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Dedicated to Professor Nobuo Shimada on his 60th birthday

§ 1. Introduction and statements of main results

We denote by P* the real n-dimensional projective space. E*P" for
k>0 denotes the k-fold reduced suspension of P* and E*g,: E*+**P"~!—
S”** the k-fold reduced suspension of a mapping ¢,: E"P"'—S". E*¢,
for n>2 is called a Kahn-Priddy map if the homotopy class of the restric-
tion E*¢, | S™*%+! generates x,,,.,(S"**). We denote by s(n) the number
of i such that 0<i<n and i =0, 1, 2 or 4 mod 8.

By abuse of notation, we often use the same letter for a mapping and
its homotopy class. Our first result is the following

Theorem 1.1. Let ¢,,,,: E**'P*"—S**! be a Kahn-Priddy map.
Then the order of E¥¢,, ., is 2°®™ for k>0.

For a CW-complex K, we put z"(K)=[K, S”] which is n-th coho-
motopy group if K=EK’ or dim K<2n—2. Let H: z"(E"P" ')—
a*~(E"P*"") be the Hopf homomorphism [10] and p,: P"—S™ the
canonical map. Then our second result is the following

Theorem 1.2. §,,,,: E**'P*"—S**' is a Kahn-Priddy map if and
only if H(¢zps1) =E™*'Poy.

Our basic idea is based on [3]. To prove Theorem 1.1, we shall use

the %-group of P" [1] and the suspension order of the identity class of
E*P* [9]. To prove Theorem 1.2, we shall use the essential uniqueness
of Kahn-Priddy maps [2] and the EHP-sequence.

The problem determining the order of the Kahn-Priddy map was
posed by Goro Nishida who solved it in the case of odd primes [7]. The
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author wishes to thank Goro Nishida for helpful conversations céncern-
ing the uniqueness of Kahn-Priddy maps.

§2. The order of the Kahn-Priddy map
By Theorem 7.4 of [I], KO(P")~Z/2*™. The inclusion P'—P"

r~— r~/ . N
maps KO(P™) onto KO(P'). As is well known, « is a generator of
7,+.(S™) if and only if oz*:fl?é”(S")afK\Oj"(S"“) is an epimorphism. So
we have the following
Lemma 2.1. E*$,: E"**P"~'»S"*¥ for k>0 is a Kahn-Priddy map
if and only if (E*¢,)*: ?OJM'”(S”*")—»fK\é“"(E“"P”‘l) is an epimorphism.

By Corollary to Theorem 2.8 of [9], the order of E*¢,,,, is a divisor
of 2:¢m_ So Lemma 2.1 leads us to Theorem 1.1.

Example. By Theorem 2.3 of [3], the symmetric square of S™ is
homeomorphic to the mapping cone S*U C(E"P""'). We denote by
fnt E"P""*—S™ the attaching map. By Lemma 3.2 of [3], f*: /I?OJ"(S")—»
%"(E "P"-') is onto. So, by Lemma 2.1, £, is a Kahn-Priddy map.

Remark. The fact that f,: E"P"~'—S" is a Kahn-Priddy map is

directly obtained from inspecting the definition of the symmetric square
of S™ ([3] and [5)).

§ 3. Main results used in the proof of Theorem 1.2

Let ¢, 4z E**2P* S *2 be Kahn-Priddy maps. Then, the follow-
ing theorem is a direct consequence of Formulation 2.3 ii) of [2] and it
shows the essential uniqueness of Kahn-Priddy maps.

Theorem 3.1. There exists a self-homotopy equivalence ¢ of E*"P™
such that yr=¢ o E’.

By Theorem 4.9 of [10], we have the EHP-sequence of the following
form.

Theorem 3.2. Let K be a finite CW-complex and r=3m—2—dim K.
Then the following sequence is exact.

E H 4
n.m(ErK) 3 n.'m.+1(Er+1K) 3 71.2m+1(Er+1K) ) n_m(Er-—lK)

4 E H
> (K) s EK)——> 2 {(EK).
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We shall need a little generalization of the well-known formulas about
H and 4. Precisely, Propositions 2.5 and 2.6 of [8] are valid in the
following forms.

Proposition 3.3. Let K, L and M be finite CW-complexes. Let o €
[E*L, EMAM)] and BelK,L]. Assume that M is (m—1)-connected,
dim K<3m—2 and dim L<3m—2. Then (o E*)=Ada o f. In particular,
ME*B) =ty tn]o Bif M=8™ and L=S"""*. Here ¢, denotes the identity
class of S™.

Proposition 3.4. Let K and L be CW-complexes. Let a e z™(K),
B e n(K) and 7 e n*(L) satisfy the conditions E(aB)=0 and r=0. Then

H{Ea, E, Er},=—A4"Y(af) < E7.

Proofs of the propositions are completed following faithfully the ones
of Propositions 2.5 and 2.6 of [8]. We omit the details.

§ 4. The Hopf invariant of the Kahn-Priddy map

A standard Kahn-Priddy map g,: E"P*'—S™" is given as follows
[4]; O(n) denotes the orthogonal group and 2"S™ a space consisting of
based self-maps of S". k,: O(n)—02"S™ denotes the canonical injection.
Jut P""1—>0(n) represents a line L through the origin in R* as the reflec-
tion in the hyperplane perpendicular to L. Then g, is obtained from
taking the adjoint of the composition &, j,: P"'—0"S™".

From the definition, we have

(4.0 8, |E"P"*=tEg, ..
Let 7,: S™—P" be the projection, i,: P*"*—P" and p,: P"—S™ the
canonical maps. Then we have a cofibre sequence:
“.2) so-ilmpros o pn Proen
As is well known, we have
4.3) Pl =1+ (=1)""e,.

According to Section 9 of [11], the image of the connecting homo-
morphism 3: 7, (04 1), On))—r,_(O(n)) is generated by j,7,_,: S* '—
O(m) and J(j,7,_) = *I[t,, ¢,). Here J: z,_,(O(n))—>r,,_,(S™) denotes the
Jhomomorphism. From the definitions of J and g,, J(j,7z_1) =8 E™ n_;-
So we have

(44) 8no Enrn—lz i[lna ln]'
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From the definition of the secondary composition (Chap. 1 of [8]),
{E™,_ s, E™y_sy E"'p,_i}, 1s represented by the identity class ¢g,, for
n>3, where K,=FE""'P"~'. By Proposition 1.2. iv) of [8] and by (4.1),

ign € ign ° {Enin—la Enrﬂ_z, En-lpn—l}lc{Egn—v Enrn—2’ En_lpn—l}l'
So we have
(45) ign € {Egn—l’ Enrn—Z’ En—lpn—l}l'

By use of (4.2) and (4.3), we have

(4.6) = NE"P"Y)={E"p,..}=Z or Z]2 according as n is even or odd.

Theorem 4.1.  Except for the case n=4 or 8,
H(g,)=E"p,_, mod 2E"p,_;.

Proof. The assertion for n=2 holds trivially. By Proposition 3.3,
My, )= F[ts_1, t,_1].  So, by (4.5), (4.4) and Proposition 3.4,

i_H(gn) € H{Egn 1 Enrn—za En-lpn—l}l
=—A" g, 10 E" 'y 9) 0o E"pry 3 £ E"D, .

The secondary composition {Eg,_;, E"7,_s, E" 'p,_;}; is a coset of the
subgroup Eg,_,o E[K,, EK,_l+m,_(S™) o E™p,_,. Therefore, by Pro-
position 2.2 of {8], H{Eg,_,, E™,,_s E""'p,_,}, is a coset of Hr,,_,(S")o
E™p, .. As is well known, Hr,, ,(S™)=(1+(—1D"r,,_ (S except
for the case n=1, 2, 4 or 8. This completes the proof.

We shall prove a half assertion of Theorem 1.2.

Lemma 4.2. Let ¢,: E"P"'—S" be a Kahn-Priddy map and n odd.
Then H(¢,)=E"p,_,.

Proof. By Theorem 3.1, there exists a self-homotopy equivalence e
of K,=E""'P~~! satisfying E¢,=Eg, o E%. By Theorem 3.2, we have an
exact sequence for n>2:

4 E
Y E*K,)—>a(EK )——>r"*(E*K.).

By Proposition 3.3, (4.6) and (4.4), A(E™**p,_)=8,0 E™,_10E™"p,_,.
So, by the above exact sequence, ¢, =g, (Ee+aE™(T,_,p,_,) for some
integer a. Therefore, by Proposition 2.2 of [8], by Theorem 4.1 and (4.3),
H(¢n) = H(g,) o (Ee+aE™(T,_1Pn-) = E"pp_y0o Ee +aE™(Py_Tn_1Pn-)=
E™p, o Ec. Since Ec induces an automorphism (E¢)* of z*~'(E"P""1)
~=Z/2, we have E"p,_,0o Ee=E"p,_,. This completes the proof.
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Proof of Theorem 1.2. 1t suffices to prove that the converse of
Lemma 4.2 is true. By Theorem 3.2, we have an exact sequence for n>>3:

E
YK, 2 (EK,)— s 2 {(EK,).

Suppose that H(¢,)=E"p,_, for odd n. Then, by Theorem 4.1 and the
above exact sequence, there exists an element « ¢ z"~*(K,) such that ¢,=
g.+Ea. By lemma 4.2, E« is not a Kahn-Priddy map since H(E«)=0.
So ¢,|S"*'=g,|S**'. Therefore ¢, is a Kahn-Priddy map. This com-
pletes the proof.

Problem. In z***'(E*™*!'P™), is an element of order 2°®» a Kahn-
Priddy map?

Example. By [6], #%(P*™)=Z/4, Z/8, Z/|8PZ/2 or Z|]16PZ/2 accord-
ingas n=1,2,3 or4. So the above problem is solved affirmatively for
n<4.

Example. Let n be even. Then, by Theorem 1.1 and (4.1), the
order of Eg, is 2°@~V if n=6 mod 8. Moreover, by (4.2), (4.3) and (4.4),
the order of Eg, is 2¢®~® or 2°~9+! if n=0, 2 or 4 mod 8.
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