On the Stable Hurewicz Image of Stunted Quaternionic Projective Spaces

M. C. Crabb, K. H. Knapp and K. Morisugi

§ 0. Introduction

Let $H P^{n}(0 \leqq n \leqq \infty)$ be the quaternionic n-dimensional projective space. We denote the stunted projective space $H P^{n} / H P^{m-1}$ by $H P_{m}^{n}$ $(1 \leqq m \leqq n \leqq \infty)$. For a space X with a base point, $\pi_{*}^{s}(X)$ means the stable homotopy groups of the space X.

Let

$$
h: \pi_{4 n}^{s}\left(H P_{m}^{\infty}\right) \longrightarrow H_{4 n}\left(H P_{m}^{\infty} ; Z\right) \cong Z
$$

be the stable Hurewicz homomorphism. Let $h_{n, m}$ be the index of the subgroup Image h in $H_{4 n}\left(H P_{m}^{\infty}\right)$. Our main interest in this paper is in the following problem.

Problem 1. Determine the number $h_{n, m}$.
Notice that the above problem can be stated as follows.
Problem 2. Determine the stable order of the attaching map $\varphi_{n, m}$ of the top cell in the space $H P_{m}^{n}$.

Therefore the e-invariants of the map $\varphi_{n, m}$ give a lower bound $h_{n, m}^{A}$, say, for $h_{n, m}$, that is, $h_{n, m}^{A}$ divides $h_{n, m}$.

There is a folk-lore conjecture which asserts that this lower bound $h_{n, m}^{A}$ is actually equal to the number $h_{n, m}$. For the case $m=1$, the conjecture was verified by several authors [12] [13] [14], and the case $m=2$ is treated in [7].

Let $C P^{\infty}$ be the infinite dimensional complex projective space. Using the transfer map $t: H P^{\infty} \rightarrow C P^{\infty}$ it is easy to see that the odd-primary component of the number $h_{n, m}$ can be determined from the solution of the similar problem for the complex projective space. And the complex case is treated in [4] [5]. So in this paper we consider only the 2-primary
component of $h_{n, m}$. In fact this paper is an outgrowth of the third author's attempt to apply the methods which were used in [5] to the quaternion case.

Roughly speaking our main theorem of this paper can be stated as follows.

Theorem. If n is sufficiently large compared with m, then the number $h_{n, m}^{A}$ is equal to the number $h_{n, m}$.

The most fundamental difference between the complex case and the quaternionic is that the complex numbers have a commutative multiplication but not the quaternions. Nevertheless they have many similar algebraic properties.

This paper is organized as follows. In Section 1 we give explicit algebraic conditions on the spherical elements in $H_{4 n}\left(H P_{m}^{\infty}\right)$. In Section 2 we see that these algebraic conditions are periodic; and this periodicity is realized geometrically in Section 4. The conditions are reformulated in Section 3 in terms of $K O$-theory and Adams operations. Section 4 is an application of the theorem of Mahowald about the sphere of origin of the image of J in the stable homotopy groups of spheres. In Section 5 we state and prove our main theorem (Theorem 5.5).

The third author thanks M. Imaoka for valuable conversations with him.

§ 1. The algebraic conditions

Let $j: H P^{\infty} \rightarrow H P_{m}^{\infty}$ be the canonical collapsing map. We denote the modulo torsion index of $j_{*}: \pi_{4 n}^{s}\left(H P^{\infty}\right) \rightarrow \pi_{4 n}^{s}\left(H P_{m}^{\infty}\right)$ by $d(n, m)$, where $n \geqq m$ $\geqq 1$. Let $h_{n, m}$ be the modulo torsion index of the stable Hurewicz homomorphism $h: \pi_{4 n}^{s}\left(H P_{m}^{\infty}\right) \rightarrow H_{4 n}\left(H P_{m}^{\infty}\right)$. Then clearly we have

$$
h_{n, m} \cdot d(n, m)=h_{n, 1} .
$$

As is well-known, $h_{n, 1}=(2 n)!/ a(n)$ [12] [13] [14], where $a(n)=1$ if n is even and $=2$ if n is odd. So in order to determine the number $h_{n, m}$ it is enough to determine the number $d(n, m)$. In this section we shall give an upper bound for the number $d(n, m)$.

Let $\widetilde{K O}_{*}(X)$ (resp. $\widetilde{K O} *(X)$) be the reduced real K-homology (resp. cohomology) of a based space X. Recall that

$$
\begin{aligned}
& H^{*}\left(H P^{\infty} ; Z\right) \cong Z\left[\left[x^{H}\right]\right] \\
& \tilde{H}_{*}\left(H P^{\infty} ; Z\right) \cong Z\left\{\beta_{1}^{H}, \beta_{2}^{H}, \beta_{3}^{H}, \cdots\right\}
\end{aligned}
$$

$$
\begin{aligned}
& K O^{*}\left(H P^{\infty}\right) \cong \widetilde{K O} *\left(S^{0}\right)[[x]] \\
& \widetilde{K O}_{*}\left(H P^{\infty}\right) \cong \widetilde{K O_{*}}\left(S^{0}\right)\left\{\beta_{1}, \beta_{2}, \beta_{3}, \cdots\right\}
\end{aligned}
$$

where $x^{H} \in H^{4}\left(H P^{\infty} ; Z\right)$ is the first symplectic Pontrjagin class of the canonical quaternionic line bundle ξ over $H P^{\infty}, \beta_{i}^{H} \in H_{4 i}\left(H P^{\infty} ; Z\right)$ is the dual of $\left(x^{H}\right)^{i}, x \in K O^{4}\left(H P^{\infty}\right)$ is the $K O$-theoretic first Pontrjagin class of the bundle ξ and $\beta_{i} \in \widetilde{K O_{4 i}}\left(H P^{\infty}\right)$ is the dual of $x^{i} \in K O^{4 i}\left(H P^{\infty}\right)$.

Let $p h_{n}: K O^{4 *}\left(H P^{\infty}\right) \rightarrow H^{4 n}\left(H P^{\infty} ; Q\right)$ be the $4 n$-th component of the Pontrjagin character $p h$. In order to describe $p h_{n}\left(x^{s}\right)$ explicitly we need a certain numerical function.

Definition 1.1 [17] (Central factorial numbers of the second kind). Define numbers $M(n, s)$ by the following equation;

$$
\left(e^{t}+e^{-t}-2\right)^{s}=\sum_{n \geqq 1} \frac{(2 s)!}{(2 n)!} M(n, s) t^{2 n}
$$

Lemma 1.2. [17]

1) (Recursive formula)

$$
\begin{aligned}
& M(n, 1)=1 \quad \text { if } n \geqq 1 \text { and } M(1, s)=0 \text { if } s>1, \\
& M(n, s)=M(n-1, s-1)+s^{2} M(n-1, s)
\end{aligned}
$$

In particular, $M(n, s)$ is an integer.
2) $\frac{(2 s)!}{2} M(n, s)=\sum_{i=0}^{s}(-1)^{i}\binom{2 s}{i}(s-i)^{2 n}$.
3) $(2 s-1)!M(n, s)=s^{2 n-1}+\sum_{i=1}^{s-1}(-1)^{i}\left\{\binom{2 s-1}{i}-\binom{2 s-1}{i-1}\right\}(s \mid-i)^{2 n-1}$

Definition 1.3.

$$
d^{4}(n, m)=\underset{s \geqq m}{\text { g.c.d }}\left\{\frac{(2 s)!M(n, s)}{a(n) a(n-s)}\right\}
$$

Making use of the integrality of the Pontrjagin character we have the following proposition.

Proposition 1.4. For $n \geqq m \geqq 1$, the integer $d(n, m)$ is a divisor of the integer $d^{A}(n, m)$.

Proof. From the definition 1.1 and a well-known formula for $p h(x)$ we have

$$
p h_{n}\left(x^{s}\right)=\frac{(2 s)!}{(2 n)!} M(n, s)\left(x^{H}\right)^{n}
$$

Since the canonical collapsing map $j: H P^{\infty} \rightarrow H P_{m}^{\infty}$ induces monomorphisms in both KO-cohomology and ordinary cohomology, using above facts and the integrality of the Pontrjagin character it is easy to see that if $\lambda \beta_{n}^{H} \in H_{4 n}\left(H P_{m}^{\infty} ; Z\right)$ comes from $\pi_{4 n}^{s}\left(H P_{m}^{\infty}\right)$ through the Hurewicz homomorphism then the integer λ must satisfy the following divisibility condition:

$$
\text { for any } s \geqq m, \quad \lambda \frac{(2 s)!}{(2 n)!} M(n, s) \in a(n-s) Z .
$$

Therefore, setting $\lambda=h_{n, m}=h_{n, 1} / d(n, m)$, we see that for any $s \geqq m$ the number

$$
\frac{(2 s)!M(n, s)}{a(n) a(n-s) \cdot d(n, m)}
$$

must be an integer. In other words the integer $d^{4}(n, m)$ is a multiple of the integer $d(n, m)$. q.e.d.

Remark. From the proof of Proposition 1.4, the e-invariant of the attaching map of the top cell in $H P_{m}^{n}$ is easily obtained.

$\S 2$. Some properties of the integer $d^{A}(n, m)$

In this section we shall study some properties of the integer $d^{4}(n, m)$. As mentioned in Introduction, we are only interested in the 2-primary component. We use the following notation.

Definition 2.1.

$$
\begin{aligned}
& d_{2}^{A}(n, m)=\nu_{2}\left(d^{A}(n, m)\right) \\
& d_{2}(n, m)=\nu_{2}(d(n, m))
\end{aligned}
$$

where $\nu_{2}(i)$ is the exponent of 2 in the prime decomposition of an integer i.
Lemma 2.2. For any $n>m \geqq 1, d_{2}^{A}(n, m) \leqq 2 n-3$.
Proof. From the definition of $d^{4}(n, m)$ it is obvious that

$$
d_{2}^{A}(n, m) \leqq d_{2}^{A}(n, m+1) \leqq \cdots \leqq d_{2}^{A}(n, n-1) \leqq d_{2}^{A}(n, n)
$$

From 1) of Lemma 1.2, we have

$$
M(n, n-1)=(n-1) n(2 n-1) / 6
$$

So

$$
\begin{aligned}
d_{2}^{A}(n, n-1) & =\min \left\{\nu_{2}\left(\frac{(2 n-2)!M(n, n-1)}{a(n) a(1)}\right), \nu_{2}\left(\frac{(2 n)!}{a(n)}\right)\right\} \\
& =\min \left\{\nu_{2}\left(\frac{(2 n)!(n-1)}{a(n) 24}\right), \nu_{2}\left(\frac{(2 n)!}{a(n)}\right)\right\} \\
& =\left\{\begin{array}{l}
\nu_{2}\left(\frac{(2 n)!}{a(n)}\right) \quad \text { if } n \equiv 1 \bmod 8, \\
\nu_{2}\left(\frac{(2 n)!}{a(n)}\right)+\nu_{2}(n-1)-3 \quad \text { if } n \not \equiv 1 \bmod 8 .
\end{array}\right.
\end{aligned}
$$

Let $\alpha(i)$ be the number of 1 's in the 2 -adic expansion of an integer i. Then, as is well-known,

$$
\nu_{2}(k!)=k-\alpha(k) .
$$

Then using the above formula it is easy to see that for any $n>m \geqq 1$, $d_{2}^{4}(n, m) \leqq 2 n-3$.
q.e.d.

Let b be a non-negative integer. We denote the number $\max \left\{2,2^{b-3}\right\}$ by $t(b)$.

Lemma 2.3. If $b \leqq 2 n-1$, then for any $s \geqq 1$

$$
\frac{(2 s)!M(n, s)}{a(n) a(n-s)} \equiv \frac{(2 s)!M(n+t(b), s)}{a(n+t(b)) a(n+t(b)-s)} \bmod 2^{b}
$$

Proof. Note that

$$
\frac{(2 s)!M(m, s)}{a(n) a(n-s)}=\left(\frac{2 s}{a(n) a(n-s)}\right)(2 s-1)!M(n, s)
$$

and that $2 s /(a(n) a(n-s))$ is an integer. Since $b \leqq 2 n-1$, using the formula 3) of Lemma 1.2 and the fact that $(\mathrm{odd})^{2 t(b)} \equiv 1 \bmod 2^{b}$, we have the desired result.
q.e.d.

Proposition 2.4. For any n and m such that $n \geqq m \geqq 1$, we have

$$
d_{2}^{A}(n, m) \leqq m^{2}-1 .
$$

For the proof of Proposition 2.4 we need the following Lemma 2.5. We postpone its proof until Section 3. In this section we assume Lemma 2.5.

Lemma 2.5. For any $n>m \geqq 1$,

$$
d_{2}^{A}(n, m+1)-d_{2}^{A}(n, m) \leqq 2 m+1
$$

Proof of Proposition 2.4.

$$
\begin{aligned}
& d_{2}^{A}(n, m)-d_{2}^{A}(n, 1) \\
& \quad=\left(d_{2}^{A}(n, m)-d_{2}^{A}(n, m-1)\right)+\left(d_{2}^{A}(n, m-1)-d_{2}^{A}(n, m-2)\right)+\cdots \\
& \quad \quad+\left(d_{2}^{A}(n, 3)-d_{2}^{A}(n, 2)\right)+\left(d_{2}^{A}(n, 2)-d_{2}^{A}(n, 1)\right) \\
& \leqq
\end{aligned}
$$

Since $d^{A}(n, 1)=1$, so $d_{2}^{A}(n, 1)=0$. Therefore we have the desired result.
q.e.d.

Corollary 2.6.

i) If $d_{2}^{4}(n, m) \geqq b$ then $d_{2}^{4}(n+t(b), m) \geqq b$.
ii) If $d_{2}^{A}(n, m)=b$ then $d_{2}^{A}(n+t(b+1), m)=b$.
iii) For an integer m fixed, if we regard the integer $d_{2}^{4}(n, m)$ as the function of n, then the function $d_{2}^{A}(n, m)$ is periodic.

Proof. i) and ii) are obvious from Lemmas 2.2-2.3. iii) From Proposition 2.4 we see that the function $d_{2}^{A}(n, m)$ is bounded above. Therefore the function $d_{2}^{A}(n, m)$ has a maximum b_{0}. Then put $D(m)=t\left(b_{0}\right)$. From i) and ii) it is easy to see that $D(m)$ is a period.
q.e.d.

Let $D(m)$ be the number cited above, that is,

$$
D(m)=t\left(\max _{n \geqq m}\left(d_{2}^{A}(n, m)\right)\right) .
$$

By direct verification we have:

Examples.

$$
\begin{aligned}
& D(2)=2 . \\
& D(3)=16 .
\end{aligned}
$$

Remark. The smallest period, $p(m)$ say, is a divisor of $D(m)$. For example, $p(3)=8$. In later sections we show that the period $D(m)$ can be realized geometrically.

§ 3. A geometrical interpretation of $\boldsymbol{d}^{A}(\boldsymbol{n}, \boldsymbol{m})$

In this section we shall give a geometrical interpretation of the number $d^{A}(n, m)$ in terms of $K O$-theory and the Adams operation. Throughout this section $K O$-theory is localized at (2).

Proposition 3.1. Let σ_{n} be an arbitrary generator of the free part of $\pi_{4 n}^{s}\left(H P^{\infty}\right)$. Then

$$
\begin{aligned}
& h\left(\sigma_{n}\right)=\frac{(2 n)!}{a(n)} \beta_{n}^{H} \\
& h^{K o}\left(\sigma_{n}\right)=\sum_{s \geqq 1} \frac{(2 s)!M(n, s)}{a(n) a(n-s)} \beta_{s}
\end{aligned}
$$

where h is the ordinary Hurewicz homomorphism, $h^{K O}$ is the KO-Hurewicz homomorphism and we identify $\widetilde{K O}_{4(n-s)}\left(S^{0}\right)$ with the integers Z.

Proof. The first assertion is well-known [12] [13] [14]. The second assertion is obtained using the first and methods like those in the proof of Proposition 1.4.
q.e.d.

As an immediate corollary we have
Proposition 3.2. Let $j: H P^{\infty} \rightarrow H P_{m}^{\infty}$ be the canonical collapsing map. Then

$$
j_{*} h^{K o}\left(\sigma_{n}\right)=\sum_{s \geqq m} \frac{(2 s)!M(n, s)}{a(n) a(n-s)} \beta_{s}
$$

Note that the right hand side of the above equation in Proposition 3.2 can be rewritten as $d^{4}(n, m) x_{n, m}^{K o}$ for some $x_{n, m}^{K O} \overparen{K O}\left(H P_{m}^{\infty}\right)$. Since $\widetilde{K O}_{4 n}\left(H P_{m}^{\infty}\right)$ is torsion free, the element $x_{n, m}^{K O}$ is uniquely determined.

Lemma 3.3. Let $\Psi^{3}: \widetilde{K O}_{4 n}\left(H P_{m}^{\infty}\right) \rightarrow \widetilde{K O}_{4 n}\left(H P_{m}^{\infty}\right)$ be the stable Adams operation. ($\mathrm{KO}_{*}()$ is localized at (2).) Then kernel $\left(\Psi^{3}-1\right)$ is isomorphic to $Z_{(2)}$ and generated by the element $x_{n, m}^{K o}$ defined above.

Proof. As is well-known, rank (kernel $\left(\Psi^{3}-1\right)$) is equal to the rank of $H_{4 n}\left(H P_{m}^{\infty}\right)$. So kernel $\left(\Psi^{3}-1\right)$ has a single generator. As $d^{A}(n, m) x_{n, m}^{K o}$ is spherical, $d^{A}(n, m) x_{n, m}^{K O}$ belongs to kernel $\left(\Psi^{3}-1\right)$. On the other hand, from the definition of $d^{A}(n, m), x_{n ; m}^{K o}$ cannot be divisible in $\widetilde{K O}_{4 n}\left(H P_{m}^{\infty}\right)$. Since $K O_{4 n}\left(H P_{m}^{\infty}\right)$ is torsion free, $x_{n, m}^{K O}$ must be a generator of kernel $\left(\Psi^{3}-1\right)$. q.e.d.

Though Lemma 3.3 gives us an interpretation of the number $d^{A}(n, m)$, this is inconvenient, because $\operatorname{Ker}\left(\Psi^{3}-1\right)$ is not a homology theory. Therefore we prefer to use the following theory.

Let $b o_{*}()$ be the (-1)-connected cover of $\widetilde{K O}_{*}()$ and $\operatorname{bspin}_{*}()$ be its 2 -connected cover. As is well-known [11] the operation $\Psi^{3}-1: \widetilde{K O}_{*}()$
$\rightarrow \widetilde{K O}_{*}()$ can be uniquely lifted as

$$
\Psi^{3}-1: b o_{*}() \longrightarrow b \operatorname{spin}_{*}() .
$$

We denote the fibre theory of this Adams operation by $A_{*}()$. So there is a long exact sequence:

$$
\cdots \longrightarrow \operatorname{bpin}_{i+1}() \longrightarrow A_{i}() \xrightarrow{d_{*}} b o_{i}() \xrightarrow{\Psi^{3}-1} b \operatorname{spin}_{i}() \longrightarrow \cdots
$$

There is a Thom map $T: A_{*}(X) \rightarrow \tilde{H}_{*}\left(X ; Z_{(2)}\right)$ which factors the Hurewicz map and the generator of $A_{0}\left(S^{0}\right) \cong Z_{(2)}$ defines the Hurewicz map $h^{4}: \pi_{*}^{s}(X)$ $\rightarrow A_{*}(X)$ factoring the $K O$-theory Hurewicz map. Thus Lemma 3.3 implies:

Lemma 3.4. The integer $d^{A}(n, m)$ is the modulo torsion index of $j_{*} ; A_{4 n}\left(H P^{\infty}\right) \rightarrow A_{4 n}\left(H P_{m}^{\infty}\right)$.

Proof. Recall that there are canonical isomorphisms: $b o_{4 n}\left(H P^{\infty}\right) \cong$ $\widetilde{K O}_{4 n}\left(H P^{n}\right), \quad b o_{4 n}\left(H P_{m}^{\infty}\right) \cong \widetilde{K O}_{4 n}\left(H P_{m}^{n}\right), \quad b \operatorname{spin}_{4 n}\left(H P^{\infty}\right) \cong \widetilde{K O_{4 n}}\left(H P^{n-1}\right)$ and $\operatorname{bspin}_{4 n}\left(H P_{m}^{\infty}\right) \cong \widetilde{K O}_{4 n}\left(H P_{m}^{n-1}\right)$ and that these isomorphisms are compatible with Adams operations. Note that $h^{4}\left(\sigma_{n}\right)$ is a generator of the free part of $A_{4 n}\left(H P^{\infty}\right) \cong Z_{(2)}+$ Torsion. Therefore from Lemma 3.3 and the definition of A-theory, Lemma 3.4 follows.

Now we shall prove Lemma 2.5. We need:
Lemma 3.5. For any $m \geqq 1$, there is a stable self map g of $H P^{\infty}$, such that

$$
g_{*}\left(\beta_{n}^{H}\right)=2^{2 m+1}\left(4^{n-m}-1\right) \beta_{n}^{H}
$$

where $g_{*}: H_{4 n}\left(H P^{\infty} ; Z\right) \rightarrow H_{4 n}\left(H P^{\infty} ; Z\right)$ is the homomorphism induced by g.
Proof. From Theorem 1 in [13], there is a stable map $f(0, s): H P^{\infty}$ $\rightarrow H P^{\infty}$ such that

$$
f(0, s)_{*} \beta_{n}^{H}=a(s-1)\left(\sum_{i=0}^{s}(-1)^{i}\binom{2 s}{i}(s-i)^{2 n}\right) \beta_{n}^{H}
$$

Let $g=f(0,2)-8\left(4^{m-1}-1\right) \mathrm{id}$, where id is the identity map. Then the map g has the desired property.
q.e.d.

Proof of Lemma 2.5. Consider the following commutative diagram:

where the horizontal sequences are cofibrations, g is the map in Lemma 3.5 and g_{1} is induced from g. By Lemma $3.5 \mathrm{~g}_{1}$ is null homotopic. Let $x_{n, m} \in A_{4 n}\left(H P_{m}^{\infty}\right)$ be an arbitrary generator of the free part of $A_{4 n}\left(H P_{m}^{\infty}\right) \cong$ $Z_{(2)}+$ Torsion. Then applying $A_{4 n}()$ to the above diagram we have that through the homomorphism $j_{m^{*}}$ the element $g_{*} x_{n, m+1}$ comes from some multiple of $x_{n, m}$ up to torsion. It is clear that the modulo torsion index of g_{*} in A-theory is the same as that in ordinary homology. Thus the modulo torsion index of $j_{m^{*}}$ divides the modulo torsion index of g_{*}. Combining these facts and Lemma 3.4, we see that the integer $d^{A}(n, m+1) /$ $d^{A}(n, m)$ is a divisor of $2^{2 m+1}\left(4^{n-m}-1\right)$. This completes the proof of Lemma 2.5.
q.e.d.

§ 4. The unstable Adams periodicity.

In [9] or [10] Mahowald determined the sphere of origin of the image of J in the stable homotopy groups of spheres. In this section we apply this result.

The following theorem is due to Mahowald [9] [10].
Theorem 4.1. Let b be an integer such that $b \geqq 1$. Let $t(b)=\max (2$, 2^{b-3}). Let e be 0, 2, 1 or 0 according as $b=0,1,2$ or $3 \bmod 4$. Then for any $k \geqq 1$, there is an unstable map $f_{k, b}: S^{4 k t(b)+2 b+e} \rightarrow S^{2 b+e+1}$ such that the order of $f_{k, b}$ is $2^{b}, f_{k, b}$ represents stably an element of order 2^{b} in the image of J in the $(4 k t(b)-1)$-stem.

Let M_{b} be the $\bmod 2^{b}$ Moore spectrum, that is,

$$
M_{b}=S^{0} \cup_{2^{b}} e^{1}
$$

We denote the inclusion from S^{0} to M_{b} by i_{0} and the projection from M_{b} to S^{1} by π_{0}. Let

$$
\gamma(b)= \begin{cases}7 & \text { if } b \leqq 3 \\ 2 b+2 & \text { if } b \geqq 4 \text { and } b=0 \text { or } 3 \bmod 4 \\ 2 b+3 & \text { if } b \geqq 4 \text { and } b=2 \bmod 4 \\ 2 b+4 & \text { if } b \geqq 4 \text { and } b=1 \bmod 4\end{cases}
$$

Proposition 4.2. For any $b \geqq 1$ and $k \geqq 1$, there exists an unstable map ${ }^{k} B_{b}: \sum^{4 k t(b)+\gamma(b)} M_{b} \rightarrow \Sigma^{\gamma(b)} M_{b}$ such that $\pi_{0} \circ{ }^{k} B_{b} \circ i_{0}$ represents stably an ele-
ment of order 2^{b} in the image of J in the $(4 k t(b)-1)$ stem of the stable homotopy groups of spheres.

Proof. First we prove in case that $b \neq 1$ and $b \neq 3$. From Proposition 1.8 in [16] it is enough to show that the (unstable) Toda bracket [16] $\left\{2^{b}, \Sigma f_{k, b}, 2^{b}\right\}_{1}$ contains zero, where $f_{k, b}$ is the element in Theorem 4.1. By Corollary 3.7 in [16], the above bracket contains zero if $b \geqq 2$. Now let $b=1$ or 3 . Then it is known that there exists an unstable map $A_{b}: \Sigma^{15} M_{b}$ $\rightarrow \Sigma^{7} M_{b}$ such that $\pi_{0} \circ A_{b} \circ i_{0}=2^{3-b} \Sigma \sigma^{\prime}$, where σ^{\prime} is a generator of $\pi_{14}\left(S^{7}\right)$. Using the structure of $\pi_{16}\left(S^{8}\right)([16])$, it is not hard to see that there is a choice of B_{b} of A_{b} such that stably $\pi_{0} \circ B_{b}$ lies in the image of the J-map,

$$
j_{A}: A^{0}\left(\Sigma^{7} M_{b}\right) \longrightarrow \pi_{s}^{0}\left(\Sigma^{7} M_{b}\right),
$$

where j_{A} is a map obtained using the solution of the Adams conjecture. (See [5] or [6].) Since j_{A} commutes with unstable maps, we see that for any $k \geqq 1, \pi_{0} \circ B_{b}^{k}$ lies, stably, in the image of j_{A}. This implies that $\pi_{0} \circ B_{b}^{k} \circ i_{0}$ stably represents an element of order 2^{b} in the image of J. So we may put ${ }^{k} B_{b}=B_{b}^{k}$. This completes the proof.
q.e.d.

The following lemma is well-known [1].
Lemma 4.3. Let $\alpha: \Sigma^{4 k t(b)} M_{b} \rightarrow M_{b}$ be a stable map such that the Adams e-invariant of $\pi_{0} \circ \alpha \circ i_{0}$ is $2^{-\delta}$. Then $\alpha^{*}: \widetilde{K O} *\left(M_{b}\right) \rightarrow \widetilde{K O} *\left(\Sigma^{4 k t(\delta)} M_{b}\right)$ is an isomorphism.

For this reason we call the map ${ }^{k} B_{b}$ in Proposition 4.2 Adams periodicity. Combining Proposition 4.2 and Lemma 4.3, we have the following important fact.

Proposition 4.4. Let $B S p$ be the classifying space of virtual symplectic vector bundles. Let $\lambda_{i} \in \pi_{4 i}(B S p)$ be a generator. Then for $b \geqq 1$ and $k \geqq 1$, if $\gamma(b) \leqq 4 n-1$ the following diagram commutes up to a unit of $Z / 2^{b}$:

Proof. Since $\left[\Sigma^{4 n-1} M_{b}, B S p\right] \cong \widetilde{K O^{4}}\left(\Sigma^{4 n-1} M_{b}\right) \cong Z / 2^{b}$ with generator
$\pi_{0}^{*} \lambda_{n}$, using Proposition 4.2 and Lemma 4.3 we see that the above diagram commutes up to a unit.

Let $\tau: B S p \rightarrow \Omega^{\infty} \sum^{\infty} H P^{\infty}$ be the Becker-Segal splitting [3] [15]. We choose the splitting map and fix it. Then as a generator of the free part of $\pi_{4 n}^{s}\left(H P^{\infty}\right) \cong \pi_{4 n}\left(\Omega^{\infty} \Sigma^{\infty} H P^{\infty}\right)$ we can take $\tau_{*} \lambda_{n}$ [15]. From now on we denote this element in $\pi_{4 n}^{s}\left(H P^{\infty}\right)$ by σ_{n}. Let $j_{k, b}$ be an element of order 2^{b} in the image of J in the $(4 k t(b)-1)$-stem of the stable homotopy groups of spheres. Then we have:

Proposition 4.5.

i) If $\gamma(b) \leqq 4 n-1$, then ${ }^{k} B_{o}^{*}\left(\pi^{*} \sigma_{n}\right)=\pi^{*} \sigma_{n+k t(b)}$ up to a unit.
ii) If $4 n \geqq 2 b+e+1$, then $\sigma_{n} \circ j_{k, b}=0$ in $\pi_{4(n+k t(b))-1}^{s}\left(H P^{\infty}\right)$, where e is the function of b in Theorem 4.1.

Proof. Obvious from the definition of the element of σ_{n} and Proposition 4.4.

As an easy corollary of the above proposition we have
Theorem 4.6. Let $j: H P^{\infty} \rightarrow H P_{m}^{\infty}$ be the canonical collapsing map. Let $n \geqq m$ and b be a non-negative integer. If $j_{*} \sigma_{n}=2^{b} y_{n, m}$ for some $y_{n, m} \in$ $\pi_{4 n}^{s}\left(H P_{m}^{\infty}\right)$ and if $\gamma(b) \leqq 4 n-1$, then for any $k \geqq 1, j_{*} \sigma_{n+k t(b)}=2^{b} y_{n+k t(b), m}$ for some $y_{n+k t(b), m} \in \pi_{4(n+k t(b))}^{s}\left(H P_{m}^{\infty}\right)$. In particular, if the assumption holds when $b=d_{2}^{A}(n, m)$ then $d_{2}(n+k t(b), m) \geqq b$.

Note that if $n \geqq m+1$, then the assumption that $\gamma(b) \leqq 4 n-1$ is always satisfied (See Lemma 2.2.). As an application of the above theorem we have

Corollary 4.7. [7] $d_{2}(n, 2)=d_{2}^{4}(n, 2)=3$ if n is even and $=1$ if n is odd. Moreover $j_{*} \sigma_{n}$ is divisible by 2 in $\pi_{4 n}^{s}\left(H P_{2}^{\infty}\right)$.

Proof. Easy computations in the spectral sequence:

$$
H_{*}\left(H P_{*}^{\infty} ; \pi_{*}^{s}\left(S^{0}\right)\right) \Longrightarrow \pi_{*}^{s}\left(H P^{\infty}\right)
$$

tell us that $j_{*}\left(\sigma_{2}\right)$ is divisible by 8 in $\pi_{8}^{s}\left(H P_{2}^{\infty}\right)$ and $j_{*}\left(\sigma_{3}\right)$ is divisible by 2 in $\pi_{12}^{s}\left(H P_{2}^{\infty}\right)$. On the other hand by direct calculation it is easy to see that $d_{2}^{A}(n, 2)=3$ if n is even and $=1$ if n odd. Therefore, applying Theorem 4.6 we have the desired results.
q.e.d.

Remark. 1) Let $H P^{m-1} \rightarrow H P^{\infty} \rightarrow H P_{m}^{\infty} \xrightarrow{\partial} \Sigma H P^{m-1}$ be the cofibre sequence. If the assumption of Theorem 4.6 holds, that is, if $j_{*} \sigma_{n}=2^{b} y_{n, m}$ for some $y_{n, m} \in \pi_{4 n}^{s}\left(H P_{m}^{\infty}\right)$ then there is an element

$$
y_{n+k t(b), m} \in \pi_{4(n+k t(b))}^{s}\left(H P_{m}^{\infty}\right)
$$

such that

$$
j_{*} \sigma_{n+k t(b)}=2^{b} y_{n+k t(b), m},
$$

and

$$
\partial y_{n+k t(b), m} \in\left\langle\partial y_{n, m}, 2^{b}, j_{k, b}\right\rangle,
$$

where $\langle,$,$\rangle is the (stable) Toda bracket. (Cf. [7]).$
2) From computations of the above spectral sequence unless $n=14$ $\bmod 16$, we can show that $d_{2}(n, 2)=d_{2}^{A}(n, 3)$, where $d_{2}^{A}(n, 3)=3$ if n is odd, $=4$ if $n=0 \bmod 4,=5$ if $n=2 \bmod 8$ and 7 if $n=-2 \bmod 8$. The difficulty in the case that $n=14 \bmod 16$ is that we do not know whether $j_{*} \sigma_{14}$ is divisible by 2^{7} in $\pi_{56}^{s}\left(H P_{3}^{\infty}\right)$ or not. In other cases $j_{*} \sigma_{n}$ is divisible by $2^{d_{2}^{A}(n, 3)}$.

§ 5. The canonical Adams periodicity

In this section we shall show that there is a stable Adams periodicity map which has a certain nice property and using this Adams periodicity obtain our main theorem.

Proposition 5.1. Let $b \geqq 1$ and $k \geqq 1$. Let ${ }^{k} \widetilde{B}_{b}: \sum^{4 k t(b)-1} M_{b} \rightarrow M_{b}$ be any stable Adams periodicity map. Let $\sigma_{n} \in \pi_{4 n}^{s}\left(H P^{\infty}\right)$ be the generator of the free part which is obtained by the Becker-Segal splitting. Then for any $b \geqq 1$ and $k \geqq 1$, if $4 n \geqq 2 b+e+1$, there exists an element $\sigma_{n+k t(b)}^{\prime} \in$ $\pi_{4(n+k t(b))}^{s}\left(H P^{\infty}\right)$ such that $\sigma_{n+k t(b)}^{\prime}$ is a generator of the free part of the 2component of $\pi_{4(n+k t(b))}^{s}\left(H P^{\infty}\right)$ and $\sigma_{n} \circ \pi_{0} \circ{ }^{k} \widetilde{B}_{b}=\sigma_{n+k t(b)}^{\prime} \circ \pi_{0}$, where e is the function of b stated in Theorem 4.1.

Proof. Since ${ }^{k} \widetilde{B}_{b}$ is an Adams periodicity map, stably $\pi_{0} \circ{ }^{k} \widetilde{B}_{b} \circ i_{0}=$ $j_{k, b}$. So from Proposition 4.5,

$$
\sigma_{n} \circ \pi_{0} \circ{ }^{k} \widetilde{B}_{b} \circ i_{0}=\sigma_{n} \circ j_{n, k}=0 .
$$

Therefore there is an element $\sigma_{n+k t(t)}^{\prime} \in \pi_{4(n+k t(b))}^{s}\left(H P^{\infty}\right)$ such that $\sigma_{n} \circ \pi_{0} \circ$ ${ }^{k} \widetilde{B}_{b}=\sigma_{n+k t(b)}^{\prime} \circ \pi_{0}$. Consider the induced homomorphism

$$
\sigma_{n+k t(b)}^{\prime *}: \widetilde{K O^{4}}\left(H P^{\infty}\right) \longrightarrow \widetilde{K O^{4}}\left(S^{4(n+k t(b))}\right)
$$

Let $\iota_{i} \in \widetilde{K O^{4}}\left(S^{4(i+1)}\right)$ be a generator and $x \in \widetilde{K O^{4}}\left(H P^{\infty}\right)$ be the first Pontrjagin class (see § 1). Then

$$
\begin{aligned}
\pi_{0}^{*}\left(\sigma_{n+k t(\delta)}^{\prime *}(x)\right) & ={ }^{k} \widetilde{B}_{0}^{*}\left(\pi_{0}^{*}\left(\sigma_{n}^{*}(x)\right)\right) \\
& ={ }^{k} \widetilde{B}_{0}^{*}\left(\pi_{0}^{*}\left(\iota_{n-1}\right)\right) \quad \text { (By Proposition 3.1) } \\
& =\pi_{0}^{*}\left(c_{n+k t(t)-1}\right) . \quad(\text { By Lemma 4.3) }
\end{aligned}
$$

This implies that $\sigma_{n+k t(b)}^{\prime}$ is a generator of the free part of the 2-component of $\pi_{4(n+k t(b))}^{s}\left(H P^{\infty}\right)$.
q.e.d.

Let $x_{n, m} \in A_{4 n}\left(H P_{m}^{\infty}\right)$ be a generator of the free part of $A_{4 n}\left(H P_{m}^{\infty}\right)$ $\left(x_{n, 1}=h^{A}\left(\sigma_{n}\right)\right.$ by Lemma 3.3), $d_{*}: A_{*}\left(H P_{m}^{\infty}\right) \rightarrow b o_{*}\left(H P_{m}^{\infty}\right)$ be the natural homomorphism in the long exact sequence in Section 3 and $x_{n, m}^{K o} \in$ $\widetilde{K O}_{4 n}\left(H P_{m}^{\infty}\right)$ be the element introduced in Section 3.

Lemma 5.2. Let $n \geqq m \geqq 1$.

1) $A_{4 n}\left(H P_{m}^{\infty}\right) \cong Z_{(2)}+Z / 2+\cdots+Z / 2$.
2) $d_{*}\left(x_{n, m}\right)=x_{n, m}^{K O}$ and $\partial x_{n, m}$ is independent of the choice of $x_{n, m}$ and of order $2^{a_{2}^{A}(n, m)}$, where we identify $b o_{4 n}\left(H P_{m}^{\infty}\right)$ with $\widetilde{K O}_{4 n}\left(H P_{m}^{n}\right) \subset \widetilde{K O_{4 n}}\left(H P_{m}^{\infty}\right)$.
3) $j_{*} h^{A}\left(\sigma_{n}\right)=2^{d_{2}^{A}(n, m)} x_{n, m}$.

Proof. Note that $\operatorname{bspin}_{q}(X) \cong \operatorname{Im}\left\{\widetilde{K O_{q}}\left(X^{(q-3)}\right) \rightarrow \widetilde{K O_{q}}\left(X^{(q-2)}\right)\right\}$ and $b o_{q}(X) \cong \operatorname{Im}\left\{K O_{q}\left(X^{(q)}\right) \rightarrow \widetilde{K O}_{q}\left(X^{(q+1)}\right)\right\}$, where $X^{(q)}$ is the q-th skeleton of a complex X. Now consider the following commutative diagram;

where all straight sequences are exact. Note that $j_{*}: \operatorname{bspin}_{4 n+1}\left(H P^{\infty}\right) \rightarrow$ $b \operatorname{spin}_{4 n+1}\left(H P_{m}^{\infty}\right)$ and $j_{*}: b o_{4 n}\left(H P^{\infty}\right) \rightarrow b o_{4 n}\left(H P_{m}^{\infty}\right)$ are epic. Also remark that $b o_{4 n-1}\left(H P^{\infty}\right)$ and $b o_{4 n-1}\left(H P^{m-1}\right)$ are zero. Then by chasing the above diagram 1) and, 2) easily follow. In general, by Lemma 3.4, $j_{*}\left(h^{4} \sigma_{n}\right)=$ $2^{d^{A}(n, m)} x_{n, m}+$ torsion. Using 1) and Corollary 4.7,3) follows. q.e.d.

Let $\pi_{s}^{l}\left(X ; Z / 2^{b}\right)$ be the stable cohomotopy theory with $\bmod 2^{b}$ coefficients, that is, $\pi_{s}^{l}\left(X ; Z / 2^{b}\right) \cong\left\{X, \Sigma^{l} M_{b}\right\}$. Similarly let $A^{l}\left(X ; Z / 2^{b}\right)$ be A-cohomology with mod 2^{b}-coefficients. Any Adams periodicity map
acts on $\pi_{s}^{l}\left(X ; Z / 2^{b}\right)$ and $A^{l}\left(X ; Z / 2^{b}\right)$ as an operator.
In [6] canonical stable periodicity operators ${ }^{k} \widetilde{B}_{b}$ are constructed which have the following nice properties.

Theorem 5.3. [6] Let X be a finite complex. For any $b \geqq 1$ and $k \geqq 1$, there exists a stable Adams periodicity map ${ }^{k} \widetilde{B}_{b}: \Sigma^{4 k t(b)} M_{b} \rightarrow M_{b}$ which has the following property. Assume $x \in \operatorname{kernel}\left(h^{A}: \pi_{s}^{l}\left(X ; Z / 2^{b}\right) \rightarrow A^{l}\left(X ; Z / 2^{b}\right)\right)$. If there exists an integer k such that $4 k t(b) \geqq \operatorname{dim} X-l+3$ and $\Sigma^{4 k t(b)-l} X$ is a triple suspension of some space, then ${ }^{k} \widetilde{B}_{b}(x)=0$.

As an application of the above theorem we have
Theorem 5.4. Let $n>m>1$ and $b \geqq 1$. If $d_{2}^{A}(n, m) \geqq b$, then for any k such that $k t(b) \geqq n-m+1$ there exists some generator $\sigma_{n+k t(b)}^{\prime}($ in the 2 component) of the free part of $\pi_{4(n+k t(b))}^{s}\left(H P^{\infty}\right)$ such that $j_{*}\left(\sigma_{n+k t(b)}^{\prime}\right)=2^{b} y$ for some $y \in \pi_{4(n+k t(b))}^{s}\left(H P_{m}^{\infty}\right)$, and in particular $d_{2}(n+k t(b), m) \geqq b$, where $j: H P^{\infty} \rightarrow H P_{m}^{\infty}$ is the canonical collapsing map.

Proof. Let ξ be the canonical symplectic line bundle over $H P^{n-m}$. Let M be some multiple of J-order of ξ. Then as is well-known ([8] or [2]) the stunted quaternionic quasi projective space $Q_{M-m, n-m+1}$ is S-dual to $H P_{m}^{n}$. Also there is an S-duality map $S^{1} \rightarrow M_{b} \wedge M_{b}$.

Now consider the following commutative diagram;

where homomorphisms in the vertical direction are all isomorphic. Let $z=j \circ \sigma_{n} \circ \pi_{0} \in\left\{\Sigma^{4 n-1} M_{b}, H P_{m}^{\infty}\right\}$ and $x \in\left\{Q_{M-m, n-m+1}, \Sigma^{4(M-n)-1} M_{b}\right\}$ be the element corresponding to z under the isomorphisms. Then the assumption that $d_{2}^{A}(n, m) \geqq b$ and 3) of Lemma 5.2 imply that $h^{A}(z)=0$. Let $X=Q_{M-m, n-m+1}$ and $l=4(M-n)-1$. Then x belongs to the kernel of $h^{A}: \pi_{s}^{l}\left(X ; Z / 2^{b}\right) \rightarrow A^{l}\left(X ; Z / 2^{b}\right)$. It is easy to see that if $k t(b) \geqq n+m+1$ then $4 k t(b) \geqq \operatorname{dim}^{\prime} X-l+3$. Since X is a Thom complex of a certain real $4(M-n)-1$ dimensional vector bundle over $H P^{n-m}$, so from the obstruction theory X is a $(4(M+m-2 n)-1)$-fold suspension of a space Y. Thus $\Sigma^{4 k t(b)-l} X=\Sigma^{4(k t(b)-n+m)} Y$. Therefore, applying Theorem 5.3, we see that ${ }^{k} \widetilde{B}_{b}(x)=0$ and $z \circ{ }^{k} \widetilde{B}_{b}=0$. Using Proposition 5.1 it follows easily that
there exists an element $\sigma_{n+k t(b)}^{\prime} \in \pi_{4(n+k t(b))}^{s}\left(H P^{\infty}\right)$ such that $j \circ \sigma_{n+k t(b)}^{\prime} \circ \pi_{0}$ $=0$. This completes the proof of Theorem 5.4.
q.e.d.

As a corollary we have the following theorem.
Theorem 5.5. Let $m \geqq 1$. Then for any n such that $n \geqq 2 D(m)+m$, $d_{2}(n, m)=d_{2}^{A}(n, m)$, where $D(m)$ is the integer mentioned in Corollary 2.6.

Proof. We may assume that $m \geqq 2$. Under the assumption clearly there is an integer $k \geqq 1$ such that $n-m+1 \leqq 2 k D(m) \leqq 2 n-2 m$. Since $D(m)$ is a period of $d_{2}^{A}(n, m), d_{2}^{A}(n, m)=d_{2}^{A}(n-k D(m), m)$. Let $d_{2}^{A}(n, m)$ $=b$. Since $k D(m)=k l t(b)$ for some $l \geqq 1$ and since $k D(m) \geqq n-k D(m)-$ $m+1$, by Theorem 5.4, we have the desired result.
q.e.d.

References

[1] J. F. Adams, On the groups $J(X)$-IV, Topology, 5 (1966).
[2] M. F. Atiyah, Thom complexes, Proc. London Math. Soc., 11 (1961).
[3] J. C. Becker, Characteristic classes and K-theory, Lecture Notes in Math., 428 (1978), 132-143.
[4] M. C. Crabb and K. H. Knapp, James numbers and codegree of vector bundles I, preprint.
[5] -, James numbers and codegree of vector bundles II, preprint.
[6] -, On Adams periodicity in stable homotopy, preprint.
[7] M. Imaoka and K. Morisugi, On the stable Hurewicz image of some stunted projective spaces, I, Publ. RIMS, Kyoto University, 20-4 (1984).
[8] I. M. James, The topology of Stiefel manifolds, London Math Soc. Lecture note series, 24 (1976).
[9] M. Mahowald, Descriptive homotopy of the elements in the image of the J-homomorphism, Proc. Tokyo conference on Manifolds 1973, 255-263.
[10] , The image of J in the EHP sequence, Ann. of Math., 116 (1982), 65112.
[11] P. May, E_{∞}-ring spaces and E_{∞}-ring spectra, Lecture Notes in Math., Springer 577 (1977).
[12] C. A. McGibbon, Self maps of projective spaces, Trans. Amer. Math. Soc., 271 No. 1 (1982), 326-346.
[13] K. Morisugi, Stable self maps of the quaternionic (quasi-) projective spaces, Publ. RIMS, Kyoto University, 20-5 (1984).
[14] D. M. Segal, On the stable homotopy of quaternionic and complex projective spaces, Proc. Amer. Math. Soc., 25 (1970), 838-841.
[15] G. B. Segal, The stable homotopy of complex projective space, Quart. J. Math. Oxford (2), 24 (1973) 1-5.
[16] H. Toda, Composition methods in homotopy groups of spheres, Annals of Math. Studies, 49 (1962), Princeton Univ. Press.
[17] G. Walker, Estimates for the complex and quaternionic James numbers, Quart. J. Math. Oxford (2), 32 (1981) 467-489.

[^0]K. H. Knapp

Fachbereich Mathematik
Gesamthochschule Wuppertal 5600 Wuppertal 1
FRG
K. Morisugi

Department of Mathematics
University of Wakayama
Wakayama 640
Japan

[^0]: M. C. Crabb

 Department of Mathematics
 University of Aberdeen
 Aberdeen AB9 2TY
 Scotland

