A Characterization of the Kahn-Priddy Map

Juno Mukai

Dedicated to Professor Nobuo Shimada on his 60 th birthday

§ 1. Introduction and statements of main results

We denote by P^{n} the real n-dimensional projective space. $E^{k} P^{n}$ for $k \geq 0$ denotes the k-fold reduced suspension of P^{n} and $E^{k} \phi_{n}: E^{n+k} P^{n-1} \rightarrow$ S^{n+k} the k-fold reduced suspension of a mapping $\phi_{n}: E^{n} P^{n-1} \rightarrow S^{n} . \quad E^{k} \phi_{n}$ for $n \geq 2$ is called a Kahn-Priddy map if the homotopy class of the restriction $E^{k} \phi_{n} \mid S^{n+k+1}$ generates $\pi_{n+k+1}\left(S^{n+k}\right)$. We denote by $s(n)$ the number of i such that $0<i \leq n$ and $i \equiv 0,1,2$ or $4 \bmod 8$.

By abuse of notation, we often use the same letter for a mapping and its homotopy class. Our first result is the following

Theorem 1.1. Let $\phi_{2 n+1}: E^{2 n+1} P^{2 n} \rightarrow S^{2 n+1}$ be a Kahn-Priddy map. Then the order of $E^{k} \phi_{2 n+1}$ is $2^{s(2 n)}$ for $k \geq 0$.

For a $C W$-complex K, we put $\pi^{n}(K)=\left[K, S^{n}\right]$ which is n-th cohomotopy group if $K=E K^{\prime}$ or $\operatorname{dim} K \leq 2 n-2$. Let $H: \pi^{n}\left(E^{n} P^{n-1}\right) \rightarrow$ $\pi^{2 n-1}\left(E^{n} P^{n-1}\right)$ be the Hopf homomorphism [10] and $p_{n}: P^{n} \rightarrow S^{n}$ the canonical map. Then our second result is the following

Theorem 1.2. $\phi_{2 n+1}: E^{2 n+1} P^{2 n} \rightarrow S^{2 n+1}$ is a Kahn-Priddy map if and only if $H\left(\phi_{2 n+1}\right)=E^{2 n+1} p_{2 n}$.

Our basic idea is based on [3]. To prove Theorem 1.1, we shall use the $\widetilde{K O}$-group of P^{n} [1] and the suspension order of the identity class of $E^{2 n} P^{2 n}$ [9]. To prove Theorem 1.2, we shall use the essential uniqueness of Kahn-Priddy maps [2] and the $E H P$-sequence.

The problem determining the order of the Kahn-Priddy map was posed by Goro Nishida who solved it in the case of odd primes [7]. The

[^0]author wishes to thank Goro Nishida for helpful conversations concerning the uniqueness of Kahn-Priddy maps.

§ 2. The order of the Kahn-Priddy map

By Theorem 7.4 of $[1], \overparen{K O}\left(P^{n}\right) \approx Z / 2^{s(n)}$. The inclusion $P^{1} \rightarrow P^{n}$ maps $\overparen{K O}\left(P^{n}\right)$ onto $\overparen{K O}\left(P^{1}\right)$. As is well known, α is a generator of $\pi_{n+1}\left(S^{n}\right)$ if and only if $\alpha^{*}: \widetilde{K O^{n}}\left(S^{n}\right) \rightarrow \widetilde{K O}^{n}\left(S^{n+1}\right)$ is an epimorphism. So we have the following

Lemma 2.1. $\quad E^{k} \phi_{n}: E^{n+k} P^{n-1} \rightarrow S^{n+k}$ for $k \geq 0$ is a Kahn-Priddy map if and only if $\left(E^{k} \phi_{n}\right)^{*}: \overparen{K O^{n+k}}\left(S^{n+k}\right) \rightarrow \widetilde{K O^{n+k}}\left(E^{n+k} P^{n-1}\right)$ is an epimorphism.

By Corollary to Theorem 2.8 of [9], the order of $E^{k} \phi_{2 n+1}$ is a divisor of $2^{s(2 n)}$. So Lemma 2.1 leads us to Theorem 1.1.

Example. By Theorem 2.3 of [3], the symmetric square of S^{n} is homeomorphic to the mapping cone $S^{n} \cup C\left(E^{n} P^{n-1}\right)$. We denote by $f_{n}: E^{n} P^{n-1} \rightarrow S^{n}$ the attaching map. By Lemma 3.2 of [3], $f_{n}^{*}: \widetilde{K O^{n}}\left(S^{n}\right) \rightarrow$ $\widetilde{K O^{n}}\left(E^{n} P^{n-1}\right)$ is onto. So, by Lemma 2.1, f_{n} is a Kahn-Priddy map.

Remark. The fact that $f_{n}: E^{n} P^{n-1} \rightarrow S^{n}$ is a Kahn-Priddy map is directly obtained from inspecting the definition of the symmetric square of S^{n} ([3] and [5]).

§ 3. Main results used in the proof of Theorem 1.2

Let $\phi, \psi: E^{2 n+2} P^{2 n} \rightarrow S^{2 n+2}$ be Kahn-Priddy maps. Then, the following theorem is a direct consequence of Formulation 2.3 ii) of [2] and it shows the essential uniqueness of Kahn-Priddy maps.

Theorem 3.1. There exists a self-homotopy equivalence ε of $E^{2 n} P^{2 n}$ such that $\psi=\phi \circ E^{2} \varepsilon$.

By Theorem 4.9 of [10], we have the $E H P$-sequence of the following form.

Theorem 3.2. Let K be a finite $C W$-complex and $r=3 m-2-\operatorname{dim} K$. Then the following sequence is exact.

$$
\begin{aligned}
\pi^{m}\left(E^{r} K\right) & \xrightarrow{E} \pi^{m+1}\left(E^{r+1} K\right) \xrightarrow{H} \pi^{2 m+1}\left(E^{r+1} K\right) \xrightarrow{\Delta} \pi^{m}\left(E^{r-1} K\right) \\
& \longrightarrow \xrightarrow{\Delta} \pi^{m}(K) \xrightarrow{E} \pi^{m+1}(E K) \xrightarrow{H} \pi^{2 m+1}(E K) .
\end{aligned}
$$

We shall need a little generalization of the well-known formulas about H and Δ. Precisely, Propositions 2.5 and 2.6 of [8] are valid in the following forms.

Proposition 3.3. Let K, L and M be finite $C W$-complexes. Let $\alpha \in$ [$\left.E^{2} L, E(M \wedge M)\right]$ and $\beta \in[K, L]$. Assume that M is $(m-1)$-connected, $\operatorname{dim} K<3 m-2$ and $\operatorname{dim} L<3 m-2$. Then $\Delta\left(\alpha \circ E^{2} \beta\right)=\Delta \alpha \circ \beta$. In particular, $\Delta\left(E^{2} \beta\right)=\left[\iota_{m}, \iota_{m}\right] \circ \beta$ if $M=S^{m}$ and $L=S^{2 m-1}$. Here ι_{m} denotes the identity class of S^{m}.

Proposition 3.4. Let K and L be $C W$-complexes. Let $\alpha \in \pi^{m}(K)$, $\beta \in \pi_{k}(K)$ and $\gamma \in \pi^{k}(L)$ satisfy the conditions $E(\alpha \beta)=0$ and $\beta \gamma=0$. Then

$$
H\{E \alpha, E \beta, E \gamma\}_{1}=-\Delta^{-1}(\alpha \beta) \circ E^{2 \gamma}
$$

Proofs of the propositions are completed following faithfully the ones of Propositions 2.5 and 2.6 of [8]. We omit the details.

§ 4. The Hopf invariant of the Kahn-Priddy map

A standard Kahn-Priddy map $g_{n}: E^{n} P^{n-1} \rightarrow S^{n}$ is given as follows [4]; $O(n)$ denotes the orthogonal group and $\Omega^{n} S^{n}$ a space consisting of based self-maps of $S^{n} . \quad k_{n}: O(n) \rightarrow \Omega^{n} S^{n}$ denotes the canonical injection. $j_{n}: P^{n-1} \rightarrow O(n)$ represents a line L through the origin in R^{n} as the reflection in the hyperplane perpendicular to L. Then g_{n} is obtained from taking the adjoint of the composition $k_{n} j_{n}: P^{n-1} \rightarrow \Omega^{n} S^{n}$.

From the definition, we have

$$
\begin{equation*}
g_{n} \mid E^{n} P^{n-2}= \pm E g_{n-1} \tag{4.1}
\end{equation*}
$$

Let $\gamma_{n}: S^{n} \rightarrow P^{n}$ be the projection, $i_{n}: P^{n-1} \rightarrow P^{n}$ and $p_{n}: P^{n} \rightarrow S^{n}$ the canonical maps. Then we have a cofibre sequence:

$$
\begin{equation*}
S^{n-1} \xrightarrow{\gamma_{n-1}} P^{n-1} \xrightarrow{i_{n}} P^{n} \xrightarrow{p_{n}} S^{n} \longrightarrow \cdots \tag{4.2}
\end{equation*}
$$

As is well known, we have

$$
\begin{equation*}
p_{n} \gamma_{n}=\left(1+(-1)^{n-1}\right) \iota_{n} . \tag{4.3}
\end{equation*}
$$

According to Section 9 of [11], the image of the connecting homomorphism $\partial: \pi_{n}(O(n+1), O(n)) \rightarrow \pi_{n-1}(O(n))$ is generated by $j_{n} \gamma_{n-1}: S^{n-1} \rightarrow$ $O(n)$ and $J\left(j_{n} \gamma_{n-1}\right)= \pm\left[\iota_{n}, \iota_{n}\right]$. Here $J: \pi_{n-1}(O(n)) \rightarrow \pi_{2 n-1}\left(S^{n}\right)$ denotes the J homomorphism. From the definitions of J and $g_{n}, J\left(j_{n} \gamma_{n-1}\right)=g_{n} \circ E^{n} \gamma_{n-1}$. So we have

$$
\begin{equation*}
g_{n} \circ E^{n} \gamma_{n-1}= \pm\left[\iota_{n}, \iota_{n}\right] . \tag{4.4}
\end{equation*}
$$

From the definition of the secondary composition (Chap. 1 of [8]), $\left\{E^{n} i_{n-1}, E^{n} \gamma_{n-2}, E^{n-1} p_{n-1}\right\}_{1}$ is represented by the identity class $\iota_{E K_{n}}$ for $n \geq 3$, where $K_{n}=E^{n-1} P^{n-1}$. By Proposition 1.2. iv) of [8] and by (4.1),

$$
\pm g_{n} \in \pm g_{n} \circ\left\{E^{n} i_{n-1}, E^{n} \gamma_{n-2}, E^{n-1} p_{n-1}\right\}_{1} \subset\left\{E g_{n-1}, E^{n} \gamma_{n-2}, E^{n-1} p_{n-1}\right\}_{1} .
$$

So we have

$$
\begin{equation*}
\pm g_{n} \in\left\{E g_{n-1}, E^{n} \gamma_{n-2}, E^{n-1} p_{n-1}\right\}_{1} . \tag{4.5}
\end{equation*}
$$

By use of (4.2) and (4.3), we have
(4.6) $\quad \pi^{2 n-1}\left(E^{n} P^{n-1}\right)=\left\{E^{n} p_{n-1}\right\} \approx Z$ or $Z / 2$ according as n is even or odd.

Theorem 4.1. Except for the case $n=4$ or 8 ,

$$
H\left(g_{n}\right) \equiv E^{n} p_{n-1} \bmod 2 E^{n} p_{n-1} .
$$

Proof. The assertion for $n=2$ holds trivially. By Proposition 3.3, $\Delta\left(\iota_{2 n-1}\right)= \pm\left[\iota_{n-1}, \iota_{n-1}\right]$. So, by (4.5), (4.4) and Proposition 3.4,

$$
\begin{aligned}
\pm H\left(g_{n}\right) \in & \in H\left\{E g_{n 1}, E^{n} \gamma_{n-2}, E^{n-1} p_{n-1}\right\}_{1} \\
& =-\Delta^{-1}\left(g_{n-1} \circ E^{n-1} r_{n-2}\right) \circ E^{n} p_{n-1} \ni \pm E^{n} p_{n-1} .
\end{aligned}
$$

The secondary composition $\left\{E g_{n-1}, E^{n} \gamma_{n-2}, E^{n-1} p_{n-1}\right\}_{1}$ is a coset of the subgroup $E g_{n-1} \circ E\left[K_{n}, E K_{n-1}\right]+\pi_{2 n-1}\left(S^{n}\right) \circ E^{n} p_{n-1}$. Therefore, by Proposition 2.2 of [8], $H\left\{E g_{n-1}, E^{n} \gamma_{n-2}, E^{n-1} p_{n-1}\right\}_{1}$ is a coset of $H \pi_{2 n-1}\left(S^{n}\right)$ 。 $E^{n} p_{n-1}$. As is well known, $H \pi_{2 n-1}\left(S^{n}\right)=\left(1+(-1)^{n}\right) \pi_{2 n-1}\left(S^{2 n-1}\right)$ except for the case $n=1,2,4$ or 8 . This completes the proof.

We shall prove a half assertion of Theorem 1.2.
Lemma 4.2. Let $\phi_{n}: E^{n} P^{n-1} \rightarrow S^{n}$ be a Kahn-Priddy map and n odd. Then $H\left(\phi_{n}\right)=E^{n} p_{n-1}$.

Proof. By Theorem 3.1, there exists a self-homotopy equivalence ε of $K_{n}=E^{n-1} P^{n-1}$ satisfying $E \phi_{n}=E g_{n} \circ E^{2} \varepsilon$. By Theorem 3.2, we have an exact sequence for $n \geq 2$:

$$
\pi^{2 n+1}\left(E^{3} K_{n}\right) \xrightarrow{\Delta} \pi^{n}\left(E K_{n}\right) \xrightarrow{E} \pi^{n+1}\left(E^{2} K_{n}\right) .
$$

By Proposition 3.3, (4.6) and (4.4), $\Delta\left(E^{n+2} p_{n-1}\right)=g_{n} \circ E^{n} \gamma_{n-1} \circ E^{n} p_{n-1}$. So, by the above exact sequence, $\phi_{n}=g_{n} \circ\left(E \varepsilon+a E^{n}\left(r_{n-1} p_{n-1}\right)\right)$ for some integer a. Therefore, by Proposition 2.2 of [8], by Theorem 4.1 and (4.3), $H\left(\phi_{n}\right)=H\left(g_{n}\right) \circ\left(E \varepsilon+a E^{n}\left(\gamma_{n-1} p_{n-1}\right)\right)=E^{n} p_{n-1} \circ E \varepsilon+a E^{n}\left(p_{n-1} \gamma_{n-1} p_{n-1}\right)=$ $E^{n} p_{n-1} \circ E \varepsilon$. Since E_{ε} induces an automorphism $(E \varepsilon)^{*}$ of $\pi^{2 n-1}\left(E^{n} P^{n-1}\right)$ $\approx Z / 2$, we have $E^{n} p_{n-1} \circ E \varepsilon=E^{n} p_{n-1}$. This completes the proof.

Proof of Theorem 1.2. It suffices to prove that the converse of Lemma 4.2 is true. By Theorem 3.2, we have an exact sequence for $n \geq 3$:

$$
\pi^{n-1}\left(K_{n}\right) \xrightarrow{E} \pi^{n}\left(E K_{n}\right) \xrightarrow{H} \pi^{2 n-1}\left(E K_{n}\right) .
$$

Suppose that $H\left(\phi_{n}\right)=E^{n} p_{n-1}$ for odd n. Then, by Theorem 4.1 and the above exact sequence, there exists an element $\alpha \in \pi^{n-1}\left(K_{n}\right)$ such that $\phi_{n}=$ $g_{n}+E \alpha$. By Lemma 4.2, $E \alpha$ is not a Kahn-Priddy map since $H(E \alpha)=0$. So $\phi_{n}\left|S^{n+1}=g_{n}\right| S^{n+1}$. Therefore ϕ_{n} is a Kahn-Priddy map. This completes the proof.

Problem. In $\pi^{2 n+1}\left(E^{2 n+1} P^{2 n}\right)$, is an element of order $2^{s(2 n)}$ a KahnPriddy map?

Example. By [6], $\pi_{S}^{0}\left(P^{2 n}\right) \approx Z / 4, Z / 8, Z / 8 \oplus Z / 2$ or $Z / 16 \oplus Z / 2$ according as $n=1,2,3$ or 4 . So the above problem is solved affirmatively for $n \leq 4$.

Example. Let n be even. Then, by Theorem 1.1 and (4.1), the order of $E g_{n}$ is $2^{s(n-1)}$ if $n \equiv 6 \bmod 8$. Moreover, by (4.2), (4.3) and (4.4), the order of $E g_{n}$ is $2^{s(n-2)}$ or $2^{s(n-2)+1}$ if $n \equiv 0,2$ or $4 \bmod 8$.

References

[1] J. F. Adams, Vector fields on spheres, Ann. of Math., 75 (1962), 603-632.
[2] —, The Kahn-Priddy theorem, Proc. Camb. Phil. Soc., 73 (1973), 45-55.
[3] I. M. James, E. Thomas, H. Toda and G. W. Whitehead, On the symmetric square of a sphere, J. Math. Mech., 12 (1963), 771-776.
[4] D. S. Kahn and S. B. Priddy, Applications of the transfer to stable homotopy theory, Bull. Amer. Math. Soc., 78 (1972), 981-987.
[5] S. D. Liao, On the topology of cyclic products of spheres, Trans. Amer. Math. Soc., 77 (1954), 520-551.
[6] J. Mukai, On the stable homotopy of the real projective space of even low dimension, Publ. RIMS, Kyoto Univ., 22 (1986), 81-95.
[7] G. Nishida, On the algebraic K-group of lens spaces and its applications, J. Math. Kyoto Univ., 23 (1983), 211-217.
[8] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, 49, Princeton, 1962.
[9] -, Order of the identity class of a suspension space, Ann. of Math., 78 (1963), 300-325.
[10] -, A survey on homotopy theory, Advances in Math., 10 (1973), 417455.
[11] G. W. Whitehead, A generalization of the Hopf invariant, Ann. of Math., 51 (1950), 192-237.

Department of Mathematics
Faculty of Liberal Arts
Shinshu University, Matsumoto
Nagano 390, Japan

[^0]: Received December 24, 1984.
 Revised June 10, 1985.
 The original version of this note is based on a talk at Fukuoka University in 1982.

