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Dedicated to Professor Nobuo Shimada on his 60th birthday 

§ 1. Introduction and statements of main results 

We denote by pn the real n-dimensional projective space. Ekpn for 
k>O denotes the k-fold reduced suspension of pn and Ek<pn: En+kpn-l---+ 
sn+k the k-fold reduced suspension of a mapping <Pn: Enpn-l---+sn. Ek<pn 
for n>2 is called a Kahn-Priddy map if the homotopy class of the restric
tion Ek¢n I sn+k+l generates 7!'n+k+l(sn+k). We denote by sen) the number 
of i such that O<i <n and i=O, 1,2 or 4 mod 8. 

By abuse of notation, we often use the same letter for a mapping and 
its homotopy class. Our first result is the following 

Theorem 1.1. Let ¢2n+l: E 2n+lp2n---+S2n+l be a Kahn-Priddy map. 
Then the order of Ek¢2n+l is 2s (2n) for k>O. 

For a CW-complex K, we put 7!'n(K) = [K, sn] which is n-th coho
motopy group if K=EK' or dim K<2n-2. Let H: rrn(Enpn-l)---+ 
rr2n - 1(ppn-l) be the Hopf homomorphism [10] and Pn: pn---+sn the 
canonical map. Then our second result is the following 

Theorem 1.2. ¢2n+l: E 2n+lp2n---+S2n+l is a Kahn-Priddy map if and 
only if H(¢2n+1)=E2n+lp2n· 

Our basic idea is based on [3]. To prove Theorem 1.1, we shall use 

the KG-group of pn [1] and the suspension order of the identity class of 
£2n p2n [9]. To prove Theorem 1.2, we shall use the essential uniqueness 
of Kahn-Priddy maps [2] and the EHP-sequence. 

The problem determining the order of the Kahn-Priddy map was 
posed by Goro Nishida who solved it in the case of odd primes [7]. The 
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author wishes to thank Goro Nishida for helpful conversations concern
ing the uniqueness of Kahn-Priddy maps. 

§ 2. The order of the Kahn-Priddy map 
r--/ 

By Theorem 7.4 of [1], Ko(pn)=Zj2s(n). The inclusion pl--+pn 

maps Ko(pn) onto Ko(PI). As is well known, a is a generator of 
r--/ r--/ 

1!"n+l(sn) if and only if a*: Kon(sn)--+Kon(sn+l) is an epimorphism. So 
we have the following 

Lemma 2.1. Ek<jJn: En+kpn-I--+sn+k for k?:.O is a Kahn-Priddy map 
r--J r--J 

if and only if(Ek<jJn)*: Kon+k(sn+k)--+Kon+k(En+kpn-l) is an epimorphism. 

By Corollary to Theorem 2.8 of [9], the order of E k<jJ2n+1 is a divisor 
of 2s (2n). So Lemma 2.1 leads us to Theorem 1.1. 

Example. By Theorem 2.3 of [3], the symmetric square of sn is 
homeomorphic to the mapping cone sn U C(Enpn-I). We denote by 

r--/ 

fn: Enpn-I--+Sn the attaching map. By Lemma 3.2 of [3], f::: Kon(sn)--+ 
r--J 
Kon(Enpn-l) is onto. So, by Lemma 2.1,fn is a Kahn-Priddy map. 

Remark. The fact that fn: Enpn-I--+sn is a Kahn-Priddy map is 
directly obtained from inspecting the definition of the symmetric square 
of sn ([3] and [5]). 

§ 3. Main results used in the proof of Theorem 1.2 

Let <jJ,,y.: E 2n+2p2n--+S2n+2 be Kahn-Priddy maps. Then, the follow
ing theorem is a direct consequence of Formulation 2.3 ii) of [2] and it 
shows the essential uniqueness of Kahn-Priddy maps. 

Theorem 3.1. There exists a self-homotopy equivalence c of E2np2n 
such that ,y. = <jJ 0 Pc. 

By Theorem 4.9 of [10], we have the EHP-sequence of the following 
form. 

Theorem 3.2. Let K be a finite CW-complex and r=3m-2-dim K. 
Then the follOWing sequence is exact. 

E H L1 
1!"m(ErK)~1!"m+I(Er+IK)~1!"2m+I(Er+IK)~1!"m(Er-IK) 

L1 E H 
~ ... ~1!"m(K)~1!"m+!(EK)~1!"2m+I(EK). 
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We shall need a little generalization of the well-known formulas about 
H and Lt. Precisely, Propositions 2.5 and 2.6 of [8] are valid in the 
following forms. 

Proposition 3.3. Let K, Land M be finite CW-complexes. Let a E 

[E2L, E(M /\M)] and fi E [K, L]. Assume that M is (m-I)-connected, 
dim K < 3m - 2 and dim L < 3m - 2. Then J(a 0 E2 fi) = Ja 0 fi. In particular, 
J(£2fi)=[lm, lJ 0 fi if M =sm and L=S2m-l. Here lm denotes the identity 
class of sm. 

Proposition 3.4. Let K and L be CW-complexes. Let a E 1rm(K), 
fi E 1riK) andr E 1rk(L) satisfy the conditions E(afi) =0 and fir =0. Then 

H{Ea, Efi, Erh = -J-l(afi) 0 E2r. 

Proofs of the propositions are completed following faithfully the ones 
of Propositions 2.5 and 2.6 of [8]. We omit the details. 

§ 4. The Hopf invariant of the Kahn-Priddy map 

A standard Kahn-Priddy map gn: Enpn-l~sn is given as follows 
[4]; O(n) denotes the orthogonal group and ()nsn a space consisting of 
based self-maps of sn. k n: O(n)~{)nSn denotes the canonical injection. 
jn: pn-l~O(n) represents a line L through the origin in Rn as the reflec
tion in the hyperplane perpendicular to L. Then gn is obtained from 
taking the adjoint of the composition knjn: pn-l~{)nsn. 

From the definition, we have 

(4.1) 

Let rn: sn~pn be the projection, in: pn-l~pn andpn: pn~sn the 
canonical maps. Then we have a cofibre sequence: 

(4.2) S n-l rn-l pn-l in pn Pn sn 
~ ~~~"'. 

As is well known, we have 

(4.3) 

According to Section 9 of [II], the image of the connecting homo
morphism 0: 1rn(O(n+I), O(n))~1rn_l(O(n)) is generated by jnrn- 1 : sn-l~ 
O(n) and J(jnrn_1) = ±[In> In]. Here J: 1rn_l(O(n))~1r2n_l(Sn) denotes the 
Jhomomorphism. From the definitions of J and gn, J(jnrn_l)=gn 0 Enrn_1• 

So we have 

(4.4) 
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From the definition of the secondary composition (Chap. 1 of [8D, 
{Enin_l> Enr n-Z' En-Ipn_Ih is represented by the identity class !EX. for 
n>3, where Kn=p-Ipn-I. By Proposition 1.2. iv) of[8] and by (4.1), 

So we have 

(4.5) 

By use of (4.2) and (4.3), we have 

(4.6) it'zn-I(Enpn-l) = {Enpn_I}::::::Z or Z/2 according as n is even or odd. 

Theorem 4.1. Except for the case n =4 or 8, 

H(gn)=Enpn_1 mod 2Enpn _l. 

Proof. The assertion for n=2 holds trivially. By Proposition 3.3, 
J(lzn_l)= ±[!n-I, !n_I]' So, by (4.5), (4.4) and Proposition 3.4, 

+ H(gn) E H{Egn I, Enr n-Z' En-Ipn_Ih 
= -J-I(gn_1 0 En-1rn_z) 0 Enpn_1 :;) ±Enpn _1. 

The secondary composition {Egn_l, Enrn_z, En-Ipn_Ih is a coset of the 
subgroup Egn_1 0 E[Kn' EKn_l] +it'zn_l(sn) 0 Enpn_l. Therefore, by Pro~ 

position 2.2 of [8], H{Egn_l> Enrn_z, En-Pn_Ih is a coset of Hit'zn_l(sn) 0 

Enpn _l. As is well known, H it'zn_l(sn) =(1 +( _1)n)it'zn_lszn-l) except 
for the case n=l, 2, 4 or 8. This completes the proof. 

We shall prove a half assertion of Theorem 1.2. 

Lemma 4.2. Let 1>n: Enpn-'I~sn be a Kahn-Priddy map and n odd. 
Then H(1)n)=Enpn _l. 

Proof. By Theorem 3.1, there exists a self-homotopy equivalence e 
of Kn=En-Ipn-1 satisfying E1>n=Egno EZe. By Theorem 3.2, we have an 
exact sequence for n>2: 

By Proposition 3.3, (4.6) and (4.4), J(En+]Jn_l) =gn 0 Enr n-l 0 Enpn_l. 
So, by the above exact sequence, 1>n=gn 0 (Ee+aEn(rn_IPn_I» for some 
integer a. Therefore, by Proposition 2.2 of [8], by Theorem 4.1 and (4.3), 
H(1)n) = H(gn) 0 (Ee+aEn(rn_IPn_I» = PPn-l 0 Ee + aEn(Pn_Irn_1Pn_l) = 
Enpn_1 0 Ee. Since Ee induces an automorphism (Ee)* of ~n-I(Enpn-l) 
::::::Z/2, we have Enpn _1 0 Ee=Enpn _1. This completes the proof. 
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Proof of Theorem 1.2. It suffices to prove that the converse of 
Lemma 4.2 is true. By Theorem 3.2, we have an exact sequence for n > 3 : 

E H 
rrn-I(Kn)-'1-rrn(EKn)-'1-rr2n-I(EKn)· 

Suppose that H(rpn)=Enpn_1 for odd n. Then, by Theorem 4.1 and the 
above exact sequence, there exists an element a e rrn-I(Kn) such that rpn = 
gn+Ea. By Lemma 4.2, Ea is not a Kahn-Priddy map since H(Ea) =0. 
So rpnlsn+l=gnlsn+l. Thereforerpn is a Kahn-Priddy map. This com
pletes the proof. 

Problem. In rr2n+I(E2n+lpZn), is an element of order 28 (2n) a Kahn
Priddy map? 

Example. By [6}, rrHP 2n)=Z/4, Z/8, Z/8EfjZ/2 or Z/16EfjZ/2 accord
ing as n= 1,2, 3 or 4. So the above problem is solved affirmatively for 
n<4. 

Example. Let n be even. Then, by Theorem 1.1 and (4.1), the 
order of Egn is 28 (n-l) if n=6 mod 8. Moreover, by (4.2), (4.3) and (4.4), 
the order of Egn is 28 (n-2) or 2s (n-Z)+1 if n=O, 2 or 4 mod 8. 
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