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On the Image p(BP*(X)-+H*(X; Zp» 

Nobuaki Yagita 

In this paper we study ways to calculate the Brown-Peterson coho­
mology BP *(X) localized at a prime p when the Steenrod algebra action 
on the ordinary modp cohomology H*(X; Zp)=HZ;(X) is known. One 
of the most difficult problems is to know which elements in H*(X)(p) 
are permanent cycles 'in the Atiyah-Hirzebruch spectral sequence 
H*(X; BP*)=?BP*(X). This is equivalent to know the image p: BP*(X) 
-+H*(X)(p) where p is the Thorn map. 

Cohomology operations on HZ;(X) give some informations about 
the image. For example if Qnx::;t:O in HZ;(X), then x is not in Image 
p(BP*(X)-+HZ;(X», where Qn is the Milnor primitive operation. We 
study the above facts in more general situation. 

Let: p: h-+k be a map of spectra. In Section 1, we note the impor­
tance of Image p(h*(k)-+k*(k» = p(h, k), indeed, if an operation 0 is in 
p(h, k), then for each x E k*(X), Ox E Image p(h*(X)-+k*(X». The 
image p(P(n), P(rn» and p(k(n), HZp) are studied in Section 2. Since 
p(PB, HZp) =0, we consider K(Z, n) or K(Zn' n) as k instead of HZp in 
Section 3. Here we introduce the Tamanoi's results. In Section 4, 
p(BP, K(Z, 3» and BP*(K(Z,3» are studied. Applications for finite 
H-spaces are given in Section 5. For example, in the case p=2, let X be 
a simply connected finite associative H-space and let Q* be the indecom­
posable elements in HZ;(X). Then 

The author thanks to the referee who pointed out this proof of Pro­
position 2.4 and corrected many errors in the first version. 

§ 1. Maps of cohomology theories 

Let p: h-+k be a map of spectra and let k={kn} be the Q-spectrum, 
i.e., kn(x):::::[x, k nl. For simplicity of notations, let us write Image p(h*(k) 
-+k*(k» (resp. Image p(h(kn)-+k(kn))) by p(h, k) (resp. p(h, k n». 

Received January 18, 1985. 



336 N. Yagita 

Lemma 1.1. If {} E p(h, k) (resp. {} E p(h, k n», then for x E k*(X) (resp. 
x E kn(X», (}x E Image p(h*(X)---+k*(X». 

Proof Each element x E kn(x) is represented by a map x: X ---+kn. 
Since {} E p(h, k n) = Image p(h*(kn)---+k*(kn», there is a map i: kn---+h such 
that pi={}. Hence (}x=pix. q.e.d. 

It is immediate from the above lemma that if {} E p(h, k), then p(h, k) 
-::JIm (}={}k*(k) but in general, p(h, k)j5k*(k)e. 

Lemma 1.2. If {} E p*-Iph*(h) and x E Image p(h*(X)---+k*(X», then 
{}x is also contained in the Image p. 

Proof Let p*{}=piJ and px=x. 
commutative and we have (}x=piJx. 

Then the following diagram is 
q.e.d. 

Corollary 1.3. If {} E p(h, k), then p(h, k) -::J {}k * (k) U (p* -I ph(h»)e. 

§ 2. BP-module spectra 

Let BP be the Brown-Peterson spectrum with the coefficient BP*= 
Z(P)[UlO ... ]. Let k be a complex oriented ring spectrum such that k* is 
a Z(p)-module. Then from the universal property of BP, there is a map 
of ring spectra Pk: BP---+k. Moreover if p is an odd prime number and 
k* is a BP*/(p, "', un_I)-module, then there is a map of BP-module 
spectra p': P(n)---+k with Pk=p'Pp(n)' Here pen) is the BP-module spec­
trum with the coefficient P(n)*=BP*j(p, "', Un-I) [6], [7]. 

Examples of k such that k*(k) are known are not so many, e.g., 
pen), ken) and P( 00) =HZp [6], [8], [9] 

(2.1) P(n)*(P(n»c::::.P(n)* ®BP.BP*(BP)®A(Qo, .. " Qn-l) 

(2.2) k(n)*(k(n» c::::. (k(n)*{sa I (Yi <pn}EBB')®A(Qo, .. " Qn-I) 

where B' is some k(n)*j(un)-module (for details see [9]). 

Lemma 2.3. Whenp>3, h=P(m) and k=P(n)for m<n~oo, 
(1) QsP=O for m~s 
(2) p*-lpP(m)*(P(m» =P(n)*(P(n» 
(3) p(P(m), Pen»~ = Qm' .. Qn_1P(n)*(P(n» = P(n)*(P(n»Qm ... Qn I' 



On the Image p(BP*(X)---"'H"'(X; Zp» 337 

Proof From the Sullivan exact sequence 

and from the fact po=Qm' we get QmP=O for k=P(m+ 1). From (2.1) 
it is easily seen Q.p=O for m<s <n and k=P(n). The formula (2) is 
proved by (1) and (2.1). 

We know (Theorem 3.12 in [8]) that aQm' .. Qn-I =(±)Qm' .. Qn_1a 
for a E P(n)*(P(n». From the definition of the operation Qi' 

Qm' .. Qn-I =pn-I' .. Pmom' . 'On_1 E p(P(m), pen»~. 

Therefore p(P(m), pen»~ contains the right hand side module in (3). For 
each element x not contained in the module (3), there is a with m;:;'s<n 
such that Q.x,*O. Hence the proof is completed. q.e.d. 

Next we consider the case h=k(n) and k=HZp' From the Sullivan 
exact sequence, Qn E p(k(n), HZp). Moreover we have the following pro­
position. 

Proof Consider the Atiyah-Hirzebruch spectral sequence H*(HZp; 
k(n) *) ='?k(n) * (HZp)' Since the first differential is given by d 2pn -1(x@1)= 
=Qnx@um we have E~'n*=Qnd'@k(n)*/(un) where d' is the Steenrod 
algebra of the ordinary modp cohomology. In particular, E~;[=O unless 
t = 0. Hence the spectral sequence collapes; E ~'n* = Eoo and the extension 
is trivial. Thus we obtain k(n)*(HZp)-:::::.Qnd' and the Thom map p: k(n)* 
(HZp)---,>-HZ;(HZp) maps to Qnd' because p coincides with the edge homo­
morphism of the Atiyah-Hirzebruch spectral sequence. q.e.d. 

Recall BP[m, n] be the BP-spectrum such that BP[m, n] =Zp[um, .. " 
un]. Then by the Sullivan exact sequence 

Qm' .. Qn E p(BP[m, n), HZp). 

Corollary 2.5. p(BP[m, n], HZp)=Im Qm' .. Qn. 

Proof From Proposition 2.4, 

n 

p(BP[m, n), HZp) = n 1m Qi' 
i=m 
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It is easily seen the right hand side of the above formula is 1m Qm' .. Qn 
in d. q.e.d. 

§ 3. The image p(BP, K(Z, n» 

From Lemma 2.3, we have p(BP, HZp) =0. Hence when k=BP 
and h=HZp, we need to consider the Q-spectrum, that is, k n is the 
Eilenberg MacLane space K(Zp, n) (or K(Z, n». Tamanoi decided 
p(BP, K(Zp, n» and p(BP, K(Z, n» for p~3 completely in [4] by using 
Wilson and Ravenel-Wilson results. 

Theorem 3.1 (S. Wilsonl5]). Fork<2(pn+ ... + p +l) 

BPk(X);::;.BP<n>k(X) X IT BPG>k+2(pj-l)(X) 
j;;;;n+l 

where BP <n> is the BP-spectrum with the coefficient BP <n> ;::;'Z(P)[Ul> ... , 
un]· 

Define 51';;( to be the set of sequences 

and dim s=2(1 + pS,+ . .. + pSn). 

Theorem 3.2 (Ravenel-Wilson [3]). For p~3 and n~3, there exist 
x" Ys with IXsl=IYsl=dim s such that 

(1) K(m)*(K(Z, n» ;::;.K(m)*[[xs Is E 51';;(_2]] 

(2) K(m)*(K(Zp, n-l»;::;.K(m)*lYs Is E 51';;(_2]!(y¥m-3-'n -2). 

Theorem 3.3 (Tamanoi [4]). For p~3 and n~3, 

(1) p(BP, K(Z, n»=ZAQ;, Is E 51':_2] 

(2) p(BP, K(Zp, n -1» = Zp[QsQot Is E 51':_2] 

where 1:, t are the fundamental classes and Qs = QSn-2· .. Qs,for s E 51':_2. 

Since Tamanoi's proof is written in Japanese, we introduce its outline 
here. We prove only the case X =K(Z, n) and the other case is proved 
by the similar methods. 

Outline of the proof of Theorem 3.3. It follows that {Qs1: Is E 51':_2} 
generates a polynomial algebra by some computation of the Steenrod 
algebra on a product of Lens spaces. 

By the inductive definition of Qn, we can show 
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where f!J1. is expressed by a sum of reduced powers. From the Sullivan 
exact sequence, we get x=Qn_z·· ·QI't" E p(BP<n-2), K(Z, n» and let 
p(:x)=x. The dimension of x is just 2p n-2+ ... + 2p+2. Wilson's 
theorem says :x E Image p(BP*(X)-+BP<n-2)*(X). Therefore x=p(:X) 
E p(BP, K(Z, n». Since p*-lp(BP*(BP»=d for p: BP-+HZp, we get 

Qs't" E p(BP, K(Z, n». 
For m>n, consider the diagram 

BP*(X) P2 

. lPl ~ k(m)*(X)~K(m)*(X) .. 
HZ;(X) PI 

Here recall lpz(rsx)=x. where r. E BP*(BP) is the operation such that 
p/r.)=f!J1.. From Ravenel-Wilson theorem, for a given WE BP*(X) we 
can take la, v:;' such that 

y=W-L: lav:;,(r.x)a and lply)=O, 
8,a 

where (r.x)a are mononials in Z[r.x]. Hence v;;plY) =0 for some large 
K and so v;;-Iply) is vm-torsion. But non zero element of dimension 
<2(pm -1) is vm-torsion free. Indeed, from the Sullivan exact sequence, 
if there exists an element of dimension t as above, then there is a non zero 
element in Hzt-zpm+I(X). Take m to be larger than dim s. Then pz(y) 
=0 and 

q.e.d. 

Corollary 3.4. Let p>3 and BP(S) he the spectrum of the coefficient 
BP*/(S) where S=(aj> ... , am), at E BP*. Then 

(1) {3(BP(S), K(Z, n»=p(BP, K(Z, n», 

(2) p(BP(S), K(Zp, n»=p(PB, K(Zp, n». 

§ 4. BP*(K(Z, 3» and its application 

In this section we consider the case K=K(Z, 3) more carefully and 
consider also the case p = 2. The mod p cohomology of K is well known 

(4.1) A = HZ; (K(Z, 3»2::Zp[hj> h2' .. ·]0A(co, cl , ••• ) 

where cn=f!J1pn-, ... f!J1't", ocn=hm (n~l) and JcnJ=2pn+1. For p=2, 
A2::Zp[co, ... ] where cn=Sq2n ... Sq2't", Co='t". Let ocn=bn. Then bn= 
C!_I and in order to avoid separating cases, we think (4.1) is the isomor-

, 
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phism of associated graded algebras filtered by the polynomial algebra of 
bi' Moreover for p=2, let Qm=SqJm be the Milnor basis. 

for n>m>O. 

Proof See Lemma 3.4.1 in [11]. The similar arguments prove the 
lemma for p=2. q.e.d. 

Lemma 4.3. Ker Qm in A is isomorphic to 

m 
Zp[bl> .•. ]. (1m QmEB ® A(cm+n -b~:m-pm-ncm_n)(?9A(cm))' 

n=l 

Proof The algebra A is a tensor product of subalgebras 

Zp[bn]®A(cm+n) 

Zp[bn]®A(cm+n> cm_n) 

if n>m 

if n~m 

and A(cm). Here each subalgebra is closed under the action of Qm,' The 
cohomology of the above subalgebras of the differential Qm are 

Zp[bn]/(b~m), 

Zp[bn]/(b~m-n)®A(cm+n _bpm - pm-n Cm_ n) 

and A(cm). Therefore H(A; Qm) is the tensor product of the above coho­
mology. The lemma is proved from the fact Ker Qm=lm QmEBH(A; Qm). 

q.e.d. 

For each cohomology theory h, let F.=Ker (h*(X)~h*(Xs-1)) where 
X' is an s-dimensional skeleton of X. We give h*(X) the topology by 
this filtration F •. 

Corollary 4.4. k(n)*(K)/F2pn_2 is generated by bl> "', bn_t as a 
k(n)*-algebra. In particular p(BP, K)=Zp[b l , ••• ]. 

Proof Consider the Atiyah-Hirzebruch spectral sequence of 
k(n)*(K). The first non zero differential is d2pn_1 =vn®Qn' 

From Lemma 4.3 and from the fact b/s are permanent cycles, we have 
the first assertion. Since p(BP, K)C nn p(k(n), K), the second assertion is 
also proved, by using Wilson's theorem. q.e.d. 
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Proposition 4.5. For p'2.3, as a BP-algebra, Bp4*(K)/F2p5+2P' is 
generated by b10 •• " b5 with p(bi)=bi. 

Proof Let B=Z[b1O ••• ]. Then note that (BP*0B)i=O if i$O 
mod 4. If P(I)*(K)/Fis generated by B as a P(1)*-module, then for each 
BP*-modu1e generator x E BP*(K), we can take bE BP*0B so that 
x-b E pBP*(K). Therefore we can take b for x. Hence we need only 
prove the above proposition for P(1)*(K). 

Assume O*ax E Ei:'* is a permanent cycle for a E P(I)*, x E HZ~*(K) 

in the Atiyah-Hirzebruch spectral sequence of P(1)*(K). The first non 
zero differential is d2p _I = vI0QI' Hence from Lemma 4.3, 

Since ICi 1=2pi+ 1 and Ixl=4n, we have x E 1m QI and so O*a E P(1)*/vl 
P(2)*. 

Next compare spectral sequences of P(I)*(K) and P(2)*(K). Let 
p: P(1)---+P(2) be the natural map. Then d2p2_IP(ax)=av20Q2x. The 
facts that ax is permanent and O*a E P(2)*, implies Q2X=O. 

A 4m-dimensional element which is of the lowest dimensional in 
Image QI and is not in B is 

QI(COCIC2C3C4)' 

But this element is not in Ker Q2' It is necessary 

Ixl~1 Q/COCIC2C4C5) I 
for x E Ker Q2 and Ixl=4n. q.e.d. 

Question 4.6. As a BP*-a1gebra BP*(K) is generated by bl , b2, ... ? 

We recall the main lemma in [11], which is also proved by Tamanoi 
using only stable homotopy theories. 

Theorem 4.7. Let ~ vjbj=O in BP*(X). Then there is y E HZ;(X) 
such that QlY)=p(bj). 

Remark. The above theorem is valid also for p=2. 

Proposition 4.8. The relations in BP4*(K)/F2p5+2P' are given by 
"" n-l ,..,. ..... 

(1) pbn + ~ vib~~i + ~ vn+ibr mod (p, VI' ... y, 
i=1 i=1 

(2) relations in (p, v10 ••• )2. 
Moreover we have 

(3) bi=-rpdi_lblmod(p, ... y. 
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Proof. Since Ker p(BP4*(K)---*HZ~*(K»/F2(p5+p.) = Ideal (p, VI> ... ), 
thatphn:=O in E;:* in the spectral sequence of BP*(K) implies that there 
is a relation 

The element a with QcP=hn is uniquely determined by cn. From Theorem 
4.7, we have the relations (1). This fact also follows (1) and (2) generate 
relations. 

Operate the Quillen operation rp4t _ 1 on vlhl +v2h2+· .. =0. The fact 
rp4t_lvj=vl ifi=j and =0 mod (p, ... )2 if i*j, implies the formula (3). 

q.e.d. 

Theorem 4.9. Let x e H 3(X; Z). Then for mod p reduction x, QtC.x) 
e Image p(BP*(X)---*HZ:(X» and L:i~1 vihi=O with p(hi)= Qi(X), More­
over ijp>3, there are relations (1)-(3) in Proposition 4.8. 

§ S. Finite H--spaces 

In this section we always assume X to be a simply connected finite 
associative H-space. 

Consider the case p~3. Assume that Q2n*0 for at most two n's 
where Q*=HZ:(X)/HZ;(X).HZ;(X). (All known examples hold the 
above fact.) Then Kane's theorem says [1] 

and for each hI e Q2p+2 (resp. h2 e Q2p2 +2) there are h2 e Q2P'+2 (resp. hI e 
Q2P+I) and x e Q3 such that Q,x=h, and Q2x=h2. Therefore we have 
the following theorem from Theorem 4.9. 

Theorem 5.1. If p>3 and Q2n*0 for at most two n's, then Qevenc 
Image p(BP*(X)---*Q*) andfor each hI e Q2p+2 there are hi and h2 e BP*(X) 
such that VJI + v2h2 = 0, moreover h2 = - r P4,b1 modulo (p, ... )2 U F2(p' + p9' 

When p=2, we consider elements in Q2n+l. By Lin [2] Q2Hl= 
Sq2n-1Q2n-l+l. Then it is easily seen (Q2n+I)2=Qn_IQ3. We also have the 
following theorem from Theorem 4.9. 

Theorem 5.2. For p = 2, 

(Q2n+I)2cImage p(BP*(X)---+HZ;(X)/HZ;-(X)3) 

andfor each x e Q3 there are hi such that L: vibi=O and p(hi) e (Q2'+I)2. 
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As an example we consider the exceptional Lie group Es. The mod 3 
cohomology is 

HZtCEs) =: Za[xs, xzo]/(x~, x~o)0A(X3' ... ). 

Hence there are bl> bz in BP * (Es) such that p(bl) = xs, p(bz) = Xzo 

vlbl +vzbz=O, rpJ,(bl) = -bz mod (p, ... )2. 

The mod 2 cohomology of Es is 

Then there are bi' I:::;: i ~ 3 such that 

with p(bl)=x;, p(bz)=x;, p(bJ=x~. 
By Using Theorem 4.9 and arguments similar to [10], we can prove 

the following theorem. (While P(n)*(X), K(n)*(X) have not good com­
mutative product, we use the associated graded algebras filtered by F" 
which have good product.) 

Theorem 5.3. There are BP *-module isomorphisms for p = 2 

(1) BP*(G2)=:BP*{1, 2xa, x~x5}EBBP*{x~, x;x5}/(2x~+VIX~X5) 

EBBP*/(2, vl){xn. 

(2) BP * (F4) =: BP *( G2)0A(XI5 , XZ3), 

(3) BP*(Ee)=:BP*(F4)0A(x9, x 17). 

Proof The cohomology of the exceptional Lie group Gz is 

Using the Atiyah-Hirzebruch spectral sequence, we can prove the theorem. 
q.e.d. 
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