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The Rationality of the Moduli Spaces of 
Vector Bundles of Rank 2 on p2· 

(with an appendix by Isao Naruki) 

Masaki Maruyama 

Introduction 

Let k be an algebraically closed field and M(cb cz) the moduli space of 
vector bundles E of rank 2 on p~ with c1(E)=cI and cz(E)=cz• Through 
tensoring a suitable line bundle, M(c1, cz) is isomorphic to one of M(O, a) 
or M{l, b). It is known that 

1) M(O, a)=r/J unless a>2 while M{l, b)=r/J unless b>l, 
2) M(O, a) and M{l, b) are non-singular, irreducible, quasi-pro

jective varieties for all a>2 and all b21, 
3) all the M(O, a) and M{l, b) are unirational. 
W. Barth [1] stated that M(O, a) is rational for every a>2 while the 

rationality of M{l, b) was proved by K. Hulek [4]. Recently we found a 
serious gap in the proof of Barth. We come upon a similar gap in 
Hulek's proof though it can be fortunately corrected in an obvious way 
(see the footnote on p. 266 of [4]). On the other hand, G. Ellingsrud and 
S.A. Stn~mme [3] showed the following results by a method completely 
different from Barth's and Hulek's. 

Theorem 0.1. (l) M(l, b) is rational for every b> 1. 
(2) M(O, a) is rational if a>2 and a is odd. 
(3) If a is even and a> 2, then there is a pi-bundle in the etale 

topology (see Remark 3.8) over a dense open set of M(O, a) which is rational. 

If we try to fix the proof of Barth, then we encounter the problem of 
rationality of the quotient of the affine cone over a Grassmann variety 
by an action of a finite group which is a semi-direct product of S" by 
(Z/2Z)$n. The situation is going to be explained in Section 1. Combining 
the above theorem, Theorem 7.17 of [7], Theorem 2 of [5] and Theorem 
3.17 of [8], we see that M(c l , cz) is rational if it is fine. We shall give a 
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proof of Theorem 0.1 in Section 3 which shows, comparing it with the 
account in Section 2 about the existence of universal families, that the 
fact is not accidental at all. Our proof of Theorem 0.1 is essentially 
based on the same idea as that in the proof of the unirationality of 
M(cl> c2) in Section 7 of [7]. 

Throughout this work P denotes the projective plane over an alge
braically closed field k. For a k-scheme X, we shall use the notation 
X(k) for the set of k-rational points of X. If /: X~Y is a morphism of 
schemes and F a coherent sheaf on X, then X(y) denotes the (geometric) 
fibre of/over a (geometric) point y of Yand F(y) does F®mx(!)x(y)' For 
a coherent sheaf E on a k-scheme Z, hi(Z, E) or hi(E), for short, means, 
as usual, dimr.: Hi(Z, E). E* denotes the dual ;/(orrtmiE, (!)x) of a coherent 
sheaf E on a scheme X. 

§ 1. Barth's proof 

Let H be an n-dimensional vector space over C and H* its dual 
space. For the affine cone Cn over the Grassmann variety Gr(l, n-l), 
C; = Cn - {O} can be identified with H* !\H* - {O} and, by using the 
Pliicker coordinates, we have a natural embedding q of C; into the space 
of bilinear forms M.,.(C). Let Ll be the closed set in (c*)n of n-tuples 
(AI> ••• , An) with not all At different. We have a morphism / of Xn= 
«c*)n-Ll) X (c*)n X C; to Yn=Mn(C) X Mn(C) X Mn(C) as follows; 

For A=(.(I, ... , An) in (c*)n-Ll, P=(Pl' ... , Pn) in (c*)n and x in 
Cn, we set 

Then it is easy to see that / is an immersion. 
Let GL(H) act on Yn in the following way: 

(co, (A, B, C»)!-~ecoAco, tcoBco, tcoCco) for co in GL(H) and 

for (A, B, C) in Yn • 

An co in GL(H) sends/(X",) to itself if and only if 

(1.1.1) 



Moduli Spaces of Vector Bundles 401 

(1.1.2) t ,.,(AIo· .. '~n)'"' = (Pol' .. . Opn) u.o Il u.o - for all (AI' "', An) and 

(PI' .. " Pn) in (c*)n-Ll. 

Thus the group Gn={w E GL(H)lw satisfies (1.1.1) and (1.1.2)} acts on Xn. 
By using a beautiful relationship between M(O, n) and the rank-2 nets of 
quadrics, Barth showed that M(O, n) is birational to the quotient of Xn by 
Gn • However, he inferred incorrectly that Gn was the image of Sn by the 
regular representation p. Indeed the correct group is described as follows. 
The group Sn acts on (Zj2Z)<iBn as the permutation of the direct factors. 
This action defines a semi-direct product G~. 

Sending (el' .. " en) in (Z/2Z)<iBn to 

( -1)'~ ... ° ) 
° (-1)'" 

in GL(H), we obtain a representation r of (Z/2Z)<iBn in GL(H). The map 
which sends (g, h) of G~ to p(h)r(g) in GL(H) induces an isomorphism of 
G~ to Gn • 

Since p(Sn) acts on the first direct factor (c*)n-LI of Xn as the 
permutation of the coordinates, the quotient {(c*)n - LI}/ p(Sn) is rational 
and the action is free. Then, by descent theory, it is not difficult to prove 
that Xn/ p(Sn) is rational. To our regret, the correct group is not p(Sn) and 
moreover r«Z/2Z)<iBn) acts trivially on the first and the second direct 
factors of Xn. Then, the problem of rationality of Xn/Gn is, as far as the 
author knows, quite difficult. 

Observation 1.2. r«Z/2Z)<iBn) acts trivially on (c*)n and (c*)n-LI 
while the action of Gn/r«Z/2Z)<iBn)::::=p(Sn) on both spaces is permutation 
of the coordinates. Thus (c*)n and (c*)n-LI are embedded into C n 

equivariantly. Moreover, the extended action of p(Sn) is linear. There
fore, if (a) the action of Gn=Gn/center on Cn is generically free and 
(b) Cn/Gn is rational, then M(O, n) is rational by virtue of the descent 
theory of vector bundles. 

Let {YI , •• " Yn } and {ZI' .. " Zn} be two sets of indeterminates 
over C. If we set Tij = YiZj - YjZi , then the subring Rn = C[Tij 11 ~J < 
j::::::n] of C[YI , •• " Ym ZI' .. " Zn] is the affine ring of Cn. When n=2, 
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we have G2~Z/2ZffiZ/2Z and the action of 6 2 on C2 is not effective. 
But the quotient of (C*)2 X C2 by G2 is rational; the function field is gene
rated by W1+ W2, W1W2, n2, where WI> W2 are the coordinates of (C*)2. 
Thus M(O, 2) is rational. In fact, it is the space of non-singular conics in 
P2. Assume that n~3. Then the ring of invariants of Rn by 1:«Z/2z)~n) 
contains {n.i11<i<j-:;;;'n} and hence we see easily (a) in these cases. 
When n=3, the function field of C3/1:«Z/2Z)~3) is generated by n2, T~3 
and 1;2T23T13. We set 

U1 = n2+ T;3+ n3, U2= n2n3+ T;3n3+ n2n3, 

U3= n2T ;3T i3' 0=(Ti2- T;3)(T;3- n3)(n2- T~3) and 

V = OT12T23T13. 

Then, the function field L of C3/G3 is generated by U1, U2, U3 and V 
over C. Since the transcendence degree of Lover C is 3, we must have 
one relation among the generators. The discriminant 02 is a polynomial 
D(U1, U2, U3) of U1, U2, U3 and the relation is V2= U3D(Ub U2, U3). Since 
M(O,3) is birational to the product C 6 X(C3/G3), the function field Lis 
stably rational. Therefore, we come to the following question which 
seems to be quite interesting in view of the work [2]. 

Question 1.3. Let Z be the affine variety defined by the equation V 2 

= U3D(U1, U2, U3) in C 4 with coordinates V, U1, U2, U3. Is Z rational?*) 

Remark 1.4. In the proof of the rationality of M(cl> c2) with C1 odd, 
Hulek made the same mistake as Barth. In fact, :Zn_l in the proof of 
(2.1) of [4] should be replaced by Gn _ 1 in the above. But Gn _ 1 acts faith
fully on the last direct factor cn-l of X and the function field of cn-l/Gn_1 
is generated by the elementary symmetric polynomials in b~, b~, ... , b!_l. 
Thus the conditions similar to those we required in (a), (b) of Observation 
1.2 are satisfied, which implies the rationality of M(c1, c2) when C1 is odd. 

§ 2. Universal family 

Let H(x) be a numerical polynomial in one variable x of degree n. 
Then, for every integer m, we can write H(m) in the form 

H(m) = i:: ai(m-!- i) with ao, ... , an integers. 
i=O 1 

We set 

o(H) = G.C.D. {ao, ... , an}. 

*) Z is rational (see Appendix). 
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Pick a positive integer r which is a divisor of an and set 

o'(H, r)=G.C.D. {aD, "', an, r}. 

Obviously o'(H, r) is a divisor of o(H), a fortiori, o'(H, r)::;;,o(H). 
Let f: X -'>-S be a smooth, projective, geometrically integral morphism 

of schemes of finite type over a universally Japanese ring. Fix an f
ample invertible sheaf (Dx(1) and set Mx/s(H) to be the moduli space of 
stable sheaves E on (X, (Dx(1» with X(E(m»=H(m) (see [6] and [7]). In 
[7] we proved the following (Theorem 6.11). 

Theorem 2.1. Every quasi-compact open set U of Mx/s(H) has a 
universal family if o(H) = 1. 

Let Mx/iH)o be the open set of Mx/iH) whose points correspond 
to locally free sheaves. If f: X -'>-S has a section, for example, S= 
Spec(k) with k an algebraically closed field, then we have the following 
result which is stronger than Theorem 2.1 for Mx/iH)o. 

Theorem 2.2. Assume that f: X -'>-S has a section g: S -'>-X and the 
degree d of X with respect to (DA1) is constant. Then r=anld is a positive 
integer. A quasi-compact open set U of Mx/s(H) has a universal family if 
(1) o'(H, r)=l and if (2-a) U is contained in Mx/iH)o or (2-b) U is locally 
factorial and un Mx/iH)o is dense in U. 

Proof There are an open subscheme Q of a Quot-scheme Quot«(D!NI 
XIS) and a surjective morphism if>: Q-'>-U such that (a) PGL(N, S) acts on 
Q, (b) if> is a principal fibre bundle with group PGL(N, S), (c) the universal 
quotient sheaf £ on X X sQ carries a GL(N, S)-linearization when X X sQ 
is regarded as a GL(N, S)-scheme through the action of PGL(N, S) on Q 
and (d) the action of the center of GL(N, S) on £ is the multiplication by 
constants. By (c) and (d) we see that if there is an invertible sheaf L 
on Q with GL(N, S)-linearization such that the action of the center of 
GL(N, S) on L is the multiplication by constants, then the action of the 
center on £' = £0mQL * is trivial and hence £' carries a PGL(N, S)-lineariza
tion. Then, thanks to descent theory, (b) implies that £' descends to a 
sheaf on X X s U which is a universal family up to the tensor of a line 
bundle on X. In the proof of Theorem 2.1 ([7, Theorem 6.11]) we showed 
that there is a line bundle LIon Q with a GL(N, S)-linearization such that 
the action of the center of GL(N, S) is the multiplication by the o(H)-th 
power of constants. On the other hand, we have the section g'=gXsI Q : 

Q -'>- X X sQ which is a GL(N, S)-morphism. E' = g'*(£) carries a 
GL(N, S)-linearization. Let Eo be the restriction of E' to Uo=Mx/iH)o 
n U. Then Eo is a vector bundle of rank r. Thus L2 = A r Eo is a 
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GL(N, S)-sheaf on which the center acts as the multiplication by the r-th 
power of constants. Assuming (2-b), the double dual L~=(I\ r E')** is 
an invertible GL(N, S)-sheaf with the same action of the center as L z 
because U and hence Q are locally factorial. Since o'(H, r) = 1 in any 
case, there are integers a, [3 such that ao(H) + [3r= 1. Therefore, L= 
L'P"®L'Pft in the former case and L' =L'P"®L~0ft in the latter case carry 
GL(N, S)-linearizations such that the actions of the center are the mul
tiplication by constants. Q.E.D. 

The following is a corollary to the proof of Theorem 2.1 and Theo
rem 2.2. 

Corollary 2.2.1. Let U be a quasi-compact open subscheme of 
Mx/s(H) and <p: Q-+U the principal PGL(N, S)-bundle which appeared in 
the proof of Theorem 2.2. U has a universal family if and only if there is a 
line bundle L on Q with GL(N, S)-linearization such that the action of the 
center of GL(N, S) is the multiplication by constants. 

Proof Since we have the universal quotient sheaf E on X X sQ, 
there is a morphismfE of Q to U such that for every geometric point x of 
Q, fE(x) corresponds to E(x). By the construction of fE in [6, § 5], fE is 
nothing but the given <p. Assume that we have a universal family F on 
X X sU. Then, there is a line bundle L on Q such that (1 XfE)*(F)®eQL 
-::::.E (see [8, the proof of Theorem 3.17]). Since fE=<p, G=(l xfE)*(F) 
carries a PGL(N, S)-linearization, that is, a GL(N, S)-linearization for 
which the action of the center of GL(N, S) is trivial. For a sufficiently 
large integer m, HI =Pz.(p[(@x(m»)®G) and H 2= P2.(p[(@x(m»)®E) are 
locally free and H I®V:::::.H2 , where Pi is the i-th projection of XXsQ. 
On P(Hl)=P(Hz) we have two tautological line bundles @p(Hlll) and 
@p(H,ll). Since @p(H,)(l) are GL(N, S)-linearized, so is it"*(L)-::::'@P(H,)(1)® 
@P(Hl)(-l), where it" is the projection of P(HI) to Q. Moreover, the 
action of the center of GL(N, S) on it"*(L) is the multiplication by con
stants. Now obviously L-::::'it"*it"*(L) meets our requirement. The converse 
is contained in the proof of Theorem 2.1. Q.E.D. 

The proof of Theorem 2.2 suggests another result which can be 
applied to the case of X=P~. 

Proposition 2.3. Let U be a quasi-compact, irreducible, locally fac
torial open subscheme in Mx/s(H). For a line bundle L on X, set h(L) = 
min W(X (s), E(s)®L) I E(s) is the stable sheaf corresponding to s}, where s 
ranges over all geometric points of U. We define a(U) and a'(U) to be 
G.C.D. {h(L) I L E Pic (X)} and G.C.D. {a(U), r}, respectively, where r is the 
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rank of a sheaf corresponding to a point of U. 
(1) lj5(U)=I, then U has a universalfami/y. 
(2) lj5'(U) = 1 and iff: X ----+S has a section, then U has a universal 

family. 

Proof. Let us consider again if>: Q----+ U and E in the proof of The
orem 2.2. There are members L" .. " L t of Pic(X) and integers aI, .. " at 
such that Z=~=I aih(Li)=5(U). Set Ei =L/$!).xE. By virtue of the upper 
semi-continuity of cohomologies, we have a non-empty open set Vof Q 
such that hO(Ei(z)) is constant and equal to h(Li) for all z in V. Since Q 
is reduced, for the projection p: X X sQ----+Q, Fi = p*(Ei) is locally free 
and of rank J3i=h(Li) on V. Then Mi=(l\fiiFi)** is an invertible 
GL(N, S)-sheaf on which the center acts as the multiplication by the 
firth power of constants because Q is locally factorial. M'Pa;® ... ®M<pa, 
carries a GL(N, S)-linearization such that the action of the center of 
GL(N, S) is the multiplication by the 5(U)-th power of constant. Now 
we can apply the same argument as in the proof of Theorem 2.2 to both 
cases (1) and (2). Q.E.D. 

Example 2.4. We can apply Proposition 2.3, (2) to the case of X = 
Pi. In this case, if r=2 and if one of h«(!}xCm)) is odd, then the moduli 
space has a universal family. 

§ 3. Proof of Theorem 0.1 

We shall identify the set of k-rational points of M(i, a) (i=O, 1) with 
the set of stable vector bundles E with c,(E)=i, c2(E)=a and r(E)=2. 
First of all let us recall the key lemma in [7, § 7]. 

Lemma 3.1. Let E be a stable vector bundle of rank 2 on P = P~ with 
c,(E)=i =0 or 1 and c2(E)=a. 

(1) There is an integer I such that (,.; 4a + 1- i - 1- i)/2;;;; I > 1- i, 
HO(P, E(/))=1=0 and HO(P, E(I-l))=O. 

(2) For a general E in M(i, a)(k) and for 1o = [(,.; 4a+ 1- i - 1- i)/2], 
we have HO(P, E(/o-l))=O, where for a real number a, [a] means the 
largest integer which is not greater than a. 

For the proof of the above, see Lemma 7.3 and Corollary 7.5.1 of 
[7]. 

Let J be the ideal of a O-dimensional scheme in P=P% such that 
hO«(!}p/J)=ai(/)=f2+il+a, where i=O or 1 and a>2 or 1 according 
as i=O or 1. Since hO«(!}p(2/-3+i)) =2P+(2i-3)I-i+l, we have 
HO(P, J(2/-3+i))=0 if J is general enough and if A(I)=F+(i-3)/-i+ 
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l-a=hO({9p(2/-3+i))-ai(/) ~ 0. And then hl(J(2/-3 + i))= -A(/) 
>0. If hO({9p(2/+i))-hO({9p/J)=[2+(3+i)/+2i+l-a>0 and if J is 
sufficiently general, then we have 

hO(J(2/+i))=[2+(3+i)1 +2i + l-a=B(/). 

Lemma 3.2. Let 10 be the integer given in Lemma 3.1, (2) for the i 
and a. 

(1) A(lo)<O and A(lo+ 1)<0. 
(2) If i = 0, then B(lo) is even or odd according as a is odd or even. 
(3) If i = 1, then B(lo) or B(lo + 1) is even. 

Proof The positive root of the quadratic equation A(/) = ° is rl = 

{(3-i)+v/4a+5-i}/2. Hence 

rl -/o;;:;;{(3- i)+,y' 4a+ 5-i}/2- (,y' 4a+ l-i -1- i)/2>(3 + 1)/2=2. 

We see therefore that A(lo) <0 and A(lo+ 1)<0. Since [2+3/+ 1 is always 
odd if I is an integer, we obtain the assertion (2). Assume that i = 1. 
Then [2+(3+i)/+(2i+ 1)=[2+41+3 is even or odd according as I is odd 
or even. This shows (3). Q.E.D. 

We know that M(1, 1) consists of one point Tp( -1). Thus we fix 
the couple (i, a) so that i=O, 1 and a?2. When i=O, we set r=/o' If 
i= 1, then we put r=/o or 10 + 1 so that B(r) is even (see (3) of the above 
lemma). For a general member E of M(i, a), we have an exact sequence 
by virtue of Lemma 3.1 

where I is an ideal of {9p such that (9p/1 is supported by a finite set 
of points and hO({9p/1) = ai(/o). Since hOCJ(2/0+i))> B(lo), we have 
HO(P, 1(2/0 + i)) =/= ° if r=/=/o' This implies that E(r)/s{9p is torsion free for 
a general section s in HO(P, E(r)). Thus we obtain an exact sequence 

(3.3) 0----+{9 p( - 3)----+ E(r- 3)----+Jo(2r - 3 + i)----+O 

with Jo the ideal of a finite sub scheme in P such that hO({9p/JO)=ai(r). 
This exact sequence and Lemma 3.1, (2) show that HO(P, JoC2r-3+i))=0 
and hence hl(Jo(2r-3+i))= -A(r). 

Let Z be the Hilbert scheme Hilb~,c;) and J be the universal family of 
ideals on P X Z. If Zo is the open sub scheme of Z whose points corre
spond to ideals J with HO(P, J(2r- 3 + i)) =0, the Jo in (3.3) gives rise to 
a k-rational point x of ZOo Shrinking Zo to an affine open sub scheme 
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which contains x, we have an isomorphism 

where io=ilpxzo and Pi is the i-th projection of P XZo' On the Zo
scheme V(R1p*(io(2r-3 + i») = W, there is a universal section of 
it'*(Rlp*(io(2r-3 + i») which defines a universal family of extensions 

Ex: O~(!)pxw( -3)~E~(1 Xit')*(io(2r-3+i»~0, 

where it' is the structure morphism of W (see [7, p. 600)). By the con
struction of E and the fact that R1p*(io(2r-3+i» is a vector bundle of 
rank -A(r), we have a point w of W over the x in Zo such that Ex(w) is 
isomorphic to (3.3). Therefore, we see the following: 

(3.4) There is a non-empty open set Zl of Hilbpt}f) such that for the 
ideal J corresponding to any Z in Zl(k), there is a member E in M(i, a)(k) 
which fits in an exact sequence 

0~(!)p~E~J(2r+i)~0. 

Using the fact that (..; 4a+ 1- i -1- i)/2 is the positive root of the 
quadratic equation [2 + (3 + i)l + 2i + 2 - a = 0, we see that u = at(r) is 
greater than v=[B(r)/2J. Then hO«(!)p(2r+i»=3v+(u-v) or 3v+(u-v) 
+ 1 according as B(r) is even or odd. 

Lemma 3.5. Let Xl>"', Xv, Xv+l> .. " Xu be sufficiently general, 
mutually distinct points in P. Then, we have: 

(3.5.0) The reduced subscheme Uf=l {Xt} in P is contained in Zl(k). 
Moreover,for Zl =xU+l> .. " Z,,_v=X,., we have: 

(3.5.1) xl>"', Xv, Zl' .. " zu_v are mutually distinct and 

{s E HO(P, (!)p(2r+i» I ord ... (s) > 2 for aliI <k<v and s(Zj) =0 

for alll:::;;:j<u-v} 

is a vector space of dimension 0 or 1 according as B(r) is even or odd, 
(3.5.2) The ideal K defining the reduced subscheme 

in P satisfies HO(P, K(2r-3+i»=0 or equivalently h1(K(2r-3+i»= 
-A(r). 

(3.5.3) hO(K(2r+ i) =B(r). 

Proof (3.5.0) is (3.4). Since Xl> •• " x" are mutually distinct, (3.5.2) 
and (3.5.3) are easy. For mutually distinct points Yl> .. " Ya in P, we set 
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E(nIYl> .. ·,naYa)={seHO(P,@p(2r+O)lord".(s»ni for all l~i~a} 
and denote by IE{nly!, ... , naYa)1 the linear system defined by E(nIYI, ... , 
naYa). We shall compute the codimension of E(2xl> ... , 2x~, X~+l' .. " 
xa) in HO(P, @p(2r+i». Assume that for an a>v, we can choose Xl' 
"', Xa so that codimE(2xl, "', 2x~, XV+l> "', xa)=3v+(a-v). If we 
pick Xa+l outside the set of base points of IE(2xl' .. " 2x~, Xv+l' .. " xa)l, 
then codim E(2xl , •• " 2xv, Xv+l> ... , xa+l)=3v+(a+ I-v). Thus it is 
enough to prove that for general Xl' .. " Xv, codim E(2xl> ... , 2xa) = 3a 
if a~v. 

Claim. If there is a member D in I (!) p(2r + i -1) I such that Xl' .. " 
Xa are, at least, double points of D, then for general XUI' dim E(2xl> .. " 
2xa+l ) = dim E(2xl, .. " 2xa)-3. 

Indeed, take a point Xa+l outside D and mutually distinct lines LI> 
L2 , L~ such that L2 and L~ contain XUl but Ll does not. Then D+Ll is 
not a member of iE(2xl> ... ,2Xa,Xa+I)1 but so are D+L2 and D+L~. 
Since D+L2 and D+L~ are smooth at Xa+l, this means that the last linear 
system separates infinitely near points around X a +l ' These imply our 
claim. 

By the above claim it suffices to show that hO(@p{2r+i-:-I»-3(v-l) 
~{4r2+(4i +2)r+2i-3r2-(3i+9)r-6i+3+3a}/2={r2+(i -7)r-4i+3 
+3a}/2>0. Since the discriminant of the equation r2+(i-7)r-4i+3+ 
311=0 is 37+3i-12a, the above inequality holds if a~4. It is easy to 
show that the condition in our claim is satisfied in the remaining cases 
except when i= 1 and a=3. If i= I and a=3, then r=2 and v=6. Up 
to a=4 it is easy to see the condition of the claim. For the five given 
points Xl> .. " X5, there is a conic which passes through Xl> .. " X5• Then 
D=2C satisfies the condition in our claim in this case, too. Q.E.D. 

Let us fix points Xl' .. " Xu which satisfy all the conditions in the 
above lemma. The set of mutually distinct points Zl' •• " Zu_~ in P is 
parametrized by an open set Xo of the symmetric product of u-v copies 
of P. {(z,,"', zu_v) e Xo I XI> •• " Xv, Zb •• " Zu_~ satisfy the conditions 
(3.5.1), (3.5.2) and (3.5.3)} is the set of k-rational points of an open set X 
of Xo' On PXXwe have the universal family of ideals K' such that for 
a Z in X(k), K'(z) is the ideal of the reduced subscheme of P correspond
ing to z. For the first projection PI: P X X ~ P and the defining ideal J of 
the reduced scheme Uj=l {Xj}, we put K= pt(J)K'. K is the universal fiat 
family of ideals defining reduced schemes 
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of P such that Xl' ••• , Xv, Zl> ••• , Zu_v satisfy the conditions (3.5.1), 
(3.5.2) and (3.5.3). 

Mter shrinking X to a suitable affine open subscheme which con
tains (XV+I' ... , xu), as in [7, p. 600] or in the above, we can construct a 
universal family of extensions on P X Vo 

O~(!)pxvo( -3)~FI~(1 Xq)*(K(2r-3+i»~0, 

where Vo= V(B) with B=Rlp2*(K(2r-3+i» and q is the projection of 
Vo to X. By (3.4) there is a non-empty open set Vof Vo such that F,.lpxv 
is locally free and F,.(z) is stable for all z in V(k) because (xV+l> ... , xu) is 
in X. Set F=FI(3-r)lpxv. Then, for every z in V(k), F(z) fits in an 
exact sequence 

O~(f)p( -r)~F(z)~K(z)(r+i)~O. 

Since c2(K(z)(r+i»=cxtCr), we have that cl(F(z»=i and c2(F(z»=a. 

Lemma 3.6. For every z in V(k), there is an exact sequence 

0~(!)p~JF(z)(r)~(JK(z»(2r+i)~0. 

From this we deduce that hO(JF(z)(r» = 1 or 2 according as B(r) is even or 
odd. 

Proof From the exact sequence 

0~(!)p~F(z)(r)~K(z)(2r+i)~0 

we obtain the following exact commutative diagram 

o 0 

1 1 
J ~ JF(z)~J®K(z)(2r+i)~O 

1 1 l~ 
0~(!)p-.i~F(z)(r)~K(z)(2r+i)~O. 

The image of e; is J K(z)(2r+ i). Since K(z) is contained in J, the global 
section T('I/r)(1) of F(z)(r) has zeros on Xl> ••• , Xv and hence 'I/r«(!)p) is 
a subsheaf of JF(z)(r). This means that 'I/r«(!)p) is contained in D= 
Ker(JF(z)(r)_JK(z)(2r+i». Moreover, 'I/r«(!)p) coincides with D outside 
the set {Xl> ... , x.}. Since JF(z)(r)/'I/r«(!)p)c;;.F(z)(r)/'I/r«(!)p)==.K(z)(2r+i) 
and K(z)(2r+i) is torsion free, we see that 'I/r«(!)p)=D. The second 
assertion is deduced from (3.5.1) and the fact that HO(P, JK(z)(2r+i» is 
exactly the vector space in (3.5.1). Q.E.D. 
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The vector bundle F on P X V defines a morphism (/)0 of V to M(i, a). 
It is obvious that F(z) and F(J.z) are isomorphic for z in V(k) and J. in 
k-{O}. Thus (/)0 passes through (/): T-+M(i, a), where T is an open 
subscheme of PCB). 

Since all the K(z) are contained in J, the global section of F(z)(r) 
obtained from the exact sequence 0-+(!Jp-+F(z)(r)-+K(z)(2r+i)-+0 is 
contained in HO(P, JF(z)(r». Thus Lemma 3.6 implies: 

(3.7) If i = 1 or if i =0 and a is odd, then (/) is injective. If i =0 
and a is even, then the dimension of each fibre of (/) is one. 

On the other hand, we have 

dim P(B) = dim Z+r(B)-1 =2(u-v)-A(r)-1 

= {4a - 3 - i if i = 1 or i = 0 and a is odd 

4a-2 if i =0 and a is even. 

Since dimM(i, a)=4a-3-i, this and (3.6) imply that (/) is generically 
surjective. We have therefore an injection (/)*: k (M(i, a»-+k(P(B». 

Let us construct the inverse of (/) in the case where i =0 and a is odd 
or where i = 1. In both cases, we have a universal bundle Uo on P X 
M(i, a) (see [7, Theorem 7.17]). For the ideal J which appeared in the 
above construction of (V, F), we have proved that there is a non-empty 
open set R of M(i, a) such that h°(JUo(z)(r» = 1 for all z in R(k). Setting 
U=UO(r)!PXR; M=1r2*(1rt(J)U) is an invertible sheaf on R, where 1rt is 
the i-th projection of P X R. By shrinking R if necessary, we may assume 
that M is isomorphic to (!JR. The base change theorem tells us that the 
canonical map~: (!JpxR-::='1r;(M)-+U is injective and 

~(z): k-::=.HO(P, 1r2(M)(z»-::=.HO(P, JU(z»~HO(P, U(z» 

is the natural injection for all z in R(k). Thus L=(U/~«!JPXR»( -2r-i) 
is flat over R. Shrinking R again, we may assume that L is an ideal of 
fJPXR such that for all z in R(k), L(z) is contained in J and defines a 
O-dimensional subscheme 

which satisfies (3.5.1), (3.5.2) and (3.5.3). Thus there is a morphism r of 
R to X such that r*(K) -::=.L. Furthermore, the extension 
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0~@pxR~U~L(2r+i)~0 

gives rise to a morphism 7J of R to V such that 7J*(F(r»-:::::. U. Moreover, 
the following diagram is commutative: 

R~ V Po )TC;;P(B) 

~l~ 
X. 

Set 1Jf =Po7J. Then, since ~t(U( -r»-:::::.E, we have (~1Jf)*U( -r)-:::::. 
7J*P*(~*U( -r»-:::::'7J*(~tU( -r»-:::::. U( -r). The universality of (M(i, a), 
Uo) and this imply that ~1Jf =id. By Lemma 3.6, 1Jf is injective and hence 
generically surjective because Rand PCB) have the same dimension. We 
obtain therefore an injection 1Jf*: k(T)=k(P(B»-+k(M(i, a» such that 
1Jf*~* =id. Thus 1Jf* is birational. Since PCB) is rational, this completes 
the proof of (1) and (2) of Theorem 0.1. 

To outline our proof of Theorem 0.1, (3), let us consider the principal 
PGL(N)-bundle 1;; Q-+M(O, a) which appeared in the proof of Theorem 
2.2. We have a universal sheaf U on Px Q such that c1(U(z»=0 for a z 
in Q(k). Replacing Q by a PGL(N)-invariant open set, we may assume 
that 7rz*(7rt(J)U(r»=G is a vector boundle of rank 2 by Lemma 3.6, 
where 7ri is the i-th projection of Px Q. On V(G*) we have a universal 
section @v(G*)-+v*(G*), where v: V(G*)-+Q is the projection. Thus we 
get a natural homomorphism @pxv(G*)-+q:II*(G)-+(1 XII)*(U(r» with qz 
the second projection of P X V(G*). Restricting this sequence to a suit
able open subsheme D of V(G*), we obtain an exact sequence 

O~@PXD~(1 Xv)*(U(r»lpxD~S~O. 

Shrinking D if necessary, this provides us with a morphism 1Jf' of D to V 
such that (1 X 1Jf')*(F)-:::::.(I XII)*(U)lpXD' 

G carries a GL(N)-linearization and hence P(G*) descends to a p 1_ 

bundle (in the etale topology) H on an open subscheme of M(O, a). Since 
the above 1Jf' is PGL(N)-invariant with respect to the trivial action of 
PGL(N) on V, there is a morphism 1Jf of H to T which makes the follow
ing diagram commutative: 

V(G*) 
U 7Jf1 

D~V 

pll 7Jf lpo 
H~TC;;P(B). 

On the other hand, the existence of F provides us with a morphism 
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8' of an open subscheme V' of V to D such that (1 X8')*(0)::::Flpxv'. 
Putting D' = 7Jf'-I(V') and 7Jf" = 7Jf'ID' we get an isomorphism (1 X 7Jf")* 
(1 X 8')*(0):::: OIPXD" This supplies us with a V'-valued point g of 
GL(N) such that 8'7Jf" =g. It is clear that there is a morphism 8 of an 
open subscheme of PCB) to H such that p'8' =8p. Hence 87Jf P'ID,=8p7Jf" 
=p'g=p'In,. Since P'ID': D'--"'p'(D') is faithfully fiat, we deduce from this 
87Jf =id. Lemma 3.6 shows that 7Jf and 8 are bijective. Therefore, Hand 
PCB) are birational. 

Remark 3.8. 1) By using the fact that B(r) is even if i = 1 or if 
i = ° and a is odd, we can prove the existence of a universal family on 
M(i, a) in the case of (1) and (2) of Theorem 0.1 (see Proposition 2.3 and 
Example 2.4). 

2) The pI-bundle in (3) of Theorem 0.1 is never a pI-bundle in the 
Zariski topology. By an argument similar to the latter half of the proof 
of Corollary 2.2.1, we can show that if the bundle is a pI-bundle in the 
Zariski topology, then there is a line bundle L on a GL(N)-invariant open 
set which carries a GL(N)-linearization such that the center of GL(N) 
acts as the multiplication by constants. Then we have a universal family 
on a non-empty open set of M(O, a) and hence on M(O, a). This contra
dicts the results of Le Potier in [5]. 
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Appendix 

The variety in Question 1.3 is rational 

Isao Naruki 

The purpose of this appendix is to prove the rationality of the variety 
defined in the affine space (ul , U2, Us, v) by the equation 

(A) 

where D=D(uh U2, us) is the discriminant of the cubic equation r+3ul r 
+3u2x+uS=O (see Observation 1.2 and Question 1.3). It is classically 
known that D is written (up to a constant factor) in the simple form 

if one puts 

(A. I) {
p =U~-U2 

Q=U1U2-US 

R =U~-UIUS' 

Our first attempt is now to compare two fields k(P, Q, R) and k(uh 

U2, us) (k: the ground field, ch(k)*2, 3). By the first two identities in 
(A.I) we obtain the expressions of U2, Us in terms of U1, P, Q and by using 
these we eliminate U2, Us from the last identity in (A.I): 

(A. 2) u~- Qul+R -p=o. 
P P 

Now this quadratic equation in UI suggests us to introduce the following 
three algebraically independent elements in the function field: 

(A. 3) {
S=Q/2P 

t =2R/Q 

w=u1 -(Q/2P) (=ul-s). 

One sees immediately from (A.2) that 

(A.4) 

From (A.3) and (A.4) we further deduce 
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Q=2sP=2s(w2+st _S2) 

R=tQ/2=st(w2+st _S2) 

uj=s+w 

u2=ui-P =(S+W)2_(W2+st -s2)=s(2w+2s-t) 

ug = uju2- Q =s{(4s- t)w+4s2 - 3st}. 

These imply in particular that we may use new variables s, t, w instead of 
U j , U2, us. We have also 

where P is given by (A.4). Thus the equation (A) is equivalent to the 
following: 

(A') 

Since w is still contained in the expression of P, the right hand side 
of (A') is cubic with respect to w. But this disadvantage can be removed 
when one introduces the new variable 

v=v/(2sP) 

as a substitute for v. In fact the original variety is birational to the affine 
variety given by the equation 

and this last identity shows that w is rationally expressed in terms of s, t 
and v. This clearly implies that the variety defined by (A) is rational, 
which was to be proved. 
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