Advanced Studies in Pure Mathematics 9, 1986 Homotopy Theory and Related Topics pp. 335–344.

On the Image $\rho(BP^*(X) \rightarrow H^*(X; Z_p))$

Nobuaki Yagita

In this paper we study ways to calculate the Brown-Peterson cohomology $BP^*(X)$ localized at a prime p when the Steenrod algebra action on the ordinary mod p cohomology $H^*(X; Z_p) = HZ_p^*(X)$ is known. One of the most difficult problems is to know which elements in $H^*(X)_{(p)}$ are permanent cycles in the Atiyah-Hirzebruch spectral sequence $H^*(X; BP^*) \Rightarrow BP^*(X)$. This is equivalent to know the image $\rho: BP^*(X)$ $\rightarrow H^*(X)_{(p)}$ where ρ is the Thom map.

Cohomology operations on $HZ_p^*(X)$ give some informations about the image. For example if $Q_n x \neq 0$ in $HZ_p^*(X)$, then x is not in Image $\rho(BP^*(X) \rightarrow HZ_p^*(X))$, where Q_n is the Milnor primitive operation. We study the above facts in more general situation.

Let: $\rho: h \rightarrow k$ be a map of spectra. In Section 1, we note the importance of Image $\rho(h^*(k) \rightarrow k^*(k)) = \rho(h, k)$, indeed, if an operation θ is in $\rho(h, k)$, then for each $x \in k^*(X)$, $\theta x \in \text{Image } \rho(h^*(X) \rightarrow k^*(X))$. The image $\rho(P(n), P(m))$ and $\rho(k(n), HZ_p)$ are studied in Section 2. Since $\rho(PB, HZ_p) = 0$, we consider K(Z, n) or $K(Z_n, n)$ as k instead of HZ_p in Section 3. Here we introduce the Tamanoi's results. In Section 4, $\rho(BP, K(Z, 3))$ and $BP^*(K(Z, 3))$ are studied. Applications for finite H-spaces are given in Section 5. For example, in the case p=2, let X be a simply connected finite associative H-space and let Q^* be the indecomposable elements in $HZ_2^*(X)$. Then

$$(Q^{2^{n+1}})^2 \subset \operatorname{Image} \rho(BP^*(X) \longrightarrow HZ^*_2(X)/(HZ^+_2(X)^3)).$$

The author thanks to the referee who pointed out this proof of Proposition 2.4 and corrected many errors in the first version.

§ 1. Maps of cohomology theories

Let $\rho: h \to k$ be a map of spectra and let $k = \{k_n\}$ be the Ω -spectrum, i.e., $k^n(X) \simeq [X, k_n]$. For simplicity of notations, let us write Image $\rho(h^*(k) \to k^*(k))$ (resp. Image $\rho(h(k_n) \to k(k_n))$) by $\rho(h, k)$ (resp. $\rho(h, k_n)$).

Received January 18, 1985.

Lemma 1.1. If $\theta \in \rho(h, k)$ (resp. $\theta \in \rho(h, k_n)$), then for $x \in k^*(X)$ (resp. $x \in k^n(X)$), $\theta x \in \text{Image } \rho(h^*(X) \rightarrow k^*(X))$.

Proof. Each element $x \in k^n(X)$ is represented by a map $x: X \to k_n$. Since $\theta \in \rho(h, k_n) = \text{Image } \rho(h^*(k_n) \to k^*(k_n))$, there is a map $i: k_n \to h$ such that $\rho i = \theta$. Hence $\theta x = \rho i x$. q.e.d.

It is immediate from the above lemma that if $\theta \in \rho(h, k)$, then $\rho(h, k)$ $\supset \text{Im } \theta = \theta k^*(k)$ but in general, $\rho(h, k) \not\supset k^*(k) \theta$.

Lemma 1.2. If $\theta \in \rho^{*-1}\rho h^*(h)$ and $x \in \text{Image } \rho(h^*(X) \to k^*(X))$, then θx is also contained in the Image ρ .

Proof. Let $\rho^* \theta = \rho \tilde{\theta}$ and $\rho \tilde{x} = x$. Then the following diagram is commutative and we have $\theta x = \rho \tilde{\theta} \tilde{x}$. q.e.d.

Corollary 1.3. If $\theta \in \rho(h, k)$, then $\rho(h, k) \supset \theta k^*(k) \cup (\rho^{*-1}\rho h(h))\theta$.

§ 2. BP-module spectra

Let *BP* be the Brown-Peterson spectrum with the coefficient $BP^* = Z_{(p)}[v_1, \cdots]$. Let k be a complex oriented ring spectrum such that k^* is a $Z_{(p)}$ -module. Then from the universal property of *BP*, there is a map of ring spectra $\rho_k: BP \rightarrow k$. Moreover if p is an odd prime number and k^* is a $BP^*/(p, \cdots, v_{n-1})$ -module, then there is a map of *BP*-module spectra $\rho': P(n) \rightarrow k$ with $\rho_k = \rho' \rho_{P(n)}$. Here P(n) is the *BP*-module spectrum with the coefficient $P(n)^* = BP^*/(p, \cdots, v_{n-1})$ [6], [7].

Examples of k such that $k^*(k)$ are known are not so many, e.g., P(n), k(n) and $P(\infty) = HZ_p$ [6], [8], [9]

$$(2.1) \qquad P(n)^*(P(n)) \simeq P(n)^* \otimes_{BP^*} BP^*(BP) \otimes \Lambda(Q_0, \cdots, Q_{n-1})$$

(2.2)
$$k(n)^*(k(n)) \simeq (k(n)^*\{s_\alpha \mid \alpha_i < p^n\} \oplus B') \otimes A(Q_0, \cdots, Q_{n-1})$$

where B' is some $k(n)^*/(v_n)$ -module (for details see [9]).

Lemma 2.3. When $p \ge 3$, h = P(m) and k = P(n) for $m < n \le \infty$,

- (1) $Q_s \rho = 0$ for $m \leq s$
- (2) $\rho^{*-1}\rho P(m)^*(P(m)) = P(n)^*(P(n))$
- (3) $\rho(P(m), P(n)) = Q_m \cdots Q_{n-1} P(n)^* (P(n)) = P(n)^* (P(n)) Q_m \cdots Q_{n-1}$

Proof. From the Sullivan exact sequence

and from the fact $\rho \delta = Q_m$, we get $Q_m \rho = 0$ for k = P(m+1). From (2.1) it is easily seen $Q_s \rho = 0$ for $m \leq s < n$ and k = P(n). The formula (2) is proved by (1) and (2.1).

We know (Theorem 3.12 in [8]) that $aQ_m \cdots Q_{n-1} = (\pm)Q_m \cdots Q_{n-1}a$ for $a \in P(n)^*(P(n))$. From the definition of the operation Q_i ,

$$Q_m \cdots Q_{n-1} = \rho_{n-1} \cdots \rho_m \delta_m \cdots \delta_{n-1} \in \rho(P(m), P(n)).$$

Therefore $\rho(P(m), P(n))$ contains the right hand side module in (3). For each element x not contained in the module (3), there is a with $m \leq s < n$ such that $Q_s x \neq 0$. Hence the proof is completed. q.e.d.

Next we consider the case h=k(n) and $k=HZ_p$. From the Sullivan exact sequence, $Q_n \in \rho(k(n), HZ_p)$. Moreover we have the following proposition.

Proposition 2.4. For
$$p \ge 3$$
, $\rho(k(n), HZ_p) = \operatorname{Im} Q_n = Q_n HZ_p^*(HZ_p)$.

Proof. Consider the Atiyah-Hirzebruch spectral sequence $H^*(HZ_p; k(n)^*) \Rightarrow k(n)^*(HZ_p)$. Since the first differential is given by $d^{2p^n-1}(x \otimes 1) = Q_n x \otimes v_n$, we have $E_{2p^n}^{*,*} = Q_n \mathscr{A} \otimes k(n)^*/(v_n)$ where \mathscr{A} is the Steenrod algebra of the ordinary mod p cohomology. In particular, $E_{2p^n}^{*,*} = 0$ unless t = 0. Hence the spectral sequence collapes; $E_{2p^n}^{*,*} = E_{\infty}$ and the extension is trivial. Thus we obtain $k(n)^*(HZ_p) \simeq Q_n \mathscr{A}$ and the Thom map $\rho: k(n)^*(HZ_p) \rightarrow HZ_p^*(HZ_p)$ maps to $Q_n \mathscr{A}$ because ρ coincides with the edge homomorphism of the Atiyah-Hirzebruch spectral sequence.

Recall BP[m, n] be the *BP*-spectrum such that $BP[m, n] = Z_p[v_m, \cdots, v_n]$. Then by the Sullivan exact sequence

$$Q_m \cdots Q_n \in \rho(BP[m, n], HZ_p).$$

Corollary 2.5. $\rho(BP[m, n], HZ_p) = \operatorname{Im} Q_m \cdots Q_n$.

Proof. From Proposition 2.4,

$$\rho(BP[m, n], HZ_p) = \bigcap_{i=m}^n \operatorname{Im} Q_i.$$

It is easily seen the right hand side of the above formula is $\operatorname{Im} Q_m \cdots Q_n$ in \mathscr{A} . q.e.d.

§ 3. The image $\rho(BP, K(Z, n))$

From Lemma 2.3, we have $\rho(BP, HZ_p)=0$. Hence when k=BPand $h=HZ_p$, we need to consider the Ω -spectrum, that is, k_n is the Eilenberg MacLane space $K(Z_p, n)$ (or K(Z, n)). Tamanoi decided $\rho(BP, K(Z_p, n))$ and $\rho(BP, K(Z, n))$ for $p \ge 3$ completely in [4] by using Wilson and Ravenel-Wilson results.

Theorem 3.1 (S. Wilson [5]). *For* $k \le 2(p^n + \cdots + p + 1)$

$$BP^{k}(X) \cong BP\langle n \rangle^{k}(X) \times \prod_{j \ge n+1} BP\langle j \rangle^{k+2(p^{j-1})}(X)$$

where $BP\langle n \rangle$ is the BP-spectrum with the coefficient $BP\langle n \rangle \cong Z_{(p)}[v_1, \cdots, v_n]$.

Define \mathscr{S}_n^m to be the set of sequences

$$s = \{(s_1, \dots, s_n) \mid 0 < s_1 < s_2 \dots < s_n < m, s_i \in Z\}$$

and dim $s = 2(1 + p^{s_1} + \cdots + p^{s_n})$.

Theorem 3.2 (Ravenel-Wilson [3]). For $p \ge 3$ and $n \ge 3$, there exist x_s , y_s with $|x_s| = |y_s| = \dim s$ such that

- (1) $K(m)^*(K(Z, n)) \cong K(m)^*[[x_s | s \in \mathcal{S}_{n-2}^m]]$
- (2) $K(m)^*(K(Z_p, n-1)) \cong K(m)^*[y_s | s \in \mathcal{S}_{n-2}^m]/(y_s^{p^{m-3-s_n-2}}).$

Theorem 3.3 (Tamanoi [4]). For $p \ge 3$ and $n \ge 3$,

- (1) $\rho(BP, K(Z, n)) = Z_p[Q_s \tau | s \in \mathscr{G}_{n-2}^{\infty}]$
- (2) $\rho(BP, K(Z_n, n-1)) = Z_n[Q_s Q_0 \iota | s \in \mathscr{G}_{n-2}^{\infty}]$

where τ , ι are the fundamental classes and $Q_s = Q_{s_{n-2}} \cdots Q_{s_1}$ for $s \in \mathscr{S}_{n-2}^{\infty}$.

Since Tamanoi's proof is written in Japanese, we introduce its outline here. We prove only the case X = K(Z, n) and the other case is proved by the similar methods.

Outline of the proof of Theorem 3.3. It follows that $\{Q_s \tau | s \in \mathscr{S}_{n-2}^{\infty}\}$ generates a polynomial algebra by some computation of the Steenrod algebra on a product of Lens spaces.

By the inductive definition of Q_n , we can show

$$Q_s \tau = \mathscr{P}_s Q_{n-2} \cdots Q_1 \tau$$

where \mathscr{P}_s is expressed by a sum of reduced powers. From the Sullivan exact sequence, we get $x = Q_{n-2} \cdots Q_1 \tau \in \rho(BP \langle n-2 \rangle, K(Z, n))$ and let $\rho(\bar{x}) = x$. The dimension of x is just $2p^{n-2} + \cdots + 2p + 2$. Wilson's theorem says $\bar{x} \in \text{Image } \rho(BP^*(X) \to BP \langle n-2 \rangle^*(X))$. Therefore $x = \rho(\bar{x}) \in \rho(BP, K(Z, n))$. Since $\rho^{*-1}\rho(BP^*(BP)) = \mathscr{A}$ for $\rho: BP \to HZ_p$, we get $Q_s \tau \in \rho(BP, K(Z, n))$.

For m > n, consider the diagram

$$BP^{*}(X) \xrightarrow{\rho_{2}} k(m)^{*}(X) \xrightarrow{l} K(m)^{*}(X).$$

$$HZ_{p}^{*}(X) \xrightarrow{\rho_{3}} k(m)^{*}(X) \xrightarrow{l} K(m)^{*}(X).$$

Here recall $l\rho_2(r_s x) = x_s$ where $r_s \in BP^*(BP)$ is the operation such that $\rho_1(r_s) = \mathscr{P}_s$. From Ravenel-Wilson theorem, for a given $w \in BP^*(X)$ we can take λ^{α} , v_m^{α} such that

$$y=w-\sum_{s,\alpha}\lambda^{\alpha}v_{m}^{\alpha}(r_{s}x)^{\alpha}$$
 and $l\rho_{2}(y)=0$,

where $(r_s x)^{\alpha}$ are mononials in $Z[r_s x]$. Hence $v_m^K \rho_2(y) = 0$ for some large K and so $v_m^{K-1} \rho_2(y)$ is v_m -torsion. But non zero element of dimension $<2(p^m-1)$ is v_m -torsion free. Indeed, from the Sullivan exact sequence, if there exists an element of dimension t as above, then there is a non zero element in $HZ_p^{t-2p^m+1}(X)$. Take m to be larger than dim s. Then $\rho_2(y) = 0$ and

$$\rho_1(w) = \rho_1(\sum_{s,\alpha} \lambda^{\alpha} v_m^{\alpha}(r_s x)^{\alpha}) = \sum_{s, v_m^{\alpha} = 1} \lambda^{\alpha} (Q_s \tau)^{\alpha}. \qquad \text{q.e.d.}$$

Corollary 3.4. Let $p \ge 3$ and BP(S) be the spectrum of the coefficient $BP^*/(S)$ where $S = (a_1, \dots, a_m), a_i \in BP^*$. Then

- (1) $\beta(BP(S), K(Z, n)) = \rho(BP, K(Z, n)),$
- (2) $\rho(BP(S), K(Z_v, n)) = \rho(PB, K(Z_v, n)).$

§ 4. $BP^*(K(Z, 3))$ and its application

In this section we consider the case K=K(Z, 3) more carefully and consider also the case p=2. The mod p cohomology of K is well known

(4.1)
$$A = HZ_{p}^{*}(K(Z, 3)) \cong Z_{p}[b_{1}, b_{2}, \cdots] \otimes A(c_{0}, c_{1}, \cdots)$$

where $c_n = \mathscr{P}^{p^{n-1}} \cdots \mathscr{P}\tau$, $\delta c_n = b_n$, $(n \ge 1)$ and $|c_n| = 2p^n + 1$. For p = 2, $A \cong Z_p[c_0, \cdots]$ where $c_n = Sq^{2n} \cdots Sq^2\tau$, $c_0 = \tau$. Let $\delta c_n = b_n$. Then $b_n = c_{n-1}^2$ and in order to avoid separating cases, we think (4.1) is the isomor-

phism of associated graded algebras filtered by the polynomial algebra of b_i . Moreover for p=2, let $Q_m = Sq^{d_m}$ be the Milnor basis.

Lemma 4.2. In $HZ_{p}^{*}(K)$, $Q_{m}b_{n}=0$ and $Q_{m}c_{m}=0$,

 $Q_m c_n = Q_n c_m = (b_{n-m})^{p^m} \quad for \ n > m > 0.$

Proof. See Lemma 3.4.1 in [11]. The similar arguments prove the lemma for p=2. q.e.d.

Lemma 4.3. Ker Q_m in A is isomorphic to

$$Z_p[b_1,\cdots]\cdot(\operatorname{Im} Q_m \oplus \bigotimes_{n=1}^m \Lambda(c_{m+n}-b_n^{p^m-p^{m-n}}c_{m-n})\otimes \Lambda(c_m)).$$

Proof. The algebra A is a tensor product of subalgebras

$$Z_p[b_n] \otimes \Lambda(c_{m+n}) \quad \text{if } n > m$$
$$Z_p[b_n] \otimes \Lambda(c_{m+n}, c_{m-n}) \quad \text{if } n \leq m$$

and $\Lambda(c_m)$. Here each subalgebra is closed under the action of Q_m . The cohomology of the above subalgebras of the differential Q_m are

$$Z_{p}[b_{n}]/(b_{n}^{p^{m}}),$$

$$Z_{p}[b_{n}]/(b_{n}^{p^{m-n}})\otimes \Lambda(c_{m+n}-b^{p^{m-p^{m-n}}}c_{m-n})$$

and $\Lambda(c_m)$. Therefore $H(A; Q_m)$ is the tensor product of the above cohomology. The lemma is proved from the fact Ker $Q_m = \text{Im } Q_m \oplus H(A; Q_m)$. q.e.d.

For each cohomology theory h, let $F_s = \text{Ker}(h^*(X) \rightarrow h^*(X^{s-1}))$ where X^s is an s-dimensional skeleton of X. We give $h^*(X)$ the topology by this filtration F_s .

Corollary 4.4. $k(n)^*(K)/F_{2p^{n-2}}$ is generated by b_1, \dots, b_{n-1} as a $k(n)^*$ -algebra. In particular $\rho(BP, K) = Z_p[b_1, \dots]$.

Proof. Consider the Atiyah-Hirzebruch spectral sequence of $k(n)^*(K)$. The first non zero differential is $d_{2p^{n-1}} = v_n \otimes Q_n$.

$$E_{2n^n}^{*,*} \simeq k(n)^* \otimes H(A; Q_n) \oplus (k(n)^*/v_n) \otimes \operatorname{Im} Q_n.$$

From Lemma 4.3 and from the fact b_i 's are permanent cycles, we have the first assertion. Since $\rho(BP, K) \subset \bigcap_n \rho(k(n), K)$, the second assertion is also proved, by using Wilson's theorem. q.e.d.

ħ

Proposition 4.5. For $p \ge 3$, as a BP-algebra, $BP^{4*}(K)/F_{2p^{5}+2p^{4}}$ is generated by $\tilde{b}_{1}, \dots, \tilde{b}_{5}$ with $\rho(\tilde{b}_{i}) = b_{i}$.

Proof. Let $B=Z[b_1, \cdots]$. Then note that $(BP^*\otimes B)^i=0$ if $i \neq 0 \mod 4$. If $P(1)^*(K)/F$ is generated by B as a $P(1)^*$ -module, then for each BP^* -module generator $x \in BP^*(K)$, we can take $b \in BP^*\otimes B$ so that $x-b \in pBP^*(K)$. Therefore we can take b for x. Hence we need only prove the above proposition for $P(1)^*(K)$.

Assume $0 \neq ax \in E_2^{*,*}$ is a permanent cycle for $a \in P(1)^*$, $x \in HZ_p^{4*}(K)$ in the Atiyah-Hirzebruch spectral sequence of $P(1)^*(K)$. The first non zero differential is $d_{2p-1} = v_1 \otimes Q_1$. Hence from Lemma 4.3,

$$x \in \Lambda(c_1, c_2 - b_1^{p-1}c_0) \otimes B \oplus \text{Image } Q_1.$$

Since $|c_i|=2p^i+1$ and |x|=4n, we have $x \in \text{Im } Q_1$ and so $0 \neq a \in P(1)^*/v_1$ $P(2)^*$.

Next compare spectral sequences of $P(1)^*(K)$ and $P(2)^*(K)$. Let $\rho: P(1) \rightarrow P(2)$ be the natural map. Then $d_{2p^2-1}\rho(ax) = av_2 \otimes Q_2 x$. The facts that ax is permanent and $0 \neq a \in P(2)^*$, implies $Q_2 x = 0$.

A 4*m*-dimensional element which is of the lowest dimensional in Image Q_1 and is not in *B* is

$$Q_1(c_0c_1c_2c_3c_4).$$

But this element is not in Ker Q_2 . It is necessary

 $|x| \ge |Q_1(c_0c_1c_2c_4c_5)|$

for $x \in \text{Ker } Q_2$ and |x| = 4n.

Question 4.6. As a *BP**-algebra *BP**(*K*) is generated by $\tilde{b}_1, \tilde{b}_2, \dots$?

We recall the main lemma in [11], which is also proved by Tamanoi using only stable homotopy theories.

Theorem 4.7. Let $\sum v_j b_j = 0$ in $BP^*(X)$. Then there is $y \in HZ_p^*(X)$ such that $Q_j(Y) = \rho(b_j)$.

Remark. The above theorem is valid also for p=2.

Proposition 4.8. The relations in $BP^{4*}(K)/F_{2p^5+2p^4}$ are given by

(1)
$$p\tilde{b}_n + \sum_{i=1}^{n-1} v_i \tilde{b}_{n-i}^{p_i} + \sum_{i=1} v_{n+i} \tilde{b}_i^{p_n} \mod (p, v_1, \cdots)^2,$$

(2) relations in $(p, v_1, \cdots)^2$. Moreover we have

(3) $\tilde{b}_i = -r_{pd_{i-1}}\tilde{b}_1 \mod (p, \cdots)^2$.

q.e.d.

Proof. Since Ker $\rho(BP^{4*}(K) \to HZ_p^{4*}(K))/F_{2(p^5+p^4)} = \text{Ideal}(p, v_1, \cdots)$, that $pb_n = 0$ in $E_{\infty}^{*,*}$ in the spectral sequence of $BP^{*}(K)$ implies that there is a relation

$$p\tilde{b}_n + \cdots = 0.$$

The element a with $Q_0 a = b_n$ is uniquely determined by c_n . From Theorem 4.7, we have the relations (1). This fact also follows (1) and (2) generate relations.

Operate the Quillen operation $r_{pd_{i-1}}$ on $v_1\tilde{b}_1 + v_2\tilde{b}_2 + \cdots = 0$. The fact $r_{pd_{i-1}}v_j = v_1$ if i=j and $=0 \mod (p, \cdots)^2$ if $i \neq j$, implies the formula (3). q.e.d.

Theorem 4.9. Let $x \in H^3(X; Z)$. Then for mod p reduction \bar{x} , $Q_i(\bar{x}) \in \text{Image } \rho(BP^*(X) \to HZ_p^*(X))$ and $\sum_{i \ge 1} v_i \tilde{b}_i = 0$ with $\rho(\tilde{b}_i) = Q_i(\bar{x})$. Moreover if $p \ge 3$, there are relations (1)–(3) in Proposition 4.8.

§ 5. Finite H-spaces

In this section we always assume X to be a simply connected finite associative H-space.

Consider the case $p \ge 3$. Assume that $Q^{2n} \ne 0$ for at most two *n*'s where $Q^* = HZ_p^*(X)/HZ_p^+(X) \cdot HZ_p^+(X)$. (All known examples hold the above fact.) Then Kane's theorem says [1]

$$|Q^{\text{even}}| = (2p+2)$$
 or $(2p+2, 2p^2+2)$

and for each $b_1 \in Q^{2p+2}$ (resp. $b_2 \in Q^{2p^2+2}$) there are $b_2 \in Q^{2p^2+2}$ (resp. $b_1 \in Q^{2p+1}$) and $x \in Q^3$ such that $Q_1x = b_1$ and $Q_2x = b_2$. Therefore we have the following theorem from Theorem 4.9.

Theorem 5.1. If $p \ge 3$ and $Q^{2n} \ne 0$ for at most two n's, then $Q^{\text{even}} \subset$ Image $\rho(BP^*(X) \rightarrow Q^*)$ and for each $b_1 \in Q^{2p+2}$ there are \tilde{b}_1 and $\tilde{b}_2 \in BP^*(X)$ such that $v_1\tilde{b}_1 + v_2\tilde{b}_2 = 0$, moreover $\tilde{b}_2 = -r_{pd_1}\tilde{b}_1$ modulo $(p, \cdots)^2 \cup F_{2(p^5+p^4)}$.

When p=2, we consider elements in $Q^{2^{n+1}}$. By Lin [2] $Q^{2^{n+1}}=Sq^{2^{n-1}}Q^{2^{n-1}+1}$. Then it is easily seen $(Q^{2^{n+1}})^2=Q_{n-1}Q^3$. We also have the following theorem from Theorem 4.9.

Theorem 5.2. For p = 2,

$$(Q^{2^{n+1}})^2 \subset \operatorname{Image} \rho(BP^*(X) \longrightarrow HZ_2^*(X)/HZ_2^*(X)^3)$$

and for each $x \in Q^3$ there are \tilde{b}_i such that $\sum v_i \tilde{b}_i = 0$ and $\rho(\tilde{b}_i) \in (Q^{2^{i+1}})^2$.

342

As an example we consider the exceptional Lie group E_8 . The mod 3 cohomology is

$$HZ_{3}^{*}(E_{8}) \cong Z_{3}[x_{8}, x_{20}]/(x_{8}^{3}, x_{20}^{3}) \otimes \Lambda(x_{3}, \cdots).$$

Hence there are \tilde{b}_1 , \tilde{b}_2 in $BP^*(E_8)$ such that $\rho(\tilde{b}_1) = x_8$, $\rho(\tilde{b}_2) = x_{20}$

$$v_1\tilde{b}_1+v_2\tilde{b}_2=0, \quad r_{pd_1}(\tilde{b}_1)=-\tilde{b}_2 \mod (p, \cdots)^2.$$

The mod 2 cohomology of E_8 is

$$HZ_{2}^{*}(E_{8}) \cong Z_{2}[x_{3}, x_{5}, x_{9}, x_{15}]/(x_{3}^{16}, x_{5}^{8}, x_{9}^{4}, x_{15}^{4}) \otimes A(x_{17}, \cdots).$$

Then there are \tilde{b}_i , $1 \leq i \leq 3$ such that

$$v_1\tilde{b}_1 + v_2\tilde{b}_2 + v_3\tilde{b}_3 = 0 \mod (v_4, v_5, \cdots)$$

with $\rho(\tilde{b}_1) = x_3^2$, $\rho(\tilde{b}_2) = x_5^2$, $\rho(\tilde{b}_3) = x_9^2$.

By Using Theorem 4.9 and arguments similar to [10], we can prove the following theorem. (While $P(n)^*(X)$, $K(n)^*(X)$ have not good commutative product, we use the associated graded algebras filtered by F_s , which have good product.)

Theorem 5.3. There are BP^* -module isomorphisms for p=2

(1) $BP^*(G_2) \cong BP^*\{1, 2x_3, x_3^3x_5\} \oplus BP^*\{x_3^3, x_3^2x_5\}/(2x_3^3 + v_1x_3^2x_5) \oplus BP^*/(2, v_1)\{x_3^2\}.$

(2)
$$BP^*(F_4) \cong BP^*(G_2) \otimes \Lambda(x_{15}, x_{23}),$$

(3) $BP^{*}(E_6) \cong BP^{*}(F_4) \otimes \Lambda(x_9, x_{17}).$

Proof. The cohomology of the exceptional Lie group G_2 is

$$HZ_2^*(G_2) \cong Z_2[x_3]/(x_3^4) \otimes \Lambda(x_5).$$

Using the Atiyah-Hirzebruch spectral sequence, we can prove the theorem. q.e.d.

References

- [1] R. Kane, *BP*-torsion in finite *H*-spaces, Trans. Amer. Math. Soc., **264** (1981), 473–497.
- J. Lin, On the Hopf algebra structure of the mod 2 cohomology of a finite H-space, Publ. RIMS Kyoto Univ., 20 (1984), 877-892.
- [3] D. Ravenel and S. Wilson, The Morava K-theories of Eilenberg MacLane spaces and the Conner-Floyd conjecture, Amer. J. Math., 102 (1980), 697-748.
- [4] H. Tamanoi, On BP $(K(\pi, n))$ and its image in $HZ_p(K(\pi, n))$ for $\pi = \mathbb{Z}$ and \mathbb{Z}_p , preprint 1983.

- [5] S. Wilson, The Ω-spectrum for Brown-Peterson cohomology II, Amer. J. Math., 97 (1975), 101-123.
- [6] U. Würgler, Cobordism the theories of unitary manifolds with singularities and formal group laws, Math. Z., **150** (1976), 239-260.
- [7] —, On a class of 2-periodic cohomology theories, Math. Ann., **267** (1984), 251–269.
- [8] N. Yagita, On the algebraic structure of cobordism operations with singularities, J. London Math. Soc., 16 (1977), 131-141.
- [9] —, On the Steenrod algebra of Morava K-theory, J. London Math. Soc., 22 (1980), 423–438.
- [10] —, Brown-Peterson cohomology groups of exceptional Lie groups, J. Pure App. Algebra, 17 (1980), 223-226.
- [11] —, On relations between Brown-Peterson cohomology and the ordinary mod p cohomology theory, Kodai Math. J., 7 (1984), 273-285.

Department of Mathematics Musashi Institute of Technology Tamazutsumi Setagaya Tokyo, 158 Japan