Advanced Studies in Pure Mathematics 11, 1987 Commutative Algebra and Combinatorics pp. 9-11

Fibre Rings and Polynomial Rings

Teruo Asanuma

Let R be a noetherian ring. In their joint work [10], Weisfeiler and Dolgachev study the structure of R-algebra A satisfying the following condition: The fibre ring $A \otimes k(v)$ is always isomorphic to a polynomial ring in *n* variables over k(p) for each prime ideal p of *R* where k(p) denotes the residue field $R_{\rm h}/pR_{\rm h}$. They investigate such an A and ask what conditions on A guarantee that A must be a polynomial ring. In particular they conjecture that A must be a polynomial ring in the case where A is finitely generated flat over a normal local domain R. This conjecture has been settled affirmatively by Waterhouse [9] provided that A is a ring of functions on a group scheme over a discrete valuation ring R. Without assumption on group structure, the conjecture is true for n=1 [1] (See also [5] and [7]). The case n=2 has been proved for R a discrete valuation ring by Sathave after the Kambayashi's contribution [6] with the additional hypothesis that R contains the rational number field O. On the other hand there is a counter example to the conjecture due to Swan and Yanik [11] as is pointed out by Eakin in [4] in the case where R is not a valuation ring.

Now we will discuss the stable structure of A, where the stable structure means the structure of a polynomial ring $A^{[m]} := A[x_1, \dots, x_m]$ in m variables as an R-algebra for some large integer m. From this point of view we have first the following theorem.

Theorem 1. Let R be a discrete valuation ring with quotient field K and residue field k. Let A be an integral R-domain such that $A \otimes K \cong K^{[n]}$ and $A \otimes k \cong k^{[n]}$. Then $A^{[n]} \cong R^{[2n]}$.

Two *R*-algebras *B* and *C* are called stably isomorphic if $B^{[m]} \cong C^{[m]}$ for some positive integer *m*. So the theorem shows that *A* is stably isomorphic to $R^{[n]}$ in the case where *A* is an integral domain and *R* is a discrete valuation ring. By virtue of the theorem we can delete the hypothesis "finitely generated" from the Sathaye-Kambayashi's result. However we can not delete the additional hypothesis $R \supset Q$ as follows:

Received October 30, 1985.

T. Asanuma

Theorem 2. Let R be a discrete valuation ring with maximal ideal πR , quotient field $K = R[\pi^{-1}]$ and residue field $k = R/\pi R$. Suppose char k = p > 0. Let e and s be positive integers such that $p^e \not\mid sp$ and $sp \not\mid p^e$. Given a positive integer m, let us set

$$A = R[X, Y, Z]/(X^{p^e} + Y + a_1^{p^e}Y^p + \dots + a_s^{p^e}Y^{sp} + \pi^m Z)$$

where $R[X, Y, Z] = R^{[3]}$, $a_i \in R$ $(i = 1, \dots, s-1)$ and $a_s \in R \setminus \pi R$. Then

- (1) $A \otimes K \cong K^{[2]}$,
- (2) $A \otimes k \cong k^{[2]}$,
- (3) $A^{[1]} \cong R^{[3]}$,
- $(4) \quad A \not\cong R^{[2]}.$

Note that the assumption that $R \not\supseteq Q$ always implies char k = p > 0in Theorem 2. From the facts (1), (2) and (3), the *R*-algebra *A* defined in Theorem 2 clearly satisfies the condition in the conjecture of Weisfeiler and Dolgachev. This shows that the conjecture is not affirmative even if *R* is a discrete valuation ring.

The following theorem treats the general case where R is not necessarily a valuation ring. Given a *B*-module *M*, let us denote by $S_B(M)$ the symmetric *B*-algebra.

Theorem 3. Let R be a noetherian ring and let A be a finitely generated flat R-algebra such that $A \otimes k(\mathfrak{p}) \cong k(\mathfrak{p})^{[n]}$ for any prime ideal \mathfrak{p} of R. Then the differential A-module $\Omega_R(A)$ is projective. Furthermore A is an R-subalgebra (up to isomorphisms) of a polynomial ring $R^{[m]}$ for some m such that

$$A^{[m]} \cong {}_{R}S_{R}[m](\mathcal{Q}_{R}(A) \otimes_{A} R^{[m]}).$$

Since A is an R-subalgebra of $R^{[m]}$ in Theorem 3, there is an injection $f: A \subseteq R^{[m]}$. So the tensor product $\mathcal{Q}_R(A) \otimes_A R^{[m]}$ is welldefined through this injection f. Therefore $S_{R^{[m]}}(\mathcal{Q}_R(A) \otimes_A R^{[m]})$ is a welldefined symmetric $R^{[m]}$ -algebra of projective $R^{[m]}$ -module $\mathcal{Q}_R(A) \otimes_A R^{[m]}$. Theorem 3 shows that $A^{[m]}$ and $S_{R^{[m]}}(\mathcal{Q}_R(A) \otimes_A R^{[m]})$ are isomorphic to each other as R-algebras. In addition, if R is a regular local ring, then $\mathcal{Q}_R(A) \otimes_A R^{[m]}$ is stably free by Grothendieck (See [3, Chapter XII]). As an easy consequence of this fact we have the following

Corollary. Let R be a regular local ring and let A be as in Theorem 3. Then A is stably isomorphic to $R^{[n]}$.

For the details we refer to [2].

References

- [1] Asanuma, T., On quasi-polynomial algebras, J. Pure Appl. Algebra, 26 (1982), 115-139.
- [2] -, Polynomial fibre rings of algebras over noetherian rings, Invent. Math., 87 (1987), 101-127.
- [3] Bass, H., Algebraic K-theory, New York: Benjamin 1968.
- Eakin, P., Math. Reviews 84g: 13033. [4]
- [4] Eakin, F., Main. Reviews org. 1995.
 [5] Eakin, P., Heinzer, W., A cancellation problem for rings, Lecture notes in Math., 311, pp. 61-77. Berlin-New York: Springer.
 [6] Kambayashi, T., On one-parameter family of affine planes, Invent. Math., 52 (1979), 275-281.
 [7] Kambayashi, T., Miyanishi, M., On flat fibrations by the affine line. Illinois J.
- Math., 22 (1978), 662-671.
- Sathaye, A., Polynomial rings in two variables over a D.V.R.: A criterion, [8] Invent. Math., 74 (1983), 159-168.
- Waterhouse, W., Polynomial group laws over valuation rings, Illinois J. [9] Math., 26 (1982), 252-256.
- Weisfeiler, B., Dolgachev, I. V., Unipotent group scheme over integral rings, [10] English translation of Izv. Akad. Nauk SSSR, Ser. Math., Tom. 38 (1974), 757-799.
- Yanik, J., Noninvertible retracts, Proc. Amer. Math. Soc., 87 (1983), 29-32. [11]

Faculty of Education Toyama University 3190 Gofuku Toyama-shi 930 Japan