Advanced Studies in Pure Mathematics 9, 1986 Homotopy Theory and Related Topics pp. 189–194

Non-free-periodicity of Amphicheiral Hyperbolic Knots

Makoto Sakuma

A knot K in the 3-sphere S^3 is said to have *free period* n if there is an orientation-preserving homeomorphism f on S^3 such that

(1) f(K) = K,

(2) f is a periodic map of period n,

(3) Fix $(f^i) = \phi$ $(1 \le i \le n-1)$.

Hartley [3] has given very effective methods for determining the free periods of a knot, and has identified the free periods of all prime knots with 10 crossings or less with eight exceptions. Since then, Boileau [1] has calculated the symmetry groups of the "large" Montesinos knots, and has shown that four of the rest have no free periods. The remaining knots are 8_{10} , 8_{20} , 10_{99} and 10_{123} (cf. [5]). By Hartly-Kawauchi [4], 10_{99} and 10_{123} are the only prime knots with 10 crossings or less which are strongly positive amphicheiral. Moreover, it follows from the Theorem of [4] that the polynomial condition given by [3] (Theorem 1.2) does not work for determining whether a strongly positive amphicheiral knot has free period 2 or not.

The purpose of this paper is to prove the following theorem:

Theorem. Any amphicheiral hyperbolic knot has no free periods.

In particular, 10_{99} and 10_{123} have no free periods. A circumstantial evidence for this theorem is given by the non-trivial torus knots, which have infinitely many free periods and are not amphicheiral.

§ 1. Some lemmas

Let K be a knot in S^3 which has free period n, and f be a periodic map on S^3 realizing the free period n. Let N be an equivariant tubular neighbourhood of K and put $E = \dot{S}^3 - N$.

Lemma 1. K does not have an f-invariant longitude curve. That is, $f(l) \neq l$, for any simple loop l in ∂N such that $l \sim K$ in $H_1(N)$ and $l \sim 0$ in $H_1(E)$.

Received January 7, 1985.

M. Sakuma

Proof. See [2] p. 180, where this lemma is proved for the case n=2. The same argument works even if $n \ge 3$.

Lemma 2. Suppose that K is a hyperbolic knot. Then the restriction of f to \mathring{E} is equivalent to an isometry.

Proof. Put E' = E/f. Then E' is a compact manifold with $\partial E' \cong T^2$, and E' is irreducible since E is so. We show that E' is homotopically atroidal (cf. [6, 14]). Suppose that E' is not homotopically atroidal. Then, by the torus theorem (see [6] p. 156), either E' is a special Seifert fibered space or there is an essential embedding of T^2 in E'. Since E is hyperbolic, E' cannot be a Seifert fibered space. So there is an essential torus T in E'. Then the lift \tilde{T} of T in E is an incompressible torus in E. Since E is hyperbolic, \tilde{T} is boundary parallel, that is, there is a submanifold Q of E, such that $Q \cong T^2 \times I$ and $\partial Q = \partial E \cup \tilde{T}$. Q is f-invariant, and Q/f forms a submanifold of E' which is homeomorphic to $T^2 \times I$ with $\partial (Q/f) = \partial E' \cup T$; this is a contradiction. Hence E' is homotopically atroidal. Thus, by Thurston [14], \mathring{E}' admits a hyperbolic structure, and therefore, \mathring{E} admits a hyperbolic structure with respect to which f is an isometry.

Lemma 3. Suppose that (S^3, K) admits an action of $Z_2 + Z_2 \cong \langle f | f^2 = 1 \rangle + \langle \tilde{i} | \tilde{i}^2 = 1 \rangle$, such that

(1) f is an orientation-preserving free involution,

(2) γ reverses the orientation of S^3 .

Then K is a trivial knot or a composite knot.

Proof. By Livesay [8], S^3/f is homeomorphic to the 3-dimensional projective space P^3 . Since f and γ are commutative, γ induces an orientation reversing involution γ on P^3 . Then, by Kwun [7], Fix (γ) is a disjoint union of P^2 and P^0 . Let x be a point of $P^2 \subset \text{Fix}(\gamma)$ and let \tilde{x} be a lift of x in S^3 . Let $\gamma': S^3 \rightarrow S^3$ be the lift of γ such that $\gamma'(\tilde{x}) = \tilde{x}$. Then Fix (γ') contains the inverse image of P^2 , which is homeomorphic to a 2-sphere. Thus γ' is a reflection along a 2-sphere. Since γ' is equal to γ or $f\gamma$, γ' preserves the knot K. Hence K must be a trivial knot or a composite knot.

§ 2. Proof of Theorem

Let K be a hyperbolic knot. Then the knot group $G = \pi_1(E)$ is identified with a discrete subgroup of Isom H^3 , the isometry group of the 3-dimensional hyperbolic space H^3 , and \mathring{E} is identified with H^3/G . We use the upper-half space model $H^3 = C \times (0, +\infty)$, and identify Isom H^3 with $P \Gamma L(C)$, the group of all conformal or anti-conformal mappings of the Riemann sphere $C \cup \{\infty\}$, which is identified with the sphere at infinity of H^3 . Then the orientation-preserving isometry group Isom⁺ H^3 is identified with *PSL*(*C*), the group of all Möbius transformations. Let A be the normalizer of G in $P\Gamma L(C)$. Then, by Mostow's rigidity theorem (cf. [14]), the automorphism group Aut(G) of G is identified with A, and Isom $\mathring{E} \cong \operatorname{Out}(G)$ is identified with A/G. Here, an element $\alpha \in A$ represents the element of Aut(G) which sends x ($\in G$) to $\alpha x \alpha^{-1}$. Let P be the peripheral subgroup of G generated by a longitude l and a meridian m. Since $P \cong Z + Z$, we may assume that l and m are identified with the Möbius transformations $l(z) = z + \lambda$ and m(z) = z + 1 respectively, where λ is a complex number with $\text{Im}(\lambda) \neq 0$. Then, as isometries of H^3 , we have $l(z, t) = (z + \lambda, t)$ and m(z, t) = (z + 1, t), and an end of \mathring{E} is obtained from $C \times [t_0, +\infty)$ by identifying each set $(z+Z\lambda+Z1, t)$ with a point, where t_0 is a sufficiently large number. Let A_{∞} be the subgroup of \hat{A} (=Aut (G)) consisting of those elements which preserve P. Noting that any automorphism of G preserves the subgroups P and $\langle l \rangle$ up to a conjugation, Riley observed the following (see Section 1 of [11]).

Lemma 4. (1) Isom $\mathring{E} \cong A_{\infty}/P$.

(2) Any element ψ of A_{∞} is of one of the following types.

- (i) $\psi(z) = z + c \ (c \in C),$
- (ii) $\psi(z) = -z + c \ (c \in C),$

(iii) $\psi(z) = \varepsilon \overline{z} + c \ (|\varepsilon| = 1, c \in C).$

(3) *K* is amphicheiral, iff there is an element of A_{∞} which is of type (iii) with $\varepsilon = \pm 1$, and λ is a purely imaginary number.

Remark. 5. Let A_{∞}^* be the subgroup of A_{∞} which consists of type (i) elements. Then A_{∞}^* is a normal subgroup of A_{∞} ; in particular, if $\psi(z) = z + c$ and $\xi(z) = \varepsilon \overline{z} + c'$ ($\varepsilon = \pm 1$), then $\xi \psi \xi^{-1}(z) = z + \varepsilon \overline{c}$.

Put Isom^{*} $\mathring{E} = A_{\infty}^{*}/P$. Then, by Smith conjecture [9], we have the following (cf. [10] p. 124, [12] Lemma 3.3).

Lemma 6. Isom^{*} \mathring{E} is a normal subgroup of Isom \mathring{E} (of index at most 4), and is isomorphic to a finite cyclic group.

The proof of the Theorem is divided into two assertions.

Assertion I. The Theorem is true for free period $n \ge 3$.

Proof. Suppose that K is hyperbolic, amphicheiral, and has free period $n \ge 3$. By Lemma 2, there is an isometry f of \mathring{E} which realizes the free period n. Let ψ be an element of A_{∞} representing f (cf. Lemma 4).

M. Sakuma

Since f preserves a longitude and a meridian homologically, ψ is of type (i); so $\psi(z)=z+c$ for some $c \in C$. Since f has period n, $c=(p\lambda+q1)/n$ for some integers p and q.

Lemma 7. The greatest common divisors (p, n) and (q, n) are equal to 1.

Proof. Put r = n/(p, n). Then

$$\psi^{r}(z) = z + (p\lambda + q1)/(p, n)$$

= $l^{p/(p, n)}(z) + q1/(p, n)$.

Thus the isometry f^r has an invariant meridian curve. (Recall the structure of an end of \mathring{E} .) By Smith conjecture [9], we have $f^r = id$ and therefore (p, n) = 1. Put s = n/(q, n). Then

$$\psi^{s}(z) = z + (p\lambda + q1)/(q, n)$$
$$= m^{q/(q, n)}(z) + p\lambda/(q, n).$$

Thus the isometry f^s has an invariant longitude curve. So, by Lemma 1, we have $f^s = id$, and therefore (q, n) = 1.

Since K is amphicheiral, λ is a purely imaginary number, and \mathring{E} admits an orientation-reversing isometry $\hat{\gamma}$, which is represented by an element ξ of A_{∞} such that $\xi(z) = \varepsilon \bar{z} + b$ ($\varepsilon = \pm 1, b \in C$) (see Lemma 4). By remark 5,

$$\xi\psi\xi^{-1}(z) = z + \varepsilon(\overline{p\lambda} + q1)/n$$
$$= z + \varepsilon(-p\lambda + q1)/n.$$

By Lemma 6, there is an integer $r (0 \le r \le n-1)$ such that $\tilde{\gamma}f\tilde{\gamma}^{-1} = f^r$, that is, $\xi \psi \xi^{-1} \equiv \psi^r \mod P$. Hence we have

$$\varepsilon(-p\lambda+q1)/n \equiv r(p\lambda+q1)/n \mod \{\lambda, 1\}.$$

This is equivalent to

$$\begin{cases} -\varepsilon p \equiv rp \mod n \\ \varepsilon q \equiv rq \mod n. \end{cases}$$

Since (p, n) = (q, n) = 1 by Lemma 7, we have

$$-\varepsilon \equiv r \equiv \varepsilon \mod n.$$

This is a contradiction, since $n \ge 3$. Thus Assertion I is proved.

192

Assertion II. The Theorem is true for free period 2.

Proof. Assume that K is hyperbolic, amphicheiral, and has free period 2. Then $\operatorname{Isom}^* \mathring{E}$ is a cyclic group of order $2n \ (n \in N)$, and the free period 2 is realized by the isometry $f = f_0^n$, where f_0 is a generator of $\operatorname{Isom}^* \mathring{E}$. Let ψ_0 be an element of A_∞ representing f_0 . Then by an argument similar to the proof of Lemma 7, we can see that $\psi_0(z) = z + (p\lambda + q1)/2n$, where p is an integer such that (p, 2n) = 1 and q is an odd integer. Let ξ be an element of A_∞ representing an orientation-reversing isometry $\hat{\tau}$ of \mathring{E} . Then $\xi(z) = \varepsilon \overline{z} + b \ (\varepsilon = \pm 1, b \in C)$. Note that $\xi^2(z) = z + (\varepsilon \overline{b} + b)$.

Case 1. $\varepsilon = +1$. Then $\xi^2(z) = z + 2 \operatorname{Re}(b)$. Thus γ^2 has an invariant meridian curve, and therefore $\gamma^2 = \operatorname{id}$ by Smith conjecture. Since f is the order 2 element of the cyclic normal subgroup $\operatorname{Isom}^* \mathring{E} \cong \mathbb{Z}_{2n}$, we have $\gamma f \gamma^{-1} = f$. So f and γ generate a $\mathbb{Z}_2 + \mathbb{Z}_2$ action on (S^3, K) which satisfies the condition of Lemma 3. This is a contradiction, since a hyperbolic knot is non-trivial and prime.

Case 2. $\varepsilon = -1$. Then $\gamma^2(z) = z + 2 \operatorname{Im}(b)i$. By an argument similar to the final step of the proof of Assertion I, we have $\gamma f_0 \gamma^{-1} = f_0$. Let u be an integer such that $\gamma^2 = f_0^n \in \operatorname{Isom}^* \mathring{E}$.

Subcase 1. *u* is even. Put $\gamma' = \gamma f_0^{-v}$, where v = u/2. Then $(\gamma')^2 = id$. So γ' and *f* generate a $Z_2 + Z_2$ action on (S^3, K) satisfying the condition of Lemma 3; a contradiction.

Subcase 2. *u* is odd. Note that

 $\xi^2(z) \equiv \psi_0^u(z) = z + (up\lambda + uq1)/2n \mod \{\lambda, 1\}.$

Since q is odd, $uq/2n \neq 0 \mod 1$, and therefore

 $(up\lambda + uq1)/2n \equiv a$ purely imaginary number mod $\{\lambda, 1\}$.

This contradicts the fact that $\xi^2(z) = z + 2 \operatorname{Im}(b)i$. This completes the proof of the Theorem.

§ 3. Further discussion

The Theorem does not hold for composite knots. In fact, the connected some of n-copies of an amphicheiral knot is amphicheiral, but has free period n. However, as shown in [13], the free periods of a composite knot are completely determined by the free periods of its prime factors,

M. Sakuma

and the Theorem holds for prime knots except free period 2; that is, any amphicheiral prime knot does not have free periods greater than 2. It remains open whether there is an amphicheiral prime knot which has free period 2.

I also calculated the symmetry groups of the "small" Montesinos knots by using the results of Thurston [15]. In particular, it follows that 8_{10} and 8_{20} have no free periods.* This completes the enumeration of the free periods of the prime knots with 10 crossings or less.

*) Boileau informed me that he proved the non-free-periodicity of the small Montesinos knots without using [15].

References

- [1] C. M. Boileau, Groupe des symetries des noeuds de bretzel et de Montesinos, preprint.
- [2] R. Hartley, Knots and involutions, Math. Z., 171 (1980), 175-185.
- [3] —, Knots with free periods, Canad. J. Math., 33 (1981), 91-102.
- [4] R. Hartley and A. Kawauchi, Polynomials of amphicheiral knots, Math. Ann., 243 (1979), 63-70.
- [5] J. A. Hillman, Symmetries of knots and links, and invariants of abelian coverings, preprint.
- [6] W. Jaco, Lectures on three-manifold topology. Conference board of the mathematical sciences, regional conference series in Mathematics, No. 43, 1980.
- [7] K. W. Kwun, Scarcity of orientation-reversing *PL* involutions of lens spaces, Michigan Math. J., 17 (1970), 355–358.
- [8] G. R. Livesay, Fixed point free involutions on the 3-sphere, Ann. of Math., 72 (1960), 603-611.
- [9] J. W. Morgan and H. Bass, The Smith conjecture, Pure Appl. Math., 112, Academic Press, 1984.
- [10] R. Riley, An elliptic path from parabolic representations to hyperbolic structures, Lecture Notes in Math., 722, pp. 99–133, Springer-Verlag, 1979.
- [11] —, Seven excellent knots, L.M.S. lecture note series 48, pp. 81–151, 1982.
- [12] M. Sakuma, On strongly invertible knots, Algebraic and topological theories, pp. 176-196, Kinokuniya Company LTD, 1986.
- [13] ____, Uniqueness of symmetries of knots, to appear in Math. Z.
- [14] W. P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc., 6 (1982), 357–381.
- [15] —, Three manifolds with symmetry, preprint.

Department of Mathematics Osaka City University Sumiyoshi, Osaka, 558 Japan