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On the Image p(BPYX)—H*(X;Z,))

Nobuaki Yagita

In this paper we study ways to calculate the Brown-Peterson coho-
mology BP*(X) localized at a prime p when the Steenrod algebra action
on the ordinary mod p cohomology H*(X; Z,)=HZ*(X) is known. One
of the most difficult problems is to know which elements in H*(X),
are permanent cycles 'in the Atiyah-Hirzebruch spectral sequence
H*(X; BP*)=>BP*(X). This is equivalent to know the image p: BP*(X)
—H*(X)(,, where p is the Thom map.

Cohomology operations on HZ}(X) give some informations about
the image. For example if Q,x=£0 in HZ*(X), then x is not in Image
p(BP*(X)—HZ ¥(X)), where Q, is the Milnor primitive operation. We
study the above facts in more general situation.

Let: p: h—k be a map of spectra. In Section 1, we note the impor-
tance of Image p(h*(k)—k*(k))=po(h, k), indeed, if an operation 4 is in
p(h, k), then for each x e k*(X), fx e Image o(h*(X)—k*(X)). The
image o(P(n), P(m)) and p(k(n), HZ,) are studied in Section 2. Since
o(PB, HZ )=0, we consider K(Z, n) or K(Z,,n) as k instead of HZ, in
Section 3. Here we introduce the Tamanoi’s results. In Section 4,
p(BP, K(Z, 3)) and BP*(K(Z,3)) are studied. Applications for finite
H-spaces are given in Section 5. For example, in the case p=2, let X be
a simply connected finite associative H-space and let O* be the indecom-
posable elements in HZ¥(X). Then

(@) ClImage p(BP*(X)—>HZ(X)/(HZ3(X)")).

The author thanks to the referee who pointed out this proof of Pro-
position 2.4 and corrected many errors in the first version.

§ 1. Maps of cohomology theories

Let p: h—k be a map of spectra and let k={k,} be the £-spectrum,
i.e., k*(X)=[X, k,]. For simplicity of notations, let us write Image p(h*(k)
—k*(k)) (resp. Image p(h(k,)—k(k,))) by p(h, k) (resp. o(h, k,)).
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Lemma 1.1. If 6 € o(h, k) (resp. 0 € p(h, k,)), then for x e k*(X) (resp.
x € k*(X)), 0x e Image p(h*(X)—k*(X)).

Proof. Each element x e k"(X) is represented by a map x: X—k,.
Since 6 € p(h, k,)=Image p(h*(k,)—k*(k,)), there is a map i: k,—h such
that pi=6. Hence x=pix. q.e.d.

It is immediate from the above lemma that if § € p(%, k), then p(h, k)
DIm §=0k*(k) but in general, p(h, k) 2 k*(k)6.

Lemma 1.2. If 0 e p* 'ph*(h) and x e Image p(h*(X)—k*(X)), then
0x is also contained in the Image p.

Proof. Let p*@=pf and pX=x. Then the following diagram is
commutative and we have fx = pf%. q.e.d.

AN

o

X—>k—>k
X /]
Corollary 1.3.  If 6 € p(h, k), then o(h, k) D0k*(k) U (o* ' ph(h))6.

§ 2. BP-module spectra

Let BP be the Brown-Peterson spectrum with the coefficient BP* =
Z vy, -+ -] Let k be a complex oriented ring spectrum such that k* is
a Z,-module. Then from the universal property of BP, there is a map
of ring spectra p,: BP—k. Moreover if p is an odd prime number and
k* is a BP*/(p, -- -, v,_)-module, then there is a map of BP-module
spectra p’: P(n)—k with p,=p'pp,. Here P(n) is the BP-module spec-
trum with the coefficient P(n)*=BP*/(p, - - -, v,_,) [6), [7].

Examples of k such that k*(k) are known are not so many, e.g.,
P(n), k(n) and P(o0)=HZ, [6], [8], [9]

2.1 P()*(P(n)) = P(m)* @pp+ BP*(BPYRQA(Qy, -+ -5 Q1)
(2.2) k(n)*(k(n)) = (k(n)*{s, |, < p"}D®BIQAQy, - - -5 Qn-y)
where B’ is some k(n)*/(v,)-module (for details see [9]).

Lemma 2.3. When p=3, h=P(m) and k=P(n) for m<n<oo,

(1) Q.p=0 for m=s

2 p*'pP(m)*(P(m)=P(nm)*(P(n)

(3) P(P(m), P(n)):Qm : Qn—IP(n)*(P(n))=P(n)*(P(n))Qm N 'Qn 1+
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Proof. From the Sullivan exact sequence

P(m)*(X)—=">P(m)*(X)

5,,,\ /pm

P(m+1)*(X)

and from the fact po=0,,, we get Q0,0=0 for k=P(m-+1). From (2.1)
it is easily seen Q,p=0 for m<s<n and k=P(n). The formula (2) is
proved by (1) and (2.1).

We know (Theorem 3.12 in [8]) that aQ,,---Q,_;=(F+)0,---0,_.a
for a e P(m)*(P(n)). From the definition of the operation Q,,

Qm' : 'Qn-l':(on-x' : pmam . '5n—1 € P(P(m)a P(n))

Therefore p(P(m), P(n)) contains the right hand side module in (3). For
each element x not contained in the module (3), there is a with m<s<n
such that Q,x=0. Hence the proof is completed. q.e.d.

Next we consider the case i=k(n) and k=HZ,. From the Sullivan
exact sequence, Q, € p(k(n), HZ,). Moreover we have the following pro-
position.

Proposition 2.4. For p=3, p(k(n), HZ,)=1m Q,=Q,HZ}(HZ),).

Proof. Consider the Atiyah-Hirzebruch spectral sequence H*(HZ,;
k(n)*)=>k(n)*(HZ,). Since the first differential is given by d**"~'(x®1)=
=0,xQu,, we have Ef*=0,o4Qk(n)*/(v,) where o/ is the Steenrod
algebra of the ordinary mod p cohomology. In particular, E;/=0 unless
t=0. Hence the spectral sequence collapes; E¥.*=FE, and the extension
is trivial. Thus we obtain k(n)*(HZ,)~ Q,« and the Thom map p: k(n)*
(HZ,)—~HZ}(HZ,) maps to 0,/ because p coincides with the edge homo-
morphism of the Atiyah-Hirzebruch spectral sequence. q.e.d.

Recall BP[m, n] be the BP-spectrum such that BP[m, n]=Z_[v,, - - -,
v,). Then by the Sullivan exact sequence

Qm' : Qn € P(BP[m, I’l], HZp)
Corollary 2.5. o(BP[m,n], HZ))=Im Q- --Q,.

Proof. From Proposition 2.4,

p(BP[m, nl, HZ,)= () Im Q..
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It is easily seen the right hand side of the above formulais ImQ,,---Q,
in . g.e.d.

§3. The image p(BP, K(Z, n))

From Lemma 2.3, we have p(BP, HZ,)=0. Hence when k=BP
and h=HZ, we need to consider the {-spectrum, that is, k, is the
Eilenberg MacLane space K(Z,, n) (or K(Z, n)). Tamanoi decided
o(BP, K(Z,, n)) and p(BP, K(Z, n)) for p=3 completely in [4] by using
Wilson and Ravenel-Wilson results.

Theorem 3.1 (S. Wilson [5]). For k<2(p"+---+p+1)
BPYX)=BP{n)*(X)x [] BP{jyr+*@/=5(X)
jzn+1

where BP (n) is the BP-spectrum with the coefficient BP{ny =Z v, - - -,
U,
Define &7 to be the set of sequences

S:{(Sl’ e -,Sn)]0<S1<S2~ <5, <m, s, e Z}

and dim s=2(14p**+ - - - + p*~).
Theorem 3.2 (Ravenel-Wilson [3]). For p=3 and n=3, there exist
X, Ve With |x,|=|y,|=dim s such that
(1) Km*K(Z, n)=Km)*[x,|s e #7.
@ KmXK(Z, n—1)=Km*[y,|s e L1000 "").
Theorem 3.3 (Tamanoi [4]). For p=3 and n=3,
() p(BP, K(Z,m)=Z,[Q0,|s e 5]
(2 o(BP,K(Z,,n—1)=Z,]Q,0y|s5 € &5
where z, ¢ are the fundamental classes and Q,=Q, _,---Q,, for s e Fy_,.
Since Tamanoi’s proof is written in Japanese, we introduce its outline

here. We prove only the case X=K(Z, n) and the other case is proved
by the similar methods.

Outline of the proof of Theorem 3.3. It follows that {Q.c|s e 5.}
generates a polynomial algebra by some computation of the Steenrod
algebra on a product of Lens spaces.

By the inductive definition of Q,, we can show

stz'@sQn—Z' o QIT
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where &, is expressed by a sum of reduced powers. From the Sullivan
exact sequence, we get x=0Q, ,---Q;r € o(BP{(n—2>, K(Z, n)) and let
p(®»=x. The dimension of x is just 2p*~*+4...4+2p+2. Wilson’s
theorem says X e Image p(BP*(X)—BP{(n—2)*(X)). Therefore x=p(xX)
e p(BP, K(Z, n)). Since p* 'p(BP*(BP))=« for p: BP—~HZ,, we get
Q. € p(BP, K(Z, n)).

For m>>n, consider the diagram

Bp *(X ) 12
P k(m)*(X)— Ky (x)
HZ¥(X) “ps

Here recall [p,(r,x)=x, where r, ¢ BP*(BP) is the operation such that
o(r)=2,. From Ravenel-Wilson theorem, for a given w € BP*(X) we
can take 2%, v%, such that

y=w—2 ] 2v(rx)* and lo(y)=0,

where (r,x)* are mononials in Z[r,x]. Hence vEp,(y)=0 for some large
K and so vE~'p,(y) is v,-torsion. But non zero element of dimension
<2(p™—1) is v,-torsion free. Indeed, from the Sullivan exact sequence,
if there exists an element of dimension ¢ as above, then there is a non zero
element in HZ:**™+(X). Take m to be larger than dim s. Then p,(»)
=0 and

pl(W)=px(sZa Zav;ln(rsx)a) = Z la(QsT)a- q-e-d~

s,vg’n=1

Corollary 3.4. Let p=3 and BP(S) be the spectrum of the coefficient
BP*/(S) where S=(a,, - - -, a,), a, € BP*. Then

(1) B(BP(S), K(Z, n))=p(BP, K(Z, n)),
@) p(BP(S), K(Z, ))=p(PB, K(Z,, ).

§4. BP*(K(Z, 3)) and its application

In this section we consider the case K= K(Z, 3) more carefully and
consider also the case p=2. The mod p cohomology of K is well known
(41) A:HZ;(K(Zﬂ 3));Zp[b1’ bz, M ‘]®A(003 Cyp vt )

where ¢,=2""""...Pr, dc,=b,, (n=1) and |c,|=2p"+1. For p=2,
A=Z e, - - -] where ¢,=Sq™- - -Sq’z, ¢;c=7. Let c,=b,. Thenb,=
¢2_, and in order to avoid separating cases, we think (4.1) is the isomor-
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phism of associated graded algebras filtered by the polynomial algebra of
b,. Moreover for p=2, let Q,,=Sq*~ be the Milnor basis.

Lemma 4.2. In HZ}(X), 0,b,=0 and Q,c,=0,
chn:anm—:(bn_m o for n>m>0

Proof. See Lemma 3.4.1in [11]. The similar arguments prove the
lemma for p=2, q.e.d.

Lemma 4.3. Ker Q,, in A4 is isomorphic to
Zp[bv ° '] ° (Im Qm@ @ A(C‘m+n_bgm—pm‘ncm—n)®/l(cm))'

Proof. The algebra A4 is a tensor product of subalgebras

Z,[b, QA ) if n>m
Zp[bn]®/1(cm+m cm—n) lf ném

and A(c,). Here each subalgebra is closed under the action of Q,,. The
cohomology of the above subalgebras of the differential Q,, are

Z,[b,)/(5"),
Zp[bn]/(bgmwn)®/1(cm+n - bpm“pm_ncm— n)
and A(c,). Therefore H(A; Q,,) is the tensor product of the above coho-

mology. The lemma is proved from the fact Ker Q,,=Im Q,BH(4; Q,).
g.e.d.

For each cohomology theory 4, let F,=Ker (h*(X)—A*(X* ")) where
X°¢ is an s-dimensional skeleton of X. We give A*(X) the topology by
this filtration F;.

Corollary 4.4. k(n)*(K)/Fyn_, is generated by b, ---,b,_, as a
k(n)*-algebra. In particular o(BP, K)=Zb,, - - -1.

Proof. Consider the Atiyah-Hirzebruch spectral sequence of
k(n)*(K). The first non zero differential is dypn_, =0v,8Q,,.

Ef¥ ~k(n)*®@H(4; 0,)D(k(n)*/v,)@Im Q,.

From Lemma 4.3 and from the fact b,’s are permanent cycles, we have
the first assertion. Since p(BP, K)C (), p(k(n), K), the second assertion is
also proved, by using Wilson’s theorem. g.e.d.
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Proposition 4.5. For p=3, as a BP-algebra, BP**(K)/Fyps,5ps is
generated by by, - - -, by with p(b;)=b,.

Proof. Llet B=Zlb,, ---]. Then note that (BP*®QB)'=0 if %0
mod 4. If P(1)*(K)/F is generated by B as a P(1)*-module, then for each
BP*-module generator x e BP*(K), we can take be BP*®B so that
x—b e pBP*(K). Therefore we can take b for x. Hence we need only
prove the above proposition for P(1)*(K).

Assume O==ax ¢ E§* is a permanent cycle for a e P(1)*, x ¢ HZ3¥(K)
in the Atiyah-Hirzebruch spectral sequence of P(1)*(K). The first non
zero differential is d;,_; =v,&®Q;. Hence from Lemma 4.3,

x € A(cy, c;— b)) @B@®Image Q.

Since |¢;|=2p*+1 and |x|=4n, we have x ¢ Im Q, and so 0+a ¢ P(1)*/v,
P(2)*.

Next compare spectral sequences of P(1)*(K) and P(2)*(K). Let
p: P(1)=>P(2) be the natural map. Then d,,._,p(ax)=av,@Q,x. The
facts that ax is permanent and O==a e P(2)*, implies Q,x=0.

A 4m-dimensional element which is of the lowest dimensional in
Image Q, and is not in B is

0.(¢o€16565¢,).
But this element is not in Ker Q,. It is necessary
| x| = Q1(€oeicacics)|
for x e Ker Q, and |x|=4n. g.e.d.
Question 4.6. As a BP*-algebra BP*(K) is generated by b,, b,, - - - ?

We recall the main lemma in [11], which is also proved by Tamanoi
using only stable homotopy theories.

Theorem 4.7. Let > v,b;=0 in BP*(X). Then thereis y e HZ}(X)
such that Q(Y)=p(b,).

Remark. The above theorem is valid also for p=2.
Proposition 4.8. The relations in BP**(K)/F,ps 2,4 are given by

~ n-1 ~ . ~
(1) pb,+> vbE 43 v, b7 mod (p, v, - - )’
i=1 i=1

(2) relations in (p, v, - - - )%
Moreover we have
(3) b,=—r,,_b mod(p, - )
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Proof. Since Ker o(BP**(K)—>HZ*(K))/Fyps. o =Ideal (p, v,, - - ),
that pb,=0 in E** in the spectral sequence of BP*(K) implies that there
is a relation

p5n+ ctt =0'

The element a with Q.a=5, is uniquely determined by ¢,. From Theorem
4.7, we have the relations (1). This fact also follows (1) and (2) generate
relations.

Operate the Quillen operation r,,,_, on v,b,+ Vb, + + - - =0. The fact
Pos;_U;=0, if i=jand =0 mod (p, - - -)* if iz, implies the formula (3).
g.e.d.

Theorem 4.9. Let x ¢ HX(X; Z). Then for mod p reduction x, Q,(x)
€ Image p(BP*(X)—>HZ (X)) and 3 ;-, vb,=0 with p(b,)=0X). More-
over if p=3, there are relations (1)-(3) in Proposition 4.8.

§ 5. Finite H-spaces

In this section we always assume X to be a simply connected finite
associative H-space.

Consider the case p=3. Assume that Q**=0 for at most two n’s
where Q*=HZ}(X)/HZ;(X)-HZ}(X). (All known examples hold the
above fact.) Then Kane’s theorem says [1]

IQeven I :(2p+2) or (2P +2a 2p2+2)

and for each b, € Q***% (resp. b, € Q****%) there are b, ¢ Q"% (resp. b, ¢
0%*Y) and x e Q° such that Q,x=»4, and Q,x=>b,. Therefore we have
the following theorem from Theorem 4.9.

Theorem 5.1. If p=3 and Q™ =0 for at most two n’s, then Q%>
Image p(BP*(X )—)Q*) and for each b, ¢ QQ‘“Z there are b, and b, e BP*(X)
such that v,b,+ v,b,=0, moreover b,= —rmb modulo (p, - - - U Fyps 4 pey-

When p=2, we consider elements in ¢***', By Lin [2] Q"=
Sq¥ Q™1 Then it is easily seen (Q*"*)*=Q,_,0°% We also have the
following theorem from Theorem 4.9.

Theorem 5.2. For p=2,
(Q+')*CImage p(BP(X)——>HZ¥(X)/HZ (X))

and for each x € Q° there are b, such that > v,5,=0 and p(b~i) € (Q%M



On the Image p(BP)X)—H*(X; Zy)) 343

As an example we consider the exceptional Lie group E,. The mod 3
cohomology is

HZ $(E) = Zi[Xg, X50]/ (x5, X3)@A(xs, « - -).
Hence there are b,, b, in BP*(E,) such that p(b,) =, p(b;) =Xy
v,b,+ b, =0, rp‘,l(l;l)z —b, mod (p, -+ -~
The mod 2 cohomology of E, is
HZX(E)=Z,[x,, x5, Xg, X35][ (235, X3, x4, x2)RQA(X17, - - +).
Then there are b,, 1 <i <3 such that
v,b,+ vy + v,b,=0 mod (v, Uy, -+ +)

with p(b) =x3, p(b,) =x3, p(b;) =x;.

By Using Theorem 4.9 and arguments similar to [10], we can prove
the following theorem. (While P(n)*(X), K(n)*(X) have not good com-
mutative product, we use the associated graded algebras filtered by F,,
which have good product.)

Theorem 5.3. There are BP*-module isomorphisms for p=2

(1) BPX(Gy)=BP*{l, 2x;, Xix YD BP *{x3, x2x.}/(2x3 -+ v,x3%;)
DBP*/(2, v){x3}.

(2) BP*(F,)=BP*(G)R@A(x;5 Xa),

(3) BP*(E)=BP*(F)QA(x, x1).

Proof. The cohomology of the exceptional Lie group G, is
HZ¥(Gy) = Z:[x3)/(x) @ A(xs).

Using the Atiyah-Hirzebruch spectral sequence, we can prove the theorem.
g.e.d.
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