Advanced Studies in Pure Mathematics 9, 1986 Homotopy Theory and Related Topics
pp. 335-344.

On the Image $\rho\left(B P^{*}(X) \rightarrow H^{*}\left(X ; Z_{p}\right)\right)$

Nobuaki Yagita

In this paper we study ways to calculate the Brown-Peterson cohomology $B P^{*}(X)$ localized at a prime p when the Steenrod algebra action on the ordinary $\bmod p$ cohomology $H^{*}\left(X ; Z_{p}\right)=H Z_{p}^{*}(X)$ is known. One of the most difficult problems is to know which elements in $H^{*}(X)_{(p)}$ are permanent cycles in the Atiyah-Hirzebruch spectral sequence $H^{*}\left(X ; B P^{*}\right) \Rightarrow B P^{*}(X)$. This is equivalent to know the image $\rho: B P^{*}(X)$ $\rightarrow H^{*}(X)_{(p)}$ where ρ is the Thom map.

Cohomology operations on $H Z_{p}^{*}(X)$ give some informations about the image. For example if $Q_{n} x \neq 0$ in $H Z_{p}^{*}(X)$, then x is not in Image $\rho\left(B P^{*}(X) \rightarrow H Z_{p}^{*}(X)\right)$, where Q_{n} is the Milnor primitive operation. We study the above facts in more general situation.

Let: $\rho: h \rightarrow k$ be a map of spectra. In Section 1, we note the importance of Image $\rho\left(h^{*}(k) \rightarrow k^{*}(k)\right)=\rho(h, k)$, indeed, if an operation θ is in $\rho(h, k)$, then for each $x \in k^{*}(X), \theta x \in \operatorname{Image} \rho\left(h^{*}(X) \rightarrow k^{*}(X)\right)$. The image $\rho\left(P(n), P(m)\right.$) and $\rho\left(k(n), H Z_{p}\right)$ are studied in Section 2. Since $\rho\left(P B, H Z_{p}\right)=0$, we consider $K(Z, n)$ or $K\left(Z_{n}, n\right)$ as k instead of $H Z_{p}$ in Section 3. Here we introduce the Tamanoi's results. In Section 4, $\rho(B P, K(Z, 3))$ and $B P^{*}(K(Z, 3))$ are studied. Applications for finite H-spaces are given in Section 5. For example, in the case $p=2$, let X, be a simply connected finite associative H-space and let Q^{*} be the indecomposable elements in $H Z_{2}^{*}(X)$. Then

$$
\left(Q^{2 n+1}\right)^{2} \subset \text { Image } \rho\left(B P^{*}(X) \longrightarrow H Z_{2}^{*}(X) /\left(H Z_{2}^{+}(X)^{3}\right)\right) .
$$

The author thanks to the referee who pointed out this proof of Proposition 2.4 and corrected many errors in the first version.

§ 1. Maps of cohomology theories

Let $\rho: h \rightarrow k$ be a map of spectra and let $k=\left\{k_{n}\right\}$ be the Ω-spectrum, i.e., $k^{n}(X) \simeq\left[X, k_{n}\right]$. For simplicity of notations, let us write Image $\rho\left(h^{*}(k)\right.$ $\rightarrow k^{*}(k)$) (resp. Image $\rho\left(h\left(k_{n}\right) \rightarrow k\left(k_{n}\right)\right)$) by $\rho(h, k)$ (resp. $\rho\left(h, k_{n}\right)$).

[^0]Lemma 1.1. If $\theta \in \rho(h, k)\left(\right.$ resp. $\left.\theta \in \rho\left(h, k_{n}\right)\right)$, then for $x \in k^{*}(X)($ resp. $\left.x \in k^{n}(X)\right), \theta x \in$ Image $\rho\left(h^{*}(X) \rightarrow k^{*}(X)\right)$.

Proof. Each element $x \in k^{n}(X)$ is represented by a map $x: X \rightarrow k_{n}$. Since $\theta \in \rho\left(h, k_{n}\right)=$ Image $\rho\left(h^{*}\left(k_{n}\right) \rightarrow k^{*}\left(k_{n}\right)\right)$, there is a map $i: k_{n} \rightarrow h$ such that $\rho i=\theta$. Hence $\theta x=\rho i x$.
q.e.d.

It is immediate from the above lemma that if $\theta \in \rho(h, k)$, then $\rho(h, k)$ $\supset \operatorname{Im} \theta=\theta k^{*}(k)$ but in general, $\rho(h, k) \not \supset k^{*}(k) \theta$.

Lemma 1.2. If $\theta \in \rho^{*-1} \rho h^{*}(h)$ and $x \in \operatorname{Image} \rho\left(h^{*}(X) \rightarrow k^{*}(X)\right)$, then θx is also contained in the Image ρ.

Proof. Let $\rho^{*} \theta=\rho \tilde{\theta}$ and $\rho \tilde{x}=x$. Then the following diagram is commutative and we have $\theta x=\rho \tilde{\theta} \tilde{x}$.
q.e.d.

Corollary 1.3. If $\theta \in \rho(h, k)$, then $\rho(h, k) \supset \theta k^{*}(k) \cup\left(\rho^{*-1} \rho h(h)\right) \theta$.

§ 2. $B P$-module spectra

Let $B P$ be the Brown-Peterson spectrum with the coefficient $B P^{*}=$ $Z_{(p)}\left[v_{1}, \cdots\right]$. Let k be a complex oriented ring spectrum such that k^{*} is a $Z_{(p)}$-module. Then from the universal property of $B P$, there is a map of ring spectra $\rho_{k}: B P \rightarrow k$. Moreover if p is an odd prime number and k^{*} is a $B P^{*} /\left(p, \cdots, v_{n-1}\right)$-module, then there is a map of $B P$-module spectra $\rho^{\prime}: P(n) \rightarrow k$ with $\rho_{k}=\rho^{\prime} \rho_{P(n)}$. Here $P(n)$ is the $B P$-module spectrum with the coefficient $P(n)^{*}=B P^{*} /\left(p, \cdots, v_{n-1}\right)$ [6], [7].

Examples of k such that $k^{*}(k)$ are known are not so many, e.g., $P(n), k(n)$ and $P(\infty)=H Z_{p}$ [6], [8], [9]

$$
\begin{align*}
& P(n)^{*}(P(n)) \simeq P(n)^{*} \otimes_{B P^{*}} B P^{*}(B P) \otimes \Lambda\left(Q_{0}, \cdots, Q_{n-1}\right) \tag{2.1}\\
& k(n)^{*}(k(n)) \simeq\left(k(n)^{*}\left\{s_{\alpha} \mid \alpha_{i}<p^{n}\right\} \oplus B^{\prime}\right) \otimes \Lambda\left(Q_{0}, \cdots, Q_{n-1}\right) \tag{2.2}
\end{align*}
$$

where B^{\prime} is some $k(n)^{*} /\left(v_{n}\right)$-module (for details see [9]).
Lemma 2.3. When $p \geqq 3, h=P(m)$ and $k=P(n)$ for $m<n \leqq \infty$,
(1) $Q_{s} \rho=0$ for $m \leqq s$
(2) $\rho^{*-1} \rho P(m)^{*}(P(m))=P(n)^{*}(P(n))$
(3) $\rho(P(m), P(n))=Q_{m} \cdots Q_{n-1} P(n)^{*}(P(n))=P(n)^{*}(P(n)) Q_{m} \cdots Q_{n 1}$.

Proof. From the Sullivan exact sequence

and from the fact $\rho \delta=Q_{m}$, we get $Q_{m} \rho=0$ for $k=P(m+1)$. From (2.1) it is easily seen $Q_{s} \rho=0$ for $m \leqq s<n$ and $k=P(n)$. The formula (2) is proved by (1) and (2.1).

We know (Theorem 3.12 in [8]) that $a Q_{m} \cdots Q_{n-1}=(\pm) Q_{m} \cdots Q_{n-1} a$ for $a \in P(n)^{*}(P(n))$. From the definition of the operation Q_{i},

$$
Q_{m} \cdots Q_{n-1}=\rho_{n-1} \cdots \rho_{m} \delta_{m} \cdots \delta_{n-1} \in \rho(P(m), P(n))
$$

Therefore $\rho(P(m), P(n))$ contains the right hand side module in (3). For each element x not contained in the module (3), there is a with $m \leqq s<n$ such that $Q_{s} x \neq 0$. Hence the proof is completed.
q.e.d.

Next we consider the case $h=k(n)$ and $k=H Z_{p}$. From the Sullivan exact sequence, $Q_{n} \in \rho\left(k(n), H Z_{p}\right)$. Moreover we have the following proposition.

Proposition 2.4. For $p \geqq 3, \rho\left(k(n), H Z_{p}\right)=\operatorname{Im} Q_{n}=Q_{n} H Z_{p}^{*}\left(H Z_{p}\right)$.
Proof. Consider the Atiyah-Hirzebruch spectral sequence $H^{*}\left(H Z_{p}\right.$; $\left.k(n)^{*}\right) \Rightarrow k(n)^{*}\left(H Z_{p}\right)$. Since the first differential is given by $d^{2 p^{n-1}}(x \otimes 1)=$ $=Q_{n} x \otimes v_{n}$, we have $E_{2 p n}^{*, *}=Q_{n} \mathscr{A} \otimes k(n)^{*} /\left(v_{n}\right)$ where \mathscr{A} is the Steenrod algebra of the ordinary $\bmod p$ cohomology. In particular, $E_{2 p^{n}}^{*, t}=0$ unless $t=0$. Hence the spectral sequence collapes; $E_{2 p n}^{*}{ }^{*} *=E_{\infty}$ and the extension is trivial. Thus we obtain $k(n)^{*}\left(H Z_{p}\right) \simeq Q_{n} \mathscr{A}$ and the Thom map $\rho: k(n)^{*}$ $\left(H Z_{p}\right) \rightarrow H Z_{p}^{*}\left(H Z_{p}\right)$ maps to $Q_{n} \mathscr{A}$ because ρ coincides with the edge homomorphism of the Atiyah-Hirzebruch spectral sequence. q.e.d.

Recall $B P[m, n]$ be the $B P$-spectrum such that $B P[m, n]=Z_{p}\left[v_{m}, \cdots\right.$, v_{n}]. Then by the Sullivan exact sequence

$$
Q_{m} \cdots Q_{n} \in \rho\left(B P[m, n], H Z_{p}\right)
$$

Corollary 2.5. $\rho\left(B P[m, n], H Z_{p}\right)=\operatorname{Im} Q_{m} \cdots Q_{n}$.
Proof. From Proposition 2.4,

$$
\rho\left(B P[m, n], H Z_{p}\right)=\bigcap_{i=m}^{n} \operatorname{Im} Q_{i} .
$$

It is easily seen the right hand side of the above formula is $\operatorname{Im} Q_{m} \cdots Q_{n}$ in \mathscr{A}. q.e.d.

§ 3. The image $\rho(B P, K(Z, n))$

From Lemma 2.3, we have $\rho\left(B P, H Z_{p}\right)=0$. Hence when $k=B P$ and $h=H Z_{p}$, we need to consider the Ω-spectrum, that is, k_{n} is the Eilenberg MacLane space $K\left(Z_{p}, n\right)$ (or $K(Z, n)$). Tamanoi decided $\rho\left(B P, K\left(Z_{p}, n\right)\right)$ and $\rho(B P, K(Z, n))$ for $p \geqq 3$ completely in [4] by using Wilson and Ravenel-Wilson results.

Theorem 3.1 (S. Wilson [5]). For $k \leqq 2\left(p^{n}+\cdots+p+1\right)$

$$
B P^{k}(X) \cong B P\langle n\rangle^{k}(X) \times \prod_{j \geqq n+1} B P\langle j\rangle^{k+2\left(p^{j-1}\right)}(X)
$$

where $B P\langle n\rangle$ is the $B P$-spectrum with the coefficient $B P\langle n\rangle \cong Z_{(p)}\left[v_{1}, \cdots\right.$, v_{n}].

Define \mathscr{S}_{n}^{m} to be the set of sequences

$$
s=\left\{\left(s_{1}, \cdots, s_{n}\right) \mid 0<s_{1}<s_{2} \cdots<s_{n}<m, s_{i} \in Z\right\}
$$

and $\operatorname{dim} s=2\left(1+p^{s_{1}}+\cdots+p^{s_{n}}\right)$.
Theorem 3.2 (Ravenel-Wilson [3]). For $p \geqq 3$ and $n \geqq 3$, there exist x_{s}, y_{s} with $\left|x_{s}\right|=\left|y_{s}\right|=\operatorname{dim} s$ such that
(1) $K(m) *(K(Z, n)) \cong K(m) *\left[\left[x_{s} \mid s \in \mathscr{S}_{n-2}^{m}\right]\right]$
(2) $K(m)^{*}\left(K\left(Z_{p}, n-1\right)\right) \cong K(m)^{*}\left[y_{s} \mid s \in \mathscr{S}_{n-2}^{m}\right] /\left(y_{s}^{p^{m-3-s_{n-2}}}\right)$.

Theorem 3.3 (Tamanoi [4]). For $p \geqq 3$ and $n \geqq 3$,
(1) $\rho(B P, K(Z, n))=Z_{p}\left[Q_{s} \tau \mid s \in \mathscr{S}_{n-2}^{\infty}\right]$
(2) $\rho\left(B P, K\left(Z_{p}, n-1\right)\right)=Z_{p}\left[Q_{s} Q_{0} \subset \mid s \in \mathscr{S}_{n-2}^{\infty}\right]$
where τ, ८ are the fundamental classes and $Q_{s}=Q_{s_{n-2}} \cdots Q_{s_{1}}$ for $s \in \mathscr{S}_{n-2}^{\infty}$.
Since Tamanoi's proof is written in Japanese, we introduce its outline here. We prove only the case $X=K(Z, n)$ and the other case is proved by the similar methods.

Outline of the proof of Theorem 3.3. It follows that $\left\{Q_{s} \tau \mid s \in \mathscr{S}_{n-2}^{\infty}\right\}$ generates a polynomial algebra by some computation of the Steenrod algebra on a product of Lens spaces.

By the inductive definition of Q_{n}, we can show

$$
Q_{s} \tau=\mathscr{P}_{s} Q_{n-2} \cdots Q_{1} \tau
$$

where \mathscr{P}_{s} is expressed by a sum of reduced powers. From the Sullivan exact sequence, we get $x=Q_{n-2} \cdots Q_{1} \tau \in \rho(B P\langle n-2\rangle, K(Z, n))$ and let $\rho(\bar{x})=x$. The dimension of x is just $2 p^{n-2}+\cdots+2 p+2$. Wilson's theorem says $\bar{x} \in$ Image $\rho\left(B P^{*}(X) \rightarrow B P\langle n-2\rangle^{*}(X)\right)$. Therefore $x=\rho(\bar{x})$ $\in \rho(B P, K(Z, n))$. Since $\rho^{*-1} \rho\left(B P^{*}(B P)\right)=\mathscr{A}$ for $\rho: B P \rightarrow H Z_{p}$, we get $Q_{s} \tau \in \rho(B P, K(Z, n))$.

For $m>n$, consider the diagram

Here recall $l \rho_{2}\left(r_{s} x\right)=x_{s}$ where $r_{s} \in B P^{*}(B P)$ is the operation such that $\rho_{1}\left(r_{s}\right)=\mathscr{P}_{s}$. From Ravenel-Wilson theorem, for a given $w \in B P^{*}(X)$ we can take $\lambda^{\alpha}, v_{m}^{\alpha}$ such that

$$
y=w-\sum_{s, \alpha} \lambda^{\alpha} v_{m}^{\alpha}\left(r_{s} x\right)^{\alpha} \quad \text { and } \quad l \rho_{2}(y)=0
$$

where $\left(r_{s} x\right)^{\alpha}$ are mononials in $Z\left[r_{s} x\right]$. Hence $v_{m}^{K} \rho_{2}(y)=0$ for some large K and so $v_{m}^{K-1} \rho_{2}(y)$ is v_{m}-torsion. But non zero element of dimension $<2\left(p^{m}-1\right)$ is v_{m}-torsion free. Indeed, from the Sullivan exact sequence, if there exists an element of dimension t as above, then there is a non zero element in $H Z_{p}^{t-2 p^{m+1}}(X)$. Take m to be larger than $\operatorname{dim} s$. Then $\rho_{2}(y)$ $=0$ and

$$
\rho_{1}(w)=\rho_{1}\left(\sum_{s, \alpha} \lambda^{\alpha} v_{m}^{\alpha}\left(r_{s} x\right)^{\alpha}\right)=\sum_{s, v_{m}^{\alpha}=1} \lambda^{\alpha}\left(Q_{s} \tau\right)^{\alpha} . \quad \text { q.e.d. }
$$

Corollary 3.4. Let $p \geqq 3$ and $B P(S)$ be the spectrum of the coefficient $B P^{*} /(S)$ where $S=\left(a_{1}, \cdots, a_{m}\right), a_{i} \in B P^{*}$. Then
(1) $\beta(B P(S), K(Z, n))=\rho(B P, K(Z, n))$,
(2) $\rho\left(B P(S), K\left(Z_{p}, n\right)\right)=\rho\left(P B, K\left(Z_{p}, n\right)\right)$.

\S 4. $\quad B P^{*}(K(Z, 3))$ and its application

In this section we consider the case $K=K(Z, 3)$ more carefully and consider also the case $p=2$. The $\bmod p$ cohomology of K is well known

$$
\begin{equation*}
A=H Z_{p}^{*}(K(Z, 3)) \cong Z_{p}\left[b_{1}, b_{2}, \cdots\right] \otimes \Lambda\left(c_{0}, c_{1}, \cdots\right) \tag{4.1}
\end{equation*}
$$

where $c_{n}=\mathscr{P}^{p^{n-1}} \cdots \mathscr{P} \tau, \delta c_{n}=b_{n},(n \geqq 1)$ and $\left|c_{n}\right|=2 p^{n}+1$. For $p=2$, $A \cong Z_{p}\left[c_{0}, \cdots\right]$ where $c_{n}=S q^{2 n} \cdots S q^{2} \tau, c_{0}=\tau$. Let $\delta c_{n}=b_{n}$. Then $b_{n}=$ c_{n-1}^{2} and in order to avoid separating cases, we think (4.1) is the isomor-
phism of associated graded algebras filtered by the polynomial algebra of b_{i}. Moreover for $p=2$, let $Q_{m}=S q^{a_{m}}$ be the Milnor basis.

Lemma 4.2. In $H Z_{p}^{*}(K), Q_{m} b_{n}=0$ and $Q_{m} c_{m}=0$,

$$
Q_{m} c_{n}=Q_{n} c_{m}=\left(b_{n-m}\right)^{p^{m}} \quad \text { for } n>m>0
$$

Proof. See Lemma 3.4.1 in [11]. The similar arguments prove the lemma for $p=2$.
q.e.d.

Lemma 4.3. Ker Q_{m} in A is isomorphic to

$$
Z_{p}\left[b_{1}, \cdots\right] \cdot\left(\operatorname{Im} Q_{m} \oplus \bigotimes_{n=1}^{m} \Lambda\left(c_{m+n}-b_{n}^{p^{m}-p^{m-n}} c_{m-n}\right) \otimes \Lambda\left(c_{m}\right)\right)
$$

Proof. The algebra A is a tensor product of subalgebras

$$
\begin{array}{ll}
Z_{p}\left[b_{n}\right] \otimes \Lambda\left(c_{m+n}\right) & \text { if } n>m \\
Z_{p}\left[b_{n}\right] \otimes \Lambda\left(c_{m+n}, c_{m-n}\right) & \text { if } n \leqq m
\end{array}
$$

and $\Lambda\left(c_{m}\right)$. Here each subalgebra is closed under the action of Q_{m}. The cohomology of the above subalgebras of the differential Q_{m} are

$$
\begin{aligned}
& Z_{p}\left[b_{n}\right] /\left(b_{n}^{p^{m}}\right), \\
& Z_{p}\left[b_{n}\right] /\left(b_{n}^{p^{m-n}}\right) \otimes \Lambda\left(c_{m+n}-b^{p^{m-p^{m-n}}} c_{m-n}\right)
\end{aligned}
$$

and $\Lambda\left(c_{m}\right)$. Therefore $H\left(A ; Q_{m}\right)$ is the tensor product of the above cohomology. The lemma is proved from the fact Ker $Q_{m}=\operatorname{Im} Q_{m} \oplus H\left(A ; Q_{m}\right)$.

> q.e.d.

For each cohomology theory h, let $F_{s}=\operatorname{Ker}\left(h^{*}(X) \rightarrow h^{*}\left(X^{s-1}\right)\right)$ where X^{s} is an s-dimensional skeleton of X. We give $h^{*}(X)$ the topology by this filtration F_{s}.

Corollary 4.4. $k(n)^{*}(K) / F_{2 p^{n}-2}$ is generated by b_{1}, \cdots, b_{n-1} as a $k(n)^{*}$-algebra. In particular $\rho(B P, K)=Z_{p}\left[b_{1}, \cdots\right]$.

Proof. Consider the Atiyah-Hirzebruch spectral sequence of $k(n)^{*}(K)$. The first non zero differential is $d_{2 p^{n}-1}=v_{n} \otimes Q_{n}$.

$$
E_{2 p^{n}}^{*} \simeq k(n)^{*} \otimes H\left(A ; Q_{n}\right) \oplus\left(k(n)^{*} / v_{n}\right) \otimes \operatorname{Im} Q_{n}
$$

From Lemma 4.3 and from the fact b_{i} 's are permanent cycles, we have the first assertion. Since $\rho(B P, K) \subset \bigcap_{n} \rho(k(n), K)$, the second assertion is also proved, by using Wilson's theorem.
q.e.d.

Proposition 4.5. For $p \geqq 3$, as a $B P$-algebra, $B P^{4 *}(K) / F_{2 p^{5}+2 p^{4}}$ is generated by $\tilde{b}_{1}, \cdots, \tilde{b}_{5}$ with $\rho\left(\tilde{b}_{i}\right)=b_{i}$.

Proof. Let $B=Z\left[b_{1}, \cdots\right]$. Then note that $\left(B P^{*} \otimes B\right)^{i}=0$ if $i \neq 0$ mod 4. If $P(1)^{*}(K) / F$ is generated by B as a $P(1)^{*}$-module, then for each $B P^{*}$-module generator $x \in B P^{*}(K)$, we can take $b \in B P^{*} \otimes B$ so that $x-b \in p B P^{*}(K)$. Therefore we can take b for x. Hence we need only prove the above proposition for $P(1)^{*}(K)$.

Assume $0 \neq a x \in E_{2}^{*, *}$ is a permanent cycle for $a \in P(1)^{*}, x \in H Z_{p}^{4 *}(K)$ in the Atiyah-Hirzebruch spectral sequence of $P(1)^{*}(K)$. The first non zero differential is $d_{2 p-1}=v_{1} \otimes Q_{1}$. Hence from Lemma 4.3,

$$
x \in \Lambda\left(c_{1}, c_{2}-b_{1}^{p-1} c_{0}\right) \otimes B \oplus \text { Image } Q_{1}
$$

Since $\left|c_{i}\right|=2 p^{i}+1$ and $|x|=4 n$, we have $x \in \operatorname{Im} Q_{1}$ and so $0 \neq a \in P(1)^{*} / v_{1}$ $P(2)$ *.

Next compare spectral sequences of $P(1)^{*}(K)$ and $P(2)^{*}(K)$. Let $\rho: P(1) \rightarrow P(2)$ be the natural map. Then $d_{2 p^{2}-1} \rho(a x)=a v_{2} \otimes Q_{2} x$. The facts that $a x$ is permanent and $0 \neq a \in P(2)^{*}$, implies $Q_{2} x=0$.

A $4 m$-dimensional element which is of the lowest dimensional in Image Q_{1} and is not in B is

$$
Q_{1}\left(c_{0} c_{1} c_{2} c_{3} c_{4}\right)
$$

But this element is not in Ker Q_{2}. It is necessary

$$
|x| \geqq\left|Q_{1}\left(c_{0} c_{1} c_{2} c_{4} c_{5}\right)\right|
$$

for $x \in \operatorname{Ker} Q_{2}$ and $|x|=4 n$.
Question 4.6. As a $B P^{*}$-algebra $B P^{*}(K)$ is generated by $\tilde{b}_{1}, \tilde{b}_{2}, \cdots$?
We recall the main lemma in [11], which is also proved by Tamanoi using only stable homotopy theories.

Theorem 4.7. Let $\sum v_{j} b_{j}=0$ in $B P^{*}(X)$. Then there is $y \in H Z_{p}^{*}(X)$ such that $Q_{j}(Y)=\rho\left(b_{j}\right)$.

Remark. The above theorem is valid also for $p=2$.
Proposition 4.8. The relations in $B P^{4 *}(K) / F_{2 p^{5}+2 p^{4}}$ are given by
(1) $p \tilde{b}_{n}+\sum_{i=1}^{n-1} v_{i} \tilde{b}_{n-i}^{p^{i}}+\sum_{i=1} v_{n+i} \tilde{b}_{i}^{p^{n}} \quad \bmod \left(p, v_{1}, \cdots\right)^{2}$,
(2) relations in $\left(p, v_{1}, \cdots\right)^{2}$.

Moreover we have
(3) $\quad \tilde{b}_{i}=-r_{p \Delta_{i-1}} \tilde{b}_{1} \bmod (p, \cdots)^{2}$.

Proof. Since $\operatorname{Ker} \rho\left(B P^{4 *}(K) \rightarrow H Z_{p}^{4 *}(K)\right) / F_{2\left(p^{5}+p^{4}\right)}=\operatorname{Ideal}\left(p, v_{1}, \cdots\right)$, that $p b_{n}=0$ in $E_{\infty}^{*, *}$ in the spectral sequence of $B P^{*}(K)$ implies that there is a relation

$$
p \tilde{b}_{n}+\cdots=0
$$

The element a with $Q_{0} a=b_{n}$ is uniquely determined by c_{n}. From Theorem 4.7, we have the relations (1). This fact also follows (1) and (2) generate relations.

Operate the Quillen operation $r_{p d_{i-1}}$ on $v_{1} \tilde{b}_{1}+v_{2} \tilde{b}_{2}+\cdots=0$. The fact $r_{p d_{i-1}} v_{j}=v_{1}$ if $i=j$ and $=0 \bmod (p, \cdots)^{2}$ if $i \neq j$, implies the formula (3). q.e.d.

Theorem 4.9. Let $x \in H^{3}(X ; Z)$. Then for $\bmod p$ reduction $\bar{x}, Q_{i}(\bar{x})$ $\in \operatorname{Image} \rho\left(B P^{*}(X) \rightarrow H Z_{p}^{*}(X)\right)$ and $\sum_{i \geqq 1} v_{i} \tilde{b}_{i}=0$ with $\rho\left(\tilde{b}_{i}\right)=Q_{i}(\bar{x})$. Moreover if $p \geqq 3$, there are relations (1)-(3) in Proposition 4.8.

§ 5. Finite H-spaces

In this section we always assume X to be a simply connected finite associative H-space.

Consider the case $p \geqq 3$. Assume that $Q^{2 n} \neq 0$ for at most two n 's where $Q^{*}=H Z_{p}^{*}(X) / H Z_{p}^{+}(X) \cdot H Z_{p}^{+}(X)$. (All known examples hold the above fact.) Then Kane's theorem says [1]

$$
\left|Q^{\text {even }}\right|=(2 p+2) \quad \text { or } \quad\left(2 p+2,2 p^{2}+2\right)
$$

and for each $b_{1} \in Q^{2 p+2}$ (resp. $b_{2} \in Q^{2 p^{2+2}}$) there are $b_{2} \in Q^{2 p^{2+2}}$ (resp. $b_{1} \in$ $Q^{2 p+1}$) and $x \in Q^{3}$ such that $Q_{1} x=b_{1}$ and $Q_{2} x=b_{2}$. Therefore we have the following theorem from Theorem 4.9.

Theorem 5.1. If $p \geqq 3$ and $Q^{2 n} \neq 0$ for at most two n 's, then $Q^{\text {eren }} \subset$ Image $\rho\left(B P^{*}(X) \rightarrow Q^{*}\right)$ and for each $b_{1} \in Q^{2 p+2}$ there are \tilde{b}_{1} and $\tilde{b}_{2} \in B P^{*}(X)$ such that $v_{1} \tilde{b}_{1}+v_{2} \tilde{b}_{2}=0$, moreover $\tilde{b}_{2}=-r_{p d_{1}} \tilde{b}_{1}$ modulo $(p, \cdots)^{2} \cup F_{2\left(p^{5}+p^{4}\right)}$.

When $p=2$, we consider elements in $Q^{2 n+1}$. By Lin [2] $Q^{2 n+1}=$ $S q^{2 n-1} Q^{2 n-1+1}$. Then it is easily seen $\left(Q^{2 n+1}\right)^{2}=Q_{n-1} Q^{3}$. We also have the following theorem from Theorem 4.9.

Theorem 5.2. For $p=2$,

$$
\left(Q^{2 n+1}\right)^{2} \subset \text { Image } \rho\left(B P^{*}(X) \longrightarrow H Z_{2}^{*}(X) / H Z_{2}^{+}(X)^{3}\right)
$$

and for each $x \in Q^{3}$ there are \tilde{b}_{i} such that $\sum v_{i} \tilde{b}_{i}=0$ and $\rho\left(\tilde{b}_{i}\right) \in\left(Q^{2 i+1}\right)^{2}$.

As an example we consider the exceptional Lie group E_{8}. The mod 3 cohomology is

$$
H Z_{3}^{*}\left(E_{8}\right) \cong Z_{3}\left[x_{8}, x_{20} / /\left(x_{8}^{3}, x_{20}^{3}\right) \otimes \Lambda\left(x_{3}, \cdots\right)\right.
$$

Hence there are $\tilde{b}_{1}, \tilde{b}_{2}$ in $B P^{*}\left(E_{8}\right)$ such that $\rho\left(\tilde{b}_{1}\right)=x_{8}, \rho\left(\tilde{b}_{2}\right)=x_{20}$

$$
v_{1} \tilde{b}_{1}+v_{2} \tilde{b}_{2}=0, \quad r_{p d_{1}}\left(\tilde{b}_{1}\right)=-\tilde{b}_{2} \bmod (p, \cdots)^{2} .
$$

The $\bmod 2$ cohomology of E_{8} is

$$
H Z_{2}^{*}\left(E_{8}\right) \cong Z_{2}\left[x_{3}, x_{5}, x_{9}, x_{15}\right] /\left(x_{3}^{18}, x_{5}^{8}, x_{9}^{4}, x_{15}^{4}\right) \otimes \Lambda\left(x_{17}, \cdots\right) .
$$

Then there are $\tilde{b}_{i}, 1 \leqq i \leqq 3$ such that

$$
v_{1} \tilde{b}_{1}+v_{2} \tilde{b}_{2}+v_{3} \tilde{b}_{3}=0 \bmod \left(v_{4}, v_{5}, \cdots\right)
$$

with $\rho\left(\tilde{b}_{1}\right)=x_{3}^{2}, \rho\left(\tilde{b}_{2}\right)=x_{5}^{2}, \rho\left(\tilde{b}_{3}\right)=x_{9}^{2}$.
By Using Theorem 4.9 and arguments similar to [10], we can prove the following theorem. (While $P(n)^{*}(X), K(n)^{*}(X)$ have not good commutative product, we use the associated graded algebras filtered by F_{s}, which have good product.)

Theorem 5.3. There are $B P^{*}$-module isomorphisms for $p=2$
(1) $B P^{*}\left(G_{2}\right) \cong B P^{*}\left\{1,2 x_{3}, x_{3}^{3} x_{5}\right\} \oplus B P^{*}\left\{x_{3}^{3}, x_{3}^{2} x_{5}\right\} /\left(2 x_{3}^{3}+v_{1} x_{3}^{2} x_{5}\right)$

$$
\oplus B P^{*} /\left(2, v_{1}\right)\left\{x_{3}^{2}\right\} .
$$

(2) $B P^{*}\left(F_{4}\right) \cong B P^{*}\left(G_{2}\right) \otimes \Lambda\left(x_{15}, x_{23}\right)$,
(3) $B P^{*}\left(E_{6}\right) \cong B P^{*}\left(F_{4}\right) \otimes \Lambda\left(x_{9}, x_{17}\right)$.

Proof. The cohomology of the exceptional Lie group G_{2} is

$$
H Z_{2}^{*}\left(G_{2}\right) \cong Z_{2}\left[x_{3}\right] /\left(x_{3}^{4}\right) \otimes \Lambda\left(x_{5}\right) .
$$

Using the Atiyah-Hirzebruch spectral sequence, we can prove the theorem. q.e.d.

References

[1] R. Kane, $B P$-torsion in finite H-spaces, Trans. Amer. Math. Soc., 264 (1981), 473-497.
[2] J. Lin, On the Hopf algebra structure of the mod 2 cohomology of a finite H-space, Publ. RIMS Kyoto Univ., 20 (1984), 877-892.
[3] D. Ravenel and S. Wilson, The Morava K-theories of Eilenberg MacLane spaces and the Conner-Floyd conjecture, Amer. J. Math., 102 (1980), 697-748.
[4] H. Tamanoi, On $B P(K(\pi, n))$ and its image in $H Z_{p}(K(\pi, n))$ for $\pi=Z$ and Z_{p}, preprint 1983.
[5] S. Wilson, The Ω-spectrum for Brown-Peterson cohomology II, Amer. J. Math., 97 (1975), 101-123.
[6] U. Würgler, Cobordism the theories of unitary manifolds with singularities and formal group laws, Math. Z., 150 (1976), 239-260.
[7] - On a class of 2-periodic cohomology theories, Math. Ann., 267 (1984), 251-269.
[8] N. Yagita, On the algebraic structure of cobordism operations with singularities, J. London Math. Soc., 16 (1977), 131-141.
[9] \quad, On the Steenrod algebra of Morava K-theory, J. London Math. Soc., 22 (1980), 423-438.
[10] - Brown-Peterson cohomology groups of exceptional Lie groups, J. Pure App. Algebra, 17 (1980), 223-226.
[11] - On relations between Brown-Peterson cohomology and the ordinary $\bmod p$ cohomology theory, Kodai Math. J., 7 (1984), 273-285.

Department of Mathematics
Musashi Institute of Technology
Tamazutsumi Setagaya Tokyo, 158
Japan

[^0]: Received January 18, 1985.

