P(s, t)=(1-s)^{n} F(s, t)$. Then $P(s, t)$ is a rational function holomorphic in $\{(s, t):|s|<1,|t|<1\}$. We set $F(t)=$ $P(1, t)$.

Proposition 3.2. Let $E(r)$ be the subset of $M(n, C)$ defined by

$$
E(r)=\left\{l=\left(l_{i j}\right) \in M(n, N):|l|=r \text { and for all } i, 1 \leq i \leq n, \sum_{j} l_{i j}=\sum_{j} l_{j i}\right\} .
$$

Then we have

$$
F(t)=\sum_{r \geq 0} h(r) t^{r}, \quad \text { where } h(r)=\# E(r)
$$

Proof. From the definition of $F(t)$, it follows that

$$
\begin{aligned}
F(t) & =\int_{0}^{1} \cdots \int_{0}^{1} \frac{d \varphi_{1} \cdots d \varphi_{n}}{\left(1-t \varepsilon_{i} \varepsilon_{j}^{-1}\right)} \\
& =\sum_{l_{i j}} \int_{0}^{1} \cdots \int_{0}^{1} \Pi\left(\frac{\varepsilon_{i}}{\varepsilon_{j}}\right) d \varphi_{1} \cdots d \varphi_{n} t^{|l|}, \quad l=\left(l_{i j}\right) .
\end{aligned}
$$

Since

$$
\int_{0}^{1} \cdots \int_{0}^{1} \Pi\left(\frac{\varepsilon_{i}}{\varepsilon_{j}}\right)^{l_{i j}} d \varphi_{1} \cdots d \varphi_{n}= \begin{cases}1, & \text { if } l \in E \\ 0, & \text { otherwise }\end{cases}
$$

we obtain the desired result.
We set $E=\bigcup E(r)$. Let sym (n) be the symmetric group of n letters. For $\sigma \in \operatorname{sym}(n)$, let p_{σ} denote the permutation matrix corresponding to σ and e_{σ} denote the $n \times n$ matrix obtained by replacing diagonal entries in p_{σ} with zeros. For $i, 1 \leq i \leq n$, denote by e_{i} the $n \times n$ matrix having 1 in (i, i) entry and zeros in the others.

Lemma 3.1. Any matrix in E can be written as an N-combination of $e_{i}, 1 \leq i \leq n$, and $e_{\sigma}, \sigma \in \operatorname{sym}(n)$.

Proof. Let \underline{a} be a matrix in E. Take some nonnegative integers m_{1}, \cdots, m_{n} such that $\underline{a}+\sum m_{i} e_{i}$ is an integer stochastic matrix. Then by Berkoff-Von Neumann theorem, $\underline{a}+\sum m_{i} e_{i}$ can be written as an N combination of permutation matrices. So we have

$$
\underline{a}+\sum m_{i} e_{i}=\sum l_{i} e_{i}+\sum l_{\sigma} e_{\sigma}
$$

for suitable nonnegative integers l_{i}, l_{σ}.
Comparing the diagonal entries in the expression above, we see that $m_{i} \leq l_{i}$ for all $1 \leq i \leq n$. Hence we have

$$
\underline{a}=\sum_{i}\left(l_{i}-m_{i}\right) e_{i}+\sum l_{\sigma} e_{\sigma} .
$$

This shows that \underline{a} is written as an N-combination of e_{i}, e_{σ}.
A matrix \underline{a} in E is called completely fundamental if whenever $m \underline{a}=$ $\underline{b}+\underline{c}$, for some positive integer m and $\underline{b}, \underline{c} \in E$, then $\underline{b}=r \underline{a}$ for some nonnegative integer $r, r \leq m$. Then the set of completely fundamental elements of E consists of the following matrices:
$e_{i}(1 \leq i \leq n), e_{\sigma}(\sigma \in\{$ cyclic permutations $\}-\{e\}, e$ is the unit in $\operatorname{sym}(n))$,

Proposition 3.3.

(1) $F(1 / t)=-t^{n^{2}} F(t)$.
(2) There is a polynomial $R(t)$ with integer coefficients such that

$$
F(t)=\frac{R(t)}{(1-t)^{n} \prod\left(1-t^{|\sigma|}\right)}
$$

where σ runs over all cyclic permutations $(\sigma \neq e)$ in sym (n).
Proof. (1) follows from the functional equation of $F(s, t)$, and (2) follows from 3.7 Theorem [7].

Example 1. If $n=2$, it follows from Proposition 3.3 that $R(t)=1$, and hence we have

$$
F(t)=\frac{1}{(1-t)^{2}\left(1-t^{2}\right)}
$$

In this case, the Poincaré series is given by

$$
F(s, t)=\frac{1}{(1-s)\left(1-s^{2}\right)(1-t)\left(1-t^{2}\right)(1-s t)}
$$

In fact, the ring of invariants R is a polynomial ring generated by 5 algebraically independent invariants $\operatorname{tr}(X), \operatorname{tr}\left(X^{2}\right), \operatorname{tr}(Y), \operatorname{tr}\left(Y^{2}\right), \operatorname{tr}(X Y)$ where tr denotes trace of a matrix (See [1], [8]).

Example 2. If $n=3$, one sees immediately that $h(0)=1, h(1)=3$ and $h(2)=6$. Hence $F(t)$ is of the form

$$
\left.F(t)=1+3 t+6 t^{2}+\text { (higher terms }\right)
$$

Then by Proposition 3.3, $R(t)=1-t^{6}$ and so

$$
F(t)=\frac{1+t^{3}}{(1-t)^{3}\left(1-t^{2}\right)^{3}\left(1-t^{3}\right)}
$$

In this case, $\operatorname{tr}(X), \operatorname{tr}\left(X^{2}\right), \operatorname{tr}\left(X^{3}\right), \operatorname{tr}(Y), \operatorname{tr}\left(Y^{2}\right), \operatorname{tr}\left(Y^{3}\right), \operatorname{tr}(X Y)$, $\operatorname{tr}\left((X Y)^{2}\right), \operatorname{tr}\left(X^{2} Y\right), \operatorname{tr}\left(X Y^{2}\right)$ are a homogeneous system of parameters of the ring of invariants R. Denoting by C the subring of R generated by these invariants, we have

$$
R=C+\operatorname{tr}\left(X Y X^{2} Y^{2}\right) C
$$

The Poincaré series $F(s, t)$ is given by

$$
F(s, t)=\frac{1+s^{3} t^{3}}{Q(s, t)}
$$

where

$$
\begin{aligned}
Q(s, t)= & (1-s)\left(1-s^{2}\right)\left(1-s^{3}\right)(1-t)\left(1-t^{2}\right)\left(1-t^{3}\right)(1-s t) \\
& \times\left(1-s^{2} t\right)\left(1-s t^{2}\right)\left(1-s^{2} t^{2}\right) .
\end{aligned}
$$

§ 4. The Poincaré series of the ring of invariants for $\boldsymbol{n}=\mathbf{4}$

As an application we shall determine the Poincaré series $F(s, t)$ for $n=4$. We shall need the following proposition in [8].

Proposition 4.1. Let f_{1}, \cdots, f_{17} be the invariants of R defined by

$$
\begin{aligned}
& f_{1}=\operatorname{tr}(X), \quad f_{2}=\operatorname{tr}\left(X^{2}\right), \quad f_{3}=\operatorname{tr}\left(X^{3}\right), \quad f_{4}=\operatorname{tr}\left(X^{4}\right), \\
& f_{5}=\operatorname{tr}(Y), \quad f_{6}=\operatorname{tr}\left(Y^{2}\right), \quad f_{7}=\operatorname{tr}\left(Y^{3}\right), \quad f_{8}=\operatorname{tr}\left(Y^{4}\right), \\
& f_{9}=\operatorname{tr}(X Y), \quad f_{10}=\operatorname{tr}\left(X^{2} Y^{2}\right), \quad f_{11}=\operatorname{tr}\left(X Y^{2}\right) \\
& f_{12}=\operatorname{tr}\left(X^{2} Y\right), \quad f_{13}=\operatorname{tr}\left(X Y^{2}\right), \quad f_{14}=\operatorname{tr}\left(X^{3} Y\right), \\
& f_{15}=\operatorname{tr}(X Y X Y), \quad f_{16}=\operatorname{tr}\left(X Y^{2} X Y^{2}\right), \quad f_{17}=\operatorname{tr}\left(X^{2} Y X^{2} Y\right) .
\end{aligned}
$$

Then these invariants f_{1}, \cdots, f_{17} are homogeneous system of parameters of the ring of invariants R. Let C denote the subring of R generated by these invariants f_{1}, \cdots, f_{17}.

Theorem 4.1. If $n=4$, the Poincaré series $F(s, t)$ is given by $F(s, t)$ $=R(s, t) / Q(s, t)$, where

$$
\begin{aligned}
Q(s, t)= & (1-s)\left(1-s^{2}\right)\left(1-s^{3}\right)\left(1-s^{4}\right)(1-t)\left(1-t^{2}\right) \\
& \times\left(1-t^{3}\right)\left(1-t^{4}\right)(1-s t)\left(1-s^{2} t^{2}\right)^{2}\left(1-s t^{2}\right) \\
& \times\left(1-s^{2} t\right)\left(1-s t^{3}\right)\left(1-s^{3} t\right)\left(1-s^{2} t^{4}\right)\left(1-s^{4} t^{2}\right) \\
R(s, t)= & 1+s^{2} t^{3}+2 s^{3} t^{3}+s^{3} t^{4}+s^{4} t^{3}+s^{3} t^{6}+s^{6} t^{3}+2 s^{4} t^{4} \\
& +s^{3} t^{5}+s^{5} t^{3}+s^{4} t^{5}+s^{5} t^{4}+2 s^{5} t^{5}+s^{4} t^{6}+s^{6} t^{4} \\
& +2 s^{5} t^{6}+2 s^{6} t^{5}+2 s^{6} t^{6}+s^{6} t^{8}+s^{8} t^{6}+2 s^{6} t^{7}+2 s^{7} t^{6} \\
& +2 s^{7} t^{7}+s^{7} t^{8}+s^{8} t^{7}+s^{7} t^{9}+s^{9} t^{7}+2 s^{8} t^{8}+s^{8} t^{9} \\
& +s^{9} t^{8}+s^{9} t^{6}+s^{6} t^{9}+s^{10} t^{9}+s^{12} t^{12} .
\end{aligned}
$$

Proof. Let $\varphi_{1}, \cdots, \varphi_{r}$ be homogeneous generators of R over the subring C. Let $S(s, t)$ be the polynomial defined by

$$
S(s, t)=\sum h_{i j} s^{i} t^{j}, \quad h_{i j}=\#\left\{\varphi_{k}: \operatorname{deg} \varphi_{k}=(i, j)\right\}
$$

We shall prove that $S(s, t)=R(s, t)$.
It follows from the functional equation of $F(t)$ that $S(1, t)$ is a polynomial of degree 12 of the form

$$
S(1, t)=\sum_{i} a_{i} t^{i}, \quad a_{i}=a_{12-i}, \quad 0 \leq i \leq 12
$$

For a matrix A, we mean by weight of A the summation of all entries of A. Then one can easily obtain;
(1) all matrices with weight 3 which can not be written as a N combination of matrices with weight lower than 3 are A_{1}, \cdots, A_{8}, where

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right], \quad A_{2}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right], \\
& A_{3}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right], \quad A_{4}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \\
& A_{5}={ }^{t} A_{1}, \quad A_{6}={ }^{t} A_{2}, \quad A_{7}={ }^{t} A_{3}, \quad A_{8}={ }^{t} A_{4} .
\end{aligned}
$$

(2) all matrices with weight 4 which can not be written as a N combination of matrices with weight lower than 4 are B_{1}, \cdots, B_{6}, where

$$
\begin{array}{ll}
B_{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right], \quad B_{2}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right], \\
B_{3}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right], \\
B_{4}={ }^{t} B_{1}, & B_{5}={ }^{t} B_{2}, \quad B_{6}={ }^{t} B_{3} .
\end{array}
$$

Therefore $F(t)$ is of the form

$$
F(t)=\frac{1}{(1-t)^{4}\left(1-t^{2}\right)^{6}} \quad\left(1+8 t^{3}+6 t^{4}+\text { higher terms }\right)
$$

Then, by using the functional equation of $F(t)$, we obtain:
$(* * *) \quad S(1, t)=1+t^{2}+6 t^{3}+5 t^{4}+6 t^{5}+10 t^{6}+6 t^{7}+5 t^{8}+6 t^{9}+t^{10}+t^{12}$.

We need the following
Lemma 4.1 (Proposition 5.1 [8]). $\quad R$ is generated by invariants of the form

$$
\begin{aligned}
& \operatorname{tr}\left(X^{a_{1}} Y^{a_{2}} X^{a_{3}} Y^{a_{4}}\right), \quad \operatorname{tr}\left(X^{a} Y X^{a} Y^{2} X^{a} Y^{3}\right), \quad \operatorname{tr}\left(Y^{a} X Y^{a} X^{2} Y^{a} X^{3}\right), \\
& 0 \leq a, a_{1}, \cdots, a_{4} \leq 3, \quad \text { and } \operatorname{tr}\left(X Y X^{2} Y^{2} X^{3} Y^{3}\right)
\end{aligned}
$$

We recall the Cayley-Hamilton theorem for $n \times n$ matrices:

$$
\begin{array}{r}
X_{\sigma(1)} \cdots X_{\sigma(n)}+\sum_{k} \sum_{u} \sum_{\sigma} \dot{q}_{u} \operatorname{tr}\left(X_{\sigma(1)} \cdots X_{\sigma\left(u_{1}\right)}\right) \\
\vdots \\
X_{\sigma(k+1)} X_{\sigma(k+2)} \cdots X_{\sigma(n)}=0,
\end{array}
$$

for suitable $q_{u} \in \boldsymbol{Q}$ and j-tuples $u=\left(u_{1}, \cdots, u_{j}\right)$ such that $1 \leq u_{1} \leq u_{2} \leq \cdots$ $\leq u_{j}$ and $u_{1}+\cdots+u_{j}=k$. Here σ ranges over all permutations on $\{1,2$, $\cdots, n\}$.

Lemma 4.2.

$$
\begin{align*}
& h_{i j}=0 \text {, if } i \leq 2, j \geq 4 \text {, } \tag{1}\\
& h_{i j}=0, \quad \text { if } i \leq 4, j \geq 7 \text {, } \tag{2}\\
& h_{33} \leq 2, \quad h_{34} \leq 1, \quad h_{35} \leq 1, \quad h_{43} \leq 1, \tag{3}\\
& h_{44} \leq 2, \quad h_{45} \leq 1, \quad h_{46} \leq 1, \quad h_{55} \leq 2, \\
& h_{75}=0, \quad h_{63} \leq 1, \quad h_{65} \leq 2 .
\end{align*}
$$

Proof. This follows from the Cayley-Hamilton theorem and Lemma 4.1.

We continue the proof of Theorem 4.1. By ($* * *$) and Lemma 4.2, we have equalities in Lemma 4.2 (3) and $h_{66}=2, h_{23}=1$. Since $h_{i j}=h_{j i}$ and $h_{i j}=h_{12-i, 12-j}$, we obtain $S(s, t)=R(s, t)$.

References

[1] E. Formanek, P. Halpin and W.-C. W. Li, The Poincaré series of the ring of 2×2 generic matrices, J. Algebra, 69 (1981), 105-112.
[2] M. Hochster and L. Roberts, Ring of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. in Math., 13 (1974), 115-175.
[3] C. Procesi, The invariant theory of $n \times n$ matrices, Adv. in Math., 19 (1976), 306-381.
[4] R. Stanley, Linear homogeneous diophantine equations and magic labeling of graphs, Duke Math. J., 40 (1973), 607-632.
[5] 5 , Combinatorial reciprocity theorems, Adv. in Math., 14 (1974), 194253.
[6] —, Hilbert functions of graded algebras, Adv. in Math., 28 (1978), 57-83.
[7] _ Combinatorics and commutative algebra, Progress in Math., 41 (1983).
[8] Y. Teranishi, The ring of invariants of matrices, Nagoya Math. J., 104 (1986), 149-161
[9] H. Weyl, Zur Darstellungtheorie und Invarientenabzahlug der projectiven, der Komplex und Drehungsgruppe, Ges. Abh. Bd III, 1-25.

Department of Mathematics
Faculty of Science
Nagoya University
Chikusa-ku, Nagoya 464
Japan

