Non-free-periodicity of Amphicheiral Hyperbolic Knots

Makoto Sakuma

A knot K in the 3 -sphere S^{3} is said to have free period n if there is an orientation-preserving homeomorphism f on S^{3} such that
(1) $f(K)=K$,
(2) f is a periodic map of period n,
(3) Fix $\left(f^{i}\right)=\phi(1 \leqq i \leqq n-1)$.

Hartley [3] has given very effective methods for determining the free periods of a knot, and has identified the free periods of all prime knots with 10 crossings or less with eight exceptions. Since then, Boileau [1] has calculated the symmetry groups of the "large" Montesinos knots, and has shown that four of the rest have no free periods. The remaining knots are $8_{10}, 8_{20}, 10_{99}$ and 10_{123} (cf. [5]). By Hartly-Kawauchi [4], 10_{99} and 10_{123} are the only prime knots with 10 crossings or less which are strongly positive amphicheiral. Moreover, it follows from the Theorem of [4] that the polynomial condition given by [3] (Theorem 1.2) does not work for determining whether a strongly positive amphicheiral knot has free period 2 or not.

The purpose of this paper is to prove the following theorem:
Theorem. Any amphicheiral hyperbolic knot has no free periods.
In particular, 10_{99} and 10_{123} have no free periods. A circumstantial evidence for this theorem is given by the non-trivial torus knots, which have infinitely many free periods and are not amphicheiral.

§ 1. Some lemmas

Let K be a knot in S^{3} which has free period n, and f be a periodic map on S^{3} realizing the free period n. Let N be an equivariant tubular neighbourhood of K and put $E=\dot{S}^{3}-N$.

Lemma 1. K does not have an f-invariant longitude curve. That is, $f(l) \neq l$, for any simple loop l in ∂N such that $l \sim K$ in $H_{1}(N)$ and $l \sim 0$ in $H_{1}(E)$.

Proof. See [2] p. 180, where this lemma is proved for the case $n=2$. The same argument works even if $n \geqq 3$.

Lemma 2. Suppose that K is a hyperbolic knot. Then the restriction off to $\stackrel{\circ}{E}$ is equivalent to an isometry.

Proof. Put $E^{\prime}=E / f$. Then E^{\prime} is a compact manifold with $\partial E^{\prime} \cong T^{2}$, and E^{\prime} is irreducible since E is so. We show that E^{\prime} is homotopically atroidal (cf. [6, 14]). Suppose that E^{\prime} is not homotopically atroidal. Then, by the torus theorem (see [6] p. 156), either E^{\prime} is a special Seifert fibered space or there is an essential embedding of T^{2} in E^{\prime}. Since E is hyperbolic, E^{\prime} cannot be a Seifert fibered space. So there is an essential torus T in E^{\prime}. Then the lift \widetilde{T} of T in E is an incompressible torus in E. Since E is hyperbolic, \tilde{T} is boundary parallel, that is, there is a submanifold Q of E, such that $Q \cong T^{2} \times I$ and $\partial Q=\partial E \cup \widetilde{T} . \quad Q$ is f-invariant, and Q / f forms a submanifold of E^{\prime} which is homeomorphic to $T^{2} \times I$ with $\partial(Q / f)=\partial E^{\prime} \cup T$; this is a contradiction. Hence E^{\prime} is homotopically atroidal. Thus, by Thurston [14], E^{\prime} admits a hyperbolic structure, and therefore, $\stackrel{\circ}{E}$ admits a hyperbolic structure with respect to which f is an isometry.

Lemma 3. Suppose that $\left(S^{3}, K\right)$ admits an action of $\boldsymbol{Z}_{2}+\boldsymbol{Z}_{2} \cong$ $\left\langle f \mid f^{2}=1\right\rangle+\left\langle\gamma \mid \gamma^{2}=1\right\rangle$, such that
(1) f is an orientation-preserving free involution,
(2) γ reverses the orientation of S^{3}.

Then K is a trivial knot or a composite knot.
Proof. By Livesay [8], S^{3} / f is homeomorphic to the 3-dimensional projective space P^{3}. Since f and γ are commutative, γ induces an orientation reversing involution $\underset{\sim}{\gamma}$ on P^{3}. Then, by Kwun [7], Fix $(\underset{\sim}{\gamma})$ is a disjoint union of P^{2} and P^{0}. Let x be a point of $P^{2} \subset$ Fix (γ) and let \tilde{x} be a lift of x in S^{3}. Let $\gamma^{\prime}: S^{3} \rightarrow S^{3}$ be the lift of $\gamma \sim$ such that $\gamma^{\prime}(\tilde{x})=\tilde{x}$. Then Fix $\left(\gamma^{\prime}\right)$ contains the inverse image of P^{2}, which is homeomorphic to a 2 -sphere. Thus γ^{\prime} is a reflection along a 2 -sphere. Since γ^{\prime} is equal to γ or $f \gamma, \gamma^{\prime}$ preserves the knot K. Hence K must be a trivial knot or a composite knot.

§ 2. Proof of Theorem

Let K be a hyperbolic knot. Then the knot group $G=\pi_{1}(E)$ is identified with a discrete subgroup of Isom \boldsymbol{H}^{3}, the isometry group of the 3-dimensional hyperbolic space \boldsymbol{H}^{3}, and $\stackrel{\circ}{E}$ is identified with $\boldsymbol{H}^{3} / \boldsymbol{G}$. We use the upper-half space model $\boldsymbol{H}^{3}=\boldsymbol{C} \times(0,+\infty)$, and identify Isom \boldsymbol{H}^{3}
with $P \Gamma L(C)$, the group of all conformal or anti-conformal mappings of the Riemann sphere $C \cup\{\infty\}$, which is identified with the sphere at infinity of \boldsymbol{H}^{3}. Then the orientation-preserving isometry group Isom ${ }^{+} \boldsymbol{H}^{3}$ is identified with $\operatorname{PSL}(\boldsymbol{C})$, the group of all Möbius transformations. Let A be the normalizer of G in $P \Gamma L(C)$. Then, by Mostow's rigidity theorem (cf. [14]), the automorphism group $\operatorname{Aut}(G)$ of G is identified with A, and Isom $\overparen{E} \cong \operatorname{Out}(G)$ is identified with A / G. Here, an element $\alpha \in A$ represents the element of $\operatorname{Aut}(G)$ which sends $x(\in G)$ to $\alpha x \alpha^{-1}$. Let P be the peripheral subgroup of G generated by a longitude l and a meridian m. Since $P \cong Z+Z$, we may assume that l and m are identified with the Möbius transformations $l(z)=z+\lambda$ and $m(z)=z+1$ respectively, where λ is a complex number with $\operatorname{Im}(\lambda) \neq 0$. Then, as isometries of \boldsymbol{H}^{3}, we have $l(z, t)=(z+\lambda, t)$ and $m(z, t)=(z+1, t)$, and an end of \dot{E} is obtained from $C \times\left[t_{0},+\infty\right)$ by identifying each set $(z+Z \lambda+Z 1, t)$ with a point, where t_{0} is a sufficiently large number. Let A_{∞} be the subgroup of $A(=$ Aut $(G))$ consisting of those elements which preserve P. Noting that any automorphism of G preserves the subgroups P and $\langle l\rangle$ up to a conjugation, Riley observed the following (see Section 1 of [11]).

Lemma 4. (1) Isom $E \cong \cong A_{\infty} / P$.
(2) Any element ψ of A_{∞} is of one of the following types.
(i) $\psi(z)=z+c(c \in C)$,
(ii) $\psi(z)=-z+c(c \in C)$,
(iii) $\psi(z)=\varepsilon \bar{z}+c \quad(|\varepsilon|=1, c \in C)$.
(3) K is amphicheiral, iff there is an element of A_{∞} which is of type (iii) with $\varepsilon= \pm 1$, and λ is a purely imaginary number.

Remark. 5. Let A_{∞}^{*} be the subgroup of A_{∞} which consists of type (i) elements. Then A_{∞}^{*} is a normal subgroup of A_{∞}; in particular, if $\psi(z)$ $=z+c$ and $\xi(z)=\varepsilon \bar{z}+c^{\prime}(\varepsilon= \pm 1)$, then $\xi \psi \xi^{-1}(z)=z+\varepsilon \bar{c}$.

Put Isom ${ }^{*} \stackrel{\circ}{E}=A_{\infty}^{*} / P$. Then, by Smith conjecture [9], we have the following (cf. [10] p. 124, [12] Lemma 3.3).

Lemma 6. Isom* \AA° is a normal subgroup of Isom ${ }^{E}$ (of index at most 4), and is isomorphic to a finite cyclic group.

The proof of the Theorem is divided into two assertions.
Assertion I. The Theorem is true for free period $n \geqq 3$.
Proof. Suppose that K is hyperbolic, amphicheiral, and has free period $n \geqq 3$. By Lemma 2, there is an isometry f of $\stackrel{\circ}{E}$ which realizes the free period n. Let ψ be an element of A_{∞} representing f (cf. Lemma 4).

Since f preserves a longitude and a meridian homologically, ψ is of type (i); so $\psi(z)=z+c$ for some $c \in C$. Since f has period $n, c=(p \lambda+q 1) / n$ for some integers p and q.

Lemma 7. The greatest common divisors (p, n) and (q, n) are equal to 1 .

Proof. Put $r=n /(p, n)$. Then

$$
\begin{aligned}
\psi^{r}(z) & =z+(p \lambda+q 1) /(p, n) \\
& =l^{p /(p, n)}(z)+q 1 /(p, n)
\end{aligned}
$$

Thus the isometry f^{r} has an invariant meridian curve. (Recall the structure of an end of $\stackrel{\circ}{E}$.) By Smith conjecture [9], we have $f^{r}=$ id and therefore $(p, n)=1$. Put $s=n /(q, n)$. Then

$$
\begin{aligned}
\psi^{s}(z) & =z+(p \lambda+q 1) /(q, n) \\
& =m^{q /(q, n)}(z)+p \lambda /(q, n)
\end{aligned}
$$

Thus the isometry f^{s} has an invariant longitude curve. So, by Lemma 1, we have $f^{s}=\mathrm{id}$, and therefore $(q, n)=1$.

Since K is amphicheiral, λ is a purely imaginary number, and \AA° admits an orientation-reversing isometry γ, which is represented by an element ξ of A_{∞} such that $\xi(z)=\varepsilon \bar{z}+b(\varepsilon= \pm 1, b \in C)$ (see Lemma 4). By remark 5,

$$
\begin{aligned}
\xi \psi \xi^{-1}(z) & =z+\varepsilon(\overline{p \lambda+q 1}) / n \\
& =z+\varepsilon(-p \lambda+q 1) / n
\end{aligned}
$$

By Lemma 6, there is an integer $r(0 \leqq r \leqq n-1)$ such that $\gamma f \gamma^{-1}=f^{r}$, that is, $\xi \psi \xi^{-1} \equiv \psi^{r} \bmod P$. Hence we have

$$
\varepsilon(-p \lambda+q 1) / n \equiv r(p \lambda+q 1) / n \bmod \{\lambda, 1\}
$$

This is equivalent to

$$
\left\{\begin{aligned}
-\varepsilon p & \equiv r p \bmod n \\
\varepsilon q & \equiv r q \bmod n
\end{aligned}\right.
$$

Since $(p, n)=(q, n)=1$ by Lemma 7, we have

$$
-\varepsilon \equiv r \equiv \varepsilon \bmod n
$$

This is a contradiction, since $n \geqq 3$. Thus Assertion I is proved.

Assertion II. The Theorem is true for free period 2.

Proof. Assume that K is hyperbolic, amphicheiral, and has free period 2. Then Isom ${ }^{*} \stackrel{\circ}{E}$ is a cyclic group of order $2 n(n \in N)$, and the free period 2 is realized by the isometry $f=f_{0}^{n}$, where f_{0} is a generator of Isom ${ }^{*} \stackrel{\circ}{E}$. Let ψ_{0} be an element of A_{∞} representing f_{0}. Then by an argument similar to the proof of Lemma 7, we can see that $\psi_{0}(z)=z+$ $(p \lambda+q 1) / 2 n$, where p is an integer such that $(p, 2 n)=1$ and q is an odd integer. Let ξ be an element of A_{∞} representing an orientation-reversing isometry γ of \dot{E}. Then $\xi(z)=\varepsilon \bar{z}+b(\varepsilon= \pm 1, b \in C)$. Note that $\xi^{2}(z)=$ $z+(\varepsilon \bar{b}+b)$.

Case 1. $\varepsilon=+1$. Then $\xi^{2}(z)=z+2 \operatorname{Re}(b)$. Thus γ^{2} has an invariant meridian curve, and therefore $\gamma^{2}=\mathrm{id}$ by Smith conjecture. Since f is the order 2 element of the cyclic normal subgroup Isom* ${ }^{\circ} \cong Z_{2 n}$, we have $\gamma f \gamma^{-1}=f$. So f and γ generate a $Z_{2}+Z_{2}$ action on (S^{3}, K) which satisfies the condition of Lemma 3. This is a contradiction, since a hyperbolic knot is non-trivial and prime.

Case 2. $\quad \varepsilon=-1$. Then $\gamma^{2}(z)=z+2 \operatorname{Im}(b) i . \quad$ By an argument similar to the final step of the proof of Assertion I, we have $\gamma f_{0} \gamma^{-1}=f_{0}$. Let u be an integer such that $\gamma^{2}=f_{0}^{n} \in$ Isom $^{*} \stackrel{\circ}{E}$.

Subcase 1. u is even. Put $\gamma^{\prime}=\gamma f_{0}^{-v}$, where $v=u / 2$. Then $\left(\gamma^{\prime}\right)^{2}=\mathrm{id}$. So γ^{\prime} and f generate a $Z_{2}+Z_{2}$ action on $\left(S^{3}, K\right)$ satisfying the condition of Lemma 3; a contradiction.

Subcase 2. u is odd. Note that

$$
\xi^{2}(z) \equiv \psi_{0}^{u}(z)=z+(u p \lambda+u q 1) / 2 n \bmod \{\lambda, 1\} .
$$

Since q is odd, $u q / 2 n \not \equiv 0 \bmod 1$, and therefore

$$
(u p \lambda+u q 1) / 2 n \not \equiv a \text { purely imaginary number } \bmod \{\lambda, 1\} .
$$

This contradicts the fact that $\xi^{2}(z)=z+2 \operatorname{Im}(b) i$. This completes the proof of the Theorem.

§ 3. Further discussion

The Theorem does not hold for composite knots. In fact, the connected some of n-copies of an amphicheiral knot is amphicheiral, but has free period n. However, as shown in [13], the free periods of a composite knot are completely determined by the free periods of its prime factors,
and the Theorem holds for prime knots except free period 2 ; that is, any amphicheiral prime knot does not have free periods greater than 2 . It remains open whether there is an amphicheiral prime knot which has free period 2.

I also calculated the symmetry groups of the "small" Montesinos knots by using the results of Thurston [15]. In particular, it follows that 8_{10} and 8_{20} have no free periods.* This completes the enumeration of the free periods of the prime knots with 10 crossings or less.

[^0]
References

[1] C. M. Boileau, Groupe des symetries des noeuds de bretzel et de Montesinos, preprint.
[2] R. Hartley, Knots and involutions, Math. Z., 171 (1980), 175-185.
[3] -, Knots with free periods, Canad. J. Math., 33 (1981), 91-102.
[4] R. Hartley and A. Kawauchi, Polynomials of amphicheiral knots, Math. Ann., 243 (1979), 63-70.
[5] J. A. Hillman, Symmetries of knots and links, and invariants of abelian coverings, preprint.
[6] W. Jaco, Lectures on three-manifold topology. Conference board of the mathematical sciences, regional conference series in Mathematics, No. 43, 1980.
[7] K. W. Kwun, Scarcity of orientation-reversing $P L$ involutions of lens spaces, Michigan Math. J., 17 (1970), 355-358.
[8] G. R. Livesay, Fixed point free involutions on the 3-sphere, Ann. of Math., 72 (1960), 603-611.
[9] J. W. Morgan and H. Bass, The Smith conjecture, Pure Appl. Math., 112, Academic Press, 1984.
[10] R. Riley, An elliptic path from parabolic representations to hyperbolic structures, Lecture Notes in Math., 722, pp.99-133, Springer-Verlag, 1979.
[11] - Seven excellent knots, L.M.S. lecture note series 48, pp. 81-151, 1982.
[12] M. Sakuma, On strongly invertible knots, Algebraic and topological theories, pp. 176-196, Kinokuniya Company LTD, 1986.
[13] , Uniqueness of symmetries of knots, to appear in Math. Z.
[14] W. P. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc., 6 (1982), 357-381.
[15] - Three manifolds with symmetry, preprint.

[^1]
[^0]: *) Boileau informed me that he proved the non-free-periodicity of the small Montesinos knots without using [15].

[^1]: Department of Mathematics
 Osaka City University
 Sumiyoshi, Osaka, 558
 Japan

